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Abstract
Finding relevant publications in the scientific domain can be quite tedious: Accessing large-scale document collections
often means to formulate an initial keyword-based query followed by many refinements to retrieve a sufficiently complete, yet
manageable set of documents to satisfy one’s information need. Since keyword-based search limits researchers to formulating
their information needs as a set of unconnected keywords, retrieval systems try to guess each user’s intent. In contrast, distilling
short narratives of the searchers’ information needs into simple, yet precise entity-interaction graph patterns provides all
information needed for a precise search. As an additional benefit, such graph patterns may also feature variable nodes to
flexibly allow for different substitutions of entities taking a specified role. An evaluation over the PubMed document collection
quantifies the gains in precision for our novel entity-interaction-aware search. Moreover, we perform expert interviews
and a questionnaire to verify the usefulness of our system in practice. This paper extends our previous work by giving a
comprehensive overview about the discovery system to realize narrative query graph retrieval.

Keywords Narrative information access · Narrative queries · Graph-based retrieval · Digital libraries

1 Introduction

PubMed, the world’s most extensive digital library for
biomedical research, consists of about 34 million publica-
tions and is currently growing by more than one million
publications each year. Accessing such an extensive collec-
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tion by simple means such as keyword-based retrieval over
publication texts is a challenge for researchers, since they
simply cannot read through hundreds of possibly relevant
documents, yet cannot afford to miss relevant information in
retrieval tasks. Indeed, there is a dire need for retrieval tools
tailored to specific information needs in order to solve the
above conflict. For such tools, deeper knowledge about the
particular task at hand and the specific semantics involved
is essential. Taking a closer look at the nature of scientific
information search, interactions between entities can be seen
to represent a short narrative [15]—a short story of inter-
est: how or why entities interact, in what sequence or roles
they occur, and what the result or purpose of their interaction
is [6, 15]. This article is an extended version of our previous
article [18].

Indeed, an extensive query log analysis on PubMed in [10]
clearly shows that researchers in the biomedical domain are
often interested in interactions between entities such as drugs,
genes, and diseases. Among other results, the authors report
that (a) on average significantly more keywords are used in
PubMed queries than in typical Web searches, (b) result set
sizes reach an average of (rather unmanageable) 14,050 doc-
uments, and (c) keyword queries are on average 4.3 times
refined and often include more specific information about

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00799-023-00356-3&domain=pdf
http://orcid.org/0000-0001-9887-9276


4 H. Kroll et al.

the keywords’ intended semantic relationships, e.g.,myocar-
dial infarction AND aspirin may be refined to myocardial
infarction prevention AND aspirin. Given all these obser-
vations, native support for entity-interaction-aware retrieval
tasks can be expected to be extremely useful for PubMed
information searches and is quite promising to generalize to
other kinds of scientific domains, too. However, searching
scientific document collections curated by digital libraries
for such narratives is tedious when restricted to keyword-
based search, since the same narrative can be paraphrased in
countless ways [1, 10].

Therefore, we introduce the novel concept of narrative
query graphs for scientific document retrieval enabling users
to formulate their information needs as entity-interaction
queries explicitly. Complex interactions between entities can
be precisely specified: simple interactions between two enti-
ties are expressed by a basic query graph consisting of two
nodes and a labeled edge between them.Of course, by adding
more edges and entity nodes, these basic graph patterns can
be combined to form arbitrarily complex graph patterns to
address highly specialized information needs.Moreover, nar-
rative query graphs support variable nodes supporting a far
broader expressiveness than keyword-based queries. As an
example, a researcher might search for treatments of some
disease using simvastatin. While keyword-based searches
would broaden the scope of the query far in excess of the
user intent by just omitting any specific disease’s name, nar-
rative query graphs can focus the search by using a variable
node to find documents that describe treatments of simvas-
tatin facilitated by an entity of the type disease.

In contrast to query languages for knowledge graphs, our
discovery system does not match the query against a sin-
gle knowledge graph. Instead, we must on-the-fly match the
query against several document graphs, i.e., the document
itself stays in the focus of the system. And moreover, if
variables are used in searches, the result lists require novel
visualizations, e.g., clustering document result lists by pos-
sible node substitutions to get an entity-centric literature
overview. Since our document graphs are extracted from texts
with automated methods, we provide provenance informa-
tion to explain why a document matches the query.

Whereas our previous article [18] focused on benefits of
the overall retrieval, this article extends the previous work
by describing the extraction workflow in more detail, and the
overall discovery systemwith its key features. In addition,we
utilize an Open IE system for a retrieval quality comparison.
We also point out limitations that have to be faced in the
future to further improve this kind of retrieval. In summary,
our contributions are:

1. We proposed narrative query graphs for scientific docu-
ment retrieval enabling fine-grained modeling of users’
information needs. Moreover, we boosted query expres-

siveness by introducing variable nodes for document
retrieval.

2. We developed a discovery system that processes arbitrary
narrative query graphs over the biomedical literature. As
a showcase, the service performs searches on 34 million
PubMed titles and abstracts in real time.

3. We extended our previous work by stating details on
the extraction quality. In addition, we described sys-
tem details required to implement narrative query graph
retrieval.

4. Weevaluated our system in twoways:On the one hand,we
demonstrated our retrieval system’s usefulness and supe-
riority over keyword-based search on the PubMed digital
library in a manual evaluation which included practition-
ers from the pharmaceutical domain. On the other hand,
we performed interviews and a questionnaire with eight
biomedical experts who face the search for literature on a
daily basis.

2 Related work

Relevant research areas to thiswork are narrative information
access, machine learning for retrieval, graph-based retrieval,
document representations, and scholarly knowledge graphs.

2.1 Narrative information access

Narrative query graphs are designed to offer complex query-
ing capabilities over scientific document collections aiming
at high precision results. Focusing on retrieving entity inter-
actions, they are a subset of our conceptual overlay model
for representing narrative information [15]. Our conceptual
model narrative allows users to state their information needs
as a complex and nested graph model involving entities,
events, literals, and even nested literals. We then understand
the narrative as a logical overlay over knowledge reposito-
ries, i.e., we try to find evidence by binding parts of modeled
narrative against real-world data. We discussed suitable
methods and the technical challenges to bind against doc-
ument collections in [16]. Here we are looking for scientific
narratives thatmay require combining several statements.We
already know that combining statements from different sci-
entific contexts can be a serious threat to the overall result
quality [14]. Our proposed discovery system requires that
a whole information need must be matched within a small
abstract because we assume the context to be stable within
it [14, 20].

This work builds upon our previous work [18]. In exten-
sion to [18], this paper describes the complete retrieval
method and evaluation of narrative query graphs for doc-
ument retrieval. Therefore, we extend our previous work by
giving insights into our data model, corresponding extraction
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statistics, and the complete extraction workflow.We also uti-
lize an Open IE system for a retrieval quality comparison. In
addition, we describe the discovery system in more detail.
Mainly, we discuss our design decisions to engage tech-
nical challenges. We also show extensions of our original
discovery system: A concept selection picker, user feedback
options, andDrugOverviews (Drug-centered overviews gen-
erated from the literature). We finally point out limitations
that have to be faced in the future to improve this kind of
retrieval further.

2.2 Machine learning for retrieval

Modern personalized systems try to guess each user’s intent
and automatically provide more relevant results by query
expansion; see [1] for a good overview. Mohan et al. focus
on information retrieval of biomedical texts in PubMed
[28]. The authors derive a training and test set by analyz-
ing PubMed query logs and train a deep neural network to
improve literature search. Entity-based language models are
used to distinguish between a term-based and entity-based
search to increase the retrieval quality [33]. Yet, while a vari-
ety of approaches to improve result rankings by learning how
a query is related to some document [28, 43, 45] have been
proposed, gathering enough training data to effectively train
a system for all different kinds of scientific domains seems
impossible. Specialized information needs, which are rarely
searched, are hardly covered in such models.

2.3 Graph-based retrieval

Using graph-based methods for textual information retrieval
gained in popularity recently [6, 35, 36, 45], for instance,
Dietz et al. discuss the opportunities of entity linking and
relation extraction to enhance query processing for keyword-
based systems [6], and Zhao et al. demonstrate the usefulness
of graph-baseddocument representations for precise biomed-
ical literature retrieval [45]. Kadry et al. also include entity
and relationship information from the text as a learning-to-
rank task to improve support passage retrieval [12]. Besides,
Spitz and Gertz built a graph representation for Wikipedia to
answer queries about events and entities more precisely [35].
But in contrast to our work, those approaches focus on unla-
beled graphs or include relationships only partially.

2.4 Document representation

Croft et al. proposed a network representation of documents
and their corresponding terms [5]. Such a network repre-
sentation supports effective retrieval because documents and
terms can easily be linked and traversed in the retrieval phase.
Further, [4] demonstrated that using a network representa-

tion can enhance the effectiveness of a retrieval systemwhile
allowing the implementation of several search strategies.

France has developed the MARIAN system that allows
an effective representation and retrieval of relationships
between digital library objects [9], e.g., how library objects
are linked. Another example of an early intelligent retrieval
system was the CODER system [38]. The system was
implemented in a modular fashion allowing to test novel
retrieval strategies. Chen has developed an object-oriented
model called LEND (Large External object-oriented Net-
work Database) model [3]. This model supports the repre-
sentation and querying of graph-structured data.

While the research on effective document representations
for retrieval has a long-standing tradition and is still ongo-
ing, the previous works focused on retrieving documents
based either on textual content or metadata. In contrast, our
work is focused on the representation of documents as entity-
interaction-aware graphs, i.e., we break down document texts
into graphs.

2.5 Scholarly knowledge bases

Several projects aim to capture knowledge about the aca-
demic world as graph representations, e.g., the Microsoft
Academic Knowledge Graph [8], the Open Research Knowl-
edge Graph [11], and OpenAlex [31]. Another example
is GrapAl, a graph database of academic literature that is
designed to assist academic literature search by supporting
a structured querying language, namely Cypher [2]. GrapAl
mainly consists of traditionalmetadata like authors, citations,
and publication information but also includes entities and
relationship mentions. However, complex entity interactions
are not supported, as only a few basic relationships per paper
are annotated.

QKBfly is a search system that extracts facts from text to
support question answering [29]. It constructs a knowledge
base for ad hoc question answering during query time that
provides journalists with the latest information about emer-
gent topics. However, they focus on retrieving relevant facts
concerning a single entity. In contrast, we focus on docu-
ment retrieval for complex entity interactions, i.e., we match
structured queries against documents to retain the original
contexts.

In contrast to the previous works, this paper introduces
a complete discovery system involving extraction, retrieval,
user interface design, effectiveness evaluation, and user stud-
ies.

3 Narrative query graphs

Entities represent things of interest in a specific domain:
drugs and diseases are prime examples in the biomedical
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domain. An entity e = (I D, t ype), where id is a unique
identifier and t ype the entity type. To give an example, we
may represent the drug simvastatin by its identifier and entity
type as follows: esimvastatin = (D019821,Drug). Typically,
entities are defined by predefined ontologies, taxonomies, or
controlled vocabularies, such as NLM’s MeSH or EMBL’s
ChEBI. We denote the set of known entities as E . Since we
aim to find entity interactions in texts, we need to knowwhere
entities are mentioned. In typical natural language process-
ing, each sentence is represented as a sequence of tokens, i.e.,
single words. Therefore, an entity alignment maps a token
or a sequence of tokens to an entity from E if the tokens refer
to it.

Entities might also be classes as well, e.g., the entity
diabetes mellitus (Disease) refers to a class of specialized
diabetes diseases such as DM type 1 and DM type 2. Thus,
these classes can be arranged in subclass relations, i.e., DM
type 1 is the subclass of general diabetes mellitus. We define
the following function to derive the set of all subclasses of an
entity: subclasses(e) = {ei | ei is subclass of e}. If an entity
e is not a class or does not have any subclasses, the function
does simply return e.

We call an interaction between two entities a state-
ment following the idea of knowledge representation in
the Resource Description Framework (RDF) [26]. Hence,
we define a statement as triple (s, p, o) where s, o ∈ E
and p ∈ �. � represents the set of all interactions we
are interested in. We focus only on interactions between
entities, unlike RDF, where objects might be literals too.
For example, a treatment interaction between simvastatin
and hypercholesterolemia is encoded as (esimvastatin, treats,
ehypercholesterolemia). We call a set of extractions from a single
document a document graph.

Document graphs support narrative querying, i.e., the
query is answered by matching the query against the doc-
ument’s graph. Suppose a user formulates a query like
(esimvastatin, treats, ehypercholesterolemia). In that case, our sys-
tem retrieves a set of documents containing the searched
statement. Narrative query graphs may include typed vari-
able nodes as well. A user might query (esimvastatin, treats,
?X(Disease)), asking for documents containing some dis-
ease treatment with simvastatin. Hence, all documents
that include simvastatin treatments for diseases are proper
matches. Formally, we denote the set of all variable nodes as
V . Variable nodes consist of a name and an entity type to sup-
port querying for entity types.We also support the entity type
All to query for arbitrary entities.Wewrite variable nodes by a
leading question mark. Hence, a narrative query graph might
include entities stemming from E and variable nodes from
V . Formally, a fact pattern is a triple fp = (s, p, o) where
s, o ∈ (E ∪ V) and p ∈ �. A narrative query graph q is
a set of fact patterns similar to SPARQL’s basic graph pat-
terns [30]. When executed, the query produces one or more

matches μ by binding the variable symbols to actual enti-
ties, i.e., μ : V → E is a partial function. If several fact
patterns are queried, all patterns must be contained within a
document forming a proper query answer. Suppose queries
include entities that are classes and have subclasses. In that
case, the query will be expanded to also query for these sub-
classes, i.e., direct and transitive subclasses. We do this by
applying the subclasses function on every entity in the query.

4 Document graphs

The discovery system requires a transformation of docu-
ments’ texts into a document graph representation. This step
involves entity linking, information extraction, cleaning, and
loading. It extracts document graphs from text and stores
them in a structured repository. Then the system takes narra-
tive query graphs as its input and performs graph pattern
matching. All document graphs that match the query are
returned to the users. In this section, we describe all rele-
vant details about the extraction process.

4.1 Document graph extraction

Linking entities and extracting statements from texts form
the essential core of mining document graphs. Therefore,
we analyzed a plethora of different domain-specific meth-
ods like supervised annotations tools (e.g., TaggerOne [24]
and GNormPlus [40]). For the extraction phase, we analyzed
supervised extraction tools that aim to reduce the need for
training data (e.g., Snorkel [32] and DeepDive [34]). How-
ever, all of these supervisedmethods still require training data
and are thus specialized for a certain domain. Although their
quality is often very high, we went for a different approach:
unsupervised linking and extraction. Our goal was to design
and utilize methods that deliver sufficient quality and could
still be transferred to another domain. With such a set of
methods realizing the service in a different domain seems
not too far-fetched.

Our efforts yielded a toolbox that we shared as open
source1: A Toolbox for the Nearly-Unsupervised Construc-
tion of Digital Library Knowledge Graphs [17]. The toolbox
includes methods for unsupervised entity linking, interfaces
to unsupervised extraction methods, and cleaning methods
to obtain a sufficient quality. We call it nearly unsupervised
because the toolbox requires the design of two different
vocabularies: (1) An entity vocabulary including all entities
of interest. Each entry consists of an unique entity id, an
entity type, an entity name, and a list of synonyms. (2) A
relation vocabulary including all relations of interest. Each
entry consists of a relation and a set of synonyms. For details

1 https://github.com/HermannKroll/KGExtractionToolbox.
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Table 1 Number of entries in our entity vocabulary

Entity type #Distinct entries #Terms

Chemical 146 1,850

Disease 5051 57,295

Drug 45,200 69,767

Dosage form 136 6,891

Excipient 12,951 132,704

Lab method 528 5,742

Method 2,512 23,182

Plant family 2,818 2,818

Vaccines 161 1032

Sum 69,503 300,134

about the actual extraction quality, we refer the reader to our
original toolbox paper for a quantitative evaluation in the
biomedical domain [17] and our follow-up work on a quali-
tative analysis for three corpora: pharmaceutical literature,
the Wikipedia encyclopedia, and political sciences litera-
ture [19]. In brief, our main findings were: First, entity and
relation vocabularies are a fixed requirement to apply the
toolbox. Second, the quality clearly lags behind supervised
entity linking and information extraction methods. Third, the
canonicalization of verb phrases to precise relations is still
an open issue in some cases. Although missing vocabular-
ies, limited extraction quality (especially recall), and open
canonicalization issues must be tackled in the future, we still
argue that nearly unsupervised workflows are worth studying
in digital libraries because they completely bypass training
data in the extraction phase [19].

4.2 Pharmaceutical entity linking

For our retrieval systemwedesigned an entity vocabulary that
comprises chemicals, drugs, diseases, dosage forms, excip-
ients, plant families, lab methods, methods, and vaccines.
We derived vocabulary entries from the biomedical special-
ized database ChEMBL [27], the Medical Subject Headings
(MeSH),2 and Wikidata [37]. In cooperation with two phar-
maceutical domain experts, we manually selected suitable
subsets of the previous vocabularies and manually formu-
lated missing entities such as specialized dosage forms (e.g.,
nanoparticles). In summary, we derived 69,503 distinct enti-
ties with 300,134 terms. A list of all entity types and their
corresponding vocabulary size is shown in Table 1.

We then evaluated our entity linking quality for our work
[17]. For chemicals and diseases, we selected two biomed-
ical benchmarks: BioCreative V CD-R and NCBI Disease.
We used the given vocabularies for these benchmarks and

2 https://meshb.nlm.nih.gov.

applied our dictionary-based entity linker. In addition, we
randomly sampled 50 entity annotations for drug, dosage
forms, and plant families. We presented these annotations to
two pharmaceutical domain experts. Together they decided
for each text span if it was linked correctly to the given entity.
However, we could thus only compute the precision for these
three entity types. The results are shown in Table 2.

Diseases could be linked with a precision between 55.1
and 82.8%. The recall was between 62.0 and 63.3%. For
chemicals, we obtained a precision of 76.6% and 78.7%. In
our sample-based evaluation, we obtained a precision of 90%
for drugs, 82% for dosage forms and plant families, and 74%
for excipients. We evaluated the linker against state-of-the-
art supervisedmethods in a previous publication; see [17] for
more details.

To give a few more insights: We decided not to link trade
namesof drugs.These tradenames includedwords likehorse,
man, power, etc., whichwere often linked incorrectly. For our
discovery system, the main issue was that a few frequently
but wrongly linked entities would be annoying for users to
handle. We handled this issue by applying two strategies:

1. We went through the 500-top-frequently tagged enti-
ties and removed often wrongly linked entities from our
vocabularies.

2. We applied a special cleaning rule for plant families like
paris because they were of high interest for our purposes
but often linked wrongly.

We checked whether one of 82 regular expressions (e.g., Tra-
ditionalMedicine or phytotherap*) could bematched against
the same abstract. We kept the linked plant families only if at
least one of these expressions could be successfullymatched.
In summary, dictionary-based entity linkers dohave their lim-
itations. But we did not need training data for the linking step
and the quality was sufficient for us to continue.

In addition to our entity linking workflow, we integrated
annotations from the PubTator Central service.3 This ser-
vice is hosted by the National Library of Medicine (NLM)
and allowed us to retrieve annotations for diseases, chemi-
cals, genes, and species. We analyzed the annotation service
in cooperation with our domain experts. For our goal, we
found the chemical annotations to be too general. That is
why we integrated only diseases, genes, and species anno-
tations. Details about PubTator Central can be found in [39,
42].

4.3 Pharmaceutical inf. extraction

Wehad to extract statements between the detected entities for
the actual document graph representation. Although super-

3 https://www.ncbi.nlm.nih.gov/research/pubtator/.
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Table 2 Evaluation of our entity
linking step: linking of
chemicals and diseases was
tested on two established
biomedical benchmarks
(BioCreative V CD-R [41] and
NCBI disease [7]). For drugs,
dosage forms, excipients, and
plant families, we performed a
manual evaluation of 50
random-sampled annotations

Entity type Benchmark Precision Recall F1

Chemical BioCreative V CD-R 76.6% 78.7% 77.6%

Disease BioCreative V CD-R 82.8% 62.0% 70.9%

Disease NCBI disease 74.5% 55.1% 63.3%

Drug Sample 90.0% – –

Excipient Sample 74.0% – –

Dosage form Sample 82.0% – –

Plant family Sample 82.0% – –

vised extraction methods would have likely achieved a better
extraction quality, we decided to build upon unsupervised
extraction methods. The quality of existing open informa-
tion extraction like OpenIE 6 sounded promising [13], but
we found that open information extraction methods highly
lack recall when processing biomedical texts; see the eval-
uation in [17]. That is why we developed a recall-oriented
extraction technique PathIE in [17] that flexibly extracts
interactions between entities via a path-based method. The
central idea was to take sentences in which at least two dif-
ferent entities have been detected. Then, the shortest path
between the entities in the grammatical structure of the sen-
tence was computed. All verb phrases and keywords (that
have been specified in the relation vocabulary) were consid-
ered for extraction. PathIE then yielded triples consisting of
two entities and a predicate (either a verb phrase or a given
keyword like treatment).

PathIE yielded many synonymous predicates (treats, aids,
prevents, etc.) that represent the relation treats. The toolbox
implemented a canonicalization procedure to unify synony-
mous predicates to precise relations. The procedure works as
follows: Given a pre-designed relation vocabulary, all terms
that appear directly in the vocabulary are mapped to the cor-
responding relation. In addition, we used the optional word
embedding feature to also canonicalize similar verb phrases,
i.e., verb phrases thatwere similar to entries in the vocabulary
were also mapped to the corresponding relation.

The pharmaceutical relation vocabulary had to have pre-
cise semantics and was built with the help of two domain
experts. The relation vocabulary included 60 entries (10
relations plus 50 synonyms) for the cleaning step. As
a biomedical word embedding, we used the pre-trained
word embedding from [44]. Then, we applied the toolbox
canonicalization procedure. The cleaning allowed users to
formulate their queries based on a well-curated vocabulary
of entity interactions in the domain of interest. To increase
the quality of extractions, we introduced type constraints by
providing fixed domain and range types for each interaction.
Extracted interactions that did not meet the interaction’s type
constraints were removed. For example, the interaction treats
is typed, i.e., the subject must be a drug, and the object must

Table 3 CDR2015 benchmark evaluation [41]. The table reports the
extraction quality for CoreNLPOpenIE, PathIE, and best reported base-
lines

Method Prec. (%) Rec. (%) F1 (%)

CoreNLP OpenIE 64.9 5.8 10.6

PathIE 50.8 31.7 39.1

Best precision 90.5 80.8 85.4

Best recall 86.1 86.2 86.1

be a disease or species. Some interactions in our vocabulary
like induces or associated are more general and thus were
not annotatedwith type constraints.We found those type con-
straints worked well if the relations are directed, e.g., a treats
relation between a drug and a disease [19]. If relations are
not directed, PathIE often messes up the direction by design,
e.g., a causes b instead of b causes a.

The following experiment has already been reported
in [17]. To test our extraction pipeline, we utilized the bench-
mark of [41]. The benchmark provides abstracts and entity
annotations and requires extracting induce relations between
chemicals and diseases. We loaded the abstracts and anno-
tations. Then, we applied PathIE and the canonicalization
with our relation vocabulary. For comparison, we applied
the Stanford CoreNLP method [25] from our toolbox. The
results are reported in Table 3. The table lists the precision,
recall and F1 score when extracting statements with our tool-
box using either CoreNLPOpenIE or PathIE. In addition, we
included the workshop’s best-performing systems [41] con-
cerning precision and recall in Table 3.

In brief, PathIE achieved an F1 score of 39.1%, whereas
supervised methods achieved an F1 score between 85.4%
and 86.1%. CoreNLP achieved a precision of 64.9% but a
recall of only 5.8%. Due to the low recall, we decided to
use PathIE for our retrieval system. However, we report on
another comparison between PathIE and CoreNLP for the
actual retrieval in our evaluation section. We refer the reader
for more details about the toolbox’s extraction quality to our
previous publications [17, 19].
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Table 4 Number of extracted
statements per relation

Relation #Statements

Associated 182,258,817

Method 153,040,391

Compares 19,552,314

Induces 12,012,245

Treats 9,938,585

Administered 7,098,069

Decreases 4,299,302

Interacts 4,002,765

Inhibits 1,741,788

Metabolizes 112,822

Sum 394,057,098

For our service, we applied three special rules:

1. Instead of removing statements, we mapped all state-
ments that hurt their type constraints to the associated
relation since both entities were still in some way asso-
ciated in the sentence.

2. All statements including an entity of type method or lab
method were mapped to the relation method.

3. All statements including an entity of type dosage form
were mapped to the relation administered.

We applied the first rule to allow users to search for arbi-
trary relations between entities. Rules 2 and 3 were applied
to have special relations for methods and dosage forms. In
summary,we extracted 394Mstatements and ten unique rela-
tions. Statistics are reported in Table 4.

5 Discovery system

In the following section, we describe our discovery sys-
tem for entity-interaction-aware document retrieval. On the
one hand, the system must be capable of answering narra-
tive query graphs. On the other hand, querying in this way
requires suitable interfaces for a suitable user experience.
Moreover, our discovery allows users to integrate variables
into their searches which asks for novel visualization in the
user interface. Our discovery system is freely accessible.4 A
systematic overview of thewhole system is depicted in Fig. 1.
In the following, we report on the current system’s version
(July 2022).

5.1 Discovery content

We integrated the complete NLMMedline collection (about
34M publications), i.e., the content of the PubMed search
engine. Therefore, we obtained the titles and abstracts plus
entity annotations from the PubTator service. In addition,
we loaded metadata for the publications, e.g., authors, jour-
nal, publication year, etc. We obtained the metadata from the
NLM’s official XML dumps. In joint cooperation with ZB
MED and the Robert Koch-Institute in Germany, we inte-
grated about 45k pre-prints from PreView [22, 23] (ZBMED
service) for COVID-19 questions. In both cases, we loaded
each publication’s titles, abstracts, and metadata (authors,
journal, etc.). We did not consider full texts. We then applied
our entity linking, information extraction, and cleaningwork-
flow to transform each document’s text into a document
graph. Note that we concatenated a document’s title and

4 http://www.narrative.pubpharm.de.

Fig. 1 System overview: document graphs are extracted from texts, cleaned, indexed, and loaded into a structured repository. Narrative query
graphs are then matched against this repository to retrieve the respective documents
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Table 5 Statistics about the content of our system

Name #Docs #Graphs

PubMed 34M 19.5M

COVID-19 Pre-Prints 45k 24.6k

abstract to derive a single text for the graph transformation. In
addition, we could not extract a document graph for all doc-
uments since we neither detected entities nor interactions in
them. For instance, we extracted 19.5M graphs from 34M
PubMed documents and 24.6k from 45k COVID-19 pre-
prints. The statistics are reported in Table 5. We developed
scripts to update the service content at periodic intervals. At
the moment, the discovery system cannot search for docu-
ments from which we cannot extract a single statement. In
the future, a more flexible query model could allow a search
for that documents, i.e., by rewriting a narrative query graph
to a set of keywords if no match could be found otherwise.

5.2 Data representation

In the design of our discovery system, we had two cen-
tral requirements: (1) process narrative query graphs and (2)
deliver a suitable user experience. In early talks with domain
experts,we found that explainabilitywas relevant, i.e., visual-
izing why documents should match their information needs.
With that in mind, the question of how we should represent
our data was raised. In an early phase, we decided to store our
data in a relational database because they are well supported
(reliable software and interfaces) and our data could be bro-
ken in a relational fashion. For example, the service returns
document titles, sentences, entity annotations, and extrac-
tion information to explain matches to the user. In this way
a central document table allowed us to join the correspond-
ing information if necessary. An overview of our relational
schema is shown in Fig. 2.

The document table stores the title and abstract for each
document. Each document is identified by an ID and the cor-
responding collection (e.g., PubMed). The tag table stores
entity annotations, the predication table stores the extracted
statement, and the document metadata tables stores informa-
tion about a publication’s authors, journals, etc. To explain
matches to the user, we integrated a sentence table to link an
extracted statement to its sentence origin. We split sentences
and statements to reduce redundancy - several statements
might have been extracted from the same sentences. Sen-
tences are identified by an MD5-hash for each document
collection. To accelerate the actual retrieval of documents’
metadata, we created a materialized view metadata service
which contains titles and metadata of documents in which
at least a single statement was extracted. On the one hand,

titles and metadata can, in this way, be queried from the
same table. On the other hand, the number of documents
is reduced from 34.4 to 19.5M entries. In other words, we
did not extract a single statement in around 15M documents.
Some database statistics (July 2022) like the number of tuples
and size on disk of relevant tables are reported in Table 6.
We used Postgres V10 as a relational database implemen-
tation. The database (incl. indexes and materialized views)
consumed roughly 300GB of disk space in sum.

5.3 Document retrieval

As a reminder of Sect. 3, a narrative query graph consists
of fact patterns following simple RDF-style basic graph pat-
terns. Our discovery system automatically translates these
narrative query graphs into a structured query language: They
are translated into SQL statements for querying the under-
lying relational database. A single fact pattern requires a
selection of the extraction table with suitable conditions to
check the entities and the interaction. Multiple fact patterns
require self-joining of the extraction table and adding docu-
ment conditions in the where clause, i.e., the facts matched
against the querymust be extracted from the same document.
In practice, joining the predication table with itself was not
fast enough when many rows were selected to answer a fact
pattern.

That is why we computed an inverted index. The inverted
index mapped subject-predicate-object tuples to a denormal-
ized attribute: This attribute then stored a document ID plus
the predication IDs in a JSON format, e.g., the document IDs
1 and the predication IDs 2 and 3. The predication IDs were
required to explain matches to users, i.e., which sentence and
why the sentence matched the fact pattern. For subjects and
objects we used two attributes: the corresponding entity ID
and entity type. The type was helpful to accelerate queries
with variables that search for a specific entity type (e.g., drug
or disease).We created indexes for the subject, predicate, and
object attributes. The inverted index had 34million tuples and
consumed 14 GB of disk space (incl. indexes). Having that
index, a fact pattern required only a single selection on it. We
developed an in-memory and hash-basedmatching algorithm
that quickly combines the results.

Another issue to think about were ontological subclass
relations between entities. For example, querying for treat-
ments of Diabetes Mellitus would require to also search
for the subclasses Diabetes Mellitus Type 1 and Diabetes
Mellitus Type 2. Query rewriting was necessary to com-
pute complete results for queries that involve entities with
subclasses [21]. Therefore, we utilized the Medical Subject
Headings (MeSH) Ontology and the Anatomical Therapeu-
tic Chemical Classification System (ATC). ATC was used to
support querying for classes of drugs. We rewrote queries
that include entities with subclasses to also query for these
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Fig. 2 Database schema overview: document is the central table storing titles and abstracts. Tables on the left side store information about the
entity linking. Tables on the right side store information about the extraction process. The document metadata stores information for the service

Table 6 Database statistics (July 2022) of our underlying relational
database.We report the consumed disk space of relevant database tables
(size reflects the pure data while size* includes indexes as well)

Table name #Tuples Size Size*

Document 34.4M 32GB 35GB

Document metadata 34.4M 8.1GB 10GB

Metadata service 19.5M 6.6GB 7.2GB

Tag 524.2M 44GB 91GB

Predication 394M 61GB 95GB

Sentence 67.3M 17GB 19GB

subclasses. If an entity was also a superclass, then we also
searched for all subclasses. We rewrote the SQL statement
precisely in the following way: Instead of searching for a sin-
gle entity, we searched with an IN expression. We allowed
all subclasses plus the given entity.

In brief, the query translation works as follows:

1. The user inputs a string through the query builder in the
form of a list of subject–predicate–object tuples.

2. We translate each subject and object to a set of corre-
sponding entities, i.e., all entities that have the given term
(subject/object) as one of its synonyms.

3. We expand each entity by all subclasses, i.e., we apply the
subclass function to each entity. The intermediate query
representation is now a list of fact patterns. A fact pattern

is a triple consisting of a set of entities as the subject, a
predicate, and a set of entities as the object.

4. We translate each fact pattern into a SQL statement:

If a subject/object is only a single entity, we directly add a
simple comparison in theWHERE clause. If a subject/object
is a set of entities, we add an IN statement to check whether
the entity is in that set of entities. To accelerate the translation,
we maintained an in-memory index mapping terms to a set
of entities, including all of their subclasses if applicable.

Due to the long-standing development of databases,
querying our index was performed very quickly by suitable
indexes. Besides, we implemented some optimization strate-
gies to accelerate the query processing, e.g., matching fact
patterns with concrete entities first and fact patterns with
variable nodes afterward. We remark on our system’s query
performance in our evaluation.

5.3.1 Remarks

Why did we not build upon graph databases? We thought
about utilizing graph databases for the query processing.
Our main motivation to stick to relational databases was
for simplicity reasons: On the one hand, we were familiar
with relational architectures. On the other hand, we had to
store data about the documents and the extraction informa-
tion. This way we can identify new documents that must be
processed, update suitable tables and indexes, and so on. In
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addition, the service had to return document and provenance
information to the user, i.e., titles, journal, author, and why
documents match a user query. For simplicity, we decided to
store all data in a single database and only maintain a single
one. Moreover, the overall query performance was sufficient
for us. For future work, analyzing graph databases like the
RDF database Virtuoso could be of interest for our discovery
system.

5.4 Architecture

Our service was realized as a web service split into two com-
ponents: a backend for the query processing and a frontend
for user inputs. We implemented the backend as a REST ser-
vice based on the Django framework in Python. The frontend
was implemented by utilizing the Bootstrap and the jQuery
Framework. The data exchange between both sides was real-
ized with JSON.

Transferring the results between the backend and frontend
turned out to be a challenge. Search engines typically only
transfer parts of the result lists. If usersmove to the next result
page, these page results are transferred to the frontend. The
problem for us was that we did not have typical result lists in
every case. For instance, results for searches with variables
had to be aggregated on the backend side before transmission.
In brief, a simple result list in our system might be com-
posed of several nested lists, i.e., documents that share the
same variable substitution. Thus, implementing a lazy load-
ing for the next pages was challenging. This feature would
have required a complex caching architecture in the back-
end, i.e., store the result lists and allow the frontend to load
specific parts dynamically. An alternative would have been
to recompute the same query with corresponding page/list
positions. Both options were not suitable for us because they
would have consumed too many resources in the backend.

That is why we decided to transfer the complete result
object once between the backend and frontend. The JSON
contained the basic structure (simple list or nested list),
all document information (ID, title, authors, journals, etc.),
and provenance information. For provenance information we
only transferred IDs of the predication table, i.e., we dynam-
ically loaded provenance information from the backend if
the user asked for it. The frontend then dynamically visu-
alizes parts of the results and allows the user to jump in
the lists. Depending on the number of results and the usage
of variables, the result size can vary between a few KB up
to several MB. Very large queries like Drug treats Disease
would even require to transfer of a few hundredMBs. But the
vast majority of queries that contain at least a single entity
(and not only variables) require at maximum a fewMBs. The
Django framework supports sending the data in a compressed
format if the browser supports it. We enabled that option to

decrease the transmission size. However, we are aware that
the transmission size is an issue in practice.

5.5 User interface

In the following, we present a user interface resulting from
joint efforts by the University Library, the Institute for Infor-
mation Systems, and two pharmaceutical domain experts
who gave us helpful feedback and recommendations. In con-
trast to graph query interfaces for SPARQL queries, we
wanted to create a user interface that is easy to use and does
not require to learn an additional query language. Further-
more, we supported the user with a query builder and suitable
result visualization on the frontend side. In an early proto-
type phase, we tested different user interfaces to formulate
narrative query graphs, namely

1. A simple text field,
2. A structured query builder, and
3. A graph designer tool.

We found that our users preferred the structured query
builder, which allows them to formulate a query by building a
list of fact patterns. For each fact pattern, the users had to enter
the query’s subject and object. The service assists the user by
suggesting about three million terms (entity names plus syn-
onyms). Then, they could select an interaction between both
in a predefined selection.Variable nodes could be formulated,
e.g., by writing ?X(Drug) or just entering the entity-type like
Drug in the subject or object field.

Whenusers start their search, the service sends the query to
the backend and visualizes the returned results. The returned
results are sorted by their corresponding publication date
in descending order. The service represents documents by
a document ID (e.g., PubMedID), a title, a link to the digital
library entry, metadata (authors, journal, etc.), and prove-
nance information. Provenance includes the sentence from
which the matching fact was extracted. We highlight the
linked entities (subject and object) and their interaction (text
termplusmapping to the interaction vocabulary). Provenance
may be helpful for users to understand why a document
is a match. If a query contains multiple fact patterns, we
attach a list of matched sentences in the visualization. Visu-
alizing document lists is comparable to traditional search
engines, but handling queries with variable nodes requires
novel interfaces. In the next subsection, we will discuss such
visualizations for queries including variable nodes. A screen-
shot of the running system is shown in Fig. 3

5.6 Retrieval with variable nodes

Variable nodes in narrative query graphs may be restricted
to specific entity types like Disease. We also allowed a
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Fig. 3 A screenshot of our user interface: The query builder is shown
on the top. Users can formulate their queries by adding more patterns
and then start their search. On the left side, several filter options are

shown. In the center/bottom, the result list is visualized. Each result is
represented by metadata and a Provenance button to explain the match

general type All to support querying for arbitrary entities.
For example, a user might formulate the query (Simvas-
tatin, treats, ?X(Disease)). Several document graphs might
match the query with different variable substitutions for ?X .
A document d1 with the substitution μ1(?X) = hyperc-
holestorelemia as well as a document d2 with μ2(?X) =
hyperlipidemia might be proper matches to the query. How
shouldwe handle and present these substitutions to the users?
Discussions with domain experts led to the conclusion that
aggregating documents by their substitution seems most
promising. Further, we present two strategies to visualize
these document result groups in a user interface: substitution-
centric and hierarchical visualization. A general overview of
both visualizations is shown in Fig. 4. We implemented the
aggregation and ranking on the backend side: The frontend
sends the selected visualization to the backend. The backend
then calculates the required data representation and sends it
to the frontend. The frontend finally visualizes the computed
representation.

Substitution-centric visualization. Given a query with a
variable node, the first strategy is to aggregate by simi-
lar variable substitutions. We retrieve a list of documents
with corresponding variable substitutions from the respective
document graphs. Different substitutions represent different

groups of documents, e.g., one group of documents might
cover the treatment of hypercholestorelemia while the other
group might deal with hypertriglyceridemia. When com-
puting the results, an in-memory hash map is created that
maps each variable substitution to a set of document ids.
These groups are sorted in descending order by the num-
ber of documents in each group. Note that a document may
have multiple substitutions, and hence, may appear in sev-
eral groups. Hence, variable substitutions shared by many
documents appear at the top of the list by default. Since the
lists may become very long, we divided them into pages so
that the user can jump to less frequent parts of the result list.
In addition, the users may also sort the groups in ascend-
ing order (rare substitutions first). Our system visualizes a
document group as a collapsible list item. A user’s click can
uncollapse the list item to show all contained documents.
Provenance information is used to explain why a document
matches the query, i.e., the system displays the sentences in
which a query’s pattern was matched. Provenance may be
especially helpful when working with variable nodes.

Hierarchical visualization. Entities are arranged in tax-
onomies in many domains. Here, diseases, dosage forms,
and methods are linked to MeSH (Medical Subject Heading)
descriptors arranged in the MeSH taxonomy. The hierar-
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Fig. 4 A schematic overview of our service implementation. A query builder helps the users to formulate their information needs. If the narrative
query involves variable nodes, the results can be visualized in a substitution-centric visualization (left side) or in a hierarchical visualization (right
side)

chical visualization aims at showing document results in
a hierarchical structure. For example, hypercholestorelemia
and hypertriglyceridemia share the same superclass in
MeSH, namely hyperlipidemias. All documents describing
a treatment of hypercholestorelemia as well as hypertriglyc-
eridemia are also matches to hyperlipidemias. On the back-
end side,we implemented an algorithm thatworks as follows:

1. Aggregate all documents by their variable substitution.
Note that a document may have multiple substitutions,
and hence, may appear in several groups.

2. Create an empty MeSH-tree structure.
3. Attach a set of documents to the corresponding tree posi-

tion, i.e., the entity’s position in that tree.
4. Forward the number of documents to all predecessor

nodes to update their document count.
5. Prune all nodes that do not have documents attached in

their node or all successor nodes to bypass the need to
show the whole MeSH taxonomy. Our service visualizes
this hierarchical structure by several nested collapsible
lists, e.g., hyperlipidemias forms a collapsible list. If a
user’s click uncollapses this list, then the subclasses of
hyperlipidemias are shown as collapsible lists as well.
In this way, users can walk through the tree structure till
they find document entries. These document entries are
visualized in the same way as in our user interface when
no variables are used.

6 Retrieval evaluation

The following evaluations of our prototype are based on an
older version (January 2021). In contrast to the content of the

current version, which covers the complete Medline collec-
tion and COVID-19 pre-prints, the older version was focused
on pharmaceutical users. Therefore, we selected a PubMed
Medline subset that includes drug and excipient annota-
tions. We annotated the whole Medline collection with our
entity linking component, yielding 302 million annotations.
Around six million documents included a drug or excipient
annotation. Performing the extraction and cleaning work-
flow on around six million documents yielded nearly 270
million different extractions. Hence, the prototype version in
January 2021 included about six million documents. In the
following evaluation, we will thus call it prototype because
we refer to the version of January 2021. The differences to
the current system version were: (1) The content was smaller
(not the complete NLM Medline and no pre-prints), (2) the
entity vocabularies were older (older versions of MeSH and
ChEMBL, and the entity types method, lab method and vac-
cine were missing), and (3) missing improvements in the
user interface (improved document visualization, faster ren-
dering, and faster loading).

Subsequently, we analyze our retrieval prototype concern-
ing two research questions:Donarrative query graphs offer a
precise search for literature? And, do variable nodes provide
useful entity-centric overviews of literature? We performed
three evaluations to answer these questions:

1. Two pharmaceutical experts created test sets to quan-
tify the retrieval quality (100 abstracts and 50 full-text
papers). Both experts are highly experienced in pharma-
ceutical literature search.

2. We performed interviews with eight pharmaceutical
experts who search for literature in their daily research.
Each expert was interviewed twice: Before testing our
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prototype to understand their information need and intro-
ducing our prototype. After testing our prototype, to
collect feedback on a qualitative level, i.e., how they esti-
mate our prototype’s usefulness.

3. Finally, all eight experts were asked to fill out a question-
naire. The central findings are reported in this paper.

6.1 Retrieval evaluation

After having consulted the pharmaceutical experts, we
decided to focus on the following typical information needs
in the biomedical domain:

I1: Drug-Disease treatments (treats) play a central role in
the mediation of diseases.

I2: Drugs might decrease the effect of other drugs and dis-
eases (decreases).

I3: Drug treatments might increase the expression of some
substance or disease (induces).

I4: Drug-Gene inhibitions (inhibits), i.e., drugs disturb the
proper enzyme production of a gene.

I5: Gene-Drugmetabolisms (metabolizes), i.e., gene-produced
enzymes metabolize the drug’s level by decreasing the
drug’s concentration in an organism.

Narrative query graphs can specify the exact interactions a
user is looking for. For each information need (I1-5), we
built narrative query graphs with well-known entities from
the pharmaceutical domain:

Q1: Metformin treats Diabetes Mellitus (I1),
Q2: Simvastatin decreases Cholesterol (I2),
Q3: Simvastatin induces Rhabdomyolysis (I3),
Q4: Metformin inhibits mtor (I4),
Q5: CYP3A4 metabolizes Simvastatin AND Erythromycin

inhibits CYP3A4 (I4/5), and
Q6: CYP3A4 metabolizes Simvastatin AND Amiodarone

inhibits CYP3A4 (I4/5).

For our evaluation, we wanted to measure our system’s
precision and recall. The recall was of interest here because
we already knew that information extraction (PathIE) could
only extract statements between entities if mentioned in the
same sentence. That is why we used the entities for each
query to search for document candidates on PubMed, e.g.,
for Q1 we used metformin diabetes mellitus as the PubMed
query. We kept only documents that were processed in our
pipeline. Then,we took a randomsample of 25 documents for
each query. The experts manually read and annotated these
sample documents’ abstracts concerning their information
needs (true hits/false hits). Besides, we retrieved 50 full-text
documents from PubMed Central (PMC) for a combined and
very specialized information need (Q5 and Q6). The experts

made their decision for PubMed documents by considering
titles and abstracts, and for PMC documents, the full texts.
We decided to select 25 as the sample size for each query
because we had to obtain a manageable set of documents
for our manual expert evaluation (in sum 100 abstracts and
50 full texts had to be evaluated). Subsequently, we consid-
ered these documents as ground truth to estimate the retrieval
quality (precision, recall, and F1). Note that we did consider
any ranking for the subsequent evaluation because matching
narrative query graphs against document graphs is a binary
decision: Either the information is contained or not. Ranking
the results of such a ranking would require novel methods
that were out of scope for this evaluation. However, we com-
pared our retrieval to two baselines, (1) queries on PubMed
and (2) queries on PubMedwith suitableMeSHheadings and
subheadings.

PubMed MeSH baseline PubMed provides so-called
MeSH terms for documents to assist users in their search
process. MeSH is an expert-designed vocabulary comprising
various biomedical concepts (around 26K different head-
ings). TheseMeSH terms are assigned to PubMed documents
by human annotators who carefully read a document and
select suitable headings. Prime examples for these headings
are annotated entities such as drugs, diseases, etc., and con-
cepts such as study types, therapy types, and many more.
In addition to headings, MeSH supports about 76 subhead-
ings to precisely annotate how a MeSH descriptor is used
within the document’s context. An example document might
contain the subheading drug therapy attached to simvastatin.
Hence, a human annotator decided that simvastatin is used
in drug therapy within the document’s context. The National
Library of Medicine (NLM) recommends subheadings for
entity interactions such as treatments and adverse effects.
In cooperation with our experts who read the NLM recom-
mendations, we selected suitable headings and subheadings
to precisely query PubMed concerning the respective entity
interaction for our queries. We denote this baseline asMeSH
Search.

Results The corresponding interaction and the retrieval
quality (precision, recall, and F1-score) for each query are
depicted in Table 7. The sample size and the number of pos-
itive hits in the sample (TP) are reported for each query. For
instance, the sample size of Q2 was 25, and 16 documents
were correct hits with regard to the corresponding informa-
tion need. The subsequent reported precision, recall and F1
scores are based on the corresponding sample for each doc-
ument.

The PubMed search was used to construct the ground
truth, i.e., was used to retrieve the document lists fromwhich
the samples were drawn. That means that the PubMed search
achieved a recall of 1.0 in all cases because all samples were
subsets of the PubMed search results. The PubMed search
yielded a precision of around 0.64 up to 0.76 for abstracts
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Table 7 Expert evaluation of
retrieval quality for narrative
query graphs compared to
PubMed and a MeSH-based
search on PubMed. Two experts
have annotated PubMed samples
to estimate whether the
information need was answered.
Then, precision, recall, and
F1-measure are computed for all
systems

PubMed MeSH search Narrative QG

Query #Hits #Sample #TP Prec. Prec. Rec. F1 Prec. Rec. F1

Q1 12.7K 25 19 0.76 0.82 0.47 0.60 1.00 0.42 0.59

Q2 5K 25 16 0.64 0.73 0.50 0.59 0.66 0.25 0.36

Q3 427 25 17 0.68 0.77 0.59 0.67 1.00 0.35 0.52

Q4 726 25 16 0.64 0.78 0.44 0.56 0.71 0.31 0.43

Q5 397 25 6 0.24 – – – 1.0 0.17 0.29

Q6 372 25 5 0.20 – – – 1.0 0.20 0.33

- denotes no hits

and 0.2 up to 0.24 for full texts. The PubMed MeSH search
achieved a moderate precision of about 0.73-−0.82 and a
recall of about 0.5 for PubMed titles and abstracts (Q1-Q4).
Unfortunately, the relevant MeSH annotations were miss-
ing for all true-positive hits for Q5 and Q6 in PMC full
texts. Hence, the PubMed MeSH search did not find any hits
in PMC for Q5 and Q6. Narrative query graphs (Narrative
QG) answered the information need with good precision: Q1
(treats) and Q3 (induces) were answered with a precision of
1.0 and a corresponding recall of 0.42 (Q1) and 0.47 (Q3).
Theminimumachieved precisionwas 0.66, and the recall dif-
fered between 0.17 and 0.42. Our prototype could answer Q5
and Q6 on PMC full texts: One correct match was returned
for Q5 as well as for Q6, leading to a precision of 1.0.

6.1.1 Comparison to OpenIE

For our prototype, we used PathIE to extract the document
graphs. For this comparison, we repeated the extraction on
the benchmark documents by utilizing the StanfordCoreNLP
OpenIE [25]. We selected the same relation vocabulary and
cleaning rules. The results are listed in Table 8. By utilizing
OpenIE we could not answer four out of six queries (Q1,
Q3, Q5, Q6). A problematic example is the following sen-
tence:Metformin is the mainstay therapy for type 2 diabetes.
CoreNLP OpenIE extracted the following statement: (Met-
formin, is, mainstay therapy for type 2 diabetes). First, the
object phrase contains more information than just the dia-
betes disease. Even if we would reduce the phrase to the pure
disease diabetes, canonicalizing the verb phrase is to a treats
relation would not be possible, simply because for all is verb
phrases this decisionwould bewrong.Hence, CoreNLPOpe-
nIE did not yield a suitable treats statement here to answer the
query. In contrast, PathIE extracted a treats statement here
because therapy was included in the relation vocabulary (a
list of special words indicating a relation).

Althoughwe achieved a precision of 1.0 for Q4 and 0.5 for
Q2, in both cases the recall was at 0.06. In contrast, PathIE
could answer all queries. For Q2 PathIE obtained a higher
precision than OpenIE. For Q4 the precision was lower (0.71
instead of 1.0), but the recall was higher (0.31 instead of

Table 8 Comparison between CoreNLP OpenIE and PathIE for narra-
tive query graph retrieval (- no hits)

OpenIE PathIE

Prec. Rec. F1 Prec. Rec. F1

Q1 – – – 1.00 0.42 0.59

Q2 0.50 0.06 0.11 0.66 0.25 0.36

Q3 – – – 1.00 0.35 0.52

Q4 1.00 0.06 0.12 0.71 0.31 0.43

Q5 – – – 1.0 0.17 0.29

Q6 – – – 1.00 0.20 0.33

0.11). In summary, PathIE was more suitable for our proto-
type because it could answer more queries and had a better
F1 score for all queries.

6.2 User interviews

The retrieval evaluation demonstrated that our system could
achieve good precision when searching for specialized infor-
mation needs. However, the following questions were: How
does our prototype work for daily use cases? And, what are
the prototype’s benefits and limitations in practice? There-
fore, we performed two interviews with each of the eight
pharmaceutical expertswho search for literature in their daily
work. All experts had a research background and worked
either at a university or university hospital.

First interviewWe asked the participants to describe their
literature search in the first interview. They shared two dif-
ferent scientific workflows that we had analyzed further: (1)
Searching for literature in a familiar research area and (2)
Searching for a new hypothesis which they might have heard
in a talk or read in some paper. We performed think-aloud
experiments to understand both scenarios. They shared their
screen, showed us at least two different literature searches,
and how they found relevant documents answering their
information need. For scenario (1), most of them already
knew suitable keywords, works, or journals. Hence, they
quickly found relevant hits using precise keywords and sort-
ing the results by their publication date. They already had a
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good overview of the literature and could hence answer their
information need quickly. For scenario (2), they guessed key-
words for the givenhypothesis. Theyhad to refine their search
several times byvaryingkeywords, addingmore, or removing
some. Then, they scanned titles and abstracts of documents
looking for the given hypothesis. We believe that scenario
(1) was recall-oriented: They did not want to miss important
works. Scenario (2) seemed to be precision-oriented, i.e.,
they quickly wanted to check whether the hypothesis may be
supported by literature. Subsequently, we gave them a short
introduction to our prototype. We highlighted two features:
The precision-oriented search and the usage of variable nodes
to generate entity-centric literature overviews. We closed the
first interview and gave them threeweeks to use the prototype
for their literature searches.

Second interview We asked them to share their thoughts
about the prototype: What works well? What does not work
well?What could be improved? First, they considered query-
ing with narrative query graphs, especially with variable
nodes, different and more complicated than keyword-based
searches. Querying with variable nodes by writing ?X(Drug)
as a subject or an object was deemed too cryptic. They
suggested that using Drug, Disease, etc. would be easier.
Another point was that they were restricted to a fixed set of
subjects and objects (all known entities in our prototype).
For example, querying with pharmaceutical methods like
photomicrography was not supported back then. Next, the
interaction vocabulary was not intuitive for them. Some-
times they did not know which interaction would answer
their information need. One expert suggested to introduce
a hierarchical structure for the interactions, i.e., some gen-
eral interactions like interacts that could be specified into
metabolizes and inhibits if required. On a positive note,
they appreciated the prototype’s precise search capability.
They all agreed that they could find precise results more
quickly using our prototype in comparison to other search
engines. Besides, they appreciated the provenance informa-
tion (why the document should be a match) to estimate if
a document match answers their information need. They
agreed that variable nodes in narrative query graphs offered
completely new search possibilities, e.g., In which dosage
forms was Metformin used when treating diabetes? Such a
query could be translated into two fact patterns: (Metformin,
administered, ?X(DosageForm) and (Metformin, treats,Dia-
betes Mellitus). The most common administrations are done
orally or via an injection. They agreed that such informa-
tion might not be available in a specialized database like
DrugBank.DrugBank covers different dosage forms forMet-
formin but not in combination with diabetes treatments. As
queries get more complicated and detailed, such informa-
tion can hardly be gathered in a single database. They stated
that the substitution-centric visualization helps them to esti-
mate which substitutions are relevant based on the number

of supporting documents. Besides, they found the hierar-
chical visualization helpful when querying for diseases,
e.g., searching for (Metformin, treats, ?X(Disease)). Here,
substitutions are shown in an hierarchical representation,
e.g., Metabolism Disorders, Glucose Disorders, Diabetes
Mellitus, Diabetes Mellitus Type 1, etc. They liked this visu-
alization to get a drug’s overview of treated disease classes.
All of them agreed that searches with variable nodes were
helpful to get an entity-structured overview of the literature.
Four experts stated that such an overview could help new
researchers get better literature overviews in their fields.

6.3 Questionnaire

We asked each domain expert to answer a questionnaire
after completing the second interview. The essential find-
ings and results are reported subsequently. First, we asked
them to choose between precision and recall when searching
for literature. Q1: Towhich statement would you rather agree
when you search for related work? The answer options were
(rephrased): A1a: I would rather prefer a complete result
list (recall). I do not want to miss anything. A2a: I would
rather prefer precise results (precision) and accept miss-
ing documents. Six of eight experts preferred recall, and the
remaining two preferred precision. We asked a similar ques-
tion for the second scenario (hypothesis). Again, we let them
select between precision and recall (A1a and A1b). Seven
of eight preferred precision, and one preferred recall when
searching for a hypothesis. Then, we asked Q3: To which
statement would you rather agree for the vast majority of
your searches? Again, seven of eight domain experts pre-
ferred precise hits over complete result lists. The remaining
one preferred recall. The next block of questions was about
individual searching experiences with our prototype (called
prototype in the Questionnaire): different statements were
rated on a Likert scale ranging from 1 (disagreement) to 5
(full agreement). The results are reported in Table 9. They
agreed that the prototype allows to formulate precise ques-
tions (4.0 mean rating), and the formulation of questions was
understandable (4.0). Besides, provenance information was
beneficial for our users (5.0). They could well imagine using
our prototype in their literature research (3.9) and searching
for a hypothesis (3.4). Still, users were reluctant to actu-
ally switch to our prototype for related work searches (2.8).
Finally, the result visualization of narrative query graphswith
variables was considered helpful (4.5).

6.4 Performance analysis

Wemeasured the performance of our prototype and database
on a server, having two Intel Xeon E5-2687W (@3,1GHz,
eight cores, 16 threads), 377GB of DDR3 main memory,
and SDDs as primary storage. Back in January 2021, the
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Table 9 Questionnaire results: eight participants were asked to rate the
following statements about our prototype on a Likert scale ranging from
1 (disagreement) to 5 (agreement). The mean ratings are reported

Statement about the prototype Mean

The prototype allows me to for-
mulate precise questions by specif-
ically expressing the interactions
between search terms

4.0

The formulation of questions in the
prototype is understandable for me

4.0

The displayed text passage from the
document (Provenance) is helpful
for me to understand why a docu-
ment matches my search query

5.0

The prototype provides precise
results for my questions (I quickly
find a relevant match)

3.5

Basically, grouping results is help-
ful for me when searching for vari-
able nodes

4.5

When searching for related work,
I would prefer the prototype to a
search using classic search tools
(cf. PubPharm, PubMed, etc)

2.8

When searching for or verifying a
hypothesis, Iwould prefer the proto-
type to a search using classic search
tools (cf. PubPharm, PubMed, etc).

3.4

I could imagine using the prototype
in my literature research

3.9

preprocessing took around oneweek for our sixmillion docu-
ments (titles and abstracts).We have incrementally improved
the performance and can now process the complete Med-
line collection (34M documents) in one week. We randomly
generated 10k queries asking for one, two, and three inter-
actions. We measured the query execution time on a single
thread (on the January 2021 version). Queries that are not
expanded via an ontology took in average 21.9ms (1-fact) /
52ms (2-facts) / 51.7ms (3-facts). Queries that are expanded
via an ontology took in average 54.9ms (1-fact) / 158.9ms
(2-facts) / 158.2ms (3-facts). However, the query time heav-
ily depends on the interaction (selectivity) and how many
subclasses are involved. In summary, our system can retrieve
documents within a quick response time for the vast majority
of searches.

7 Discussion

In close cooperation with domain experts using the PubMed
corpus, our evaluation shows that overall document retrieval
can indeed decisively profit from graph-based querying. The
expert evaluation demonstrates that our system achieves

moderate up to good precision for highly specialized infor-
mation needs in the pharmaceutical domain. Although the
precision is high, our system has only a moderate recall.
Moreover, we compared our system to manually curated
annotations (MeSH and MeSH subheadings), which are a
unique feature of PubMed. Most digital libraries may sup-
port keywords and tags for documents but rarely support how
these keywords, and primarily, how entities are used within
the document’s context. Therefore, we developed a docu-
ment retrieval systemwith a precision comparable to manual
metadata curation but without the need for manual curation
of documents.

The user study and questionnaire reveal a strong agree-
ment for our service’s usefulness in practice. In summary, the
user interface must be intuitive to support querying with nar-
rative query graphs. Further enhancements are necessary to
explain the interaction vocabulary to the user. We appreciate
the idea of hierarchical interactions, i.e., showing a few basic
interactions that can be specified for more specialized needs.
Especially the search with variable nodes in detailed narra-
tive query graphs offers a new access path to the literature.
The questionnaire showed that seven of eight experts agreed
that the vast majority of their searches are precision-oriented.
Next, they agreed that they prefer our service over established
search engines for precision-oriented searches. The verifica-
tion of hypotheses seems to be a possible application because
precise hits are preferred here. We believe that our service
should not replace classical search engines because there are
many recall-oriented tasks like related work searches. The
recall will always be a problem by design when building
upon error-prone natural language processing techniques and
restricting extractions to sentence levels. Although the results
seem promising, there are still problems to be solved in the
future, e.g., we can still improve the extraction and the user
interface.

7.1 Technical challenges

We faced five major technical challenges when realizing nar-
rative query graph retrieval:

Retrieval with graphs Graph-based retrieval of literature
requires representing texts differently. We decided to extract
statements from text, compute an inverted index, and then
compute queries against that index. An alternative could be
a retrieval with the latest language models that may match
query graphs on-the-fly against texts.

Data storage and query processing The processing of
queries requires performing an expensive graph-pattern
matching. Here we built upon relational databases to store
all data within one place. But alternatives like performing
queries on a graph database and retrieving Provenance from
a different source could be relevant.
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Query formulation Formulating information needs as
query graphs was unfamiliar and thus challenging for users.
Easy-to-use interfaces must be developed and integrated
here. An extension could be to formulate natural language
questions that are automatically translated to query graphs.

Result list handlingTransferring result lists between back-
end and frontend can be similar to keyword-based retrieval
systems. But if variables came into play and result lists
became nested, a newway of handling that lists was required.
Either we must recompute the query for certain list parts or
design a suitable caching and streaming architecture.

Querying with variables Searches with variables required
novel methods to transfer and visualize the result lists: On
the one hand, the visualization must face a large amount of
data in real-time. On the other hand, interfaces should be fast
and responsive.

Our discovery system tackled all challenges by finding
solutions that worked in practice and delivered a suitable
quality.

7.2 Generalizability

Knowledge in the biomedical domain is often entity-centric,
e.g., clinical studies involving certain target groups, drug
testing, treatments and therapies, method investigations, and
much more. Existing thesauri and distinguishing relations
between certain entitieswere essential for realizing access via
narrative query graphs. The generalizability of this research
is in this way limited to entity-centric domains. In political
sciences, information needs may be based upon some school
of thought. For example, when searching for statements of
that school, special keywords and framing are essential to
formulate the actual query. Breaking down such information
need to a simple entity-interaction pattern does not seem pos-
sible.

On the one hand, we have already seen methods suitable
for our extraction workflow, and hence, our discovery sys-
tem would not work well for political sciences if suitable
vocabularies were missing [19]. Canonicalizing different
predicates to precise relations here is even more challenging.
In biomedicine, a drug and a disease might roughly stand in
two relations: Either the drug treats the disease or induces the
disease.When thinking about possible relations between per-
sons, we are likely to face a high number of possible ones.
But on the other hand, although having these restrictions,
we have elaborated on the benefits of narrative information
access for political sciences [20]. For example, listing peo-
ple involved in a certain decision, or structuring the literature
into action categories, e.g., tackling climate change, could be
answered by realizing a similar access path to that domain.

8 Outlook

In addition to steady improvements in the user interface,
entity vocabularies, and content updates, we give an outlook
on the latest developments of our service.

8.1 Feedback

This work’s qualitative and quantitative evaluations show
that users can benefit from narrative query graphs in prac-
tice. However, we continue the evaluation of our service. For
instance, two preliminary evaluations are described in [20]:
In joint work with the specialized information services for
political sciences (Pollux), we analyzed how well the ser-
vice can assist research questions in political sciences. In
cooperation with ZB MED (infrastructure and research cen-
ter for information and data in the life sciences) and Robert
Koch-Institute in Germany (leading public health institute in
Germany), we evaluate how well the service is suitable to
answer COVID-9-related questions.

For our daily users, we integrated three feedback options
into our system: (1) Users can automatically create a screen-
shot of our system, mark something in that and write a short
text. Then the data is sent automatically to our service. (2)
Users can rate visualized substitution groups when search-
ing with variables. Users who explore substitution lists can
directly rate if this group is sensible concerning the query.
(3) Users can rate Provenance information, i.e., whether the
extraction is suitable to answer the query. The options are
shown in Fig. 5. All this feedback is stored in our service,
and we will further use it to improve the system and extrac-
tion methods.

8.2 Concept selection

In our study, we learned that selecting the correct concept
(entity/class or variable) can sometimes be challenging. On
the one hand, users might not know the correct term for a
given entity, e.g., users searched for diabetes instead of the
correct entity term Diabetes Mellitus. On the other hand,
users did not know which overviews could be generated, i.e.,
which variable types we allowed. To deal with this prob-
lem, we introduced the so-called Concept Selection View. A
screenshot is shown in Fig. 6. Here users can enter a term,
and a list of matching concepts (entities/classes/variables) is
shown. In addition, we integrated a list of allowed variable
types and classes from MeSH and ATC. This view extends
the autocompletion function by showing a tree-based visu-
alization of concepts, i.e., we utilized ontologies like MeSH
and ATC (a drug taxonomy) to show the different concepts
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Fig. 5 Feedback options of our service: on the left upper corner, users
can rate substitution groups when searching with variables. On the right
upper corner, users can create a screenshot, mark something in that,

write a short text, and send it to us. At the bottom, users can rate Prove-
nance entries (if the extraction was suitable)

Fig. 6 Concept selection: this view allows users to precisely select their concept (entity/class) or a typed variable (variable of type drug, etc.) in
searches. The view has a search field, so the tree-based visualization can be searched in real-time

and their superclass/subclass relationships. If a user selects a
concept here, the concept will be copied to the query builder.
Users can access the concept selection by clicking on the
Browse button either in the subject or object of the query
builder.

8.3 Document graphs

Our service already allowed the visualization of Provenance
information, i.e., the service explainswhy a document should

match a query graph. However, we found it to be useful to
allow users to explore our actual document graph represen-
tation as well. Therefore, we integrated a Document Graph
View.A screenshot is shown inFig. 7. This viewhas two com-
ponents: On the left side, the document’s text plus metadata
(authors, journals, etc.) is shown. Here we highlight detected
entities in the title and abstract in a certain color (the color
denotes the entity type). Users have the option to select or
deselect certain entity types to focus the visualization on their
needs. On the right side, the actual document graph is visu-
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Fig. 7 Document graph visualization: a document’s abstract and identified entities are highlighted on the left side. On the right side, interactions
between entities (statements) are visualized as a directed-edge labeled and colored graph. Different colors depict different entity types (drugs,
diseases, etc)

alized as a directed-edge labeled and colored graph. Colors
again denote the entity types. The graph is interactive, and
users may move nodes or edges. If two entities are connected
via several predicates, we only visualize a single edge and
concatenate the predicate labels, e.g., associated and treats.

8.4 Drug overviews

Our latest extension is the so-called Drug Overviews. A
screenshot is shown in Fig. 8. Users have to enter a drug
name, and the corresponding overview is generated for them.
Therefore, we combine information from our service as well
as from curated and specialized databases. On the one hand,
we show curated information about the drug like the molecu-
larmass, pKAvalues, etc. To retrieve the curated information,
we utilized the officialAPI of theChEMBLdatabase [27].On
the other hand, a set of pre-defined narrative query graphs is
used to show extractions from the literature. In cooperation
with domain experts again, we created these query graphs
for different purposes: Showing known indications (treat-
ments) of the drug, showing how the drug is administered
(tablet, injection, etc.), the interacting targets (enzymes/gene
systems) and more. Then the corresponding results, i.e., the
entity groups, are shown in list views. Each entry consists
of two components: the entity’s name and the number of
supporting documents for the given relationship between the
searched drug and this entity. Users who click on an entity
will be forwarded to our retrieval service, and the correspond-
ing relationship is searched automatically. Another thing to
mention are indications: Here, we combine extractions from
the literature with information about clinical phases from

ChEBML [27]. Suppose a drug-disease-indication is veri-
fied via a clinical trial. In that case, the corresponding phase
of the trial is visualized as a roman letter in its entry. Users
who click on the trial phase will be forwarded to the corre-
sponding ChEBML entry.

The difference with existing curated databases is that we
can generate these overviews even for the latest drugs. And
moreover, we can show associations that may have been
reported in the literature but have not been curated in a
database. For instance, a drug administration as a nanoparti-
cle might not have worked out in practice. It likely will not
appear in a curated database but is shown in our overview.
In summary, these overviews allow thus to quickly retrieve
information about a drug, even if the drug has not been
researched thoroughly.

9 Conclusion

Entity-based information access catering even for com-
plex information needs is a central necessity in today’s
scientific knowledge discovery. But while structured infor-
mation sources such as knowledge graphs offer high query
expressiveness by graph-based query languages, scientific
document retrieval is severely lagging behind. The reason
is that graph-based query languages allow to describe the
desired characteristics of and interactions between entities
in sufficient detail. In contrast, document retrieval is usually
limited to simple keyword queries. Yet unlike knowledge
graphs, scientific document collections offer contextualized
knowledge, where entities, their specific characteristics, and
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Fig. 8 Drug overviews: users enter a drug name, and then an overview of the drug is generated. Therefore we combine information from our service
as well as from curated and specialized databases. A user’s click on an entity will then invoke a search in our discovery system

their interactions are connected as part of a coherent argu-
mentation and thus offer a clear advantage [14, 15]. The
research presented in this paper offers a novel workflow to
bridge the worlds of structured and unstructured scientific
information by performing graph-based querying against sci-
entific document collections. Implementing such an access
path to a digital library comeswith costs for designing extrac-
tion workflows and maintaining the actual discovery system.
However, nearly unsupervised extractionworkflowsmight be
a compromise here: They bypass training data for the extrac-
tion but suffer in quality and require suitable vocabularies.
If a digital library decides to go that way, novel applications
such as the query graph retrieval system, searches with vari-
ables, graph visualizations of documents, or overviews of
certain entities (here drugs) are not too far-fetched. But as
our current workflow is clearly precision-oriented, we plan
to improve the recall without having to broaden the scope of
queries in future work.

Supplementary information The code of the extraction
toolbox can found in our GitHub repository: https://github.
com/HermannKroll/KGExtractionToolbox.Anarchivedver-
sion of our toolbox can be found in the Software Her-
itage project: https://archive.softwareheritage.org/swh:1:dir:
67c17339a5c800ddb50cb36bda598fb96a200856.
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