
International Journal on Digital Libraries (2024) 25:93–104
https://doi.org/10.1007/s00799-023-00391-0

Exploiting the untapped functional potential of Memento aggregators
beyond aggregation

Mat Kelly1

Received: 3 August 2023 / Revised: 22 November 2023 / Accepted: 17 December 2023 / Published online: 27 January 2024
© The Author(s) 2024

Abstract
Web archives capture, retain, and present historical versions of web pages. Viewing web archives often amounts to a user
visiting theWaybackMachine homepage, typing in a URL, then choosing a date and time significant of the capture. Other web
archives also capture the web and use Memento as an interoperable point of querying their captures. Memento aggregators
are web accessible software packages that allow clients to send requests for past web pages to a single endpoint source that
then relays that request to a set of web archives. Though few deployed aggregator instances exist that exhibit this aggregation
trait, they all, for the most part, align to a model of serving a request for a URI of an original resource (URI-R) to a client by
first querying then aggregating the results of the responses from a collection of web archives. This single tier querying need
not be the logical flow of an aggregator, so long as a user can still utilize the aggregator from a single URL. In this paper, we
discuss theoretical aggregation models of web archives. We first describe the status quo as the conventional behavior exhibited
by an aggregator. We then build on prior work to describe a multi-tiered, structured querying model that may be exhibited
by an aggregator. We highlight some potential issues and high-level optimization to ensure efficient aggregation while also
extending on the state-of-the-art of memento aggregation. Part of our contribution is the extension of an open-source, user-
deployable Memento aggregator to exhibit the capability described in this paper. We also extend a browser extension that
typically consults an aggregator to have the ability to aggregate itself rather than needing to consult an external service. A
purely client-side, browser-based Memento aggregator is novel to this work.

Keywords Web archives · Memento · Aggregator · Implementation · Optimization

1 Introduction

Web archives act as a historical record of the web. The
Internet Archive (IA) possesses the largest number of web
archive holdings. These holdings are accessible through a
set of interfaces to the Wayback Machine. Beyond IA, other
web archives exhibit focused collection efforts, often pro-
viding unique captures within IA’s temporal and spatial (i.e.,
URL [8]) voids [29]. A common usage pattern in access-
ing IA’s captures is to request the archive’s web site at
archive.org, submit a URL of interest by providing it in a
text input field, then selecting a date and time from the set
of available captures for that URL in the past. This pattern

B Mat Kelly
mkelly@drexel.edu

1 Department of Information Science, College of Computing
and Informatics, Drexel University, Philadelphia, PA 19104,
USA

may differ between web archives’ respective web interfaces.
Memento [39] provides the standards-based interoperable
means, dynamics, syntax, and semantics for representing
identifiers for archival captures (mementos) from a set ofweb
archives. Each archive that supports the Memento Frame-
work provides an HTTP endpoint for retrieving mementos
from their respective archival holdings. Users can send a
request for all captures of a URL to a variety of support-
ing archives through a single endpoint by an accessible tool
that performs the logic of querying and combining results
from multiple sources—a Memento aggregator.

Memento aggregators typically have reference to a set
of endpoints to web archives that implement the Memento
Framework. An aggregator may express this through a URI
“template” like Fig. 1 or as a URI with an implicit append
operation of a URI-R [39]. Upon receiving a request from a
client with a parameterized URL (e.g., the URI-R applied
to the template URI), an aggregator relays the argument
received in this request as parameters for subsequent requests

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00799-023-00391-0&domain=pdf
http://orcid.org/0000-0002-0236-7389

94 M. Kelly

t0: {scheme & hostname}/{resource type}/{format}/{URI-R}
t1: https://myarchive.org/timemap/link/http://example.com
m0: {scheme & hostname}/{datetime}/{URI-R}
m1: http://archive.today/2023.07.18-154113/https://www.springer.com/journal/799
m2: https://archive.li/EsDvg

Fig. 1 An aggregator must be configured to supply parameters to an
HTTP endpoint (like t1), often exhibited in the form of a “templated
URI” (t0) for aURI-T as shownhere. The suffixed red portion represents
a URI-R http://example.com as used in practice. This URI templating

is replicated (m0) with URI-Ms (e.g., m1), though a web archive need
not identify its captures in this non-opaque manner (m2 andm1 identify
the same memento)

to each archive. When the aggregator receives a sufficient
response,1 as dictated by the logic of the aggregator in prac-
tice, the aggregator combines the results through a procedure
that aligns withMemento syntax, often inclusive of temporal
sorting.2 The aggregator returns this “aggregated” response
to the client. This description somewhat encompasses the
conventional role of the aggregator. Its place as a means for
users to interface withmultiple web archives through a single
request has the potential to be further utilized, exploited, and
be more generally useful.

This paper examines the hierarchical (yet decoupled)
relationship between a Memento aggregator and Memento
compliant web archives. While an aggregator and a set
of archives often exhibit a static one-to-many relationship
(respectively), there exists both more fundamental and more
potentially complex hierarchies that may be exhibited using
existing infrastructure. These exhibitions may be strategi-
cally and efficiently enhanced through consideration of this
potential additional capability for the sake of enhancing the
role of the aggregator in use cases for web archives. We
build on existing work in defining a framework for aggre-
gating public and private web archives [25]. Our focus will
be on identifying (Sect. 6) and mitigating (Sect. 7) some out-
standing issues both introduced by the framework as well as
those that exist in current practice of interfacing with web
archives using Memento aggregation. This paper constitutes
an extension on our prior work [21] with additional discus-
sion, evaluation through implementation, and addressing of
further contemporary use cases that have since arisen in the
realm of research using web archives.

2 Background

The Memento Framework [39] introduces the ability to per-
form temporal negotiation on the web by relating the current
and past representations of a web page. Past representations
are identified by “URI-Ms” and the original representation
by a “URI-R”, per Memento. Memento also introduces a

1 This criteria is implementation-specific and may be associated with
a temporal threshold, memento count, etc.
2 It is important to note here thatTimeMaps donot need to be temporally
sorted to be Memento compliant.

resource to associate URI-Ms and URI-Rs through a struc-
tured listing called a TimeMap, identified by a “URI-T.” A
web archive may return a TimeMap representing its hold-
ings, inclusive of URI-Ms, a URI-R, URI-Ts, and a URI-G
for a “TimeGate.” A TimeGate allows a client, through
HTTP request headers, to specify a datetime basis for a like-
wise included URI-R. This paper relates to the information
retrieval and relational aspects of Memento TimeMaps and
not specifically to the temporal negotiation of Memento, the
latter being a feature of TimeGates. We focus on the associ-
ation of past and present URIs and not the ability to resolve
the closest datetime, both of which Memento provides.

The concept of aggregation goes beyond the Memento
specification by leveraging a similar structure to TimeMaps
but allowing the URIs contained within the aggregated
TimeMap to identify resources at multiple archives instead
of a single archive. The Research Library at Los Alamos
NationalLaboratory (LANL)deployed the originalMemento
aggregator [9, 18], currently accessible through a web
interface via the Time Travel service at https://timetravel.
mementoweb.org/. This web service (Fig. 2a) provides an
HTML form field for a user to specify the URI-R and a date-
time then uses temporal negotiation to query a set of archives
and return links to the results (Fig. 2b).

A central point of access also implies a central point of
failure—if the aggregator goes down, no further aggregation
may be performed, and users must again resort to querying
individual web archives. In response, Alam and Nelson cre-
ated MemGator [1], a portable, open-source, cross-platform,
user-deployableMemento aggregator. This tool enables indi-
viduals to no longer solely rely on a single web-accessible
aggregator but also configure, use, and potentially deploy
their own. Also, unlike Time Travel, a user has the ability to
control which web archives are queried for mementos. This
newfound ability provided the accessibility of the aggrega-
tion capability to be further explored by researchers.

Memento is an extension to the Hypertext Transfer Proto-
col (HTTP). HTTP is a stateless, client–server based protocol
on which the web is built. In the context of Memento, a
client provides an HTTP request for a TimeMap of a URI
in the past, often by appending a URI-R to a templated
endpoint (Fig. 1). Both the identifiers for a TimeMap and
a memento are returned with corresponding Link [32] HTTP

123

http://example.com
https://timetravel.mementoweb.org/
https://timetravel.mementoweb.org/

Exploiting the untapped functional potential of memento aggregators beyond aggregation 95

Fig. 2 “Time Travel” service provides a graphical, web-based endpoint to interface with LANL’s Memento aggregator. After submitting a URI
and date range in the interface (a), the results are displayed (b), showing the extent of the captures from a variety of pre-configured, server-defined
web archives

response headers giving additional context to the represen-
tation (Fig. 3). A user (e.g., person) will typically act as a
client through a user-agent (e.g., web browser, cURL3) and
may send an HTTP request to a Memento aggregator with
the expectation of receiving an HTTP response. The aggre-
gator, in-turn, acts as a client to the web archives, relaying
the request for the URI-R in the past and expects HTTP
responses. This use case of a Memento aggregator playing
the role of a server and a client is abridged in Sect. 7.4.

The behavior of a user requesting a TimeMap from a
Memento aggregator and the subsequent similar request to
web archives can be represented as a directed graph. The
significance of this representation becomes more apparent
when what is typically an endpoint from a web archive is
itself an aggregator, which causes the graph to be extended.
If the secondary aggregator were to request captures from
the initial aggregator, a “cycle” would form and must be mit-
igated. In Sect. 6.1, we discuss this further, and in Sect. 7.2,
we introduce some mitigation techniques for this potential
scenario.

3 Related work

Most research involving Memento aggregation relates to
usage of the aggregator rather than enhancement of the aggre-
gation process. In the same way that prior to MemGator,
researchers would state “we requested URIs from the Time
Travel Service,” this statement was transformed to “we used

3 https://curl.se/

MemGator to request URIs,” indicative that it was useful for
researchers to utilize their own aggregator instance [3, 5, 10,
14–17, 19, 23, 26, 33, 41, 42]. A facet of this use case is the
ability for researchers to customize the set of web archives to
be used as the basis for querying, which is performed prior to
running MemGator by modifying a configuration file.4 This
paper examines the aggregation process beyond accessing
an aggregator and does so at a more abstract level than the
ability to customize the archival sources.

3.1 Using aggregators beyond end-user aggregation

As MemGator is free and open-source software (cf. Time
Travel), many research endeavors on evolving the aggrega-
tion process have centered around enhancing its development
beyond the limited endpoint-based Time Travel ecosystem.
While the set of archives to be aggregated is static, both
in accessing the Time Travel service as well as a deployed
MemGator instance, other standards-based mechanisms like
HTTP Prefer [38] provide a means of allowing a client to
specify the set of archives aggregated to an “enhanced”
aggregator—in this case, an extended version of MemGator
[22]. This approach [22] entailed encoding the set of archives
that normally reside in a server-side configuration file to
be customizable at query time. The specification of custom
archival sources utilizes the “Prefer” HTTP request header
with a value being the self-describing, base-64 encoded
JSON representing the aggregator’s configuration of end-

4 An aside: researchers that need to control the process do so either
through manipulation of their internal software (LANL experimenting
with Time Travel [9]) or those outside of LANL utilizing MemGator.

123

https://curl.se/

96 M. Kelly

Fig. 3 A CDXJ TimeMap (top)
represents the same content as a
Link TimeMap (bottom)
including the URI-R (http://
matkelly.com, highlighted in
red), URI-G (blue), other
URI-Ts (green), and URI-Ms
(brown) with identical relations
(note similarity of the
corresponding rel attributes)
(color figure online)

!context ["http://tools.ietf.org/html/rfc7089"]
!id "uri": "http://localhost:1208/timemap/cdxj/http://matkelly.com"
!keys ["memento datetime YYYYMMDDhhmmss"]
!meta "original uri": "http://matkelly.com"
!meta "timegate uri": "http://localhost:1208/timegate/http://matkelly.com"
!meta "timemap uri": "link format": "http://localhost:1208/timemap/link/http://matkelly.com",
"json format": "http://localhost:1208/timemap/json/http://matkelly.com", "cdxj format":
"http://localhost:1208/timemap/cdxj/http://matkelly.com"
20060514123511 "uri": "http://web.archive.org/web/20060514123511/http://www.matkelly.com:80/", "rel":
"first memento", "datetime": "Sun, 14 May 2006 12:35:11 GMT"
20060516213852 "uri": "http://web.archive.org/web/20060516213852/http://www.matkelly.com/", "rel":
"memento", "datetime": "Tue, 16 May 2006 21:38:52 GMT"
...
20180128152125 "uri": "http://web.archive.org/web/20180128152125/http://matkelly.com", "rel": "memento",
"datetime": "Sun, 28 Jan 2018 15:21:25 GMT"
20180319141920 "uri": "http://web.archive.org/web/20180319141920/http://matkelly.com/", "rel": "last
memento", "datetime": "Mon, 19 Mar 2018 14:19:20 GMT"

<http://matkelly.com>; rel="original", <http://localhost:1208/timemap/link/http://matkelly.com>;
rel="self"; type="application/link-format",
<http://web.archive.org/web/20060514123511/http://www.matkelly.com:80/>; rel="first memento";
datetime="Sun, 14 May 2006 12:35:11 GMT",
<http://web.archive.org/web/20060516213852/http://www.matkelly.com/>; rel="memento"; datetime="Tue, 16
May 2006 21:38:52 GMT",
...
<http://web.archive.org/web/20180128152125/http://matkelly.com>; rel="memento"; datetime="Sun, 28 Jan
2018 15:21:25 GMT",
<http://web.archive.org/web/20180319141920/http://matkelly.com/>; rel="last memento"; datetime="Mon, 19
Mar 2018 14:19:20 GMT",
<http://localhost:1208/timemap/link/http://matkelly.com>; rel="timemap"; type="application/link-format",
<http://localhost:1208/timemap/json/http://matkelly.com>; rel="timemap"; type="application/json",
<http://localhost:1208/timemap/cdxj/http://matkelly.com>; rel="timemap"; type="application/cdxj+ors",
<http://localhost:1208/timegate/http://matkelly.com>; rel="timegate"

Fig. 4 An aggregator is configured to queryHTTP endpoints (a), which
are typically from web archives, but could equally be configured to be
to other aggregators causing an “aggregator chaining” effect (Sect. 4.3).

Aggregators are agnostic of whether their requester is a client, script, or
aggregator itself (b) and thusmay send a request that ultimately resolves
to a requester causing an infinite loop

points. A prototypical extension of MemGator referenced
by the authors required the aggregator to read the HTTP
request header and respond accordingly at runtime to request
captures only from the archives specified by the client.
This requirement of the aggregator being “enhanced” to this
extended capability is discussed further in Sect. 8.1.

3.2 Graph abstractions

The process of HTTP requests as recursively applied through
an aggregator subsequently querying additional sources

resembles a graph structure, typically reduced to a tree in
the conventional case (Sect. 4.2). As this work reiterates the
potential for an aggregator querying an aggregator [25], the
scenario arises of graph-style cycles (Fig. 4) that must be
mitigated. Additionally, we may encounter redundancies in
this “chaining” process (Fig. 6) where aggregators down the
request chain are configured to query identical, previously
queried archives with the same parameters. The similarity of
this problem resembles a singly linked list, wherein a child
does not know the capacity of its parent and is in adherence
of HTTP being stateless. Here, an origin node is aware of

123

http://matkelly.com
http://matkelly.com

Exploiting the untapped functional potential of memento aggregators beyond aggregation 97

that to which it links but a node is likely not aware of the
linkages from its parent, to which the node itself is one.

3.3 Aggregation optimization

The process of aggregation can be complex [31], both in
programmatic logic to accomplish it as well as largely so
in the temporal, spatial, and computational requirements. In
conventional practice (Sect. 4.2), upon receiving a request,
an aggregator will then send a request to each web archive,
as defined by the endpoints in the aggregator’s configura-
tion. The process of sending these requests can typically be
performed asynchronously [1], as the response time from
a particular archive may be affected by a variety of factors
including its infrastructure capabilities, the quantity of its
holdings, the temporal spread of its holdings, etc.

Differentweb archives inherently possess a different set of
archival holdings.5 For example, an archive may only collect
web pages within a limited set of ccTLDs [34] like .ac.uk
and .gov.uk for academic and government websites in
the United Kingdom (respectively). Repeated requests for
TimeMaps from web archives that consistently have no
mementos for a structured type of URI produce inefficiencies
that are exacerbated when aggregated and affect the aggrega-
tionprocess.AlSumet al. [6] generatedprofiles to identify the
distributionofURIs across archives and the effect on recall by
both including and excluding IA from the aggregated results.
MementoMap [4] provided an approach to remedy this issue
with the cooperation of a web archive. By an archive sup-
plying indexes of its holdings, a “map” can be created to
abstractly represent (using wildcards) the extent of the hold-
ings for specific URI patterns. This may be abstracted to
the level of TLD (e.g., the extent of the holdings within the
.uk TLD) down to the specificity of the quantity of hold-
ings within a specific path of the URI. MementoMaps also
provide a format to represent this extent both on the level
of URI-R and URI-M. Through the cooperation of one such
scoped archive, the Portuguese Web Archive, Alam et al. [4]
were able to demonstrate the increase in efficiency of selec-
tively sending requests to a subset of archives informed by
their respective holdings. This work leveraged MemGator.
Aturban et al. [7], through a longitudinal study on the web
archives themselves, identified the disappearance of the base
URI of an archive, further highlighting the need for an aggre-
gator to be updated to ensure resolution as archives change
their hostnames.

In related work, Bornand et al. [9] consulted logs from the
aggregator created by theTimeTravel service (the authors are
from LANL) to create classifiers to effectively route queries
rather than relying on a web archive to provide a profile.

5 We distinguish “archival holdings” from mementos in that the latter
implies compliance with the Memento Framework.

They analyzed over 1.2millionURI-Rs from the aggregator’s
cache (with over 239,000 URI-Ms) to identify a point-of-
compromise for optimizing the requests sent to an archive
based on the true and false positive rate as informed by prior
requests. This work was extended by Klein et al. [27] to use
Bloom filters for defining the extent of archives’ holdings
for more efficient retrieval and previously identified response
delays for their public-facing aggregator [28].

Part of this work entails enabling the user to have more
extensive interactionwithweb archives usingMemento. This
is frequently enabled through the use of browser extensions
[24, 37] and dedicated applications [20, 30, 40]. Mink6 is an
extension for the Chrome web browser that allows a user
to extend the context of the web page they are currently
viewing to be used as the basis of a request to a Memento
aggregator. Some preliminary efforts have been performed
to provide further user control over archival selection from
the web browser using the extension, but have not been for-
malized nor deployed in the primary extension. Doing so
entails either the approach of requiring an enhanced aggre-
gator (Sect. 8.1) that receives a request to adapt their set of
archives queried at runtime based on the user’s request (a
server-side approach) or for Mink to filter the results on the
client after the aggregator returns the results. In the latter,
client-side approach, the logic of aggregation becomes the
responsibility of the extension when an aggregator does not
comply with sending requests to archives outside of its base
configuration. In Sect. 8.2, we discuss some changes toMink
to realize the qualities of the aggregator and in-turn, become
a purely client-side, browser-based Memento aggregator.

4 Base queryingmodels

Per Sect. 3, Memento aggregators are often configured to be
used as a web service; in the case of MemGator, specifying
a list of archives, timeouts, etc.; and “used” by querying the
aggregator’s HTTP endpoints with the URI as a parameter.
In this section, we define aggregator “querying models” for
further discussion.

4.1 Proxy-style querying (S0)

An aggregator may be configured to query a single web
archive. This is typically not exhibited because of redun-
dancy (i.e., the user would normally just send the request to
the archive directly), but serves as a base case for the querying
models for further discussion.Here, the “aggregator” acts as a
simple relay or proxy between the client and the web archive.
This might potentially be useful for specifying a configura-

6 https://github.com/machawk1/mink

123

https://github.com/machawk1/mink

98 M. Kelly

tion to the aggregator beyond what can be expressed with a
request to URI,7 e.g., timeouts for a response.

4.2 Conventional querying (S1)

Typical aggregator usage entails a client sending a request
to an aggregator that then queries multiple web archives,
aggregates the responses, and returns this response to the
client (Fig. 5). The internal logic of the aggregator is not
necessarily as relevant in defining this model but is critical
for an aggregator’s operation. For example, an aggregator
may pipeline the requests for more efficient querying. An
aggregator also might require archives to respond within a
time threshold and “short-circuit” the response to disregard
archives that do not respond in time. The abbreviated set of
results could then be aggregated based on the subset archives
that have responded up to that point in time. Some of these
aspects are discussed further in Sect. 7.

4.3 Aggregator chaining (S2)

A Memento aggregator may successfully query any end-
point that is Memento compliant. The response from an
aggregator is itself also typically Memento compliant. This
begets the possibility that what is typically considered a “web
archive” configured as an endpoint to query by an aggregator
may be an aggregator itself, i.e., an aggregator querying an
aggregator (Fig. 4a). One reason this is not typically exhib-
ited is because the set of archives that are queried are (in
practice) manually validated before being put in-place in
the configuration. In the case of the Time Travel service,
there is no indication that an aggregator is queried by the
basis aggregator handling the initial response. For MemGa-
tor, however, the set of endpoints is user-configurable, and
thus this valid scenario may arise and has implications. The
merits of “aggregator chaining” were discussed in the sem-
inal work introducing the concept [25], but did not go into
detail or highlight some problems that may occur. We reiter-
ate and address these in Sect. 6.

As above, an aggregator may plausibly query a second
aggregator. More fundamentally, and problematically, an
aggregator can specify itself in its owndefinition of sources to
query. This can be mitigated by the aforementioned manual
validation, but themore scalable and programmatic approach
might be accomplished through short-circuiting conditional
logic in the querying function, i.e., preventing an aggrega-
tion web service from sending a request to itself and causing
an infinite loop (Fig. 4b). Doing so in the self-referencing
case is straightforward but through the indirection introduced
through aggregator, an “aggregator-in-the-middle” prevents

7 Tools like cURL can also specify timeouts as command-line flags,
but this moves the responsibility to the client.

this logic from being enforced, as a request from a secondary
aggregator would be handled as if from any other client. We
discuss this problem further in Sect. 7.2.

5 Core features

In this paper, we define approaches to extend the capability
of the aggregator abstraction without regard to implementa-
tion. This brief but important Section defines the empirical
assumptions and expectations currently exhibited by an
aggregator. These premises of an aggregator set forth the
foundational base cases of expectations of an implementa-
tion. We build on these assumptions in Sect. 7.

Expectation 1 Anaggregatormust treatweb requests received
as clients and the requests it sends to archival
sources as agnostic of the dynamics of the
receiver.

Expectation 2 An aggregator must treat clients’ requests
equally, regardless of whether a requestor is
a user-agent, a script, or an aggregator itself.

Expectation 3 An aggregator is unaware of whether its own
configuration incurs any sources queries of
its parent.

Expectation 4 An aggregator must treat clients as stateless
and return results from its queries sources.

6 Existing problematic scenarios

Whatmight be deemed as “mis-”configuration of aMemento
aggregatormay only be exhibited and discoverable upon exe-
cution of a request for aggregation. Typical approaches for
including a web archive as an aggregation source are (1) the
popularity of the archive itself to merit inclusion, (2) manual
discovery by those responsible for configuring the aggrega-
tor, or (3) efforts toward publicity on the part of the archive
itself to make those responsible for the archive’s existence
and Memento compliance. There is no established process
for an archive to declare the availability of its holdings in an
effort to be included in a publicly accessible aggregator [35,
36].Web archives with restricted holdings may be unsuitable
to aggregate for reason of privacy of the holdings [25] or the
requirement to limit accessibility beyond the conventional
public scope. For example, the UK Web Archive requires a
client to be physically on-site to access some of its holdings,
otherwise returning an HTTP 451 (Unavailable For Legal
Reason) [11] status code.

Aggregators like the Time Travel service also supply
TimeGate functionality, allowing for temporal negotiation
(per Sect. 2), which is outside of this paper’s scope. As tem-
poral negotiation requires an index for efficient selection

123

Exploiting the untapped functional potential of memento aggregators beyond aggregation 99

Fig. 5 A typical use case for a
Memento aggregator is for a
user to specify a URL and
receive a TimeMap representing
a list of identifiers (URI-Ms) in
the past—S1. Shown here is a
Link [32] formatted aggregated
TimeMap from MemGator
containing a URI-R (line 3 in
orange), URI-Ts (lines 4, 12–17
in green), URI-Ms (lines 6–11
in purple) and a URI-G (line 18
in blue) (color figure online)

curl https://memgator.example/timemap/link/https://www.springer.com/journal/7991

2

<https://www.springer.com/journal/799>; rel="original",3

<https://memgator.example/timemap/link/https://www.springer.com/journal/79>; rel="self";
type="application/link-format",

4

5

<https://web.archive.org/web/20160207023452/http://www.springer.com:80/journal/799>;
rel="first memento"; datetime="Sun, 07 Feb 2016 02:34:52 GMT",

6

7

<https://web.archive.org/web/20220221142918/https://www.springer.com/journal/799/>;
rel="memento"; datetime="Mon, 21 Feb 2022 14:29:18 GMT",

8

9

<https://web.archive.org/web/20230703211521/https://www.springer.com/journal/799>;
rel="last memento"; datetime="Mon, 03 Jul 2023 21:15:21 GMT",

10

11

<https://memgator.example/timemap/link/https://www.springer.com/journal/799>;
rel="timemap"; type="application/link-format",

12

13

<https://memgator.example/timemap/json/https://www.springer.com/journal/799>;
rel="timemap"; type="application/json",

14

15

<https://memgator.example/timemap/cdxj/https://www.springer.com/journal/799>;
rel="timemap"; type="application/cdxj+ors",

16

17

<https://memgator.example/timegate/https://www.springer.com/journal/799>; rel="timegate"18

(required for scale cf. query time indexing), an aggregator
would need to retain the extent of the captures on a URI-R
basis from their set of sources. As this is dynamic due to
the availability of various archives’ web services, the non-
static nature of the set of mementos in an archive, etc., a
heuristic-based approach or some form of caching [9] might
suffice for “good enough” temporal negotiation. For optimal
precision of the representation of sources’ holdings, runtime
querying of said sources’ respective indexes produces amore
representative result. Thus, the abstraction of a TimeGate
service being co-located with an aggregator would still suc-
cumb to the effects described in this Section. The remainder
of this section describes three effects that can plague current
aggregation instances: aggregation cycles (Sect. 6.1), self-
reference (Sect. 6.2), and source redundancy (Sect. 6.3).

6.1 When a tree becomes a graph

As an extension of S2 in Sect. 4.3, an aggregator (A) request-
ing captures from a second aggregator (B) may cause a
cycle if the latter aggregator is configured to query aggre-
gator A. This can be mitigated using a few approaches,
one of which we describe in Sect. 7.2. Figure4b illustrates
an abstract scenario where this might occur with user-
configurable Memento aggregators.

6.2 Self-reference

A simpler example of the abstraction where an aggrega-
tor, through the request chain, is requested to respond to a
request that it initiated is exhibited in an aggregator’s own
endpoints beingwithin its configuration.Aweb servicemight
be naive of the URI to which it is accessible, blindly send-
ing responses after consuming and processing the parameters
in the requests received. Likewise, the solution described in
Sect. 7.2 would prevent this from occurring.

6.3 Duplication of sources

The combination of aggregators being user-configurable and
the potential for aggregators to query aggregators may result
in duplication of results. For example, in Fig. 6, aggregator
A queries web archive A, web archive B, and aggregator B.
Aggregator B queries web archiveA,web archive C, andweb
archive D. It could be useful for the clients of aggregator A to
obtain the results from aggregator B, for instance, aggregator
B may be privy to access restrictive web archives C and D.
However, the results returned from aggregator B from web
archive A will likely be redundant of those requested from
aggregator A. Thus, the results may need to be deduplicated.
This characteristic may also exist outside of aggregation.
For instance, aggregators currently configured to request
mementos from archive.org and archive-it.org (both hosted
by Internet Archive) will often receive URI-Ms from each
archive with precisely the same 14-digit time stamp repre-
sented in the URI-M. While it is possible that two services
have unique captures (based on the tools used), this requires
dereferencing the URI-Ms, which is out of the scope of this
paper that focuses on TimeMaps.

7 Newfound capabilities

In this paper, we emphasize the contribution of the untapped
functional potential of a Memento aggregator beyond simple
aggregation. Section5 outlined the fundamental expectations
of an aggregator that are exhibited andmust be maintained as
core functions. While the logic itself of strategically query-
ing the set of archives with which an aggregator is configured
has been explored in other works using profiles or machine-
learning (Sect. 3.3), these do not consider the breadth of
potential improvements like enabling the client to have fur-
ther control of the aggregation beyondURI (e.g., usingHTTP
Prefer [22]), efficiency in returning partial results through

123

100 M. Kelly

Fig. 6 An aggregator (A) configured to request captures from a set
of sources {S} inclusive of a second aggregator (B) can result with B
redundantly querying one of A’s sources, i.e., |SA ∩ SB | ≥ 1

HTTP endpoints, and mitigation of a non-curated set of
archival sources.

7.1 User-defined set of archives

HTTP provides a standardized means [22] for enabling the
end-user (one querying an aggregator through HTTP) to
specify the archival sources for aggregation—the HTTP Pre-
fer request header [38]. The value for this headermay include
an encoded, modified version of the JSON data that is typi-
cally used to configureMemGator and contain custom values
and transporting through the header. The expectation of an
enhanced aggregator is that it will be required to decode this
JSON and at its discretion, use that as the basis for the set
of archives to query. Some nuances to this approach that
have not been explored are (for example) whether the con-
figuration can and should be applied to all users, the rules
that should restrict which clients should be authorized to
affect this change in the aggregator’s operation, and how to
further express the semantics to the extent towhich the prefer-
ence was applied (beyond supplying the Preference-Applied
response header).

7.2 Cycle detection

In Sect. 6.1, we introduced the potential for a cycle to occur
when Memento aggregators are user-configurable and obliv-
ious to the sources subsequently queried by aggregators
further in the request chain. Approaches at mitigating cycles
admittedly require the notion of HTTP being stateless to be
violated. For instance, including a nonce or unique value
to the request and propagating that to the sources queried
(whether a web archive or aggregator), and likewise reading
this value would allow the process to be short-circuited and

provide a requestor some indication that the requestee was a
requestor earlier in the hierarchical chain.

7.3 Preliminary results streaming

HTTP provides an often unused but standardizedmechanism
for a server to convey that a request is still processing (HTTP
202 status code) and that a client should wait and check back
later [13], often at some indicated amount of time. In the con-
text of Memento aggregation, web archives or other archival
sources (e.g., other aggregators per Sect. 4.3), a set of sources
from which resources are requested likely returns results in
respectively varying amounts of time. This can create a bot-
tleneck while the aggregation service waits for the slowest
endpoint to respond but can be optimized by progressively
building the result (Fig. 7). MemGator, for instance, merges
TimeMaps as they arrive from the requesting aggregator and
provide timeouts that can be specified by the user (i.e., the
“user” that is executing theMemGator binary—not onemak-
ing the HTTP request).

Clients making requests to aggregators have some expec-
tation of a balance between correctness, completeness, and
efficiency based on their particular use case. As above, the
ability to short-circuit a request either aftermeeting some cri-
teria or threshold (e.g., response time) is not well-explored.
As with our previous work in allowing a client to specify the
set of archives to use as the basis for aggregation [22], we
provide a sample approach in specifying these conditions to
an enhanced aggregator in Sect. 8.1.

An important precondition for optimizing aggregators’
processing through streaming is the recognition thatMemento
does not guarantee nor enforce internal temporal order of
the identifiers in TimeMaps. When progressively merging
TimeMaps from a partial set of sources requested, the merg-
ing process can be performed asynchronously relative to
responses being received or more simply, not at all. For
an aggregator to wait until all web archives have responded
(which may never occur in the case of transient errors at an
archive) is temporally inefficient. However, an incomplete
(i.e., containing results only from a subset of archives), par-
tially sorted, or unsorted aggregatedTimeMapbeing returned
to an end-user, while an aggregator continues to wait can
help to inform the end-user of the degree of success thus
far. This may be potentially useful in cases where the results
of the archives referenced in the aggregated TimeMap are
explicit (e.g., through included metadata) instead of need-
ing to be inferred (e.g., zero URI-Ms from an archive might
mean no captures). This latter point can be helpful to end-
users in making an informed decision to prematurely close
the request if the results from an archive, as expressed in the
partially aggregated TimeMap, are not to their expectations.
This feature is discussed further in Sect. 8.1.

123

Exploiting the untapped functional potential of memento aggregators beyond aggregation 101

Fig. 7 Rather than an aggregator waiting for the slowest archival source to respond, the response can be progressively built based on the data
received thus far. This response may be served to a client as a preliminary response as indicated by HTTP 202

While the ability to return a TimeMap containing results
from a subset of archives from which TimeMaps were
requested may be useful and more efficient, the tempo-
ral burden for an aggregator to sort results is relatively
less expensive, as it can be performed asynchronously and
progressively. Despite this, partial, unsorted, concatenated
TimeMaps returned using either a mechanism of streaming
or through the HTTP 202 mechanism allows results, even if
intermediate, to be immediately used rather than waiting on
a likely unrevealed (to the end-user) set of conditions that are
used prior to the response being returned.

7.4 Rescoping the aggregator for client-side
execution

In Sect. 2, we alluded to the propagation model, which may
itself become recursive, of a client querying an aggregator
that then similarly becomes the client through propagation
of parameters. With Memento, a user-agent conventionally
represents a client, transforming the request to the appropri-
ate format (e.g., HTTP headers) as expected by a server (e.g.,
an aggregator).

From the client’s perspective, the set of archives that an
aggregator queried is not typically revealed. For example,
if a client sends a request to an aggregator for https://www.
springer.com/journal/799 and receives back a TimeMap con-
taining URI-Ms (Fig. 5), the set of archives represented by
the URI-Msmight be representative of the entirety of the set,
but that fact is not explicitly conveyed. It is likely and com-
mon, because of archival scoping and based on the URI-R
provided, that archives within the set queried possessed no
mementos for the URI-R and thus are not represented. It
is wasteful and temporally inefficient to send requests to
archives that possess no captures for a URI-R [25]. A pri-
ori knowledge as established by profiling archives of their
holdings [2] or more specifically MementoMap [4] helps to

mitigate this problem. These advancements allow the set of
archives to be strategically defined so requests for URI-Rs
that are unlikely to be in an archives’ respective holdings
are not requested. However, MementoMap requires archival
cooperation and is not foolproof if the index of the captures
[9] is not updated to be representative of newly collected cap-
tures. It is also heuristic-based, so has false positive built in,
i.e., likelihoods may result in no URI-Ms being returned in
the TimeMap from an archive that was queried, despite their
profile stating that they have captures.

8 Implementation

In previous sections, we referenced additional features to
which a Memento aggregator would be in a position to
exhibit for additional usability beyond server-side, service-
controlled, un-customizable aggregation. These features
include:

Feature A Client-side archival specification (Sect. 7 [22])
Feature B Streaming partially aggregated TimeMaps as

they arrive from archival sources (Sect. 7.3)
Feature C Metadata of archives queried and aggregated

(Sect. 7.3)
Feature D Cycle mitigation to prevent aggregators from

recursively and infinitely querying themselves
(Sect. 6.1)

Feature E Pure client-sidememento aggregation (Sect. 3.3)

As part of the evaluation into the feasibility and potential
complications of exhibiting these features, we modified two
open source software tools as a proof-of-concept. The first
is a modification of MemGator. Because we also recognize
that running a command-line service is not a feasible task for
some end-users, we have also provided a modified version

123

https://www.springer.com/journal/799
https://www.springer.com/journal/799

102 M. Kelly

Fig. 8 A revised Mink [24]
interface (prototype depicted)
allows for client-side archival
specification but also instills
aspects of query precedence and
customizing thresholds, among
other advanced aggregation
concepts introduced in prior
work [21, 22, 25] and expanded
upon in this paper

of Mink. The latter provides the novel aspect of a purely
client-side Memento aggregator (Feature E). Note that these
changes to the tools are meant to be a proof-of-concept as
a reference approach to apply elsewhere and a basis for the
functionality to be improved.

8.1 MemGator changes

Prior to this work, the de facto approach of using an aggre-
gator, as discussed in Sect. 3, is to query it through an HTTP
request as an end-user. While a “user” who runs MemGator
instance can customize the set of archives aggregated upon
initializing the service through the MemGator executable,
customizing this set continues to not be possible with Mem-
Gator releases as of thiswriting.Our priorwork [22] provided
a fork of MemGator8 to exhibit the functionality of allowing
clients (beyond those running an instance) to specify the set
of archives that are queried. We expand on this implemen-
tation to provide additional functionality beyond the initial
contribution.

Feature B entails serving preliminary results to clients
using the HTTP 202 mechanism described in Sect. 7.3 and
illustrated in Fig. 7.

Themechanism for providingmetadata (Feature C) can be
a powerful one that allows researchers to hone their data col-
lection efforts. For example, if requests are sent with URI-Rs
of a certain sort, a researcher would not need to infer whether
an archive was queried by the aggregator for the results but
rather, the aggregator will be explicit about which archives
were requested and where responses either contained no

8 https://github.com/machawk1/gogator

mementos or perhaps, the transaction from aggregator to
archival source went awry. More standardized mechanisms
for expression of metadata can likely be investigated to make
this process more useful, usable, and interoperable.

Feature E is irrelevant to MemGator, which expects com-
munication to an HTTP endpoint for a persistent process to
be used by multiple clients.

8.2 Mink changes

In Sect. 3.3, we discussed the limitations on the capability of
Mink in that (1) it requires an enhanced server-side aggre-
gator (e.g., a MemGator instance as initially described in
Sect. 8.1) or (2) it must perform aggregation itself to imple-
ment the request for archival selection and specification [22]
by the user. In this subsection, we discuss the changes to
the Mink codebase to exhibit both of these cases—leverage
an enhanced server-side aggregator or ultimately rely on a
purely client-side approach for aggregation. Either and both
approaches can become usable with these Mink modifica-
tions.

9 Discussion and future work

Implicit to this work is the continuous effort to enable the
end-user, for which aggregators are typically deployed, to
be able to be more specific about that which they would
like aggregated. As described in Sect. 3.3, allowing for this
degree of interaction with a web service will likely have ram-
ifications to efficiency, for example, cachingmechanismmay
not be beneficial if archival sources vary with each request.

123

https://github.com/machawk1/gogator

Exploiting the untapped functional potential of memento aggregators beyond aggregation 103

For the Time Travel service, this might be moot, as the
set of archives queried is controlled server-side. For open-
source aggregators, however, which have the potential for
extended capability, this process can be further optimized
and explored.

There is also the notion of functional cohesion, that is, a
service should ideally do one job and do itwell. This cohesion
is already violated in practice with the addition of TimeGate
functionality being co-located with TimeMap querying (i.e.,
aggregation) endpoints. We hope to see further work done
in investigating use cases for both the end-user querying
aggregators, researchers deploying their own aggregators,
and the functions and processes inherent to the aggregation
procedure to enhance the capability to make the aggregation
concept generally more usable.

The choice to use HTTP 202 (Accepted), as the seman-
tics are specified [13], requires an additional method of
indirection, despite the simplified portrayal in Fig. 7. As
defined in RFC 7231, appropriate use of this status code
should contain a representation that describes the status of
the (aggregation) process and provide a means (e.g., another
URI) to obtain more information. For simplicity, our proof-
of-concept exhibits somewhat of an abuse of this status code
in that the representation being presented from the enhanced,
server-side aggregator is a TimeMap representing a partially
processed result. This can be improved and in initial explo-
ration, HTTP 206 [12] might seem suitable except for its
purpose being for serving a partial response body for a range
request, which is not accurate to what an aggregator needs to
convey with a partial TimeMap.

To reiterate, one goal of this was to evaluate the state-of-
the-art of Memento aggregation and provided an open-ended
exploratory investigation and enumeration of the functional
potential of Memento aggregators that is not currently being
utilized.

10 Conclusion

This paper focused on the aspect of Memento aggregation.
Weexplicitly identified the state-of-the-art in pure server-side
aggregators (Time Travel) and user-deployable aggregators
(MemGator). Through an aggregator being user-configurable
and -deployable, which has proven useful to researchers,
other potential issues may arise (Sect. 6) based solely on the
current functionality of an aggregator. We proposed further
functional extensions to the internal aggregation process and
provided reference implementations. Tomitigate the require-
ment for an aggregator to be “enhanced” to this extended
functionality, we have also implemented a purely client-side
Memento aggregator and bundled the reference implementa-
tion within an existing, publicly deployed browser extension.
All implementations contributed in this paper are open source

with permissive licenses with the intent for further explo-
ration of Memento aggregation beyond simple end-user
utilization.

From the perspective of a web service where a client sends
anHTTP request to an endpoint, the aspects of this workmay
not much matter. However, the capacity of aggregators in the
status quo still contains untapped potential capability beyond
that the typical use case (S1). By enumerating these poten-
tial concerns that may arise (Sect. 6) with a user-controlled
Memento aggregator, the ultimate goal of enabling a client
to have more expression and preference in the process of
aggregating web archives will hopefully be improved.

Acknowledgements For initial discussions on aggregator chaining and
potential pitfalls, we would like to thank Chuck Cartledge, Sawood
Alam, Michael L. Nelson, and Michele C. Weigle.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Alam, S., Nelson, M.L.: MemGator - a portable concurrent
Memento aggregator. In: Proceedings of theACM/IEEE Joint Con-
ference on Digital Libraries (JCDL), pp. 243–244 (2016). https://
doi.org/10.1145/2910896.2925452

2. Alam, S., Nelson, M.L., Van de Sompel, H., Balakireva, L.L.,
Shankar, H., Rosenthal, D.S.H.: Web archive profiling through
CDX summarization. Int. J. Digit. Libr. (IJDL) 17(3), 223–238
(2016). https://doi.org/10.1007/s00799-016-0184-4

3. Alam, S.,Weigle,M.C., Nelson,M.L.: Profilingweb archival voids
for Memento routing. In: Proceedings of ACM/IEEE Joint Confer-
ence on Digital Libraries (JCDL), pp. 150–159 (2021). https://doi.
org/10.1109/JCDL52503.2021.00027

4. Alam, S.,Weigle,M.C., Nelson,M.L.,Melo, F., Bicho, D., Gomes,
D.: MementoMap framework for flexible and adaptive web archive
profiling. In: Proceedings of the ACM/IEEE Joint Conference on
Digital Libraries (JCDL), pp. 172–181 (2019). https://doi.org/10.
1109/JCDL.2019.00033

5. Alkwai, L., Nelson, M.L., Weigle, M.C.: Comparing the archival
rate of Arabic, English, Danish, and Korean language web pages.
ACM Trans. Inf. Syst. (TOIS) 36(1), 1–34 (2017). https://doi.org/
10.1145/3041656

6. AlSum, A., Weigle, M.C., Nelson, M.L., Van de Sompel, H.:
Profiling web archive coverage for top-level domain and content
language. Int. J. Digit. Libr. (IJDL) 14(3–4), 149–166 (2014).
https://doi.org/10.1007/s00799-014-0118-y

7. Aturban, M., Nelson, M.L., Weigle, M.C.: Where did the web
archive go? In: Proceedings of the Theory and Practice of Dig-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/2910896.2925452
https://doi.org/10.1145/2910896.2925452
https://doi.org/10.1007/s00799-016-0184-4
https://doi.org/10.1109/JCDL52503.2021.00027
https://doi.org/10.1109/JCDL52503.2021.00027
https://doi.org/10.1109/JCDL.2019.00033
https://doi.org/10.1109/JCDL.2019.00033
https://doi.org/10.1145/3041656
https://doi.org/10.1145/3041656
https://doi.org/10.1007/s00799-014-0118-y

104 M. Kelly

ital Libraries Conference (TPDL), pp. 73–84 (2021). https://doi.
org/10.1007/978-3-030-86324-1_9

8. Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform Resource
Identifier (URI): Generic Syntax. IETF RFC 3986 (2005)

9. Bornand, N.J., Balakireva, L., Van de Sompel, H.: Routing
Memento requests using binary classifiers. In: Proceedings of the
ACM/IEEE Joint Conference on Digital Libraries (JCDL), pp. 63–
72 (2016). https://doi.org/10.1145/2910896.2910899

10. Bragg, H., Weigle, M.C.: Discovering the traces of disinformation
on Instagram in the Internet Archive. Tech. Rep. arXiv:2301.09188
(2023)

11. Bray, T.: An HTTP Status Code to Report Legal Obstacles. IETF
RFC 7725 (2016)

12. Fielding, R.T., Lafon, Y., Reschke, J.F.: Hypertext Transfer Proto-
col (HTTP/1.1): Range Requests. IETF RFC 7233 (2014)

13. Fielding, R.T., Reschke, J.F.: Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content. IETF RFC 7231 (2014)

14. Frew, L., Nelson, M.L., Weigle, M.C.: Making changes in
webpages discoverable: a change-text search interface for web
archives. In: Proceedings of ACM/IEEE Joint Conference on Dig-
ital Libraries (JCDL), pp. 71–81 (2023). https://doi.org/10.1109/
JCDL57899.2023.00021

15. Garg, K., Jayanetti, H.R., Alam, S., Weigle, M.C., Nelson, M.L.:
Challenges in replaying archived Twitter pages. Int. J. Digit. Libr.
(IJDL) (2023). https://doi.org/10.1007/s00799-023-00379-w

16. Helmond, A., van der Vlist, F.: Social media and platform histo-
riography: challenges and opportunities. TMG J. Med. Hist. 22,
6–34 (2019). https://doi.org/10.18146/tmg.434

17. Helmond, A., van der Vlist, F.: Platform and app histories: Assess-
ing source availability in web archives and app repositories. In:
D. Gomes, E. Demidova, J. Winters, T. Risse (eds.) The Past Web:
ExploringWebArchives, pp. 203–214. Springer International Pub-
lishing (2021). https://doi.org/10.1007/978-3-030-63291-5_16

18. Jones, S.M., Klein, M., Van de Sompel, H., Nelson, M.L., Weigle,
M.C.: Interoperability for accessing versions of web resources with
the Memento protocol. In: D. Gomes, E. Demidova, J. Winters,
T. Risse (eds.) The Past Web: Exploring Web Archives, pp. 101–
126. Springer International Publishing (2021). https://doi.org/10.
1007/978-3-030-63291-5_9

19. Jones, S.M., Oyen, D.: Discovering image usage online: A case
study with “flatten the curve”. In: Proceedings of ACM/IEEE
Joint Conference onDigital Libraries (JCDL), pp. 293–294 (2023).
https://doi.org/10.1109/JCDL57899.2023.00064

20. Jordan, W., Kelly, M., Brunelle, J.F., Vobrak, L., Weigle, M.C.,
Nelson,M.L.:MobileMink:Mergingmobile and desktop archived
webs. In: Proceedings of the ACM/IEEE Joint Conference onDigi-
tal Libraries (JCDL), pp. 243–244 (2015). https://doi.org/10.1145/
2756406.2756956

21. Kelly, M.: Aggregator reuse and extension for richer web archive
interaction. In: Proceedings of the 24th InternationalConference on
Asia-Pacific Digital Libraries (ICADL 2022), pp. 313–328 (2022).
https://doi.org/10.1007/978-3-031-21756-2_25

22. Kelly, M., Alam, S., Nelson, M.L., Weigle, M.C.: Client-assisted
Memento aggregation using the Prefer header. Presented at the
ACM/IEEE JCDL 2018 Workshop on Web Archiving and Digital
Libraries (WADL) (2018)

23. Kelly, M., Alkwai, L.M., Alam, S., Nelson, M.L., Weigle, M.C.,
Van de Sompel, H.: Impact of URI canonicalization on Memento
count. In: Proceedings of theACM/IEEE Joint Conference onDigi-
tal Libraries (JCDL), pp. 303–304 (2017). https://doi.org/10.1109/
JCDL.2017.7991601

24. Kelly, M., Nelson, M.L., Weigle, M.C.: Mink: Integrating the live
and archived web viewing experience using web browsers and
Memento. In: Proceedings of the ACM/IEEE Joint Conference on
Digital Libraries (JCDL), pp. 469–470 (2014). https://doi.org/10.
1109/JCDL.2014.6970229

25. Kelly, M., Nelson, M.L., Weigle, M.C.: A framework for aggre-
gating private and public web archives. In: Proceedings of the
ACM/IEEE Joint Conference on Digital Libraries (JCDL), pp.
273–282 (2018). https://doi.org/10.1145/3197026.3197045

26. Kelly, M., Zarrillo, D., Jackson, C., Yan, E.: First steps in
identifying academic migration using Memento and quasi-
canonicalization. In:WebArchiving andDigital Libraries (WADL)
Workshop. Cologne, Germany (2022)

27. Klein, M., Balakireva, L., Holub, K., Celjak, D., Rudomino, I.:
Investigating bloom filters for web archives’ holdings. In: Proceed-
ings of the ACM/IEEE Joint Conference on Digital Libraries, pp.
1–10 (2022). https://doi.org/10.1145/3529372.3530934

28. Klein, M., Balakireva, L., Shankar, H.: Evaluating Memento
service optimizations. In: Proceedings of the ACM/IEEE Joint
Conference on Digital Libraries (JCDL), pp. 182–185 (2019).
https://doi.org/10.1109/JCDL.2019.00034

29. Lobbé, Q.: Where the dead blogs are – a disaggregated explo-
ration of web archives to reveal extinct online collectives. In:
International Conference on Asian Digital Libraries (ICADL), pp.
112–123 (2018). https://doi.org/10.1007/978-3-030-04257-8_10

30. Nelson, M.L.: Right-Click to the Past – Memento for
Chrome. https://ws-dl.blogspot.com/2013/10/2013-10-14-right-
click-to-past-memento.html (2013). Accessed 1 Nov 2020

31. Nelson, M.L., Van de Sompel, H.: Adding the dimension of time
to HTTP. In: Fagerberg, J., Mowery, D.C., Nelson, R.R. (eds.) The
SAGE Handbook of Web History, vol. 14, pp. 189–214. SAGE
Publications Ltd, Thousand Oaks (2019). https://doi.org/10.4135/
9781526470546

32. Nottingham, M.: Web Linking. IETF RFC 8288 (2017)
33. Nwala, A.C., Weigle, M.C., Nelson, M.L., Ziegler, A.B., Aizman,

A.: Local Memory Project: Providing tools to build collections
of stories for local events from local sources. In: Proceedings of
the ACM/IEEE Joint Conference on Digital Libraries (JCDL), pp.
219–228 (2017). https://doi.org/10.1109/JCDL.2017.7991576

34. Postel, J.: Domain Name System Structure and Delegation. IETF
RFC 1591 (1994)

35. Rosenthal, D.S.H.: The importance of discovery in Memento
(2010). https://blog.dshr.org/2010/12/importance-of-discovery-
in-memento.html. Accessed 30 Nov 2020

36. Rosenthal, D.S.H.: Memento & the Marketplace for Archiving
(2011). https://blog.dshr.org/2011/01/memento-marketplace-for-
archiving.html. Accessed 30 Nov 2020

37. Sanderson, R., Shankar, H., Ainsworth, S., McCown, F., Adams,
S.: Implementing time travel for the web. Code4Lib J. 13, 1 (2011)

38. Snell, J.M.: Prefer Header for HTTP. IETF RFC 7240 (2014)
39. Van de Sompel, H., Nelson, M., Sanderson, R.: HTTP Framework

for Time-Based Access to Resource States – Memento. IETF RFC
7089 (2013)

40. Tweedy, H., McCown, F., Nelson, M.L.: A Memento web browser
for iOS. In: Proceedings of the ACM/IEEE Joint Conference on
Digital Libraries (JCDL), pp. 371–372 (2013). https://doi.org/10.
1145/2467696.2467764

41. Weigle, M.C., Nelson, M.L., Alam, S., Graham, M.: Right HTML,
wrong JSON: challenges in replaying archivedwebpages built with
client-side rendering. In: Proceedings of ACM/IEEE Joint Confer-
ence on Digital Libraries (JCDL), pp. 82–92 (2023). https://doi.
org/10.1109/JCDL57899.2023.00022

42. Zarrillo, D., Kelly, M., Jackson, C., Yan, E.: Collecting diachronic
affiliation data for faculty at HBCUs using Memento. Proc. Assoc.
Inf. Sci. Technol. 59(1), 527–532 (2022). https://doi.org/10.1002/
pra2.664

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-030-86324-1_9
https://doi.org/10.1007/978-3-030-86324-1_9
https://doi.org/10.1145/2910896.2910899
http://arxiv.org/abs/2301.09188
https://doi.org/10.1109/JCDL57899.2023.00021
https://doi.org/10.1109/JCDL57899.2023.00021
https://doi.org/10.1007/s00799-023-00379-w
https://doi.org/10.18146/tmg.434
https://doi.org/10.1007/978-3-030-63291-5_16
https://doi.org/10.1007/978-3-030-63291-5_9
https://doi.org/10.1007/978-3-030-63291-5_9
https://doi.org/10.1109/JCDL57899.2023.00064
https://doi.org/10.1145/2756406.2756956
https://doi.org/10.1145/2756406.2756956
https://doi.org/10.1007/978-3-031-21756-2_25
https://doi.org/10.1109/JCDL.2017.7991601
https://doi.org/10.1109/JCDL.2017.7991601
https://doi.org/10.1109/JCDL.2014.6970229
https://doi.org/10.1109/JCDL.2014.6970229
https://doi.org/10.1145/3197026.3197045
https://doi.org/10.1145/3529372.3530934
https://doi.org/10.1109/JCDL.2019.00034
https://doi.org/10.1007/978-3-030-04257-8_10
https://ws-dl.blogspot.com/2013/10/2013-10-14-right-click-to-past-memento.html
https://ws-dl.blogspot.com/2013/10/2013-10-14-right-click-to-past-memento.html
https://doi.org/10.4135/9781526470546
https://doi.org/10.4135/9781526470546
https://doi.org/10.1109/JCDL.2017.7991576
https://blog.dshr.org/2010/12/importance-of-discovery-in-memento.html
https://blog.dshr.org/2010/12/importance-of-discovery-in-memento.html
https://blog.dshr.org/2011/01/memento-marketplace-for-archiving.html
https://blog.dshr.org/2011/01/memento-marketplace-for-archiving.html
https://doi.org/10.1145/2467696.2467764
https://doi.org/10.1145/2467696.2467764
https://doi.org/10.1109/JCDL57899.2023.00022
https://doi.org/10.1109/JCDL57899.2023.00022
https://doi.org/10.1002/pra2.664
https://doi.org/10.1002/pra2.664

	Exploiting the untapped functional potential of Memento aggregators beyond aggregation
	Abstract
	1 Introduction
	2 Background
	3 Related work
	3.1 Using aggregators beyond end-user aggregation
	3.2 Graph abstractions
	3.3 Aggregation optimization

	4 Base querying models
	4.1 Proxy-style querying (S0)
	4.2 Conventional querying (S1)
	4.3 Aggregator chaining (S2)

	5 Core features
	6 Existing problematic scenarios
	6.1 When a tree becomes a graph
	6.2 Self-reference
	6.3 Duplication of sources

	7 Newfound capabilities
	7.1 User-defined set of archives
	7.2 Cycle detection
	7.3 Preliminary results streaming
	7.4 Rescoping the aggregator for client-side execution

	8 Implementation
	8.1 MemGator changes
	8.2 Mink changes

	9 Discussion and future work
	10 Conclusion
	Acknowledgements
	References

