
ETH Library

Using a file history graph to keep
track of personal resources across
devices and services

Journal Article

Author(s):
Geel, Matthias; Norrie, Moira C.

Publication date:
2016-09

Permanent link:
https://doi.org/10.3929/ethz-b-000118358

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
International Journal on Digital Libraries 17(3), https://doi.org/10.1007/s00799-016-0181-7

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000118358
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s00799-016-0181-7
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Int J Digit Libr (2016) 17:175–187
DOI 10.1007/s00799-016-0181-7

Using a file history graph to keep track of personal resources
across devices and services

Matthias Geel1 · Moira C. Norrie1

Received: 4 January 2016 / Revised: 5 June 2016 / Accepted: 17 June 2016 / Published online: 7 July 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Personal digital resources now tend to be stored,
managed and shared using a variety of devices and online
services. As a result, different versions of resources are often
stored in different places, and it has become increasingly
difficult for users to keep track of them. We introduce the
concept of a file history graph that can be used to provide
users with a global view of resource provenance and enable
them to track specific versions across devices and services.
We describe how this has been used to realise a version-aware
environment, called Memsy, and report on a lab study used
to evaluate the proposed workflow. We also describe how
reconciliation services can be used to fill in missing links in
the file history graph and present a detailed study for the case
of images as a proof of concept.

Keywords File provenance · File reconciliation · Cross-
device indexing · Resource management

1 Introduction

Users now commonly work with multiple computing devices
in their daily lives, often using external storage devices or
cloud services as a way of moving digital resources between
devices and sharing them with others. At the same time, web-
based media services and social networking sites are used
not only to share resources such as images, but also to man-
age them and make them accessible from different locations.

B Moira C. Norrie
norrie@inf.ethz.ch

Matthias Geel
geel@inf.ethz.ch

1 Department of Computer Science, ETH Zurich, Zurich,
Switzerland

However, while it has become much easier to globally access
and share resources, it has become more difficult to keep track
of different versions stored in different places [21].

The versioning of resources may be deliberate or acciden-
tal. Deliberate versioning can occur because a user chooses
to keep track of the history of a resource, or to create vari-
ants for different purposes. For example, they might choose
to create different versions of an image to optimise the res-
olution for different viewing contexts. If one of these image
versions is uploaded to a social networking site, it will be
transformed and stored on the service, thereby creating yet
another version of the resource.

Accidental versioning occurs due to our ways of working
with multiple devices and services, where we often cre-
ate copies and then modify them without synchronising the
copies. We now expect to be able to work on the same doc-
ument in different locations, often blurring the distinction
between private and working environments [10]. Users can
move the files that they are working on between devices in
several ways including using a cloud storage service such as
Dropbox, using an external storage device such as a USB
flash drive or emailing an attachment to themselves. Even
though working on a document stored in a cloud storage ser-
vice ensures synchronisation, many users prefer to first create
a local copy before editing. The result is that the user ends up
with multiple versions in different locations and often strug-
gles to remember later where a particular version is stored.
The problem becomes worse if they have renamed files and
moved them between folders.

Our goal is to provide users with a global view of their
digital resources so that they can get answers to questions
such as: “Where is the latest version of this document and
on which device/service is it stored? Does the previous ver-
sion still exist somewhere? Where is the original? How many
copies exist and to which, if any, file hosting services have

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00799-016-0181-7&domain=pdf
http://orcid.org/0000-0002-6864-8554

176 M. Geel, M. C. Norrie

they been uploaded?”. Importantly, we want to do this with-
out requiring them to change their ways of working. The
solution, therefore, has to be embeddable in standard desk-
top environments and work alongside existing applications
and file management tools.

To achieve this, we propose the concept of a file history
graph for managing metadata about a user’s entire informa-
tion space, possibly spanning several computing and storage
devices as well as online file hosting services. If a user has
access to a particular version of a file, the file history graph
enables them to get an overview of the provenance of that file
and track down a particular version such as the latest or the
original. As proof of concept, we have developed Memsy,
a version-aware environment that helps users keep track of
resources based on the file history graph.

For legacy reasons or due to restricted access to exter-
nal services, there may, however, be missing links in the file
history graph. For example, an image uploaded to Facebook
not only gets transformed but also loses its original id, and
this results in a gap in the file history graph unless the user
explicitly creates a link. We have addressed this by integrat-
ing a reconciliation engine that uses file system properties and
content-based fingerprints to find similar files and help users
fill in the gaps. Given the popularity of uploading images to
various media hosting services and social networking sites,
and the difficulty of tracing these images back to the origi-
nals stored locally, we chose to investigate a reconciliation
service for images.

This article extends a previous publication [15] by not
only providing more details of the approach and the Memsy
implementation, but also adding a section that describes how
we adapted similarity-based image retrieval techniques to
support reconciliation and reports on our evaluations.

An overview of related research and studies is provided in
Sect. 2 before presenting our approach and the general archi-
tecture of the Memsy version-aware environment in Sect. 3.
Details of the global resource catalogue, file history graph
and the reconciliation engine are given in Sects. 4, 5 and 6,
respectively. We then describe the user experience in terms
of how they interact with the environment and access its ser-
vices in Sect. 7, before discussing the technical challenges
of implementing such a system in a highly distributed setting
along with our Memsy solution in Sect. 8. We report on a lab
study carried out to evaluate the Memsy workflow in Sect. 9
and present concluding remarks in Sect. 10.

2 Related work

The requirements for information work to be carried out suc-
cessfully have changed as the number of personal computing
devices has increased [10,28,30]. The study by Dearman et
al. [10] revealed that participants found managing informa-

tion across devices the worst aspect of using multiple devices,
and they argue that it is important for system designers to con-
sider a user’s collection of devices and no longer assume a
single personal computer.

As highlighted in interviews with 22 professionals from
different industries carried out by Santosa and Wigdor [30],
consumer-oriented cloud storage solutions have now become
an integral part of many personal workflows. While these
services allow resources to be accessed on multiple devices,
none of their participants regarded the cloud as a complete
data solution, and data fragmentation remains an important
topic even in the context of the cloud. Participants explicitly
stated that they had difficulties in remembering where in the
cloud they put their data, and consequently, the authors rec-
ommended that methods need to be found for improving the
awareness and visibility of what is happening in the cloud.
In a recent project within our group, we specifically looked
at ways of increasing awareness within teams when cloud
services such as Dropbox are used to support collaborative
work [27]. In contrast, here we address the issue of how to
make users more aware of how their own personal data are
distributed across a range of devices and services, including
Dropbox, to help them keep track of and reconcile different
versions.

Research into how human memory works has shown that
users quickly forget important computing tasks [9]. Elsweiler
et al. [13] point out similarities between everyday memory
lapses and memory lapses in the context of personal informa-
tion management and suggest that tools should be provided
to help users recover from such lapses. Therefore, the ability
to track and re-find information in a desktop environment is
a highly desirable property for today’s information manage-
ment tools [18]. It has been shown that one effective way
of providing memory cues is to use the idea of provenance
information [4].

Previous research has explored two main strategies for
helping users to keep track of their resources. The first
category of tools aims to provide better search and organisa-
tional facilities based on metadata/time [12] or tagging [8].
The second category focuses on the associations between
resources rather than the properties of the resources them-
selves and includes navigation by associations [6] as well as
the exploitation of semantic relations between resources [20].
However, most of these solutions have been designed with
the underlying assumption of a single desktop computing
environment, and it is unclear how they could be adapted to
multi-device environments. In fact, the authors of the Stuff
I’ve Seen system [12] report from their user study: “The most
requested new feature [in the user study] is unified access
across multiple machines”.

The fact that users have different work practices is
reflected in how they set up their working environments and
organise their files. For example, while some users store

123

Using a file history graph to keep track of personal resources. . . 177

every document created or downloaded in a well-defined
folder hierarchy, others regard the desktop as a temporary
workspace for all kinds of documents currently being worked
on and recently downloaded, similar to how they might
use their physical desks [32]. When working with multiple
devices, it has been shown that cross-device work patterns
can often be complex [30].

Since users often put a lot of effort into customising their
working environment and file organisation, they tend to be
reluctant to change their work habits. For example, Jabal-
lah et al. [17] proposed a digital library system that enables
documents to be browsed via various metadata axes, but a
diary study showed that most users preferred the more lim-
ited folder view, and this was, in large part, attributed to
the time required to become familiar with a new application
interface. Other studies on personal information management
have shown that users are actually very fond of their folder
structures [19] as a means of not only categorising informa-
tion but also decomposing problems and projects into smaller
units. Despite their shortcomings, folder hierarchies, there-
fore, remain the basis for file organisation. However, using
visualisations such as greying out older versions has been
proposed to help users to find the latest versions of files within
folder structures [2].

The apparent reluctance of users to move away from
established ways of working led us to conclude that user
behaviour changes very slowly, and new solutions for man-
aging personal resources should try to build upon current
work practices and the conceptual models underpinning them
rather than revolutionising them. Also, we argue that it is
crucial to embrace rather than oppress the diversity in strate-
gies and methods people employ to organise information,
and take these into account when designing new tools for
personal resource management.

We now review previous approaches for capturing file
provenance data without changing users’ work practices. A
general primer on provenance and different methods that
have been used to capture provenance data is given by Carata
et al. [5]. They make the case for tracking provenance infor-
mation at different levels, including that of the file system.

Collecting provenance data at the system level promises
to gather lineage data in an application-independent manner.
The Provenance-Aware Storage Systems (PASS) [25] project
and the file provenance system FiPS [31] are two examples
of provenance systems that operate at the system level and
collect provenance data automatically without application
developers having to adopt application-specific provenance
solutions. Whereas PASS focuses on command-line invoca-
tion of data transformations and derives provenance infor-
mation from system calls as well as the current execution
environment, FiPS proposes a stackable file system on top
of an existing file system that intercepts any file system calls
passed through the Virtual File System (VFS) layer. We note

that PASS has been extended with support for cloud stor-
age solutions [26], but they focused on commercial solutions
such as Amazon Web Services (AWS) rather than consumer-
oriented cloud storage services such as Dropbox, Google
Drive and OneDrive and did not consider online media host-
ing services.

To capture provenance events at the application and con-
tent level, a number of technological solutions and tools have
been developed. The TaskTracer system [11] hooks into the
Microsoft Office suite by installing .NET COM addin objects
that capture save-as operations. A different approach was
taken by Karlsen et al. [21] where their copy-aware environ-
ment monitors copy-events by injecting a C++ hook library
into a number of selected applications and the operating
system itself. A custom Outlook integration allows email
attachments to be tracked as well. Both systems intercept file
manipulation operations in Windows such as copy, move and
rename. A Windows clipboard hook was employed to cap-
ture copy/paste operations within and between applications.
While application-level instrumentation enables a very fine-
grained collection of provenance events, it is questionable
how such an approach scales to a larger number of end-user
applications. Even worse, when it comes to third-party file
hosting services, it is virtually impossible to instrument those
services with provenance capabilities. Using similarity met-
rics at the metadata and content level, our goal is to offer a
best-effort approach to reconcile non-tracked files with exist-
ing provenance data.

A UI-less version of the TaskTracer tool was also used for
a longitudinal study of knowledge workers at Intel Corpora-
tion, conducted by Jensen et al. [18]. This field study analysed
several sources of provenance events and documented their
type and frequency. In particular, their quantitative data
suggest that provenance events occur frequently in typical
computer use by knowledge workers and that those prove-
nance events were, in fact, memorable to the participants of
the field study.

Although the IRCUS system [29] was developed for an
entirely different use case, namely that of helping users to
identify related content when deleting sensitive data from
files or projects, there are many similarities to our proposed
approach. First of all, they had the same goal of not changing
users’ work practices and being able to integrate the ser-
vice transparently without modifications to applications or
the operating system. Second, they also observe file system
events to derive relations between files as well as using con-
tent overlap and access patterns to determine whether files
are related.

In summary, while previous research has demonstrated
feasible solutions for automatically capturing provenance
events at the file system level [25,31] as well as the appli-
cation level [11,18,21], they do not propose solutions for
identifying and tracking files across several collaborating

123

178 M. Geel, M. C. Norrie

computing devices and services, even though these systems
could support cross-device provenance by design. Further,
they do not address the problem that there will always be
gaps in the provenance information due to files that were
created/modified outside the reach of the system or before
the system was in use. We believe that a reconciliation ser-
vice is an essential part of any system designed to keep track
of personal resources. Information retrieval techniques, such
as similarity search, near-duplicate detection and fingerprint-
ing, are valuable tools to fill in these knowledge gaps when
provenance information is not available.

3 Version-aware environment

Our vision of a version-aware environment is similar to that of
the copy-aware computing ecosystem proposed by Karlson
et al. [21], but with a stronger focus on the highly distrib-
uted nature of current digital ecosystems. We try to embrace
rather than avoid the fragmented nature of personal informa-
tion spaces, abandoning the single desktop assumption and
accepting that complete control over one’s computing envi-
ronment is often difficult to achieve. Our aim is, therefore,
to help users to keep track of resources rather than trying
to impose strict controls and synchronisation policies that
would change their ways of working.

The approach that we propose is to build an infrastruc-
ture on top of the familiar desktop environment that provides
users with a unified view of their personal information space
across their multiple computing and storage services as well
as online file hosting services. We use the term personal
information environment to refer to the sum of all devices,
services and applications that a user employs to manage and
share their personal information. A distributed approach is
used to collect provenance information across the personal
information environment to build a global provenance index.

The architecture of the Memsy environment that we devel-
oped is shown in Fig. 1. While the concepts, principles and
core components are general, we developed a full set of com-
ponents for Windows-based systems to demonstrate how the
approach could be integrated into an existing desktop system
and to enable us to carry out user studies.

Since system access should be independent of any indi-
vidual computing device, we opted for a classic client–server
approach. The system comprises three main components—
the global resource catalogue, the file history graph and the
reconciliation engine—which together realise a “version-
aware” computing environment for end users. Below, we
outline the main features of these components and how they
work together with the other system components, before
going on to describe them in detail in the following sections.

Global resource catalogue This is the main service that
orchestrates all components and communicates with vari-

Online Crawler

Metadata Extractor
Reconciliation

Engine

Global Names, File Attributes, Metadata

Server

Client

File History Graph (Neo4j)

Background Service
File Watch Service
Name Resolution

Global Resource Catalogue

End-User Tools
Desktop Integration

Cloud
Storage
Services

Image
Hosting
Services

Fig. 1 Architecture of the Memsy version-aware environment

ous client services and tools. It provides a global view of
a single user’s personal information space by ensuring that
each resource is not only uniquely identifiable but can also be
located in an unambiguous way. A file that is part of the global
resource catalogue is called a managed file. All other files,
including those that are not part of a user’s personal infor-
mation space, are unmanaged. The global resource catalogue
is responsible for collecting updates from client devices as
well as cloud storage and image hosting services and apply-
ing them to the file history graph. Online services are crawled
at regular intervals or on demand.

File history graph The file history graph is the data struc-
ture that stores the metadata required to identify and locate
files across devices and services. Essentially, it is an index
that provides a lightweight, implicit versioning mechanism
for files.

Reconciliation engine This component reconciles unman-
aged files, which have not been tracked previously or cannot
be tracked reliably (for example, files on a cloud storage
service beyond our control), with existing file histories. In
both cases, the goal is to integrate those files into the global
resource catalogue and create any missing links in the file
history graph. Reconciliation is either done automatically
based on file properties or user-driven. In the latter case, we
use content-based similarity metrics to aid users in their deci-
sions.

4 Global resource catalogue

To build a global catalogue of a user’s personal information
space, each file needs to have a unique and non-ambiguous
mapping between a global namespace and its actual location.
Figure 2 shows the structure of the global address scheme and
an example mapping. Our scheme follows the recommenda-
tions for Uniform Resource Identifiers.1

A vital part of that scheme is the numerical identi-
fier of the storage device on which the file is stored

1 http://tools.ietf.org/html/rfc3986.

123

http://tools.ietf.org/html/rfc3986

Using a file history graph to keep track of personal resources. . . 179

D:\ My Documents \...\ SketchA.png

memsyfile://patricia@24/My Documents/…/SketchA.png
_______/ _________/ ____________/ _________/

| | | |
scheme authority path filename
_____________|_________________________
/ \
[user "@"] storageDeviceId / serviceId

Fig. 2 Global namespace scheme. The example given uses a
storageDeviceId

(storageDeviceId). In our environment, everything that
has a mount point and is writeable by the user can be assigned
a globally unique identifier that is then stored in the root
directory of that particular storage device. This allows us
to reliably recognise external storage devices such as USB
flash drives or external hard disks, even when they are moved
between computers.

To differentiate file hosting services, we use pre-defined
names, e.g. dropbox or googledrive, as identifiers
(serviceId). The path component corresponds to the orig-
inal path. Because number-based storage device identifiers
are not self-descriptive, they can also be mapped to more
user-friendly names. By default, we map them to labels pro-
vided by the operating system, but users can supply more
meaningful labels, e.g. “Red Kingston USB Stick”. Since
these mappings are stored in the global resource catalogue
and not on the devices themselves, users are able to restore
device identifiers if they are deleted by accident. A full file
scan might be necessary to provide an up-to-date file his-
tory graph. Similarly, devices and all their associated location
nodes can be purged from the file history graph should the
device be lost.

In this address translation scheme, we assume that an
absolute file path, including the file name, cannot be occu-
pied by more than one file at the same time. This is true for all
mainstream file systems (NTFS, ext3, HFS+), although they
may internally use unique file identifiers instead of paths.
Also, many user applications prohibit filenames that only
differ in case, for example, Windows Explorer, and the same
is true for many file hosting services.

On each computing device belonging to the user’s personal
information environment, a background service is deployed
that monitors connected storage devices and tracks the user’s
file activities. These computing devices also synchronise a
list of connected storage devices upon startup and whenever
the list changes. This information is used later to tell users
about the last known location of “movable” storage devices
such as USB flash drives. Global name resolution at run-
time is straightforward, because the local service knows the
identifiers and mount points of all locally connected storage
devices. This is especially useful on the Windows platform,

where the mount points, i.e. drive letters, of external stor-
age devices usually depend on the order in which they were
connected.

5 File history graph

The file history graph is a data structure that serves two pur-
poses: It records the metadata of each new version of a file
and also stores the last known location(s) for each file ver-
sion. From a data model point of view, each file history has a
root node that denotes a newly created file and a tree of suc-
cessor version nodes. Each version node may point to one or
more location nodes. The resulting structure is, therefore, a
forest of directed trees, with each tree representing a separate
version history.

Similar to other provenance systems [11,18,21], a single
file history is a directed acyclic graph. However, in contrast to
these systems, we neither instrument any applications nor are
we interested in content-based provenance events. Instead,
our aim is to collect the cross-device and cross-service prove-
nance chain of files as a whole, with a focus on providing
information about their last known locations. For example, if
a user moves a file from location A to location B and, then,
sometime later moves it from location B to location C , we
do not need to store the history of where it has been located,
but rather only the last known location C . Therefore, when
a file is moved, the old location is deleted in the file history
graph and the new location added. Similarly when a file is
renamed, we do not need to keep a history of the names, and,
so, simply update the name of the corresponding entry in the
file history graph. The only time when a new node is added to
the file history graph is when a new version of a file is created
either explicitly or by creating a copy on another device or
service. Consequently, since we do not keep records of the
full provenance chain with regards to renames and moves,
we have a much more compact file history graph.

Figure 3 illustrates how the file history graph structure
captures file operations. A create event triggers the creation
of a new file history with root V1 and location L1. If V1

already exists, it represents a copy operation, and we simply
add a new location node to the existing node. When a modify
event occurs, we first identify the (old) file version node that
corresponds to the location of the modified file. If that version
node is a leaf node, we derive a new version node and reattach
the location node to it. If it is not a leaf, a newer version must
already exist somewhere else. In that case, we perform a fork.
All other file operations (rename,move anddelete) only affect
the last known locations of file versions and update them
accordingly. As a consequence of the delete operation, file
version nodes may end up with zero location nodes attached
to them, but they are kept for future reference.

123

180 M. Geel, M. C. Norrie

Fig. 3 Evolution of a single file
history

V1 L1

Create V1 at L1 Copy V1 (at L1) to L2 Modify V1 at L2

Rename L2 to L3 Modify V1 at L1 (fork) Delete V2 at L3

V1 L1

L2

V1 L1

L2V2

V1 L1

L3V2

V1

L1L3V2 V3

V1

L1V2 V3

Each file version node is uniquely identified by the (MD5)
hash of the file content. A database index over these hashes
provides very fast retrieval of entry points into the file history
graph.

It is an important characteristic of our proposed index
structure that we retain metadata about previous file versions,
even if they no longer exist in the personal information space.
With the information in these file histories, the system is able
to provide answers to many user questions about the location
of copies, latest versions and file origins across devices.

File events are sent immediately to the server if the device
is online; otherwise, they are cached locally and stored on
the storage device where the operations occurred. Thus, the
cache travels with the storage device, and if, for example,
a USB drive is shared between computers that are both
offline, the order of executed operations on that USB flash
drive is always guaranteed, without the need for complicated
time-synchronisation. We have implemented the cache as
an event-queue backed by a transactional embedded data-
base (HSQLDB). That queue is consumed by a background
thread, and entries are only removed if the event was suc-
cessfully submitted to the server; otherwise, processing is
halted until Internet connectivity is restored. Since all events
(update, move, rename, delete) are idempotent if executed
in order, we not only achieve at-least-once semantics, but
can also guarantee that all locally observed transactions
are eventually reflected correctly in the global file history
graph.

Finally, we note that while our current file history graph
has the advantage of compactness since it does not record
the full provenance chain including moves and renaming,
it could be expanded to record this information. This would
allow additional functionality, such as the ability to reproduce
changes in a folder over time. This feature could be useful if a
user remembers where a file was located previously and now
wants to discover its current location. In a related project,
MUBox [27], we explored this idea in a multi-user context,
introducing the concept of shadow files to represent files that
had been moved or renamed by other users. It would be inter-

esting to investigate the usefulness of this concept in a single
user context.

6 Reconciliation engine

Regardless of how well a system is able to track files within
a controlled environment, there are bound to be resources
encountered that either have not been tracked previously or
originate from a system that cannot be monitored directly.
We call the process of turning such unmanaged resources
into managed ones reconciliation.

There are three main cases where file reconciliation is
required. The first deals with legacy issues arising from the
fact that users will already have files scattered across different
devices and services when they start using a system such as
Memsy, and the different versions of these files may have to
be reconciled at some point. The second concerns the use of
file hosting services where it is often difficult to reliably track
resources from the outside. Even worse, some image hosting
services resize and recompress uploaded images, thus chang-
ing the actual file content quite significantly. Third, there will
always be cases where a file enters a personal environment
from the outside, for example, as an e-mail attachment, down-
loaded file or copy from somebody else’s USB stick, and may
need to be reconciled with existing versions within the user’s
environment.

To align such files with our global resource catalogue and
the file history graph, we primarily rely on hashing and file
path matching. To recognise copies, we need to be able to
tell whether two files have the same content. Popular file
hashing functions, such as MD5 or SHA1, have proven to be
very effective [3], and we, therefore, use them to realise this
functionality. We note that although there have been some
reservations about using cryptographic hashes to implement
compare-by-hash [16], for the purpose of re-establishing
provenance relationships, we are of the opinion that a fast
best-effort approach is more valuable than perfect correct-
ness. Since we store these hashes for previously encountered

123

Using a file history graph to keep track of personal resources. . . 181

versions as well as the current ones, we can reliably rein-
tegrate files that correspond to older versions. For example,
a user might have received a report from a co-worker by e-
mail, saved it in a local, observed location and modified its
content. Several weeks later, they might want to retrieve the
revised version but cannot remember where they stored it.
Luckily, they remember the e-mail that contained the origi-
nal file. With the attachment from that e-mail serving as an
entry point into the file history graph, they can learn about
the location of the revised version. Having such provenance
information allows users to discover newer versions of doc-
uments based on the copy of an older one.

Since one of the main use cases for reconciliation concerns
tracking versions of images, we decided to investigate this
case in detail. A scenario might be that a user uploads an
image onto a social networking website such as Facebook
and, when a friend requests a copy of the image, wants to trace
the original to send their friend one with higher resolution. If a
provenance relationship between the original image stored on
a local hard disk and the uploaded image could be established,
then the user could navigate directly to the original rather
than having to search manually, which can be particularly
tiresome if they have many similar images.

A lot of research has addressed the problem of finding
similar images using techniques such as interest point extrac-
tion [24], local image descriptors such as PCA-SIFT [22] and
min-Hash based similarity metrics [7,23]. Although some
of these techniques can be used effectively to detect what
we consider as duplicates, most of them are concerned with
answering queries to find similar images in the sense of
content-based image retrieval. Since we are only interested in
finding different versions of the same image and not in find-
ing similar, but distinct, images, we decided instead to focus
on a specific class of computer vision algorithms that calcu-
late a fixed-size image signature which can be considered as
a “perceptual hash”.

The main idea of such an image signature algorithm is
to map an image to a sparse image representation which
is significantly reduced in size but retains important per-
ceptual information. An advantage of such low-dimension
representations is that they can be compared efficiently. An
appropriate distance metric is then used to compare these
sparse image representations to find near-duplicates.

We investigated three candidate algorithms. (1) A naive
grey scale (GS) algorithm that computes very small thumb-
nails and compares them on a per-pixel basis. This is basically
an aggressive JPEG compression scheme applied to the lumi-
nosity channel. The size of the thumbnail is set as a parameter,
but, by default, is as small as 5 × 5 pixels. (2) An approach
based on discrete cosine transform (DCT) [1] which trans-
forms the image space to frequency space and only retains
the frequencies representing the coarse-grained structure of
the image. Roughly speaking, DCT transforms a vector into

a set of basis vectors, each of which describes one particular
cosine wave in the spatial dimension. (3) discrete wavelet
transform (DWT) based on Haar wavelet, which inspects the
image at different scales and, for each of them, extracts a
high-frequency signal for both dimensions individually as
well as for the combined dimension.

When a user initiates a reconciliation request, a ranked list
of matching images is returned in increasing order of distance
from the input image. To evaluate the different algorithms,
we carried out an experiment using a set of 10,495 images
randomly selected from Flickr as the user’s local image col-
lection. From this collection of images, we randomly selected
1000 and modified them programmatically to simulate the set
of images uploaded to an image hosting service. We then ran
the reconciliation algorithms for each image of the collec-
tion of modified images against the full collection of images
downloaded from Flickr.

All experiments were run on an Intel Core i7-2700
machine with four physical cores @ 3.50GHz and 24GB
of RAM. The images were stored on an Intel SSD 520. All
the calculations were done in-memory.

Table 1 shows the results of the experiment for the three
different algorithms and five different forms of image mod-
ifications. Performance is compared in terms of two quality
metrics: MAP@5 is the mean average precision at position 5,
while AFP is the average false positives. For a single query,
the false positive count measures how many negative results
users have to skip until they have found the first true match.
Within our test suite, this metric is equivalent to the inverse
of the average precision—1, if the query yields exactly one
relevant image. We argue that this metric is a better estimate

Table 1 Performance in user-driven mode

Modification Algo. MAP@5 AFP

Resizing GS 0.999 0.005

DCT 1.000 0.000

DWT 0.999 0.002

Compression GS 0.997 0.015

DCT 1.000 0.000

DWT 0.999 4.386

Oil filter GS 0.992 0.115

DCT 1.000 0.000

DWT 1.000 0.000

Gaussian noise GS 0.980 0.425

DCT 1.000 0.000

DWT 0.999 0.002

High contrast GS 0.739 63.043

DCT 0.999 0.003

DWT 0.997 4.127

Bold values indicate the best results per modification

123

182 M. Geel, M. C. Norrie

for the expected workload of a user determined to find all
provenance relationships of an entire set of images.

As can be seen, DCT and DWT performed very well, with
DCT achieving almost perfect results. Even GS achieved very
high precision in all scenarios except the High Contrast. Our
results indicate that these algorithms are robust with respect
to minor image manipulations such as resizing and small
changes in noise and contrast.

We accept that it is much more challenging to reconcile an
image with its original if major image post-processing has
been carried out, for example, significant cropping as well
as major modifications in colours and tone. However, many
users often keep a local copy of the processed version as
well as uploading it which could provide the necessary entry
point in the file history graph to either track down the original
or a high-resolution version of the one uploaded to a social
networking site.

It is beyond the scope of this paper to present our experi-
ments on image reconciliation in detail. Our aim was to pro-
vide sufficient information to give some idea of the methods
used and to convince the reader that it can offer valuable sup-
port to the user faced with the task of filling missing gaps in
the file history. Further details of the experiments and results
can be found in [14] where we also describe automatic recon-
ciliation processes and other experiments using string simi-
larity measures over filenames as a basis for reconciliation.

7 User experience

To use the system, a Memsy client has, first, to be installed on
each of the user’s computing devices. Through these clients,
the user can select local folders to be added to the observed
environment. This means that the files within these folders
will then become managed in the sense that they will be
included in the global resource catalogue. This allows very
fine-grained control over which parts of the file system are
monitored.

Users can also connect and add external storage devices
such as personal USB flash drives. As described previously,
such storage devices can be labelled to make it easier to recog-
nise them when they show up in search results. Note that each
storage device, even external ones, only have to be configured
once as their settings are stored directly on the devices.

After setting up the environment, users can continue to
work as usual, freely creating, moving, renaming, copying
and deleting files as well as creating new folder structures
within the monitored folders. Behind the scenes, each file
operation is propagated to the global resource catalogue, and
the file history graph will be updated, so the user can later
track files and get information about their locations.

If a user wants to find the latest version of a file, they fol-
low a simple procedure shown in Fig. 4. (1) Small overlay

icons in the file explorer view offer a quick glance of the
current file status. From a user experience point of view, this
works similarly to overlay icons in desktop integrations of
popular cloud storage services such as Dropbox or version
control systems such as TortoiseSVN. A tick symbol indi-
cates that the current file is up-to-date, while an exclamation
mark warns the user that a more recent version is stored some-
where else. Such icon overlays give a simple and unobtrusive
way of providing status information to users. They integrate
well with the desktop experience, work in all standard file
dialogues and are well suited to handling directories with a
large number of files.

When the user right-clicks on a file, a few Memsy-specific
commands appear in the contextual menu. From there, the
user can launch the Memsy Companion application, which is
a small desktop tool that displays information retrieved from
the global resource catalogue for that particular file (2). In
the example shown in the top right of Fig. 4, the user sees
that there are two newer versions located on other devices
and services. Since the Memsy Companion application runs
locally and can communicate with the local background ser-
vice to retrieve the list of currently attached storage devices,
it can show for each version whether that particular file can be
accessed directly. Hovering over entries that are currently not
available provides information about its last known location,
in the case of this example, a USB flash drive.

A different context-menu entry invokes a search for sim-
ilar files based on the currently selected file. The similarity
search works as explained in Sect. 6 where we considered
the example of tracing the original of an image uploaded
to a social networking site. We now consider an alternative
scenario where the users come across a document on their
desktop which they use as a temporary work space and recall
that this version was derived from a template. They are unable
to remember where this template is stored, so they invoke a
similarity search. The results are shown in Fig. 5.

From the results, the user learns from the first entry in the
list that there is an exact copy on an external storage device,
and from the second and third entries that there are similar,
but not identical, files with the same name. One of these
is stored locally and can be inspected directly. The other is
located on another device that cannot be accessed directly.
However, by clicking on the Explain button, they can view
some more statistical information about the similarity that
could help them judge whether or not it is worth accessing
the other device to investigate the files stored there.

8 Implementation

Two different strategies are used to get the information
needed about resources in various locations.Crawlers imple-
ment a polling-based model of observation that can either be

123

Using a file history graph to keep track of personal resources. . . 183

Fig. 4 A version-aware environment: (1) Overlay icons inform user about file status (cropped screenshot from Windows file explorer). Context
menu entry invokes custom application (2) with further information about related versions

Fig. 5 Results of a similarity search

triggered automatically at fixed intervals or on demand by a
user. Watchers implement an event-based observation model
which means that they are notified by the operating system
or online service when something changes.

File system watchers are supported in many operating sys-
tems, including Windows, and so, watchers are attached to
the folders that the users add to the Memsy environment. A
crawler is only necessary to build the initial index of files
or resync a folder in the event that the watcher missed some
events which can happen if the user kills the background
process either deliberately or by accident.

Since few online services support push notifications, we
mainly rely on crawlers to detect changes in the resources
stored on these services. We have implemented crawlers
for Dropbox, Google Drive, Facebook and Flickr. The for-
mer two cloud storage crawlers process all supported files,
whereas the latter two only retrieve and process images. To
avoid polling the entire data store which could be very expen-
sive, many cloud storage APIs offer a delta function, which

returns not only a list of events but also a token that can be
sent with the next request so that only events that occurred
since the token was generated will be sent.

Both crawlers and watchers forward their observed prove-
nance events to the global resource catalogue which applies
the necessary changes to the file history graph. Note that,
in contrast to revision control systems such as Subversion
and Git, users are not required to do any explicit check-
outs or commits. Instead, whenever the background watchers
deployed on the user’s various computing devices detect
changes in any of the observed folders, the file history graph
gets updated automatically. Even though this approach is
quite lightweight, it enables users to locate copies, latest ver-
sions and originals of resources.

To demonstrate and evaluate our approach, we devel-
oped a reference implementation of the Memsy environment
in Scala, a JVM-based, multi-paradigm programming lan-
guage that offers functional and object-oriented constructs.
The global resource catalogue called Memsy Global runs on
a dedicated server. It is built with a micro web framework
called Scalatra.2 As a backend for the file history graph, we
use Neo4j,3 a graph database implemented in Java, which is
a perfect fit for the tree structure of our file history graph.

On the client side, we deploy a background service called
Memsy Local, which is responsible for monitoring a user’s
file activities. It communicates with the server using its
REST-style API over HTTP, with JSON as the data exchange
format. To capture file system events, we make use of the Java
7 File API (NIO.2). When a new storage device is added to
the environment, a new unique identifier is requested from
the server and stored in a property file in the device’s root
folder. This enables external storage devices such as USB
flash drives or portable hard disks to be reliably recognised
when moved between computers. Unfortunately, Java does

2 http://www.scalatra.org/.
3 http://www.neo4j.org/.

123

http://www.scalatra.org/
http://www.neo4j.org/

184 M. Geel, M. C. Norrie

not natively support device notifications for USB drives,
but we work around this by periodically polling the list of
mounted file systems for changes.

The user interface has been implemented for the Windows
platform using a number of high- and low-level technolo-
gies. Both icon overlays and the context menu have been
realised as Windows shell extensions. To indicate a file’s sta-
tus, an icon overlay handler was created for the Windows
file explorer that queries the local Memsy client, which in
turn may have to ask Memsy Global for the current status.
Because icon overlays are precious resources in Windows,
since only up to 16 handlers can be registered, our integration
builds upon TortoiseOverlays, the icon handler of many pop-
ular desktop integrations of version control systems, such as
Subversion, Git and Mercurial. This makes the icons easily
recognisable by users of any of these solutions.

Our dedicated end-user tool, the Memsy Companion
application is a Chrome app. These apps resemble native
desktop applications but run on top of Google Chrome and
can be built using web technologies. The tool communicates
with the local background service and the global resource cat-
alogue to help the users to keep track of their resources. We
have chosen this web technology-centric approach, because it
allows us to seamlessly mix various technologies from high-
level web interfaces down to low-level shell extensions. The
consistent use of the HTTP protocol also facilitates similar
integrations for other operating systems.

9 Evaluation

To evaluate our approach, we conducted a small user study
with two primary goals. First, we wanted to gather valuable
insight into work practices and strategies for keeping track of
resources across different devices. Second, we wanted to find
out whether the tool support would be sufficient when a user
cannot remember what happened to a particular document.

The main study design challenges were: How can we reli-
ably create a condition that reflects the situation where a
user has actually forgotten the location of the latest version?
How can we eliminate non-controllable factors such as an
individual’s particular cognitive abilities? For these reasons,
we decided to perform a controlled lab experiment instead
of an external field study.

9.1 Study setup

We set up three workstations in a room to represent different
work places. Each workstation had a labelled USB stick. All
six devices were configured to belong to the same user, and
all tools were pre-installed on the workstations. We prepared
a set of 20 files for our hypothetical Memsy user: five pre-
sentations (PowerPoint), five reports (Word) and ten images

(JPEG). These files had been copied to a managed folder on
each workstation.

9.1.1 Participants

Our participants were recruited from an interdisciplinary
European research project in which our group was a part-
ner. This allowed us to recruit not only computer science
researchers (three professors, three research assistants) but
also people from media education/pedagogy (4), plus a
designer and an architect. In total, we had 12 participants
(50 % female, 50 % male) from industry and academic insti-
tutions. Although we had a rather small group of participants,
they were from five different organisations with quite differ-
ent work environments, and this matched our belief that a
diverse set of study subjects would yield more interesting
results than a large but homogeneous subject pool.

9.1.2 Procedure and tasks

We divided our 12 participants into groups of 3 persons. All
participants of a group were invited at the same time, and
each participant was randomly assigned to a designated work
station. The study started with a pre-task questionnaire that
collected background information about a participant’s expe-
riences with file managers and their current techniques for
version management of documents and copying files between
devices.

The main study was a sequence of information manage-
ment tasks, where each participant performed exactly the
same steps but worked on a different subset of the files. In
the first part of the study, participants were asked to perform
three common file management and document editing tasks:
update and rename a presentation, copy an image to a newly
created subfolder and modify it, copy a report to the USB
drive and modify it. While we asked participants to follow our
instructions closely, we did not tell them how to accomplish
the tasks. It was up to the individual user to decide whether
they worked with keyboard shortcuts, drag and drop or con-
text menus. If they made a mistake (e.g. copied the wrong
file), we asked them to revert the change however they saw
fit. At that stage, the background service monitored the file
management operations behind the scenes and propagated
the changes to the global resource catalogue.

In the second part, participants were asked to gather infor-
mation for an upcoming presentation which included files
possibly modified by the other participants (one presenta-
tion, one report, two images) and spread across the other
two workstations and USB sticks. To complete the task, they
had to indicate if there was a newer version of any of those
files, and, if there was, where the newer versions were stored
(location, drive and path). At any time, they could invoke the

123

Using a file history graph to keep track of personal resources. . . 185

Memsy companion app, shown in Fig. 4, for further infor-
mation.

9.1.3 Results

In total, each participant had to perform six individual file
operations (modify, rename, move) in the first part of the
study and four file enquiry tasks in the second part. To com-
plete the enquiry tasks, they had to indicate if there was
a newer version, and if there was, where it was stored in
terms of the location, drive and path. Since the enquiry tasks
depended on the execution of the correct file management
operations by another participant in the first part of the study,
mistakes made in the first part by one participant propagated
to the second part for another participant. This was the case
for two tasks, resulting in a total task completion rate of
95.83 %.

In our pre-task questionnaire, we asked participants about
their current work practices for managing versions and copy-
ing files between devices. In both questions, multiple answers
were possible. By far, the most popular method for manag-
ing multiple versions of office documents was a personal
file naming scheme (ten participants). Although less popu-
lar, folder structures were still used for this purpose by half
of the participants. Although revision control systems are
widely used to manage source code, our results indicate that
they are considerably less popular for managing versions of
documents (4), let alone to share files between devices (2).
None of our participants used a dedicated document man-
agement system such as SharePoint.

Interestingly, even though all 12 participants answered
that they used cloud storage services to move files between
devices, only 2 used the implicit versioning provided by some
cloud providers. This might be due to the fact that popular
services, such as Dropbox and Google Drive, by default, only
store previous versions for up to 30 days. We conclude that
cloud storage services have become a ubiquitous tool for
transferring files between machines, but other means such
as USB sticks (11 participants) and sending e-mail to your-
self (11) still have their uses. These results affirm some of

the assumptions underlying our initial use case and further
inform our proposed approach.

All participants were able to use the Memsy Companion
app to answer most of the questions from the second part
correctly (overall completion rate was 46 out of 48 tasks).
Figure 6 shows the results from the post-task questionnaire.
For each of the statements, we asked participants to rate
their level of agreement on a 7-point Likert scale, where 1 is
strongly disagree and 7 is strongly agree.

The Memsy companion app as well as the entire expe-
rience offered by the Memsy environment received fairly
positive ratings. Most participants felt that it was well suited
to the task at hand (median 6), that it was easy and intuitive to
complete the task (median 6), and that they were efficient in
doing so (median 6). Participants also agreed with our under-
lying assumption that existing tools [offered by the operating
system] provide poor support for the task (median 6). How-
ever, while many participants could relate to the task (median
5), most users (mode 4) were undecided about whether such
a tool would actually be useful for them. These general con-
cerns were also reflected in some of the feedback we received,
for example P3 noted: “The general issue is what do I actually
do when I realise that I don’t have the most recent version in
front of me”.

We conclude that, while our prototype is successful in
answering the kind of questions posed in the introduction of
this paper, users may require more information to help them
decide what to do when confronted with multiple versions
on different devices. As P9 pointed out, “[The tool should
provide] some overview of what kind of change has been
done” and P10 agreed by saying “[The tool should] provide
the differences of versions (visual comparison of versions)”.

With regard to desktop integration, reactions from users
were quite positive (median 6), but some expressed a prefer-
ence for an even deeper integration with the regular desktop
computing environment. To that end, we plan to experiment
with other forms of shell extensions and consider providing
more detailed information as part of the regular file explorer
interface. However, further studies are required to steer devel-
opment in the right direction.

Fig. 6 Results from post-task
questionnaire

123

186 M. Geel, M. C. Norrie

10 Conclusion

The Memsy environment was designed to tackle the chal-
lenges of keeping track of personal resources across multiple
devices and online services. Our aim was to provide a solution
that could integrate with existing work practices and applica-
tions rather than replace them, and our Memsy prototype has
demonstrated how this can be achieved. However, our initial
studies have shown that providing more information about
the nature of changes made to files, together with suggestions
for how to resolve what are seen as problematic situations,
would be desirable, and this is something to explore in future
research.

We believe that the idea of a consolidated, global resource
catalogue could benefit a number of existing PIM tools. We,
therefore, see our work as only part of a foundation for new
infrastructures and tools required to manage personal infor-
mation in future digital ecosystems. For example, many file
systems and services which use tagging store the tags in such
a way that they are effectively lost when a file is moved to
another device or service. We would propose that such file
metadata be incorporated into the file history graph so that it
is available globally and is independent of device and service.
This idea could be extended to likes or comments associated
with images posted on social networking or media hosting
sites. By associating the data with the file history rather than a
particular version, it would effectively be propagated to other
versions. Another advantage of this approach is that it pro-
vides a means for attaching custom attributes to files stored
in external repositories, such as cloud storage services, even
though these services do not provide native support for cus-
tom attributes. This is something that we have investigated by
building an information management layer on top of Memsy
to offer a distributed personal resource management system
that reflects features of many modern PIM tools, such as a
collection model for managing resources and various forms
of flagging, tagging, rating and labelling along with faceted
search over these attributes. Details of this work can be found
in [14].

So far, we have only considered single-user environments.
However, in any realistic setting, personal files are often
shared with other users who may simply create a copy or
edit them. In fact, nowadays, cloud storage services are com-
monly used as the basis for collaboration. One interesting
direction for future work would be, therefore, to investigate
the implications of multi-user environments where personal
resources could be shared with other Memsy users. In the
MUBox project [27], we developed a multi-user cloud stor-
age solution which showed how provenance information
could be used in multi-user environments to improve aware-
ness as well as supporting forward and backward traces. Our
experiences in MUBox could usefully inform the design of
an extended Memsy system capable of supporting multiple

users with personal information spaces that may overlap.
We note that this would require some fundamental changes
to the Memsy model, including the integration of an own-
ership concept into the resource model and new methods
for generating and handling global unique identifiers so
that they would be unique across all personal information
spaces.

References

1. Ahmed, N., Natarajan, T., Rao, K.: Discrete cosine transform. IEEE
Trans. Comput. C-23(1), 90–93 (1974)

2. Bergman, O., Elyada Oded andn Dvir, N., Vaitzman, Y., Ben Ami,
A.: Spotting the Latest version of a file with Old’nGray. Interact.
Comput. 27(6), 630–639 (2015)

3. Black, J.: Compare-by-hash: a reasoned analysis. In: Proc.
USENIX Annual Technical Conference (ATC’06), pp. 85–90
(2006)

4. Blanc-Brude, T., Scapin, D.L.: What Do People Recall About Their
Documents?: Implications for Desktop Search Tools. In: Proc. 12th
Intl. Conf. on Intelligent User Interfaces (IUI’07), pp. 102–111
(2007)

5. Carata, L., Akoush, S., Balakrishnan, N., Bytheway, T., Sohan, R.,
Seltzer, M., Hopper, A.: A primer on provenance. Commun. ACM
57(5), 52–60 (2014)

6. Chau, D.H., Myers, B., Faulring, A.: What to Do When Search
Fails: Finding Information by Association. In: Proc. SIGCHI Conf.
on Human Factors in Computing Systems (CHI’08), pp. 999–1008
(2008)

7. Chum, O., Philbin, J., Zisserman, A.: Near duplicate image detec-
tion: min-hash and tf-idf Weighting. In: Proc. 19th British Machine
Vision Conf. (BMVC 2008), pp. 812–815 (2008)

8. Cutrell, E., Robbins, D., Dumais, S., Sarin, R.: Fast, Flexible Fil-
tering with Phlat. In: Proc. SIGCHI Conf. on Human Factors in
Computing Systems (CHI’06), pp. 261–270 (2006)

9. Czerwinski, M., Horvitz, E.: An Investigation of Memory for Daily
Computing Events. In: Proc. 16th British HCI Group Annual Con-
ference (HCI 2002), pp. 230–245 (2002)

10. Dearman, D., Pierce, J.S.: It’s on My Other Computer!: Computing
with Multiple Devices. In: Proc. SIGCHI Conf. on Human Factors
in Computing Systems (CHI’08), pp. 767–776 (2008)

11. Dragunov, A.N., Dietterich, T.G., Johnsrude, K., McLaughlin, M.,
Li, L., Herlocker, J.L.: TaskTracer: A Desktop Environment to sup-
port Multi-Tasking Knowledge Workers. In: Proc. 10th Intl. Conf.
on Intelligent User Interfaces (IUI’05), pp. 75–82 (2005)

12. Dumais, S., Cutrell, E., Cadiz, J., Jancke, G., Sarin, R., Robbins,
D.C.: Stuff I’ve Seen: A System for Personal Information Retrieval
and Re-Use. In: Proc. 26th Annual Intl. ACM SIGIR Conf. on
Research and Development in Informaion Retrieval (SIGIR’03),
pp. 72–79 (2003)

13. Elsweiler, D., Ruthven, I., Jones, C.: Towards memory support-
ing personal information management tools. J. Am. Soc. Inf. Sci.
Technol 58(7), 924–946 (2007)

14. Geel, M.: Memsy: A Personal Resource Management Infrastruc-
ture. Ph.D. thesis, Diss. 23028, ETH Zurich (2015)

15. Geel, M., Norrie, M.C.: Memsy: Keeping Track of Personal Digital
Resources Across Devices and Services. In: Proc. 19th Intl. Conf.
on Theory and Practice of Digital Libraries (TPDL 2015), LNCS,
vol 9316, pp. 71–83 (2015)

16. Henson, V.: An Analysis of Compare-by-Hash. In: Proc. 9th Conf.
on Hot Topics in Operating Systems (HOTOS’03), pp. 13–18
(2003)

123

Using a file history graph to keep track of personal resources. . . 187

17. Jaballah, I., Cunningham, S.J., Witten, I.H.: Managing Personal
Documents with a Digital Library. In: Proc. 9th European Conf. on
Digital Libraries (ECDL 2005), pp. 195–206 (2005)

18. Jensen, C., Lonsdale, H., Wynn, E., Cao, J., Slater, M., Dietterich,
T.G.: The Life and Times of Files and Information: A Study of
Desktop Provenance. In: Proc. SIGCHI Conf. on Human Factors
in Computing Systems (CHI’10), pp. 767–776 (2010)

19. Jones, W., Phuwanartnurak, A.J., Gill, R., Bruce, H.: Don’t Take
My Folders Away!: Organizing Personal Information to Get Things
Done. In: Proc. SIGCHI Conf. on Human Factors in Computing
Systems (CHI’05), Extended Abstracts, pp. 1505–1508 (2005)

20. Karger, D.R., Bakshi, K., Huynh, D., Quan, D., Sinha, V.: Haystack:
A Customizable General-Purpose Information Management Tool
for End Users of Semistructured Data. In: Proc. 2nd Biennial Conf.
on Innovatie Data Systems Research (CIDR 2005), pp. 13–27
(2005)

21. Karlson, A.K., Smith, G., Lee, B.: Which Version is This?: Improv-
ing the Desktop Experience within a Copy-Aware Computing
Ecosystem. In: Proc. SIGCHI Conf. on Human Factors in Com-
puting Systems (CHI’11), pp. 2669–2678 (2011)

22. Ke, Y., Sukthankar, R.: PCA-SIFT: A More Distinctive Represen-
tation for Local Image Descriptors. In: Proc. 2004 IEEE Computer
Society Conf. on Computer Vision (CVPR’04), pp. 506–513 (2004)

23. Lee, D.C., Ke, Q., Isard, M.: Partition Min-Hash for Partial Dupli-
cate Image Discovery. In: Proc. 11th European Conf. on Computer
Vision (ECCV 2010), LNCS, vol 6311, pp. 648–662 (2010)

24. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest
point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)

25. Muniswamy-Reddy, K.K., Holland, D.A., Braun, U., Seltzer, M.I.:
Provenance-Aware Storage Systems. In: Proc. USENIX Annual
Technical Conference (ATC’06), pp. 43–56 (2006)

26. Muniswamy-Reddy, K.K., Macko, P., Seltzer, M.I.: Provenance
for the Cloud. In: Proc. 8th USENIX Conf. on File and Storage
Technologies (FAST’10), pp. 197–210 (2010)

27. Nebeling, M., Geel, M., Syrotkin, O., Norrie, M.C.: MUBox:
Multi-User Aware Personal Cloud Storage. In: Proc. 33rd ACM
Conf. on Human Factors in Computing Systems (CHI’15), pp.
1855–1864 (2015)

28. Oulasvirta, A., Sumari, L.: Mobile Kits and Laptop Trays: Man-
aging Multiple Devices in Mobile Information Work. In: Proc.
SIGCHI Conf. on Human Factors in Computing Systems (CHI’07),
pp. 1127–1136 (2007)

29. Ritzdorf, H., Karapanos, N., Čapkun, S.: Assisted Deletion of
Related Content. In: Proc. 30th Annual Computer Security Appli-
cations Conference (ACSAC’14), pp. 206–215 (2014)

30. Santosa, S., Wigdor, D.: A Field Study of Multi-device Workflows
in Distributed Workspaces. In: Proc. ACM Intl. Joint Conf. on
Pervasive and Ubiquitous Computing (UbiComp’13), pp. 63–72
(2013)

31. Sultana, S., Bertino, E.: A File Provenance System. In: Proc.
3rd ACM Conf. on Data and Application Security and Privacy
(CODASPY’13), pp. 153–156 (2013)

32. Zacchi, A., Shipman, F.: Personal Environment Management. In:
Proc. 11th European Conf. on Digital Libraries (ECDL 2007), pp.
345–356 (2007)

123

