International Journal on Digital Libraries (2022) 23:113-132
https://doi.org/10.1007/s00799-021-00317-8

®

Check for
updates

SchenQL: in-depth analysis of a query language for bibliographic
metadata

Christin Katharina Kreutz' @ - Michael Wolz'® - Jascha Knack'® - Benjamin Weyers'® - Ralf Schenkel’

Received: 30 April 2021 / Revised: 14 October 2021 / Accepted: 14 October 2021 / Published online: 23 November 2021
© The Author(s) 2021

Abstract

Information access to bibliographic metadata needs to be uncomplicated, as users may not benefit from complex and potentially
richer data that may be difficult to obtain. Sophisticated research questions including complex aggregations could be answered
with complex SQL queries. However, this comes with the cost of high complexity, which requires for a high level of expertise
even for trained programmers. A domain-specific query language could provide a straightforward solution to this problem.
Although less generic, it can support users not familiar with query construction in the formulation of complex information
needs. In this paper, we present and evaluate SchenQL, a simple and applicable query language that is accompanied by a
prototypical GUI. SchenQL focuses on querying bibliographic metadata using the vocabulary of domain experts. The easy-to-
learn domain-specific query language is suitable for domain experts as well as casual users while still providing the possibility
to answer complex information demands. Query construction and information exploration are supported by a prototypical
GUI. We present an evaluation of the complete system: different variants for executing SchenQL queries are benchmarked;
interviews with domain-experts and a bipartite quantitative user study demonstrate SchenQL’s suitability and high level of
users’ acceptance.

Keywords Domain-specific query language - Bibliographic metadata - Digital libraries - Graphical user interface

1 Introduction

Scientific writing almost always starts with a thorough bib-
liographic research on relevant papers, authors, conferences,
journals and institutions. While web search is excellent
for question answering and intuitively performed, not all
retrieved information is correct, unbiased and categorised [3].
The arising problem is people’s tendency of rather using poor
information sources that are easy to query than more reliable
sources which might be harder to access [4]. This introduces
the need for more formal and also structured information
sources such as digital libraries specialised in the underlying
data that at the same time need to be easy to query.

B< Christin Katharina Kreutz
kreutzch @uni-trier.de

Benjamin Weyers
weyers @uni-trier.de

Ralf Schenkel
schenkel @uni-trier.de

' Trier University, 54286 Trier, DE, Germany

Currently existing interfaces of digital libraries often pro-
vide keyword search on metadata or offer to query attributes
[15,25]. However, in many cases, these interfaces do not
allow to directly express more advanced queries such as
“Which are the five most cited articles written by person
P about topic T after year Y?”, but require complex inter-
action. Popular examples of such limited systems are dblp!
[25] or Semantic Scholar.”> More complex tools, e.g. Gra-
pAL3 [7], are capable of answering said complex queries,
but come with complex and often not very intuitive query
languages. Another option would be to use structured query
languages such as SQL, a widespread language for querying
databases, which unfortunately tends to be difficult to mas-
ter [37]. This is critical as in most cases domain-experts are
familiar with the schema of the data but are not experienced
in using all-purpose query languages such as SQL [1,26].
This is even worse for casual users of digital libraries who

1 https://dblp.uni-trier.de/.
2 https://www.semanticscholar.org/.

3 https://grapal.allenai.org/.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00799-021-00317-8&domain=pdf
http://orcid.org/0000-0002-5075-7699
http://orcid.org/0000-0002-9313-7131
http://orcid.org/0000-0002-1037-8555
http://orcid.org/0000-0003-4785-708X
http://orcid.org/0000-0001-5379-5191
https://dblp.uni-trier.de/
https://www.semanticscholar.org/
https://grapal.allenai.org/

114

C. K. Kreutz et al.

neither have knowledge of the structure of the data nor of
SQL.

To close this gap, we present the SchenQL Query Lan-
guage, in short SchenQL*, for the domain of bibliographic
metadata [21,22]. SchenQL is designed to be easily utilised
by experts as well as casual users from the domain as it
uses the vocabulary of digital libraries in its syntax. While
domain-specific query languages (DSLs) provide a multitude
of advantages [9], the most important aspect in the concep-
tion of SchenQL was that no programming skills or database
schema knowledge is required to use it. For SchenQL to be
widely applicable, we introduce a prototypical graphical user
interface (the SchenQL GUI) which supports the construc-
tion of queries and offers visualisations of query results and
an additional dimension of retrieving information by explor-
ing data and its relations through clicking. As an example
of SchenQL, the aforementioned question, can be formu-
lated as follows: MOST CITED (ARTICLES WRITTEN
BY “P” ABOUT “T” AFTER Y) LIMIT 5.

In addition to the SchenQL query language, another
major contribution of this paper is the empirical evaluation
of SchenQL as domain-specific query language on biblio-
graphic metadata including the investigation of a prototypical
GUI that is designed to assist users in creating queries.
SchenQL is evaluated threefold: (1) query execution times
were benchmarked to underline the suitability for interactive
retrieval tasks, (2) interviews with domain-experts were con-
ducted to identify applications as well as options for further
development and (3) a quantitative user study consisting of
two parts measured effectiveness, efficiency and users’ sat-
isfaction with our whole system: we first evaluated the usage
of command line SchenQL against SQL, followed by a study
which compared the usage of the SchenQL GUI to the pre-
vious results. Here, the User Experience Questionnaire [34]
was conducted for assessing of users’ experience.

The remainder of this paper is structured as follows: Sect. 2
discusses related work. Section 3 introduces the structure
and syntax of SchenQL with a special focus on the imple-
mentation including the presentation of the SchenQL Parser,
Compiler and Front End. The system is evaluated in three
parts in Sect. 4. Section 5 describes possible future research.

This paper is an extended version of the work presented
at ICADL’20 [22]. The main extensions are contained in
Sects. 3.4 and 4.1.

2 Related work

Areas adjacent to the one we are tackling are search on dig-
ital libraries, search interfaces on bibliographic metadata,

4 The name SchenQL is a pun on the name Ralf Schenkel and gives
kudos to him as he proposed the first version of the language’s grammar.

@ Springer

formalised query languages and domain-specific query lan-
guages.

For search on digital libraries, the MARC format is a
standard for information exchange [3]. While it is useful for
known-item search, topical search might be problematic as
contents of the corresponding fields can only be interpreted
by domain-experts [3]. Most interfaces on digital libraries
provide a field-based Boolean search [33] which can lead to
difficulties in formulating queries that require the definition
and concatenation of multiple attributes. This might cause a
substantial cognitive workload on the user [6]. In contrast,
withholding or restriction of faceted search on these engines
fails to answer complex search tasks [5]. Thus, we focus on
a search of topical information that even casual users can
utilise while also offering the possibility to clearly define
search terms for numerous attributes in a single query.

Several search interfaces on bibliographic metadata exist,
the most well-known ones might be dblp [19,25], Bibsonomy
[15], Google Scholar,® ResearchGate® or Semantic Scholar.
All of those systems allow for a systematic refinement of
result sets by the application of filter options via facets to
varying extends. Only dblp and Semantic Scholar (on a small
scale) support search on venues. The formulation of complex
queries with aggregations is not targeted by any of them. In
contrast, SchenQL supported by a GUI specialises on these
functionalities. GrapAL’ [7] actually provides all functions
of SchenQL but is a complex tool utilising the Cypher [13]
query language (QL).

Domain-specific query languages can come in various
shapes. They can be SQL-like [24], visual QLs [1,11] or use a
domain-specific vocabulary [36] but are typically specialised
on a certain area. They also come in different complexities:
for example, MathQL [14] is a query language in markup
style on RDF repositories, but a user needs to be mathe-
matician to be able to operate it. The DSL proposed by
Madaan [26] stems from the medical domain and is designed
to be used by inexperienced patients as well as medical staff.
Some DSLs are domain-unspecific such as the aforemen-
tioned Cypher [13], BiQL [12] or SnQL [27] and depend
on complicated SQL-like syntax. Naturally, there are hybrid
forms: some natural language to machine-readable query
options are domain-specific [32] and some DSLs might be
transferable to other domains [9]. With our SchenQL system,
we provide a QL which uses vocabulary from the domain of
bibliographic metadata while being useful for experts as well
as casual users and avoiding complicated syntax.

3 https://scholar.google.com/.
6 https://www.researchgate.net.

7 https://grapal.allenai.org/.

https://scholar.google.com/
https://www.researchgate.net
https://grapal.allenai.org/

SchenQL: in-depth analysis...

115

Person

Author/Editor
Key, primary name, name(s), ORCID

Keyword

Citation/Reference

Conference

Key, acronym, year

- —
Publication
Article/Book/Chapter/
Institution Master’s Thesis/PhD Thesis Journal

Primary name, primary location, name(s),
location(s), city, country, latitude, longitude

Key, title, year, abstract,
electronic edition (URL)

Key, acronym, year,
volume, name

Fig.1 SchenQL database model with relations, base concepts (underlined), specialisations (italic) and selected attributes (bold)

3 SchenQL: QL and GUI

For simplicity, we refer to SchenQL including its GUI as
the SchenQL system. SchenQL was developed to access
bibliographic metadata textually, which resembles natural
language for casual as well as expert users of digital libraries
[21,22]. The fundamental idea is to hide complex syntax
behind plain domain-specific vocabulary. This enables usage
from anyone versed in the vocabulary of the domain without
experience in sophisticated query languages such as SQL.
The prototypical GUI supports SchenQL: it helps in query
formulation with the auto-completion and keyword sugges-
tion. Additionally, it provides visual exploration of query
results supporting two standard visualisations: Ego Graph
[31] and BowTie [18].

3.1 Data model

For our data model (see Fig. 1), we assume bibliographic
metadata consists of persons and the publications they
authored or edited. These persons can be affiliated with cer-
tain institutions. Publications can be of multiple types and
may be published in conferences or journals. Publications
can reference previously published papers and might be cited
themselves by more recent work building upon them.
Persons can both be authors and editors of publications
and might be working for institutions. For persons, we
assume a unique key, their primary name, possible other
names and their ORCID are given. For institutions, we model
their primary name, primary location, further names and loca-
tions as well as the location of the institution in form of city,
country, latitude and longitude. Publications can be either of

type article, book, chapter, Master’s thesis or PhD thesis. For
publications, we assume a unique key, the title and publica-
tion year, abstract and electronic editions can be available.
Publications can be associated with keywords. We addition-
ally model links to referenced and citing papers as well as
authors/editors of the publications and the publication venue.
As venues for the publications, we consider conferences and
Jjournals. For both of them, we model a unique key, acronym
and a specific year. For journals, we also store volume and
name information.
Figure 2 shows the SchenQL relational data model.

3.2 Building blocks

Base concepts are the basic return objects of SchenQL.
A Dbase concept is connected to an entity of the data
set and has multiple attributes. Those base concepts are
publications,persons,conferences, journals
and institutions. Upon these concepts, queries can be
constructed. Base concepts can be specialised. For exam-
ple, publications can be refined by the specialisa-
tions books, chapters, articles, master or PhD
theses. A specialisation can be used instead of a base con-
cept in a query.

Filters can restrict base concepts by extracting a subset
of the data. Literals can be used as identifiers for objects
from base concepts, and they can be utilised to query for
specific data. Attributes of base concepts can be queried;
for an overview of attributes, see Fig. 1. Table 1 gives an
overview of literals, specialisations, filters and the standard
return value for every base concept. Queries with strings as
filter parameters, e.g. titles or names, utilise exact matching

@ Springer

116 C.K.Kreutz et al.
:]puilllﬂhfulﬁﬂmu v
it INT
Pl VARCHAR(100) [Dinstston v
pubiz_id VARGHAR 100) key VARCHAR(100)
= _ primaryName YARGHAR(I00)
] keyword v -] person_edited_publication v INT location VARCHAR{100}
key VARCHARI250) dINT ary VARGHAR(100
: hey VARCHAR(100 peraonKey VARCHAR(100) courtry VARCHAR(100)
> il AR) publication v porsonKey VARCHAR{100) 7 B
keypword VARCHAR{250) key VARCHARI100 nstitalicakey VARCHAR]100) ity VARGHAR(100)
g itk Ly publicationkey VARCHAR(100) "
B 5 at FLOAT(10.8)
tile VARCHAR|1000) >
lon FLOAT(10.)
avstract TEXT
_ journal_name v , 5 >
VARGHAR(S00) T rson v
lournal ¥ oo VARCHAR(S00)] person_reviewed_publication v L

i INT

Ky VARCHAR(100) urd VARCHAR[500)

name VARGHAR(200)
acranym VARCHAR(S0)

> volame VARCHAR(S0)

year INT
jourmalKey VARCHAR[100} year |

»
type ENUM,.

confsrence_ ki ARCHAR(100)

] conterence v

] conference_name ¥ joumal_key VARCHAR(100)
Hey VARGHAR{10D)

i INT >
_ acronym VARCHAR(S0)

asronym VARCHARISD)

rame VARGHAR(200)

> tille VARCHAR{SOD) -

> corerank VARCHAR(Z)

>
Fig.2 SchenQL relational data model (online in colour)

in general. Prepending a ~ to such a query enables full-
text search in case of titles: PUBLICATIONS TITLED ~
“DAFFODIL". If ~is used with a following person name, it
provides the functionality of the original Soundex algorithm.
Keywords as well as strings are case- and accent-insensitive.
Functions can be used to aggregate data or offer domain-
specific operations. Right now, SchenQL provides four func-
tions: MOST CITED, COUNT, KEYWORD OF and
COAUTHOR OF. MOST CITED (PUBLICATION) can
be applied on publications. This function returns titles as
well as numbers of citations of papers in the following set.
By default, the top five results are returned. COUNT returns
the number of objects contained in the following sub-query.
KEYWORD(S) OF (PUBLICATION | CONFERENCE
| JOURNAL) returns the keywords associated with the fol-
lowing base concept. The next function COAUTHOR (S) OF
(PERSON) returns the co-authors of an author. The LIMIT
x operator with x € N can be appended at the end of any
query to change the number of displayed results to at most
X.

3.3 Syntax

The syntax of SchenQL follows simple rules resulting
in queries similar to natural language which are aim-
ing at simple construction. Sub-queries have to be sur-
rounded by parentheses. It is possible to write singular or
plural when using base concepts or specialisations (e.g.
JOURNAL or JOURNALS). Filters following base con-
cepts or their specialisations can be in arbitrary order
and get connected via conjunction if not specified other-
wise. (OR and NOT are also possible.) Most filters expect
a base concept as their parameter (e.g. WRITTEN BY
(PERSONS)); however, some filters anticipate a string

@ Springer

Iz INT

Koy VARCHAR(100)

primaryName VARCHAR(200)

porsoniey VARCHAR(100)

publicationKey VARCHAR100)

1 person_authored_publication ¥

i INT

persansey VARCHAR(100)

» publicasansey VARCHAR(100)

ocid VARGHAR(20) dINT
Prindex INT Ane VARGHAR300)
= -

mstivtionsey VARCHAR(100)
>

>

] person_names ¥

dINT
name VARCHAR{200}
B » porsoney VARCHAR(100)
>

as their parameter (e.g. COUNTRY “de”). Specialisations
can be used in place of base concepts. Instead of a
query PERSON NAMED “Ralf Schenkel”, a speciali-
sation like AUTHOR NAMED “Ralf Schenkel” would
be possible. If a filter requires a base concept, parentheses
are needed except for the case of using literals for identifying
objects of the base concept. For example, PUBLICATIONS
WRITTEN BY “Ralf Schenkel” is semantically
equivalent to PUBLICATIONS WRITTEN BY
(PERSONS NAMED “Ralf Schenkel”).Attributesof
base concepts can be accessed by putting the queried
for attribute(s) in front of a base concept and connecting
both parts with an OF (e.g. “name”, “acronym” OF
CONFERENCES ABOUT KEYWORDS [“DL”,
“QLs”]).

3.4 Implementation

The SchenQL system contains four main components
(see Fig. 3). The SchenQL DB Parser parses all the differ-
ent data sources and combines them in a MySQL database,
the SchenQL CLI is the command line interface that also
contains the SchenQL Compiler for the query language, the
SchenQL Front End represents the web interface (introduced
in Sect. 3.4.4), and the SchenQL API connects the SchenQL
CLI with the SchenQL Front End. The SchenQL API also
runs some direct queries on the database to execute high-level
functions that SchenQL itself is not capable of. Our QL can
be used in a terminal client similar to the MySQL shell or
via the graphical front end.

3.4.1 SchenQL DB Parser

Our database model (see Fig. 1) was specifically designed
for the syntax of SchenQL so that every base concept

SchenQL: in-depth analysis...

17

Table 1 SchenQL base concepts Publications (PU), persons (PE), conferences (C), journals (J) and institutions (I) with their respective literals (L), specialisations (S),

filters (F) and standard return values (V, relevant for the CLI)

INSTITUTION

JOURNAL

CONFERENCE

PERSON

PUBLICATION

Key, acronym Key, acronym

Key, primary name, ORCID

AUTHOR, EDITOR

Key, title

BOOK,

MASTERTHESIS,

PHDTHESIS,

CHAPTER,
ARTICLE

NAMED name,

ACRONYM

NAMED name,

ACRONYM acronym,

PUBLISHED IN (C|J),

(1),

PUBLISHED BY
(keywords),

ABOUT

CITY city,

COUNTRY
MEMBERS

acronym,

(keywords),
BEFORE year, IN YEAR

year, AFTER year

ABOUT

(1),

(I),NAMED
ORCID orcid,

PUBLISHED WITH

WORKS FOR
name,

country,

(keywords),
BEFORE vyear, IN YEAR

ABOUT

(PE),
(PE),

WRITTEN BY
EDITED BY
APPEARED IN (C|J),
BEFORE year,

(PE)

AFTER year,

VOLUME volume

year,

(PU),

AUTHORED

(PU),
(PU)

REFERENCES
CITED BY

AFTER

TITLED title,

YEAR vyear,

vear,

(PU),

CITED BY (PU)

REFERENCES
Title

Primary name + location

Acronym

Acronym

Primary name

—) SchenQL DB
— Parser
Raw data files
MySQL Database

SchenQL SchenQL
—
)_ CLI API
AR

U 1 U
SchenQL schen(J/ SchenQl
. Front End
Compiler

Fig.3 Overview of the SchenQL components

represents an entity in the database. Data on references
and citations are contained in a single table. The chosen
database uses the MyISAM storage-engine instead of the
MySQL 8 default InnoDB. In comparison with InnoDB,
MyISAM does not support transactions, so there is no need
to commit after inserting data into the database. In case of
SchenQL, transactions are not required, since no data are
changed after the creation of the database. On the one hand,
this strongly influences the performance of the database
parser, and on the other hand, MyISAM has a higher sup-
port for full text search, which is necessary for queries
like PUBLICATIONS ABOUT “DL” or PUBLICATIONS
TITLED ~ “Daffodil”.

3.4.2 SchenQL CLI and Compiler

The SchenQL CLI defines the core of the QL. It does not only
provide an interface to use the language, but it also includes
the compiler. The compiler translates SchenQL queries to the
target language SQL and uses Java Database Connectivity
to run them against a MySQL 8.0.16 database holding the
data.® We built the lexer and parser of our compiler using
ANTLR with Java as the target language.’ In the parser, we
use the visitor approach to iterate through the nodes in the
constructed parse tree.

8 See Sect. 4.1 for an evaluation of the target language and the imple-
mentation of the SchenQL to SQL compiler.

9 We utilise language specific functions in the lexer so that the gram-
mar is no longer generally usable for other programming languages but
would have to be adapted.

@ Springer

118

C. K. Kreutz et al.

QueryVisitor

[PublicationQueryVisitor }

{ PUBLICATIONS] [PublicationLimitationVisitor]

] [PersonQueryVisitor }

[Ralf Schenkel J

[WRITTEN BY

Fig. 4 Syntax tree of the query PUBLICATIONS WRITTEN BY
“Ralf Schenkel”

SQL queries are generated from SchenQL input in
multiple steps: first, a SchenQL expression (for example,
PUBLICATIONS WRITTEN BY “Ralf Schenkel”)
is parsed and a parse tree is constructed (see Fig. 4). It
represents the abstract syntax tree of the parsed input expres-
sion. Afterwards, this syntax tree is traversed from the root
onwards. The parser calls the root node where it checks
whether the input query is a request for one of the basic
concepts or whether it is a function call (alias) to a sub-
query, e.g. COUNT. Next, the child node of the root node is
visited. In the case of the example from Fig. 4, the Query Vis-
itor is called, the type of the query is checked and the next
child node is visited (in the example: PublicationQuery Visi-
tor). The PublicationQuery Visitor processes the child nodes
by depth-first search and collects all filters used in the
query in an array using the (Publication)LimitationVisitor.
Subsequently, the PublicationQuery Visitor generates a SQL
select statement and adds the filters to it. It also checks
whether a specialisation was used to call the query, i.e. if
the user queried ARTICLES WRITTEN BY “A” instead
of PUBLICATIONS WRITTEN BY “A”.This process is
performed recursively until the input has been completely
processed.

3.4.3 SchenQL API

The SchenQL API handles all communication between the
compiler and the front end. It has two tasks: first, it imple-
ments an endpoint for handling all types of valid SchenQL
queries, and second, it serves additional information based
on base concepts, such as retrieving citations and refer-
ences for publications or authors for performance reasons.
We use the REST architecture pattern for the API. The API
is implemented using Spring and Spring Boot for handling
HTTP-requests.

@ Springer

3.4.4 SchenQL Frond End

The SchenQL Front End (also called GUI) is inspired by
results from the qualitative study described in Sect. 4.3. It
provides access to information by supporting the construc-
tion of queries including the interactive navigation with the
GUL. It also offers auto-completion of SchenQL query key-
words and suggestions for the formulation of queries. Results
of queries can be sorted for every column of the result table.
In Fig. 5, query formulation with suggested keywords and
result representation in the SchenQL GUI is depicted. If a
search result is selected by clicking on it, detail views open
(see Fig. 6 for the detail view of a person) which offer all
information available for the respective element of a base
concept. Furthermore, we incorporated two already estab-
lished visualisations: Ego Graph [31] and BowTie [18]. The
Ego Graph for persons (see Fig. 6 top right part) supports
the analysis of persons’ most important co-authorships. At
one glance, the most common cooperators are visualised and
compared to each other such that the overall productivity and
interdependence of a person can be estimated. If a person has
many equally close collaborators, they might either be active
in multiple fields or they could produce papers with many
co-authors at once. If a person has only few very close co-
authors and multiple further dependencies, this pattern could,
for example, hint at a PhD student—supervisor relationship.
The BowTie visualisation can be used for the easy estimation
of a person’s, publication’s or venue’s influence in terms of
gained citations and its actuality (see Fig. 7). If for example a
lot of recent papers are referenced (estimated by the detailed
view) by a paper in focus, one could assume that this paper
is well positioned in that time’s publication landscape. The
distribution of incoming citations could be very telling on
whether, for example, a venue is still relevant to this day.

4 Evaluation

Before the actual evaluation of the SchenQL system, we
conduct benchmarks for two possible database engine and
target languages for the compilation of SchenQL queries:
SQL (with data stored in a MySQL relational database)
and Cypher (with data stored in a Neo4J graph database).
Afterwards, we evaluate the performance of the current
implementation of the compiler that translates SchenQL into
the target query language.

Our evaluation of the SchenQL system consists of a qual-
itative and a quantitative investigation which are followed
by a performance evaluation. In a first qualitative study, we
examine domain experts’ use-cases and desired functional-
ity of a DSL such as SchenQL as well as an accompanied
GUI. The major goal of this first investigation was to check
SchenQL for completeness and suitability for the addressed

SchenQL: in-depth analysis...

Fig.5 SchenQL Front End for a
search with suggested language
components and search result

PUBLICATIONS WRITTEN BY "Ralf Schenkel" IN YEAR 2018

wTEN BY
IN YEAR | APPEARED IN | ciTeD BY | ReFERENCES | TiTLED | AND | or | NoT

Title .V

ReCAP - Information Retrieval and Case-Based Reasoning for Robust Deli...

Prioritizing and Scheduling Conferences for Metadata Harvesting in dblp.

Primary Ralf Schenkel Ego Graph BowTie
Name

ORCID 0000-0001-5379-5191

Coauthors Gerhard Weikum (39)

0 Martin Theobald (30)

Katja Hose (16)

Show more v

DBLP Key homepages/s

/RalfSchenkel

How to read this diagram?

Publications

Year Type
v

Title

SchenQL - A Domain-Specific Query Language... 2019 article ...

Analyzing online schema extraction approache... 2019 inpr... ..

Fig.6 Person detail view with Ego Graph depicting up to the ten most
common co-authors. Nodes symbolise persons; the further an author is
from the middle (person in focus), the less publications they share with
the person in focus

use cases. In a subsequent step, we conducted a quantita-
tive study in which we first compared SchenQL with SQL,
both used through a command line interface (CLI) to ensure
comparability. The goal was to measure the effectiveness,
efficiency and users’ satisfaction with SchenQL as query lan-
guage. As a follow-up, we evaluated the web-based GUI of
the SchenQL system using the same queries and compared
the results with those received from usage of the SchenQL

Year

Type
2018 inprocee.. W..
2018 article ...

(a) Regular BowTie view.

(b) Detailed BowTie view.

Fig. 7 Regular (top) and detailed (bottom) BowTie view with refer-
enced and citing papers of a person with numbers of referenced (bows
left of knot) and citing (bows right of knot) papers. For the regular view
year numbers limit the period of time from which a paper referenced
(left) and is cited itself (right). In the detailed view, the references and
citations are separated in single slices per year. Hovering over single
slices depicts the year and the associated number of references from or
citations acquired in the specific year. The higher the number of cita-
tions or references, the longer the bow; the longer the spanned time, the
higher the bow

CLI. We additionally investigated the SchenQL system’s user
experience using the User Experience Questionnaire (UEQ)
[34].

Considering the overall goals for SchenQL, we derived
the following five hypotheses to be investigated:

H; MySQL as database engine with SQL as a target language
for the SchenQL compiler is more suitable than Neo4j as
database engine with Cypher as target engine.

@ Springer

120

C. K. Kreutz et al.

H, The SchenQL-to-SQL compiler’s performance in trans-
lating and executing queries is comparable to that of
manually formulated queries.

H; Utilisation of the SchenQL CLI achieves better results
in terms of higher correctness, lower perceived difficulty
of query construction as well as lower required time for
query formulation than usage of SQL.

H; SchenQL is as suitable for domain-experts as it is for
non-experts.

Hs The SchenQL system provides high suitability and user
experience (indicated by values > .8 for all six quality
dimensions assessed with the UEQ!?) for users not famil-
iar with structured queries.

For all studies, we used a data set from the area of
computer science: our structures were filled with data from
dblp [25] integrated with fitting data from Semantic Scholar
(for citations and abstracts) and enriched with information
about institutions from Wikidata.!! As keys of persons,
publications and venues, we utilised dblp keys of the respec-
tive entities. Utilising the dblp data set as of June 2020'2
leads to 2,518,198 entries for persons, 5,095,451 entries for
publications, 1849 entries for journals, 91,694 entries for
conferences and 10,059 entries for institutions.

4.1 Benchmarks: database engines and target
language as well as SchenQL CLI Compiler
evaluation

The technical evaluation of our system consists of two parts:
a comparison of execution times of queries for two dif-
ferent target engine candidates with their respective query
languages and a comparison of the target queries generated
by the SchenQL compiler to manually optimised queries for
typical query types found in digital libraries.

We first compare two specific implementations of viable
target engine options: a relational database and a graph
database. Both database types are reasonable options for
the representation of bibliographic metadata. The actual
data are clearly structured (e.g. in a publication record with
clearly defined attributes) which supports usage of relational
databases. The multiplicity of direct relations between bibli-
ographic entities (e.g. persons citing papers instead of only
persons writing papers and those papers citing other papers)
and the graph-like structure (see Fig. 1) hints at the utilisation
of graph databases.

We then evaluate the implementation of our SchenQL
compiler with regard to its suitability.

10 User Experience Questionnaire Handbook: https://www.ueq-online.
org/Material/Handbook.pdf.

T https://www.wikidata.org/wiki/Wikidata:Main_Page.
12 https://dblp.org/xml/release/dblp-2020-06-01.xml.gz.

@ Springer

4.1.1 Selection of database engines and query languages

For the selection of a relational as well as a graph-based
database management system (DBMS), we defined impor-
tant factors which a database needed to satisfy in order to
narrow down the numerous options for our application:

— Open source license. We did not want to introduce legal
restrictions or license fees.

— Availability of the source code. The technical imple-
mentation should be accessible to allow research and
adjustments.

— Active further development of DBMS. Guaranteed oper-
ation of the DBMS in the future was important, this was
accessed by the date of latest release.

— Possibility of querying the DBMS from Java and Python
programs without a further surrounding system but
through a query language directly. This property ensured
alow structural adaptation effort for the SchenQL ecosys-
tem in case the underlying database is changed.

For the selection of a relational database engine, we con-
sidered the wide-spread options MySQL and PostgreSQL.
As we did not come across clear arguments for or against
one or the other,'> MySQL was chosen. It has the advantage
of providing the MyISAM storage engine which has a higher
support for full text search which we consider highly rele-
vant. It does not support transactions, but transactions are not
required in our use case. The target language for the relational
database MySQL is SQL.

For the selection of a graph-based database engine'* and
query language, we additionally deemed the structural and
syntactical similarities to SQL important. This ensured the
best possible comparability between the query languages.
Consideration of the four general properties and the last one
specific to the graph-based variants produced the query lan-
guage Cypher as the best option. Cypher is supported by the
DBMS Neo4j, Redis and AgensGraph. As a related work [7]
also utilises Cypher as target language and Neo4j as DBMS,
we followed their example in our decision.

Note that execution times of queries are highly dependent
on the utilised execution environment. We tried to select the
best possible options for the relational as well as graph-based
databases and respective target languages for our specific use
case. We cannot exclude that other target languages for the
database types may achieve better or different results.

4

13 https://db-engines.com/en/system/MySQL%3BPostgreSQL.
14 https://db-engines.com/en/ranking/graph+dbms.

https://www.ueq-online.org/Material/Handbook.pdf
https://www.ueq-online.org/Material/Handbook.pdf
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://dblp.org/xml/release/dblp-2020-06-01.xml.gz
https://db-engines.com/en/system/MySQL%3BPostgreSQL
https://db-engines.com/en/ranking/graph+dbms

SchenQL: in-depth analysis...

121

Table 2 Overview of queries D

uery in plain text
evaluated in the benchmark Query in p

By Titles of all publications

By Titles of publications
written by A

B3 Titles of publications
written by A which
appeared in journal J

By Primary names of
persons who authored
a publication with title
P

Bs Titles of publications
about K

Bg Keywords of
publications with title
P

By Primary names of
co-authors of A

Bg Primary names of
co-authors of
co-authors of A

By Titles of publications
which reference
publications which
were published by
institutions where A is
member

Bio Titles of A’s most cited
publications

B Number of A’s
publications

Bi» Primary names of
persons with a name
that sounds like F

B3 Titles of publications
written by A or B

Bia Titles of publications
written by A and not
by B

Bis Titles of publications
containing T’

A, B are unique names of dif-
ferent authors, J is a journal
acronym, P is a publication title,
K isakeyword, F is a forename,
and T is a term

4.1.2 Queries

Table 2 shows the different benchmarking queries we
observed. They utilise a representative amount of all SchenQL
language elements. The queries were inspired by typi-
cal search scenarios [8] and categorisations [29] in digital
libraries. Queries B] to Bg incorporate only one or two con-
cepts and simple conditions and combinations. B7 observes
the co-authorship relation, and Bg introduces a second indi-

rection layer to this query type. Bg generates an especially
large result set. Queries By as well as By evaluate more
domain specific functions. Query Bj, utilises Soundex. In
queries B3 and Bi4, logical operators are combined with
single concepts. B1s evaluates full text search. We filled the
main variables of the queries randomly, and the dependent
variable was set with respect to the main variable. For B3,
we randomly chose a person A who has published at least
one paper in a journal J; for B4, we randomly chose a pair
of co-authors A and B where A has also published several
papers without B.

4.1.3 Setting

We run the performance benchmarks on a Ubuntu 20.04
machine with 32 GB RAM and a2 TB SSD. A MySQL 8.0.21
database handles the SQL queries, and an equivalent Neo4j
4.0.8 database handles the Cypher queries. We only set the
variables for each benchmarking query once, and the same
variables were used throughout all experiments. Each query
was run 100 times, and we report average execution times on
both databases. To minimise the impact of caching and pre-
diction effects of modern hardware on the measurements, the
DBMS and the surrounding docker containers were restarted
after each query execution.

Figure 8 shows the simplified SchenQL graph-based
data model without attributes. The colours of entities from
this depiction correspond to the respective tables from the
SchenQL relational data model in Fig. 2. Keywords, jour-
nals and conferences are directly linked with publications.
Persons are linked with publications and institutions. Person
names, for example, are no longer stored in a separate table
contrasting the relational data model, but they now appear as
attributes of persons.

Benchmark part I: database engine and target
language performance

In this first part of the technical evaluation, we assess the
performance of two different database engines with speci-
fied languages for our SchenQL compiler for domain specific
query types: the relation database engine MySQL with SQL
and the graph-based database engine Neo4j with Cypher [13].
Here, we strive to investigate the suitability of SQL as a target
language for the SchenQL compiler with MySQL as database
engine compared to Cypher with Neo4j as database engine
and thus verify or falsify hypothesis H;. A target language for
the SchenQL compiler has to support the formulation of typ-
ically required query types, and the execution time of queries
in general should not interrupt a user’s flow of thought (see
Table 4). These two properties thus define our perception of
suitability of a target engine and language. We deliberately
do not include cost of learning or conciseness in our percep-

@ Springer

122

C. K. Kreutz et al.

Fig.8 SchenQL graph-based
data model (online in colour)

Keyword
/7,43
RO
N
pPPERRED-
>
&7
&
§
Table 3 Evaluation query categories, queries and figures
Exec. time Queries Figures
Low (s * 1073) By, By, Ba, Bs, Be, By, Bi1, 9
Bis
Medium (s % 1072) B, Bio, Bis 10
High (s) B3, Bia, Bi3 11, 12
Very high (s % 10%) Bg 13, 14

tion of suitability of a target language as users of SchenQL
will not come in contact with the target language itself.

4.1.4 Analysis of H;

All queries from Table 2 could be formulated both with SQL
(run against a MySQL database) and Cypher (executed on
a Neo4j database). Suitability in terms of both target lan-
guages being appropriate to express the information needs is
therefore given, and no database engine and target language
surpass the other in this aspect. So in the following, we focus
on the assessment of execution times for queries.

The following shows an exemplary formulation of Bi4
with Cypher:

MATCH (per:Person{primaryName: ' 'A’
< AUTHORED]->(pub:Publication)

WHERE NOT

EXISTS ((: Person{primaryName: ' ’'B’’}) -[: AUTHORED
<~]->(pub:Publication))

RETURN pub

"Y) -1

The queries from Table 2 were put in four different cat-
egories depending on their execution time (see Table 3).
The labels of the boxplots are defined as follows: Cypher
(white boxes) describes manually written and optimised
Cypher queries executed on a Neo4j database, oSQL (light
grey boxes) marks manually constructed and optimised SQL

@ Springer

EDITED
Person WORKS_FOR

AUTHORED

Table 4 Categories (C) of system response times in ms and associated
user experience

C Time User experience

1 <100 Users feel system reacts
instantaneously

2 < 1000 User’s flow of thought is
uninterrupted

3 < 10000 Limit for user’s attention

span

queries, and sSQL (dark grey boxes) is SQL queries gener-
ated by the SchenQL compiler. SQL queries were run against
the MySQL database. This part of the plots is utilised in the
following evaluation in Sect. 4.1.5. Missing oSQL data points
indicate that their value is identical to the respective sSQL
data point. The whiskers extend to the 5 and 95" percentile
[23]. The notches are defined as +/-1.58¥*IQR/sqrt(n) and rep-
resent the 95% confidence interval for each median [10]. To
enable conclusions about the probability that two medians
differ, we can compare the notch area of two queries in the
visualisation, which is only possible with linear scale. If data
points of two different queries have a large separation on the
time scale, we provide a separate plot with corresponding
scale factor (Figs. 13 and 14).

There seems to be a general execution difference of Oms
to 10ms in favour of SQL. The evaluation of the speed in
relation to user experience is based on the absolute measured
values according to the criteria of Nielsen [28] (see Table 4)
constructed for response times of systems. All executions of
Cypher formulations of queries except By, fall into category
1. By, takes 3517ms in the Cypher version and 584ms in the
SQL version. Checking for a substring inside a property or a
field seems to cause a complete search in all relevant nodes
(Cypher) and a full table scan (SQL). The relational database

SchenQL: in-depth analysis...

123

Fig.9 Queries with low
execution time in ms

Fig. 10 Queries with medium
execution time in ms

Fig. 11 Queries with high
execution time in ms, overview
of all formulation times

14-Cypher +
14-0SQL
14-sSQL

11-Cypher
11-0SQL
11-sSQL
9-Cypher 4

9-0SQL
9-sSQL
6-Cypher -
6-0SQL
6-sSQL
5-Cypher
5-0SQL
5-sSQL -
4-Cypher
4-0SQL -
4-sSQL
2-Cypher -
2-0SQL
2-sSQL
1-Cypher
1-0SQL -
1-sSQL -

|

1

15-Cypher —
15-0SQL
15-sSQL
10-Cypher —
10-oSQL
10-sSQL
7-Cypher —
7-0SQL

oat oo
000 4—»%-{om

cmd»fffm——éoc
om*—m—bm

S s
m}——r—l:ﬂfff{»ooo

o ecd-lf]»bu o
e o

o o}--w-bm
S

7-sSQL -~

ot D -

13-Cypher
13-0SQL
13-sSQL
12-Cypher —
12-0SQL
12-sSQL -
3-Cypher +
3-0SQL -
3-sSQL -

5 10

nm*lfl"m
M{ﬂq.; .

T
1000 2000 3000

T
4000 5000

@ Springer

C. K. Kreutz et al.

124
Fig. i ith hi
g 12‘ Qqerle§ with high {8 Gyghier =
execution time 1in ms, zoom on
formulations with low execution 13-08QL
time 13-sSQL
12-Cypher
12-0SQL
12-sSQL
3-Cypher
3-0SQL
3-sSQL -

Fig. 13 Queries with very high

execution time in ms, overview 8-Cypher +

of all formulation times 8-0SQL +
8-sSQL 0 #-H—]-»b
I T T T 1
0 50000 100000 150000 200000
Fig. 14 Queries with very high
execution time in ms, zoom on 8-Cypher ” °"}"'£ﬂ' e
f.ormulatlons with low execution 8-0SQL e m s
time
8-sSQL
r T T T 1
0 2 4 6 8

seems to have a more efficient way to execute this functional-
ity compared to the graph database. The Cypher query falls in
category 3, the SQL one in category 2. Execution of all SQL
versions of queries except Bz and By, falls into category 1.
The SQL version of B3, concatenation in combination with a
second concept, lies in category 3, while the Cypher version
falls in category 1.

4.1.5 Discussion

Both database engines and target languages are perfectly
suitable to formulate prototypical queries with. With SQL
executed on a MySQL database as well as Cypher run against
a Neo4j database, we found one query type which does
perform badly (category 3): Soundex for Cypher (Bj2) and
combination of different full-text searches for SQL (B3). We
argue that the Soundex functionality might be more important
for users of digital libraries to be computed in a fast fashion as
this is an integral part of all queries containing author names
which are oftentimes hard to spell correctly. In general, the
SQL queries on the relational database have lower execution
time by a small margin than the Cypher ones on the graph-
based DBMS. So regarding all problems we conclude that
SQL run on a MySQL database is a more suitable target lan-
guage for the SchenQL compiler compared to Cypher on a
Neo4j database engine, thus validating hypothesis Hj.

@ Springer

Benchmark Part ll: SchenQL performance

In the second part of the benchmark, we want to assess the
performance of our SchenQL to SQL compiler compared to
queries directly formulated in SQL. Here, we hope to assess
the optimisation degree of compiled SchenQL queries con-
trasting directly formulated SQL ones. We intend to assess
hypothesis H>.

4.1.6 Setting

In this part of the benchmark, we compare execution time
of queries generated by our SchenQL to SQL compiler to
ones in SQL we constructed already in the previous evalu-
ation in Sect. 4.1.4. We again utilise the same queries (see
Table 2) and evaluation environment described in Sect. 4.1.3.
Table 5 contains SchenQL formulations of the queries.

4.1.7 Analysis of H,

Here, we again refer to the figures mentioned in Table 3.
We compare execution times for queries generated by the
SchenQL compiler (labelled sSQL) to those of manually con-
structed and optimised SQL queries (labelled oSQL).

The query creation strategy of the SchenQL compiler
relies on the DBMS optimiser to flatten subqueries and
reorder joins. This approach works for most of the evalu-

SchenQL: in-depth analysis...

125

Table 5 Overview of SchenQL D

uery in SchenQL
queries derived from Table 2 Query Q
evaluated in the benchmark B, PUBLICATTIONS

B> PUBLICATIONS
WRITTEN BY “A”

B3 PUBLICATIONS
WRITTEN BY “A” AND
APPEARED IN
(JOURNAL NAMED
)

B4 PERSON AUTHORED
(PUBLICATION
TITLE “P”)

Bs PUBLICATIONS
ABOUT KEYWORD “K”

Bs KEYWORDS OF
(PUBLICATION
TITLED “P”)

B; COAUTHORS OF “A”

By COAUTHORS OF
(COAUTHORS OF
“A™)

By PUBLICATION
REFERENCES
(PUBLICATION
PUBLISHED BY
(INSTITUTION
MEMBERS “A”))

Bjy MOST CITED
(PUBLICATIONS
WRITTEN BY “A”)

B;; COUNT
(PUBLICATIONS
WRITTEN BY “A”)

Bi» PERSON NAMED ~ “F”

Bj3 PUBLICATIONS
WRITTEN BY “A” OR
WRITTEN BY “B”

Bi4 PUBLICATIONS
WRITTEN BY “A” AND
NOT WRITTEN BY
IIBII

Bis PUBLICATIONS
ABOUT “T”

A, B are unique names of dif-
ferent authors, J is a journal
acronym, P is a publication title,
K isakeyword, F is a forename,
and T is a term

ated queries (B1, B>, B4, Bs, Be, B7, Bs, B1o, B11, B4, B1s)
as their execution times fall in category 1 (see Table 3). The
query execution times for B3z and B, lie in the same cat-
egories (category 3 and category 2) for compiler-generated
and manually optimised SQL formulations. Bg and Bj3 are
exceptions: the manually formulated queries both belong
to category 1, whereas the compiled versions lie in cate-
gory 3, thus outperforming the queries generated by the

SELECT DISTINCT title, year FROM
< publication p join
person_authored_publication ON
< publicationKey = p.key
<~ person
pe ON pe.key = personKey WHERE pe.key
<~ IN (SELECT DISTINCT key FROM
person JOIN person_names ON personKey =
> key WHERE name = ‘‘'A’’) OR
key IN (SELECT DISTINCT key FROM
— person JOIN person_names ON
personKey = key WHERE name = ‘‘'B’ ')
<~ LIMIT 100;

JOIN

Listing 1 SchenQL compiler-generated SQL for Bj3.

SchenQL compiler by orders of magnitude. B3 utilises logi-
cal disjunction and joins the publication table, which contains
about 5 x 10° records, with the person table (2.5 x 100
records). There could be a problem with the MySQL opti-
miser, and the compiler-generated query seems simple to
optimise (see Listing 1). In Bg, the two layers of indirec-
tion are causing the SchenQL-to-SQL compiler to generate a
cascade of subqueries. It seems that the optimiser is unable to
increase performance here so that the execution time differ-
ence between the optimised query and the generated version
is about factor 10%.

4.1.8 Discussion

In general, it was evident that in most cases the optimiser
of the MySQL RDBMS enhances the compiler-generated
SQL queries to the level of the manually optimised ver-
sion. Only in the case of two conditions in a query and the
search for co-authors of co-authors of a person, the SchenQL
SQL code requires orders of magnitude more execution time
than the manually written and optimised queries. From these
observations, we derive a general high performance of the
SchenQL-to-SQL compiler which is comparable to manu-
ally formulated queries and thus validate hypothesis H>.

4.2 Qualitative study: interviews

To get a comprehensive picture of SchenQL’s completeness
and suitability, we conducted semi-structured one-on-one
interviews with four employees of the dblp team to discover
realistic use-cases as well as desirable functionalities and
potential extensions. Leading questions were which queries
they would like to answer with the data and which functions
or visualisations they envisioned in a GUI. The participants
do work daily on digital libraries and are thus considered
highly experienced in the area. They were only aware of the
domain of interest and the underlying data set but did not
know anything about SchenQL.

@ Springer

126

C. K. Kreutz et al.

The interviews showed that the dblp staff wished to
formulate queries to compute keywords of other publica-
tions that were published in the same journal as a given
publication, the determination of the most productive or
cited authors, as well as the most cited authors with few
co-authors. Furthermore, a GUI should support numerous
visualisations: colour-coded topics of publications or co-
author-groups were explicitly asked for. Another participant
requested intermateable components for the visualisation of
graphs to display co-publications, co-institutions or connec-
tions between different venues. Other desired functionalities
were a fault-tolerant person name search and sophisticated
ranking methods.

As expected, the experts’ suggestions were quite specific
and strongly shaped by their daily work with dblp, which may
not fit classic non-expert use of digital libraries. SchenQL
is able to formulate several of the desired questions; how-
ever, it needs to be evaluated by non-power-users as we have
done in the quantitative evaluation described below to ensure
usability for casual users as well. The experts’ comments on
visualisation drove the design of the GUI’s visual analysis
components.

4.3 Quantitative study: SchenQL CLI vs. SQL, GUl and
UEQ

Our quantitative study consists of two parts: first, the
SchenQL CLI is compared to SQL, then the usability of the
GUI and thus the SchenQL system as a whole is assessed. For
the first part, it is not feasible to compare a specialised system
such as the SchenQL CLI to a commercial search engine, as
differences between the compared systems should be minor
[17]. Additionally, as stated above, search interfaces in this
domain [15,25] do not provide as many functionalities as
SchenQL. We also refrained from evaluating the CLI against
other DSLs such as Cypher [13] as test users would have been
required to learn two new query languages. Comparing our
CLI against SPARQL would have required the definition of
classes, properties and labels for the data set and was there-
fore also disregarded in favour of the comparison against
SQL.

Users participated voluntarily in the study, they were
aware of being able to quit any time without negative conse-
quences. They actively agreed on their data being collected
anonymously and their screens being captured. We assume
gender does not influence the measured values, so it is not
seen as additional factor in the evaluation. Kelly [17] advises
to examine quasi-independent variables such as sex of test
users if researchers believed they influenced the outcome
variable. We assume domain-experts are versed in the vocab-
ulary and connections between bibliographic objects, and
non-experts might have their first encounter with biblio-
graphic metadata.

@ Springer

Table 6 Templates of all

: ; o Q1
queries used in the qualitative
evaluations

What are the titles of publi-
cations written by author A?

Q> What are the names of
authors which published at
conference C?

Q3 What are the titles of the
publications referenced by
author A in year Y?

Q4 What are the titles of the five

most cited publications writ-
ten by author A?

A are unique names of different
authors, C is the acronym of a
conference and Y is a year

For our significance tests, we used an independent two-
sample t test in case data are normally distributed (checked
with Shapiro—Wilk test) and if variances are homogeneous
(checked with Levene’s test). Otherwise and if we do not
specify differently we applied Mann—Whitney U tests. We
consider a p-value of .05 as significance level. We use
Fisher’s exact tests to check whether the frequency distribu-
tions of categorical (nominal or ordinal) variables differ from
the expected distributions in cases where the expected value
isless than five. If we encounter nominal and scaled variables,
we utilise the ETA coefficient to calculate correlations. We
measure correlation between ordinal values or ordinal and
scaled values with Kendall’s 5. Correlation between ordinal
and nominal values is estimated with likelihood ratio (LR),
and effect size is given with Cramér’s V.

4.3.1 Queries

In both parts of the study, we asked the participants to find
answers to the queries given in Table 6 using either SchenQL
CLI/SQL (part I) or the GUI (part II). The used queries are
inspired by everyday search tasks of users of digital libraries.
Common information needs are, for example, lookup of titles
of specific publications or identification of persons working
in a specific area [8]. Such information needs can be clas-
sified as simple information search as well as exploratory
search tasks [30]. We formulated four different types of
queries targeting core concepts found in the domain. Vari-
ables were switched between query languages to prevent
learning effects based on query results. Q1, Q3 and Q4 are
publication searches, while Q> targets person search. Q1 and
Q> can be answered by using dblp [25] alone. Except for O3,
Semantic Scholar could technically be used to find answers
for the queries. The following formulation of Q3 in SQL
intends to show the complexity of those queries:

SchenQL: in-depth analysis...

127

Table 7 SchenQL and SQL

formulations of queries utilised Query SchenQL

SQL

in our evaluations 0

0> AUTHORS PUBLISHED IN “C”

[on MOST CITED (PUBLICATIONS
\\A ")

WRITTEN BY

PUBLICATIONS WRITTEN BY “A”

SELECT title FROM
publication p JOIN
person_authored_publication
pap ON
p.key=pap.publicationKey
NATURAL JOIN person_names
WHERE person_names.name =
wp

SELECT primaryName FROM
person p JOIN
person_authored_publication
pap ONp.key=pap.personKey
NATURAL JOIN publication
WHERE conference_key = “C”

SELECT title, COUNT (*) FROM
publication p JOIN
person_authored_publication
pap ON p.key =
pap.publicationKey NATURAL
JOIN person_names JOIN
publication_references pr
ON p.key = pr.pub2_id WHERE
name = “A” GROUP BY title
ORDER BY COUNT (*) DESC
LIMIT 5

SELECT DISTINCT title FROM publication
<~ p, publication_references r

WHERE p.key = r.pub2_id AND r.pub_id IN
— (SELECT publicationKey FROM

person_authored_publication pap NATURAL
> JOIN person_names JOIN

publication p2 ON p2.key = pap.
— publicationKey WHERE
person_names .name = ‘‘A’’ AND year = Y)

—

In SchenQL, the query could be formulated as follows (for
all queries, see Table 7):

PUBLICATIONS CITED BY
~ WRITTEN BY '‘A’’

(PUBLICATIONS
IN YEAR Y);

We refrained from evaluating more complex queries to keep
the construction time for SQL queries feasible.

User study Part I: SchenQL CLI vs. SQL

With this first part of the quantitative study, we assess the
usability, suitability as well as user satisfaction of usage of
the SchenQL CLI compared to SQL for queries typically
answered with an information retrieval system operating on
bibliographic metadata. Additionally, the need for a DSL in
the domain of bibliographic metadata is analysed as we try to
verify or falsify hypotheses H3 and Hy. Participants of this
evaluation needed to be familiar with SQL.

4.3.2 Setting

We defined the evaluation process of our archetypical inter-
active information retrieval study [17] as follows: every user
performed the evaluation alone in the presence of a passive
investigator on a computer with two monitors. The screens
were captured in order to measure times used to formulate
the queries. All participants formulated all queries in SQL
and SchenQL. A query language was assigned with which a
user was going to start the evaluation, and it was switched
between users to compensate for learning effects. Users were
permitted to use the Internet at any stage of the evaluation.
A SchenQL cheat sheet, the ER diagram and examples for
the database schema provided to test subjects can be found
in Kreutz et al. [20].

At first, a video tutorial'® for the introduction and usage
of SQL and the SchenQL CLI was shown; afterwards, sub-
jects were permitted to formulate queries using the system
they were starting to work with. Following this optional step,
users were asked to answer a first online questionnaire to
assess their current and highest level of SQL knowledge (both
on a scale from I (no knowledge) to 6 (very good knowl-
edge)), the number of times they used SQL in the past three
months (0 times, 1-5 times, more than 5 times and daily) and
their familiarity with the domain of bibliographic metadata.

15 SchenQL Evaluation CLI vs. SQL - Tutorial: https://youtu.be/
27]64wzbESI.

@ Springer

https://youtu.be/g7J64wzbE5I
https://youtu.be/g7J64wzbE5I

128

C. K. Kreutz et al.

Table 8 Correctness (CORR) in percent, assessed average difficulty
(DIFF) and average time in minutes for the four queries for SQL and
the SchenQL CLI

SQL SchenQL CLI
CORR DIFF TIME CORR DIFF

TIME

o1 90.48 2.86 4:57 90.48 1.57 2:57
0> 90.48 3. 4:35 100. 2.1 3:11
Q03 23.81 4.86 8:55 47.62 2.71 3:33
Q4 23.81 591 10:36 95.24 1.71 1:53

Participants were asked to submit the queries in SQL and
SchenQL, respectively. The queries were always formulated
in the following order: Q1, Q2, O3, Q4. We consciously
ordered the queries such that more complex SQL queries
followed the easier/shorter ones to help users in query for-
mulation. This part of the first quantitative evaluation was
concluded with a second online questionnaire regarding the
overall impression of SchenQL, the rating of SchenQL and
SQL for the formulation of queries as well as several open
questions targeting possible advantages and improvements
of SchenQL. We evaluated 21 participants from the area of
computer science with SQL knowledge. In total, ten sub-
jects started by using SQL, and eleven participants began the
evaluation using SchenQL.

4.3.3 Analysis of H3

To assess the validity of hypothesis H3 of SchenQL
leading to better results than using SQL, we observe the
number of correctly formulated queries, the rated difficulty
and the required time for the formulation of queries with the
SchenQL CLI and SQL. For each of these values, we first
conducted significance tests on all four queries together, and
here, the two languages SchenQL and SQL were regarded as
groups; afterwards, we performed significance tests on each
of the four queries. Table 8 gives an overview of correctness,
average rated difficulty and average time for formulating all
four queries for both languages. Difficulty was rated on a
scale from I (very easy) to 7 (very difficult) to allow neutral
ratings.

Correctness 57.14% of queries were correctly formulated
using SQL, whereas 83.33% of queries were correctly for-
mulated using the SchenQL CLI. This result clearly shows
the significantly (U=2604, p=0) superior effectiveness of
SchenQL compared to SQL in terms of overall correctness.
While Q; and Q> were answered correctly by most partici-
pants, the number of correctly formulated queries for Q3 and
Q4 highly depends on the system. Q4 was correctly answered
by a quarter of the subjects using SQL, while more than 95%
of users were able to formulate the query in SchenQL, and
this difference is significant (U=63, p=0). These observations

@ Springer

support the partial verification of H3 in terms of higher num-
ber of correctly formulated queries with the SchenQL CLI
compared to SQL.

Rated difficulty The mean rating of difficulty of the for-
mulation of queries with SQL was 4.16 (¢ = 1.94); with
SchenQL, the mean rating was significantly lower (2.02,
o = 1.11; U=1341, p=0). On average, the query construc-
tion using SQL is rated more difficult for every query. The
averaged highest rated difficulty for a query in SchenQL
is still lower than the averaged lowest rated difficulty of a
query in SQL. We found significantly lower ratings of diffi-
culties of queries for all four queries (Q1: U=114, p=.005;
0-: U=143.5, p=.044; QO3 (t test): t=-5.539, p=0; Q4: U=0,
p=0) when using SchenQL compared to utilisation of SQL.
These observations support the partial verification of H3 in
terms lower perceived difficulty in query formulation with
the SchenQL CLI compared to SQL.

Time Average construction of queries in SQL took 7:15
minutes (o = 4:47 min.); with the SchenQL CLI, the con-
struction was significantly quicker and took 2:52 minutes (o
= 1:51 min.; U=1165.5, p=0) on average. This documents
the efficiency of SchenQL. We found significantly lower
required times for query formulation for all four queries (Q
(t test): t=-3.433, p=.001; Q>: U=141.5, p=.047; Q3: U=62,
p=0; Q4: U=7, p=0) when using SchenQL compared to the
utilisation of SQL. These observations support the partial
verification of H3 in terms of lower required time for query
formulation with the SchenQL CLI compared to SQL.

General results The queries Q3 and Q4 in SQL are
assumed to be complex which is supported by the low
percentage of correct formulations using SQL. They are
also much longer than the respective SchenQL ones. That
means the time required to write them down is higher and
there is more opportunity to make mistakes which causes
a query reformulation [33]. The overall rating of suitabil-
ity of SchenQL for constructing the queries resulted in an
average of 6.43 (o = .6), while the rating was significantly
(U=7, p=0) lower (3.14, 0 = 1.2) for SQL on a scale from
1 (very bad) to 7 (very good). While SQL was rated below
mediocre, SchenQL was evaluated as excellent which shows
users’ satisfaction with it. These results lead to the conclu-
sion of SchenQL being highly suitable for solving the given
tasks which represent everyday queries of users of digital
libraries and a high user acceptance of SchenQL.

In summary, utilisation of SchenQL achieves higher cor-
rectness of queries, lower perceived difficulty and requires
less time than using SQL, which together verifies hypothesis
Hs.

4.3.4 Analysis of Hy

To assess validity of hypothesis H4 of SchenQL being as
suitable for experts as it is for non-experts, we conduct tests

SchenQL: in-depth analysis...

129

of independence for correctness and rated difficulty and cor-
relation tests for required time for query formulation. We run
tests on all queries separately and on the SchenQL system as
a whole. Our dependent variable is knowledge in the area of
bibliographic metadata. The 21 participants from before form
the two user groups: nine participants are non-experts, and
twelve participants are familiar with bibliographic metadata.

Correctness In general, 75% of queries were correctly
formulated by domain-experts, whereas the non-experts
achieved only 63.89% in both QLs. Participants which were
(non-)experts were able to solve 65.58% (47.22%) of queries
in SQL and 85.42% (80.56%) in SchenQL. Tian et al. [36]
stated that for a domain-expert, it would be easier to write
queries in a DSL than in SQL. We found that the observed
frequencies for correct and incorrect formulation of queries
per group do not significantly deviate from the expected fre-
quencies (separated by query and in general for all SchenQL
queries; Fisher’s exact tests if there were both correct and
incorrect results for queries). We did not find enough evi-
dence to suggest that domain knowledge and correctness of
formulated queries are associated.

Rated difficulty We did not find enough evidence to suggest
that domain knowledge and rated difficulty of query formu-
lation are associated (separated by query and in general for
all SchenQL queries; Fisher’s exact tests).

Time We found no strong correlation between the two
groups of domain knowledge and required time for query for-
mulation (separated by query and in general for all SchenQL
queries; ETA coefficient).

Result No user group is consistently better than the other,
and we found no deviations from expected frequencies for
correctness and rated difficulty. We also did not find strong
correlations between required time for query formulation and
domain knowledge. The SchenQL CLI seems to be as suit-
able for domain-experts as it is for non-experts; thus, Hj is
verified.

4.3.5 Open questions and discussion

In the open questions, the short, easy and intuitive SchenQL
queries were complimented by many participants. Users
noted the comprehensible syntax was suitable for non-
computer scientists as it resembles natural language. Some
noted their initial confusion due to the syntax and their incom-
prehension of usage of literals or limitations. Others asked
for auto-completion, syntax highlighting, a documentation
and more functions such as a most cited with variable return
values. No participant wished for visualisations which could
be caused by design fixation [16] or generally lower require-
ments for such a system compared to the experts from the
qualitative study.

The average overall impression of the SchenQL QL was
rated by the subjects as 5.05 (¢ = .74) on a scale from /

(very bad) to 6 (very good), enforcing a non-neutral rat-
ing. Assessed difficulty and required times to formulate the
four queries were significantly lower when utilising SchenQL
compared to SQL, and the overall correctness of all queries
was significantly higher for SchenQL as well. This verified
hypothesis H3 of the CLI leading to generally better results
than SQL. Our hypothesis Hj of the SchenQL system being
as suitable for domain-experts as it is for casual users is also
verified. No user group was found to be consistently better
than the other one, and we did not find significant deviations
from expected frequencies. We also did not find strong cor-
relations between required times for query formulation and
knowledge of bibliographic metadata.

We performed correlation tests on the collected data of
participants regarding their current and highest level of SQL
knowledge as well as the number of times they used SQL in
the three months preceding the evaluation. The participants’
current skill in SQL highly correlates with their overall rat-
ing of our QL (rp = .53). Being versed in advanced SQL
could lead to a higher appreciation of complexity hidden
from users in SchenQL. The quantity in which the partici-
pants were using SQL in the last three months correlates with
their rating of difficulty of Q| (tp =.54) and Q> (tp =.42)in
SQL and Q4 with the CLI (rp = .46). Having recently used
SQL could lead to higher familiarity with it and therefore
perceived easier construction of queries if they are not too
complex. The number of times SQL was used in the last three
months correlates with the correctness of Q3 (LR, V =.67)
and Q4 (LR, V = .87) in SQL. Having used SQL recently
seems to help persons formulate difficult queries more suc-
cessfully.

This evaluation leads to the construction of the prototypi-
cal GUI with its syntax suggestion as well as auto-completion
features. Additionally, although they were not mentioned
by participants in this evaluation, some visualisations were
included following suggestions from the qualitative evalua-
tion.

User study Part II: SchenQL GUI vs. CLI and User
Experience Questionnaire

This second part of the quantitative study focused on evalu-
ating the GUI and, thus, the SchenQL system as a whole. We
assessed how usage of the web interface compared to users’
impressions and performance when utilising the SchenQL
CLI. Besides a part where test users answered queries with
the GUI, we conducted the User Experience Questionnaire
[34] to measure user experience with the SchenQL system.
To resemble our target audience, we did not pose the precon-
dition of users being familiar with SQL or the formulation of
structured queries. Here, we intend to assess the hypothesis
Hs.

@ Springer

130

C. K. Kreutz et al.

Table 9 Correctness (CORR) in

SchenQL GUI
percent, assessed average CORR _DIFF _TIME
difficulty (DIFF) and average
time in minutes for the four 01 90 13 1:05
queries for the GUI
0> 90 22 1:41
03 40 3.6 2:56
04 90 2.4 2:18
4.3.6 Setting

This evaluation is performed analogous to the previous part:
every user performed the evaluation alone but in the presence
of a passive investigator on a computer with two moni-
tors. We measured times used to find answers by capturing
screens. The same SchenQL cheat sheet as in the first part was
provided to the test subjects. At first, a video tutorial ® intro-
duced the usage of the SchenQL GUI. The next part was the
formulation or the navigation towards solutions of the four
queries introduced in Table 6 using the GUI. Afterwards, the
subjects completed the User Experience Questionnaire [34]
followed by questions regarding the overall impression of the
GUI as well as possible improvements.

We evaluated ten participants from the area of computer
science and adjacent fields, which did not yet take part in a
previous evaluation of the SchenQL system.

4.3.7 Partial analysis of Hs: users unfamiliar with query
formulation

To assess partial validity of hypothesis Hs in terms of the
GUT’s suitability for users unfamiliar with query formulation,
we conduct significance tests on all queries together and each
separate query for correctness, rated difficulty and required
time. We observe the results from usage of the SchenQL
CLI from the previous evaluation and participants’ results
from utilisation of the GUI as the two groups. Table 9 gives
an overview of the correctness, average rated difficulty and
average required time for all four queries when using the
SchenQL system.

Correctness Except for Q3, participants mostly solved the
queries correctly, resulting in an overall correctness of 77.5%
(-10.83% compared to CLI, difference not significant). We
found no significant differences between the two groups for
correctness in any of the four queries.

Rated difficulty Users rated the perceived difficulty of
queries as 2.38 (+.35 compared to CLI, difference not sig-
nificant) on average. We found no significant differences
between the two groups for rated difficulty in any of the four
queries.

16 SchenQL Evaluation GUI -
23zyUDPQ.

Tutorial: https://youtu.be/56-

@ Springer

Table 10 Description of the six dimensions measured by the UEQ to
capture users’ impressions of interactive products [34]

Dimension Description

Attractiveness Overall impression, users’ approval or

disapproval
Perspicuity Easiness to familiarise with product and to
learn usage

Efficiency Effort required to solve tasks, reaction

times of product

Dependability Security and predictability of product,

level of control of users’ interaction

Stimulation Excitement, motivation, fun

Novelty Creativeness and innovation of product,

sparks user’s interest

Time Users took about 2:15 minutes for the retrieval of a
solution (-0:37 minutes compared to CLI, difference is sig-
nificant; U=1207, p=.011) on average. We found significant
differences in times required to solve queries Q1 and Q5.
Times required for formulating the queries with the GUI were
significantly (Q1: U=33.5, p=.002; Q,: U=41, p=.006) lower
than those resulting from using the CLI. As these queries
were relatively simple, we assume the auto-completion and
suggestion-feature of the GUI is especially helpful in the fast
construction of straightforward queries or the GUI offering
other suitable ways of quickly obtaining simple bibliographic
information. Usage of the GUI might be more intuitive com-
pared to writing simple queries in the SchenQL CLIL

General results We want to point out that participants from
the first part of the quantitative study who were familiar with
query formulation, but were not offered help in the construc-
tion, did not significantly differ in rating of difficulty and
correctness from users of this user study. In case of the GUI,
the subjects were supported in the formulation of queries but
were not necessarily familiar with this kind of task. Hence,
we assume the system’s suggestion and auto-completion fea-
ture is useful for redemption of unequal prior knowledge in
this case.

Correctness and rating of difficulty did not differ sig-
nificantly between usage of CLI and GUI, but users were
significantly faster in finding answers for simple queries with
the GUI which underlines the suitability of the interface
for everyday usage. Participants from this study resemble
SchenQL’s target audience, which additionally emphasises
its usefulness and partly verifies hypothesis Hs in terms of
the GUI being suitable for users not versed with structured
query formulation.

4.3.8 Partial analysis of Hs: UEQ

The attractiveness, perspicuity, efficiency, dependability,
stimulation and novelty of interactive products can be mea-

https://youtu.be/56-23zyUDPQ
https://youtu.be/56-23zyUDPQ

SchenQL: in-depth analysis...

131

sured with the User Experience Questionnaire (UEQ) [34]
even at small sample sizes. Table 10 describes the aspects
the UEQ measures. Here, we want to conclude the assess-
ment of the validity of hypothesis Hs in terms of rating of
user experience.

Participants of this study answered the 26 questions of the
UEQ regarding usage of the SchenQL system. Ratings on
pairs of contrasting stances (-3 to 3) such as complicated-easy
or boring-exciting were then grouped to the six dimensions
mentioned before. Values above .8 are generally considered
as positively evaluated equalling high user experience, and
values above 2 are rarely encountered.

In general, users seem to enjoy using the SchenQL system
(attractiveness =2.07, 0 =.25). The handling of our system is
extremely easy learned (perspicuity =2.3, 0 =.19). Tasks can
be solved without unnecessary effort (efficiency = 2.03, o =
.49) and users feel in control of the system (dependability =
1.83, 0 =.63). They seem exited to use the SchenQL system
(stimulation = 1.73, 0 =.33) and rate the system as innovative
and interesting (novelty = 1.58, o = .68).

As all six quality dimensions achieved ratings well over
.8, the system is positively evaluated which equals high user
experience and partially verifies Hs.

4.3.9 Open questions and discussion

In the open questions, participants praised the intuitive
usability, the auto-completion and the suggestion feature. For
future development, suggestions for literals were requested
and two participants wished for a voice input. Remarkably,
not a single user mentioned the need for more or other visu-
alisations, and this is possibly attributed to design fixation
[16] but might also stem from the advanced needs of power
users from the expert interviews.

The users were significantly faster in solving simple
queries when using the GUI compared to the CLI. As we
found no significant impairments from utilisation of the GUI,
we assume its usefulness and usability for query formulation.
Participants from this study were far less familiar with the
construction of structured queries compared to those of the
previous study but seemed to be adequately supported by the
GUI in the retrieval of information. Together with the UEQ
which showed users’ high ratings (> .8) for all six quality
dimensions (which proves high user experience), hypothesis
Hjs could be partially verified.

5 Conclusion and future work

We evaluated the SchenQL system, a domain-specific query
language operating on bibliographic metadata from the area
of computer science with accompanying GUI supporting
query formulation. Our thorough evaluation against SQL

showed the need for such a DSL. Test subjects’ satisfac-
tion with the SchenQL system was assessed with application
of the UEQ. The introduction of a GUI and its evaluation
with users resembling our target audience did not signifi-
cantly change the correctness of answers or the users’ rating
of difficulty of the queries compared to the CLI, but instead
the time needed to formulate simple queries was reduced
significantly. Missing prior knowledge with structured query
formulation seems to be compensated by using a GUI with
a suggestions and auto-completion feature. As the CLI and
the GUI proved to be viable tools for information retrieval
on bibliographic metadata, users’ preferences should decide
which one to use.

The target language SQL run on a MySQL database engine
for the SchenQL compiler was a more suitable choice than
Cypher run on a Neo4j database engine (H), and the per-
formance of the generated queries is as high as manually
formulated ones (H>). Using SchenQL leads to generally
better results compared to the utilisation of SQL (H3). The
system seems to be as suitable for domain-experts as it is for
non-experts (Hs). Our GUI has high usability for users not
familiar with structured query formulation (Hs).

Future efforts could focus on the identification of query
types which would better be run on a graph database and then
decide which query will be translated in SQL and which one
will be translated to Cypher. Enhancements of functionali-
ties could include more visualisations such as colour-coded
topics or graph visualisation as the experts from the qual-
itative study requested. Furthermore, more specific query
options such as a filter for papers with few co-authors or
most cited with variable return values could be included.
As visualisations were not relevant for users in our quan-
titative evaluation, future efforts could focus on supporting
more advanced query options: algorithms for social network
analysis as PageRank, computation of mutual neighbours,
hubs and authorities or connected components [35] would fit.
Centrality of authors, the length of a shortest path between
two authors and the introduction of aliases for finding co-
citations [12] would also be useful query building blocks.
As user-defined functions [35] were well received in other
work [33], they are a further prospect. Incorporation of social
relevance in the search and result representation process as
shown in [2] could also be an extension. User profiles could
store papers and keywords, which in terms influence results
of search and exploration.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-

@ Springer

132

C. K. Kreutz et al.

cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Amaral, V., Helmer, S., Moerkotte, G.: A visual query language
for HEP analysis. In: IEEE NSS 2003. vol. 2, pp. 829-833. IEEE
Computer Society (2003)

2. Amer-Yahia, S., Lakshmanan, L.V.S., Yu, C.: SocialScope:
enabling information discovery on social content sites. In: CIDR
2009. www.cidrdb.org (2009)

3. Baeza-Yates, R., Ribeiro-Neto, B.A.: Modern Information
Retrieval - The Concepts and Technology Behind Search, 2nd edn.
Pearson Education Ltd., Harlow (2011)

4. Bates, M.: Task Force Recommendation 2.3 Research and Design
Review: Improving User Access to Library Catalog and Portal
Information: Final Report (version 3) (2003)

5. Beall, J.: The weaknesses of full-text searching. J. Acad. Librari-
ansh. 34(5), 438-444 (2008)

6. Berget, G., Sandnes, F.E.: Why textual search interfaces fail: a study
of cognitive skills needed to construct successful queries. Inf. Res.
24(1) (2019)

7. Betts, C., Power, J., Ammar, W.: GrapAL: Connecting the dots in
scientific literature. In: ACL 2019. pp. 147-152. ACL (2019)

8. Bloehdorn, S., Cimiano, P., Duke, A., Haase, P., Heizmann, J.,
Thurlow, 1., Volker, J.: Ontology-based question answering for
digital libraries. In: ECDL 2007. vol. 4675, pp. 14-25. Springer
(2007)

9. Borodin, A., Kiselev, Y., Mirvoda, S., Porshnev, S.: On design of
domain-specific query language for the metallurgical industry. In:
BDAS 2015. vol. 521, pp. 505-515. Springer (2015)

10. Chambers, J., Cleveland, W., Kleiner, B., Tukey, P.: Graphical
methods for data analysis (vol 17, pg 180, 1983). J. Sleep Res.
21, 484-484 (08 2012)

11. Collberg, C.S.: A fuzzy visual query language for adomain-specific
web search engine. In: Diagrams 2002. vol. 2317, pp. 176-190.
Springer (2002)

12. Dries, A., Nijssen, S., Raedt, L.D.: BiQL: A query language for
analyzing information networks. In: Bisociative Knowledge Dis-
covery 2012, vol. 7250, pp. 147-165. Springer (2012)

13. Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker, T.,
Marsault, V., Plantikow, S., Rydberg, M., Selmer, P., Taylor, A.:
Cypher: An evolving query language for property graphs. In: SIG-
MOD 2018. pp. 1433-1445. ACM (2018)

14. Guidi, F,, Schena, I.: A query language for a metadata framework
about mathematical resources. In: MKM 2003. vol. 2594, pp. 105—
118. Springer (2003)

15. Hotho, A., Jischke, R., Benz, D., Grahl, M., Krause, B., Schmitz,
C., Stumme, G.: Social bookmarking am beispiel bibsonomy. In:
Social Semantic Web 2009, pp. 363—-391. Springer (2009)

16. Jansson, D.G., Smith, S.M.: Design fixation. Des. Stud. 12(1), 3-11
(1991)

17. Kelly, D.: Methods for evaluating interactive information retrieval
systems with users. Found. Trends Inf. Ret. 3(1-2), 1-224 (2009)

18. Khazaei, T., Hoeber, O.: Supporting academic search tasks through
citation visualization and exploration. Int. J. Digital Librar. 18(1),
59-72 (2017)

@ Springer

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Klink, S., Ley, M., Rabbidge, E., Reuther, P., Walter, B., Weber,
A.:Browsing and visualizing digital bibliographic data. In: VisSym
2004. pp. 237-242. Eurographics Association (2004)

Kreutz, C.K., Wolz, M., Schenkel, R.: SchenQL - A domain-
specific query language on bibliographic metadata. CoRR
abs/1906.06132 (2019)

Kreutz, C.K., Wolz, M., Schenkel, R.: SchenQL: A concept of
a domain-specific query language on bibliographic metadata. In:
ICADL 2019. vol. 11853, pp. 239-246. Springer (2019)

Kreutz, C.K., Wolz, M., Weyers, B., Schenkel, R.: Schenql: Eval-
uation of a query language for bibliographic metadata. In: ICADL
2020, vol. 12504, pp. 323-339. Springer (2020)

Krzywinski, M., Altman, N.: Visualizing samples with box plots.
Nat Methods 11, 119-20 (02 2014)

Leser, U.: A query language for biological networks. In: ECCB/JBI
2005. p. 39 (2005)

Ley, M.: DBLP - some lessons learned. PVLDB 2(2), 1493-1500
(2009)

Madaan, A.: Domain specific multi-stage query language for med-
ical document repositories. PVLDB 6(12), 1410-1415 (2013)
Martin, M.S., Gutiérrez, C., Wood, P.T.: SNQL: A social networks
query and transformation language. In: AMW 2011. vol. 749.
CEUR-WS.org (2011)

Nielsen, J.: Usability Engineering. Academic Press, Cambridge
(1993)

Numminen, P., Vakkari, P.: Question types in public libraries’ dig-
ital reference service in finland: Comparing 1999 and 2006. J.
Assoc. Inf. Sci. Technol. 60(6), 1249-1257 (2009)

Pirolli, P.: Powers of 10: modeling complex information-seeking
systems at multiple scales. IEEE Comput. 42(3), 33—40 (2009)
Reitz, F: A framework for an ego-centered and time-aware
visualization of relations in arbitrary data repositories. CoRR
abs/1009.5183 (2010)

Rohil, M.K., Rohil, R.K., Rohil, D., Runthala, A.: Natural language
interfaces to domain specific knowledge bases: an illustration for
querying elements of the periodic table. In: ICCI*CC 2018. pp.
517-523. IEEE Computer Society (2018)

Schaefer, A., Jordan, M., Klas, C., Fuhr, N.: Active support for
query formulation in virtual digital libraries: a case study with
DAFFODIL. In: ECDL 2005 (2005)

Schrepp, M., Hinderks, A., Thomaschewski, J.: Applying the user
experience questionnaire (UEQ) in different evaluation scenarios.
In: HCI 2014. vol. 8517, pp. 383-392. Springer (2014)

Seo, J., Guo, S., Lam, M.S.: SocialLite: an efficient graph query
language based on datalog. IEEE Trans. Knowl. Data Eng. 27(7),
1824-1837 (2015)

Tian, H., Sunderraman, R., Calin-Jageman, R.J., Yang, H., Zhu,
Y., Katz, P.S.: NeuroQL: A domain-specific query language for
neuroscience data. In: EDBT Workshops 2006. vol. 4254, pp. 613—
624. Springer (2006)

Xu, B., Cai, R., Zhang, Z., Yang, X., Hao, Z., Li, Z., Liang, Z.:
NADAQ: natural language database querying based on deep learn-
ing. IEEE Access 7, 35012-35017 (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	SchenQL: in-depth analysis of a query language for bibliographic metadata
	Abstract
	1 Introduction
	2 Related work
	3 SchenQL: QL and GUI
	3.1 Data model
	3.2 Building blocks
	3.3 Syntax
	3.4 Implementation
	3.4.1 SchenQL DB Parser
	3.4.2 SchenQL CLI and Compiler
	3.4.3 SchenQL API
	3.4.4 SchenQL Frond End

	4 Evaluation
	4.1 Benchmarks: database engines and target language as well as SchenQL CLI Compiler evaluation
	4.1.1 Selection of database engines and query languages
	4.1.2 Queries
	4.1.3 Setting

	Benchmark part I: database engine and target language performance
	4.1.4 Analysis of H1
	4.1.5 Discussion

	Benchmark Part II: SchenQL performance
	4.1.6 Setting
	4.1.7 Analysis of H2
	4.1.8 Discussion

	4.2 Qualitative study: interviews
	4.3 Quantitative study: SchenQL CLI vs. SQL, GUI and UEQ
	4.3.1 Queries

	User study Part I: SchenQL CLI vs. SQL
	4.3.2 Setting
	4.3.3 Analysis of H3
	4.3.4 Analysis of H4
	4.3.5 Open questions and discussion

	User study Part II: SchenQL GUI vs. CLI and User Experience Questionnaire
	4.3.6 Setting
	4.3.7 Partial analysis of H5: users unfamiliar with query formulation
	4.3.8 Partial analysis of H5: UEQ
	4.3.9 Open questions and discussion

	5 Conclusion and future work
	References

