
Int J Softw Tools Technol Transfer (2003) 4: 246–259 / Digital Object Identifier (DOI) 10.1007/s10009-002-0078-1

Managing the verification trajectory

Theo C. Ruys, Ed Brinksma

Faculty of Computer Science, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
E-mail: {ruys,brinksma}@cs.utwente.nl
Published online: 18 June 2002 –  Springer-Verlag 2002

Abstract. In this paper we take a closer look at the auto-
mated analysis of designs, in particular of verification by
model checking. Model checking tools are increasingly be-
ing used for the verification of real-life systems in an in-
dustrial context. In addition to ongoing research aimed at
curbing the complexity of dealing with the inherent state
space explosion problem – which allows us to apply these
techniques to ever larger systems–attentionmustnowalso
be paid to the methodology of model checking, to decide
how to use these techniques to their best advantage.Model
checking “in the large” causes a substantial proliferation of
interrelatedmodels andmodel checking sessions thatmust
be carefully managed in order to control the overall verifi-
cation process. We show that in order to do this well both
notational and tool support are required. We discuss the
use of software configurationmanagement techniques and
tools tomanage and control the verification trajectory.We
present Xspin/Project, an extension to Xspin, which
automatically controls andmanages the validation trajec-
torywhenusing themodel checkerSpin.

Keywords: Model checking – Computer-aided verifica-
tion – Software configuration management

1 Introduction

The research and development of formal methods and
related tool environments for supporting the design,
analysis, and implementation of software systems now
spans more than two decades. Although researchers have
pointed out the potential benefit of the tool-supported
use of formal notations, models and theories to improve
the quality of complicated systems – especially concur-
rent, reactive systems – the actual application of such
methods and tools to real-life examples is a relatively re-
cent phenomenon.

There are several reasons for this. First, the field of
research has become mature in the sense that several
powerful theoretical tools have been developed to form
the basis for such applications. In particular, this involves
models for dealing with real-time, stochastic, and hybrid
systems that are relevant for the description and analy-
sis of so-called embedded systems. These software sys-
tems usually control and extend the functionality of the
physical systems that they are part of (cars, airplanes,
dishwashers, CD players, etc.). Due to the safety critical
nature of the overall system, the implementation in hard-
ware and/or the high replication of such products, the
correctness requirements of these systems are relatively
high, which warrants an investment in the use of formal
methods and tools.

Second, the performance of the tools has improved
dramatically over the past few years, bringing systems of
realistic size within reach of a more formal treatment. In
part this has to do with general progress such as the avail-
ability of ever-cheaper memory and ever-faster hardware.
This is also due to more specific developments, some of
which we discuss below.

In this paper we take a closer look at the analysis of
designs, in particular of verification by model checking.
Some of what we have to say, however, will, mutatis mu-
tandis, also apply to other analytic techniques, such as
proof checking, simulation, and testing. The first of these
is also a verification technique, like model checking, i.e., it
can be used to show formally that a design fulfils a given
property. The latter two techniques can generally be used
only to increase our confidence in the correctness of de-
signs, but in some situations they have advantages over
strict verification, such as application to very large de-
signs, or application to physical systems.

Although there is substantial progress in the devel-
opment of both proof and model checking tools, the lat-
ter are currently more successful in terms of industrial
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applications. One reason is that for proof checking the
verifier must first suggest a proof outline of the desired
verification property to the tool, which is subsequently
completed and checked by the tool in an extended inter-
action with the tool user. In the case of model checking,
less user activity seems to be required, although more
than is generally assumed, as we will point out in the
next section. When provided with a model and a prop-
erty to be verified, in principle a model checker comes up
with a result fully automatically. The reduced level of user
interaction is seen as an advantage for industrial applica-
tions, as it has better chances of being used successfully
by non-experts.

A second reason for the relative success of model
checking is that here there has been substantial progress
in dealing with the state space explosion problem, which
affects all tools in which concurrent systems are basi-
cally represented in terms of their states and the tran-
sitions between them. Over the past years there has
been a remarkable improvement in dealing with larger
state spaces via the use of new techniques (bitstate hash-
ing [24], BDDs [7–9], on-the-fly [12], compositional [1, 34,
47] and partial-order techniques [19, 25, 40, 52]) that re-
duce, sometimes dramatically, the memory requirements.
It is this development that has taken model checking
applications from the stage of toy examples to real-life
applications.

This paper is concerned with what could be called the
methodology of model checking, and has grown out of our
experience [13, 28, 46] with this technique in larger appli-
cations. Although formal methods is by now an accepted
name for the field of computer science that concerns it-
self with the formal treatment of the problems mentioned
above, it does not yet generally offer what its name seems
to suggests, viz. methods for the application of formal
techniques. Research has been concentrated mainly on
the techniques themselves, but now that real applications
have come within reach the question of how to apply them
best can no longer be ignored.

The main observation that underlies this work is the
fact that model checking “in the large” causes a substan-
tial proliferation of interrelated models and model check-
ing sessions that must be carefully managed in order to
control the overall verification process. To do this well
both notational and tool support are required, as we will
show. In [44, 45] we proposed ‘literate techniques’ [30, 42]
to structure the modelling and verification trajectory.We
concluded that these techniques are useful to structure
the modelling phase, but do not scale up to manage the
verification phase of validation projects. This paper is
concerned with structural and systematic ways to control
the verification phase.

The structure of the rest of this paper is as fol-
lows: Section 2 contains an analysis of the structure of
larger model checking applications, giving rise to what we
have termed the systematic verification model (SVM). In
Sect. 3 we discuss the desired tool support for verifica-

tion management. In Sect. 4 we presentXspin/Project,
a prototype tool to manage and control the validation tra-
jectory when using the model checker Spin. In Sect. 5 we
draw our conclusions and discuss future work.

2 Systematic verification model

Most literature on verification by model checking deals
with the verification of a small set of properties with re-
spect to a single model. The contribution of such publica-
tions is often found in suggestions of clever ways in which
the complexity of the model and/or property may be re-
duced, so that the model checking procedure requires less
time and/or memory, or can be applied to larger cases.
Although recent progress in this area has been most im-
pressive, as already discussed in the previous section, the
systematic verification of real-life systems usually can-
not be dealt with in this restricted framework. The state
spaces of such systems are generally many orders of mag-
nitude greater than what can be handled by any ex-
isting tool, and there are good reasons to believe that
this is a structural problem. A virtually autonomous pro-
cess leads to the creation of ever more involved systems,
where the growth in complexity easily outweighs the in-
creased analytical capacities. Although there have also
been reports of verification results for extremely large
state spaces using BDD [7–9] and compositional model
checking [1, 2, 34, 47] techniques, these approaches do not
give uniformly good results. They exploit implicit regu-
larities in the structure of the verification problems that
are not at all well understood, and their performance may
be considered ‘chaotic’, in the sense that small changes in
the problem statement may lead to arbitrarily large dif-
ferences in performance.

A second practical problem is that of the validity of
the formal model (or the properties) that is used for ver-
ification. In the literature one is often confronted with
benchmark problems (e.g., dining philosophers [14], alter-
nating bit protocol [4], railway crossing [33], bounded re-
transmission protocol [20], etc.). In practical applications
the question whether the formalised problem statement is
an adequate reflection of the actual problem can be a sig-
nificant source of problems, where both the complexity
of the involved system and the (lack of) precision of the
informal specification of the system’s functionality and
requirements play a role.

Both of the above problems give rise to a more in-
volved verification method in which (many) different for-
mal models are used in the course of the verification
procedure. To deal with large state spaces abstractions
of the complete system model are used. These abstrac-
tions should preserve the (non)validity of the require-
ments that must be verified. Formally, the adequacy of
an abstraction with respect to a given property should
be demonstrated; in practice this is often simply as-
sumed. When more than one formal property must be



248 T.C. Ruys, E. Brinksma: Managing the verification trajectory

verified it is likely that abstractions that are sufficiently
small can be obtained only with respect to the single
properties, and not for their conjunction. This implies
that a set of related, but different abstractions must be
maintained.

Another way of dealing with too large state spaces
is to give up on the precision of the verification result.
Some model checkers offer facilities to explore the state
space with less than complete coverage (e.g., using the
supertrace/bitstate algorithm of Spin [24]). To ensure
the reproducibility and interpretability of such verifica-
tion results information concerning the approximations
used should be maintained.

Where the maintenance of relevant sets of models and
related information is complicated by the necessity to
keep the state space problem in check, the issue is fur-
ther complicated by the validity problem. In practice,
its presence means that whenever a property is falsified,
the negative result may have two subtly but importantly
different causes. It may be a modelling error, i.e., upon
studying the error it is discovered that the model (in
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Fig. 1. Verification trajectory

a given case, the relevant abstraction) does not reflect the
design of the system. It implies that the model must be
corrected, and verification must be restarted with respect
to the improved model. If the analysis of the falsification
shows that there is no undue discrepancy between the de-
sign and the model, then a design error has been exposed,
and the verification procedure is concluded with a nega-
tive result. The design is said to be verified if and only if
all properties have been verified with respect to a valid
model.

The above entails that for systematic verification we
must not only maintain different model abstractions, but
also, in general, different versions of the (abstractions of)
the verification model. It is clear that it can be quite
costly and time consuming to have to restart an entire
verification procedure at each model revision. There are
essentially two ways to reduce such efforts. One is the im-
prove the quality of the model(s) before verification by
simulation. Although generally less thorough than model
checking, simulation can be used effectively to get rid of
the simpler category of modelling errors.
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The second improvement keeps track of the interde-
pendencies of the different abstractions and their ver-
sions. If, for example, a model abstraction for one verified
property abstracts away completely from the model revi-
sions that are needed to repair a modelling error, then ob-
viously the existing verification of such a property retains
its validity. Using such information one needs to reverify
only those properties whose corresponding models have
been invalidated by a model revision.

It is hard to produce a complete characterisation of
such interdependencies. For a good number of properties
independence may be established on grounds of locality,
e.g., they depend only on different sets of concurrent com-
ponents. Compositional model checking techniques [1, 2]
can be used to establish such minimal dependency sets.

It is clear that the many abstractions and versions
of the verification model that may result from the pro-
cesses and considerations described above need to be doc-
umented and maintained very carefully to manage a prac-
tical verification problem, which requires notational and
tool support considerably beyond the core functionality
of current model checking tools.

In Fig. 1 we have indicated the algorithmic structure
of the problem in the style of a flow-chart. Here, we as-
sume a given design phase that provides us with a (formal
or informal) system description and a list of requirements.
Both are subsequently formalized in a modelling phase,
yielding an operational model M and a set of formal re-
quirements S. A feedback loop based on simulation ofM
(guided by S) can be used to improve the formalisation in
an approximative manner. When the quality ofM and S
is felt to be acceptable the verification phase is entered.

In this phase a set NV of non-verified requirements is
maintained, initialised with S. Iteratively, for each prop-
erty φi in NV an adequate abstraction Mi of M with
respect to φi is produced and subsequently verified for
φi. If this succeeds for all φi in NV then the verifica-
tion phase is exited with a positive result. If, however, the
verification of M with respect to φi fails then the error
information is analysed. If the error is found to be a mod-
elling error, then Mi (and M) is corrected and NV is
updated to the union of the unverified requirements and
all requirements whose verification is invalidated by the
model correction. The verification loop is then restarted
on the basis of this new set NV . If the failure of a verifica-
tion ofM with respect to φi is due to a design error, then
the verification phase is exited with a negative result.
In Fig. 1 we assume that the properties φi are correct;
in Sect. 3.2 we will explain how to deal with erroneous
properties φi.

It is easy to imagine how the verification trajectory
could be incorporated in an adaptive design strategy,
where negative verification results result in design mod-
ifications, after which new modelling and verification
phases are begun. In this paper, however, we want to
concentrate on the already sufficiently complicated man-
agement of the a posteriori verification of designs. In the

next sections we will propose notational and structural
means for the version management of the models M and
their abstractions, andmaintenance of the setNV of non-
verified requirements.

3 Verification management

In this section we discuss the activities of the verification
phase of Fig. 1 in greater detail. As already mentioned
in Sect. 2, one of the difficulties of using model checkers
“in the large” is the management of all (generated) data
during the verification trajectory. It is indisputable that
the verification results obtained using a verification tool
should always be reproducible [22].Without tool support,
the verification engineer has to resort to general engin-
eering practices and record all verification activities into
a log-book. Consequently, the quality of the verification
process depends on the accuracy of the validation engi-
neer. This is clearly undesirable. The careful recording
of information on the different models during the ver-
ification phase becomes even more indispensable when
errors are found in one of the verification models. Apart
from the fact that the erroneous models have to be cor-
rected and reverified, all models that have been verified
previously and which are affected by the error should be
reverified as well. So-called Software Configuration Man-
agement (SCM) systems are needed to control these prob-
lems concerning the versioned product space of the verifi-
cation phase.

In Sect. 3.1 the reader is introduced to the concepts of
SCM. After this introduction, all objects that are signifi-
cant during the verification phase are defined in Sect. 3.2.
In Sect. 3.3, a reverification procedure is proposed which
ensures that previous versions of the model get rever-
ified when an error in the model is found and fixed.
Section 3.4 discusses how the verification activities could
be controlled using an SCM system.

3.1 Software configuration management

Software configuration management [3, 27] is the software
engineering discipline of managing the evolution of large
and complex software systems [51]. SCM is the process
of identifying and defining the items in a system, control-
ling the release and change of these items throughout the
life-cycle, recording and reporting the status of items and
change requests, and verifying the completeness and cor-
rectness of items [26]. The importance of SCM has widely
been recognized [41] as reflected in particular in the capa-
bility maturity model (CMM) developed by the Software
Engineering Institute [39]. Conradi and Westfechtel [11]
give an extensive overview of the current state of art of
SCM and SCM systems.

A SCM system should be supported by automated
tools. Tools for version control and build-management



250 T.C. Ruys, E. Brinksma: Managing the verification trajectory

(i.e., theprocessofautomaticallybuildingsoftwarecompo-
nents, e.g., the tool make [17]) are essential. Furthermore,
SCM tools should provide the developer with a “sandbox”
environment [32]: a consistent, flexible, and reproducible
environment to compile, edit, and debug software. SCM
tools have evolved significantly over the last 20years.Tools
have gone from file-oriented versioning utilities to full-
blown repository-based systems thatmanage projects and
support teamdevelopment environments, even across geo-
graphic locations. Leblang and Levine [32] present a prac-
tical view of SCMand offer some guidelines for selecting an
SCM tool. In this paper, a discussion on particular SCM
tools is clearlybeyondour scope.The“ConfigurationMan-
agement Yellow Pages” on Internet [53] give a detailed
overviewof the available SCM tools.

Definitions. Below we define the conceptual framework
for the rest of this paper, borrowing terminology from the
SCM community, in particular [10, 11, 51].

– Object. An object (or item) is any kind of identifiable
entity put under SCM control.

– Version. A version represents a state of an evolving
object.

– Revision. A version intended to supersede its prede-
cessor is called a revision (historical versioning).

– Variant. Versions intended to coexist are called vari-
ants (parallel versioning).

– Configuration. A configuration is a consistent and
complete version of a composite object, i.e., a set of
object versions and their relationships.

– Product space. The product space is composed of the
objects and their relationships. The product space is
organized by relationships between objects, e.g., com-
position relationships and (build) dependency rela-
tionships.

– Version space. The version space is composed of the
versions (i.e., revisions and variants) and their rela-
tionships (e.g., successor, offspring, merge, etc). The
version space is often organized into a version graph or
version grid.

AND/OR graphs. AND/OR graphs [49] provide a gen-
eral model for integrating product space and version

mainsys a b

1 1 12 23 1 2

foo

2

OR edge

AND edgeAND node

OR node
sample configuration

Fig. 2. Example of a product graph using AND and OR nodes [11]

space. An AND/OR graph is a directed, acyclic graph in
which each node is either a leaf, an AND node, or an OR
node. Analogously, a distinction is made between AND
and OR edges, which originate from AND and OR nodes,
respectively.

– Leaf node. A leaf node corresponds with a primitive
object and represent program modules, documenta-
tion data, test data, etc.

– OR node. An OR node represents a versioned object.
An OR node implies a choice. One may choose one of
its successors: the versions of the object.

– AND nodes. An AND node represents a configuration.
All successors of an AND node must be combined to
form a complete configuration.

AND edges are used to represent both the composition
of configurations and dependency relationships [11]. Fig-
ure 2 shows an example – taken from [11] – of a product
graph for a configuration called foo. In this example the
product structure is selected first; subsequently, versions
of components are selected. Other selection orders (e.g.,
version first or intertwined) are also quite common [10,
11]. The grey nodes of Fig. 2 define a complete configura-
tion, i.e., a particular version of the product foo. In the
rest of the paper we will use AND/OR graphs to represent
relationships between products.

In the following section we describe the product space
and version space of a typical verification trajectory using
a model checker.

3.2 Product space

Model checking is the process of checking that a model
of a system satisfies a certain property. Consequently, the
verification activities are centralized around the verifica-
tion objects ‘model’ and ‘property’. In software develop-
ment, a software object records the data associated with
a development or maintenance activity [11]. In the verifi-
cation phase, a verification object records the data associ-
ated with a verification activity.

M – Model. From the modelling phase two products are
obtained: a modelM and a set of properties S which the
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model must satisfy (see Fig. 1). The purpose of the verifi-
cation phase is to prove that the modelM is correct with
respect to the set of properties S.

Inmost verification projects thatwe knowof, the verifi-
cationhasbeencarriedusingasinglemodelchecker.Insuch
cases, the modelM is conveniently represented directly in
the specification language of the model checker. Limiting
theverificationtoa singlemodel checker,however, restricts
the type of properties that can be checked during the ver-
ification phase. This is because – due to the nature of the
infamousstatespaceexplosion–currentmodelcheckersare
highly specialized towards the verification of a particular
system domain (e.g., hardware vs software systems) or to-
wards a certain type of properties (e.g., functional proper-
ties, timing properties). The model checker Spin [21, 23],
for example, is optimized towards the functional analysis
of communicating processes, i.e., the analysis of protocols.
Uppaal [31],ontheotherhand, isa toolboxfortheverifica-
tionandvalidationof real-time systems.

If the set S contains a diverse set of properties, it will
not suffice to use a single verification tool for all proper-
ties. Consequently, in such cases, the description language
of a single model checker will not be expressive enough to
model the system for verification of all properties S. The
modelM may then be encoded in a hybrid language of the
model checkers involved in the verification or in a more
general specification language. See [13] for an example of
a verification, where two tools were used to verify a sim-
plified version of Philips’ Bounded Retransmission Pro-
tocol [20]. Spin has been used to verify the functional
properties whereas Uppaal has been used to check the
timing properties of the protocol.

In the following, we assume that M is a model of the
system under verification. The model M is either repre-
sented in the description language of the model checker or
it is easily translated (i.e., abstracted) into the modelling
language of the verification tools.

P j – Part. In general, the detailed modelM of a system
is not suitable as input for a model checker. The reason
for this is that the state space of the model M is gen-
erally much too large to be verified exhaustively by any
model checker. Although much promising research has
been and is being conducted to tackle the state space ex-
plosion (e.g., [19, 21, 37]), the verification engineer has to
invest substantial effort as well. In order to reduce the
state space of the model he or she has to make abstrac-
tions of the model. To structure the abstraction process
and the verification process it is profitable to decompose
the modelM into a set of parts. Decomposing the model
M into parts may serve the following goals:

– Controlling the complexity of the modelM ;
– Guiding the abstraction of the modelM with respect
to the properties under verification;

– In case of an error found in M , ensuring that only
those properties get reverified which are affected by
the error.

The last goal may need some explanation. By the nature
of the model checking process itself, a single verification
run may be both space and time consuming. Therefore,
one should strive to reduce the number of model checking
runs in the verification trajectory. Using the information
contained in the decomposition of the model M and the
subsequent abstractions of the model M in the verifica-
tion phase, it may be possible to reduce the number of
reverification runs. This will be discussed in greater detail
in Sect. 3.3.
We assume that a model M is decomposed into m parts
P js.

M = P 1⊗P 2⊗ ...⊗Pm (1)

The ⊗ operator in equation (1) does not have a fixed
semantics. It just specifies the decomposition of M into
parts P 1 . . . Pm. In general, it is not clear which decom-
position is best suited for the verification of a model M .
The experience of the verification engineer and the prop-
erties that have to be checked should guide the decompos-
ition process. Some general guidelines for the decompos-
ition are:

– As a general rule of thumb, one should strive to de-
compose the model into parts which have the same
level of abstraction.

– When the system under verification is modelled as
a set of parallel communicating processes, it is best to
decompose the modelM into processes P 1 . . . Pm and
let ⊗ indicate the parallelism of the processes.

– If the modelM is defined as a literate document [44,
45], the structuring of the model into chunks may
guide the decomposition into parts.

In the following, we assume that there exists a fixed
decomposition of modelM into parts P 1 . . . Pm.

φi – Property. A property φi is a property which should
hold for the modelM under verification. Most properties
will be derived (implicitly or explicitly) from the system
requirements that have been captured during the initial
design phase. Other properties may have been identified
during the modelling phase. Although the property itself
may be specified in any language – even in natural lan-
guage – to serve as the input to a model checker, a prop-
erty should be translated into the property language of
the model checker. Most model checkers use a form of
modal logic for specification of the correctness property.

Naturally, the abstractions of the modelM should be
guidedby the correctness propertyφi that is tobeverified.

Mi = abstract(M,φi) (2)

In equation (2),Mi represents the abstract version of the
model M with respect to the property φi that is to be
verified. The function abstract represents the abstraction
activity to arrive at this modelMi. The dependency rela-
tion betweenM , the properties φi and the corresponding
modelsMi is depicted in Fig. 3 using an AND/OR graph.
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Fig. 3. Dependency tree between the model M , the properties φi, and the corresponding abstract models Mi

Ri – Verification data. A single verification run of a model
checker involves several pieces of information, that all
have to be recorded. First of all, the outcome of the run
itself has to be logged. If the property φi holds for the
modelMi, this outcome may be nothing more than “Yes,
the model Mi satisfies property φi”. There may be cases
– when the state space of the model Mi is still too large
to be verified exhaustively – that we are satisfied with the
answer “No errors found, n% of the state space visited”.
Furthermore, the proof of a property φmay sometimes be
given by a trace that leads to the state that we are inter-
ested in. The situation where the model checker concludes
that a model Mi does not satisfy the property φi is dis-
cussed later in this section. Apart from the outcome of the
various runs, other verification data includes:

– Options. Current model checkers provide the user
with an extensive set of options and directives to op-
timize and tune the functionality and performance of
the verification run. To reproduce a verification run of
a model checker all these options should be recorded.

– Statistics. Furthermore, the nature of verification
tools is that they either need a lot of processing time or
need a lot of memory or even both. Statistics on such
properties of verification runs are valuable attributes
of the verification trajectory.

All information on a particular verification run should be
regarded as a verification object as well.

Ri = run(mci,Mi, φi) (3)

Ri captures all verification data of the verification run
of the model checker mci on the model Mi against the
property φi. Although the model checkermay not be fixed
during the complete verification trajectory, we will not
make the distinction between different model checkers in
the rest of this paper. We consider the particular model
checker mci to be part of the model Mi, implicitly. In
Fig. 4 the verification data Ri is added to the dependency
graph of Fig. 3.

. . .

φ2

M1 M2

φ1

M

Mi

φi

Mn

φn

R1 R2 Ri Rn

. . .

Fig. 4. Dependency relation between the abstract model Mi, the property φi, and the verification data Ri

Abstraction of parts. In this section we investigate the re-
lation between a particular model Mi and the parts P j .
In Sect. 3.3 this relation will be used to relate the various
modelsMi’s.

In equation (1), we proposed the decomposition of
the model M into parts P 1 . . . Pm. This decomposition
is orthogonal to the abstraction of the modelM into ab-
stract modelsMi as specified in equation (2). From equa-
tion (1) and equation (2) it follows that

Mi = abstract(⊗nk=1P
k, φi) . (4)

In general, the function abstract does not distribute over
the parts P j . In other words, it is not always possible
to construct the abstract model Mi by simply making
abstractions of all the parts of M . For example, if the
model M is defined as a set of communicating processes,
a typical abstraction is to combine several processes into
a single one.

Even so, to construct a modelMi, one typically makes
abstractions of parts P j . In doing so, one often reuses ab-
stractions that worked for previous models. To control
the verification trajectory, the set of all abstractions of
parts must be managed. For this purpose, we introduce
the notion of abstraction graph. An abstraction graph
contains all parts of a model M and its abstractions as
used in the verification phase.

The bottom half of Fig. 5 shows an example of the ab-
straction graph of a modelM . The abstracted parts P are
indexed by a string of Greek letters, called the abstrac-
tion identifier. A dotted arrow from P jψ to P jω means that

P jω is a direct abstraction of P jψ. The abstraction identi-

fier ψ of a father P jψ is always the prefix of the abstraction
identifiers of its direct (more abstract) sons. For the first
abstraction of P jψ, an α is added to the abstraction identi-
fier ψ, for the second abstraction a β, etc. The bottom half
of Fig. 5 also shows that an abstraction can be obtained
by merging two different parts: P

{k,l}
α is an abstraction

of P k and P l. Note that the modelM in the abstraction



T.C. Ruys, E. Brinksma: Managing the verification trajectory 253

. . . . . .

M

. . . . . .

P kα P kγ

P kγα

P kγαα P kγαβ

P kαβ

P lα P lβ

P lβα P lβγP lββ

P kβ

P kαα

P k

φ1

R1

M1

φ2

M2

R2

M

Mi

φi

Ri

Mn

φn

Rn

P l

P
{k,l}
α

Fig. 5. Part of the product space of a verification process

graph is an AND-node in the sense that it is composed out
of all parts P 1 . . . Pm. All abstracted parts P jψ are OR-
nodes.

Summarizing, we have identified the following verification
objects: the model M , a part P j , a property φi, the cor-
responding abstract model Mi and the verification data
Ri. Furthermore, we have distinguished the abstracted
parts P jω – which are revisions of P j .

Figure 5 shows an example of a dependency graph
containing some verification objects of the product space
of a particular verification project. The model M occurs
twice in the graph. At the top M is the origin of the ab-
stract models Mi whereas at the bottom it is the parent
of all abstracted parts P j . In the example of Fig. 5, the
model Mi contains the parts P

k
γαβ and P lββ , whereas the

modelMn contains the part P
{k,l}
α .

3.3 Reverification

Apart from the verification objects discussed in the pre-
vious section, another dimension can be distinguished in
the verification process: versions. In this section we will
see that several versions of the same verification object
may exist during the verification phase.

Errors. So far we assumed that during the verification
phase no errors are being found: every abstraction Mi

is proven correct with respect to its corresponding prop-
erty φi. It is, however, common practice that instead of
proving the absence of errors, a model checker will detect
errors in the model. When an error is found by a model
checker, the error can be classified into four types:

– Property error : there is not an error in the model or
the system itself, but the property φi is incorrectly
stated;

– Abstraction error : Mi is not a correct abstraction of
M ;

– Modelling error :Mi is a correct abstraction ofM , but
M itself is not a correct representation of the system;

– Design error :Mi is a correct abstraction ofM andM
is a correct representation of the design of the system,
but the design itself is found to be erroneous.

Inmost cases, the property errorwill be straightforwardto
handle. Only the erroneouspropertyφi has to be corrected
andtheverificationshouldberunagain.However,astheab-
stractionMi ofM is guidedbyφi, theremaybe caseswhere
theabstractionMi shouldbe correctedaswell.

The other three types of errors have more implica-
tions. In all three cases the model M or its abstraction
Mi contained an error. We still have to repair this error
and reverify the corrected model against the property φi.
However, the fix to the error may have effects on all ab-
stractions Mk that have previously been verified. This
means that all modelsMk that are affected by the change
to Mi should be reverified against their corresponding
property φk. When a design error is exposed by the model
checker, the error should be reported back to the design
team. When the error in the design has been corrected,
both the modelling and verification phase should be car-
ried out again.

In the following we will discuss the consequences of er-
rors on the various verification objects. We will show that
for a controlled and reliable verification process, version
management on the objects is essential.
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1 procedure verify(M,S)
2 M : model to be verified
3 S : set of properties to be checked
4 C := {}
5 foreach φi in S do
6 Mi,1 := abstract(M, φi)
7 Ri,1 := run(mci,Mi,1, φi)
8 outcome := interpret(Ri,1)
9 while outcome= ‘error in property’ do
10 correct(φi)
11 Ri,1 := run(mci,Mi,1, φi)
12 outcome := interpret(Ri,1)
13 od
14 if outcome= ‘no errors’
15 C := C ∪{φi}
16 else if outcome= ‘abstraction error’ ∨ outcome= ‘error in the model’
17 C := C ∪{φi}
18 Perror := errorparts(Mi,1, Ri,1)
19 E := affected(C, Perror)
20 reverify(E,C)
21 else if outcome= ‘design error’
22 go back to the design phase to correct the error
23 exit
24 fi
25 od
26 end verify

Fig. 6. Global verification pseudo-algorithm

verify. Figure 6 presents a detailed pseudo-algorithm for
the verification phase as introduced informally in Fig. 1.
The input for verify is the model M to be verified and
the set S of properties to be checked. In line 4, the
set C is assigned the empty set. The set C is the set
of properties that have been verified at least once.1 In
the foreach-loop of lines 5–25, all properties φi are sys-
tematically checked. In line 6, the first version of model
Mi is constructed using the abstract function. We will
use a “,j” suffix to a subscript of a verification object
to identify its jth version. The corresponding verifica-
tion results are obtained in line 7. If the property φi
turned out to be incorrect, the property φi is corrected
and reverified in the loop of lines 9–13. If the prop-
erty φi holds for the model Mi, this φi is added to
C. If the verification reveals an ‘abstraction error’ or
an ‘error in the model’, the error should be corrected
as well. However, the error found may affect the cor-
rectness of previous verification runs. In line 18, the
parts Perror of Mi,1 that caused the error are isolated.
In line 19, the function affected calculates the proper-
ties (i.e., the corresponding models Mj) which are af-
fected by the error (i.e., using the set Perror). All af-
fected properties E are reverified in line 20. If the ver-
ification reveals an ‘design error’ (line 21), one has to
re-enter the design phase and the verification phase is
terminated.

reverify. Figure 7 lists the pseudo-algorithm for reverify,
the reverification process. The procedure reverify system-

1 Note that in the flow chart of Fig. 1 a set of properties left to
be verified (i.e., NV ) is maintained, whereas in Fig. 6, the set of
properties already verified (i.e., C) is used.

atically verifies all properties E0 that are affected by the
last error(s). We assume, that all versions of the verifi-
cation objects are globally available to this procedure.
The structure of reverify resembles the structure of ver-
ify, but there are a few apparent differences. To reverify
a property φs, in line 5, the latest version t of the model
Ms is retrieved. In line 6, the (t+1)th version of model
Ms is constructed. This new, corrected version of Ms is
subsequently verified in line 8. Again, the outcome of the
verification needs interpretation. As long as only errors
in the property φs are found, the model Ms,(t+1) should
be adjusted and reverified (lines 10–14). If the new ver-
sion Ms,(t+1) is still correct with respect to property φs
(lines 15 and 16), the property φs can be removed from
E0. If the verification reveals an abstraction error or an
error in the model, however, this error may affect all prop-
erties which have previously been verified. The erroneous
parts Perror are isolated in line 18. The set of affected
parts E1 is obtained in line 19. The set of properties left
to be verified now consists of E0 ∪E1 and the proced-
ure reverify is recursively called in line 20 with this aug-
mented set.

affected. The function affected in Fig. 8 returns a set of
properties, whose corresponding models might have been
affected by the erroneous parts Perror. The safe but naive
approach is to return the complete set C without look-
ing at the parts Perror. The drawback of this approach
is that properties will get reverified that have no rela-
tion with the parts Perror. In affected, we will use the
abstraction graph of the model M to only return the
properties that are really affected by Perror. The body
of affected is quite straightforward. For each property φs
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1 procedure reverify(E0, C)
2 E0 : set of properties that are affected by the last error(s)
3 C : set of properties that have been verified at least once
4 foreach φs in E0 do
5 Ms,t := retrieve latest version of Ms

6 Ms,(t+1) := construct (t+1)-th version of model Ms by correcting
7 the affected parts of Ms,t w.r.t. to the last errors found
8 Rs,(t+1) := run(mcs,Ms,(t+1), φs)
9 outcome := interpret(Rs,(t+1))
10 while outcome= ‘error in property’ do
11 correct(Ms,(t+1) , φs)
12 Rs,(t+1) := run(mcs,Ms,(t+1), φs)
13 outcome := interpret(Rs,(t+1))
14 od
15 if outcome= ‘no errors’
16 E0 := E0\φs
17 else if outcome= ‘abstraction error’ ∨ outcome= ‘error in the model’
18 Perror := errorparts(Ms,(t+1) , Rs,(t+1))
19 E1 := affected(C, Perror)
20 reverify(E0∪E1, C)
21 else if outcome= ‘design error’
22 go back to the design phase to correct the error
23 exit
24 fi
25 od
26 end reverify

Fig. 7. Reverification pseudo-algorithm

1 function affected(C, Perror) : set of properties
2 C : set of properties that have been verified at least once
3 Perror : set of parts that have been found to be erroneous
4 E := {}
5 foreach φs in C do
6 Ms,t := retrieve latest version of Ms

7 foreach P kω in Ms,t do
8 foreach P eψ in Perror do

9 if related(P kω , P
e
ψ)

10 E := E∪{φs}
11 break out to outer loop
12 fi
13 od
14 od
15 od
16 return E
17 end affected

Fig. 8. Pseudo-algorithm to compute the set of ‘affected’ properties

that has been verified before, it checks whether the lat-
est version of its model – Ms,t – contains a part P kω that
is related to a part P eψ from Perror. If there is a relation,
the property φs is added to the set of properties that are
affected.

The real work of affected is delegated to the function
related, which checks whether two abstract parts are re-
lated. The function related uses the abstraction graph of
the model M to decide whether two parts are related.
Five possible relations can be identified:

– P eψ and P kω are the same, i.e., e= k∧ψ = ω.
– P eψ is a direct or indirect abstraction (descendant) of

P kω : (e= k∧ω is a prefix of ψ)∨ (k ∈ e).
– P kω is a direct or indirect abstraction (descendant) of
P eψ: (e= k∧ψ is a prefix of ω)∨ (e ∈ k).

– P eω and P kψ are related via a common ancestor, i.e.,
(e= k∨e ∈ k∨k ∈ e)∧
(∃ρ•ρ is a prefix of ω∧ρ is a prefix of ψ).

– P eω and P kψ are unrelated; they do not share the same
ancestor P j , i.e., (e �= k)∧ (e /∈ k)∧ (k /∈ e).

Without further inspection of P eψ and P kω , only for the last

alternative it is certain that P kω is not affected by the error
in P eψ.

3.4 Managing the verification phase

In Sect. 3.2 we discussed all verification objects of the ver-
ification phase. In Sect. 3.3 we showed the need to control
the versions of these objects due to the reverification pro-
cess. It is clear that the verification process does not only
suffer from a state space explosion, but from a versioned
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product space explosion as well. To tackle this latter ex-
plosion, it is apparent that the verification process should
be supported by an SCM system. Current model check-
ing tools do not provide any SCM functionality. On the
other hand, the functionality of full-blown state-of-the-
art SCM tools seems excessive. When SCM policies and
tools are already being used in the software engineer-
ing process of the system under verification, these SCM
tools could be extended to control the verification ac-
tivities as well. In either case, verification tools should
be capable of interworking with (at least) basic SCM
functionality.

For a controlled and reproducible verification phase,
version control and build-management are most import-
ant. For this purpose, a file-based version control tool
like RCS [50], CVS [5, 18] or PRCS [36] in combina-
tion with a basic build-management tool like make [17]
might be sufficient. If the verification efforts are carried
out by a team of people, there should also be solid sup-
port for teamwork. To ease the composition of a verifi-
cation report [45] that summarises the verification activ-
ities the SCM tool should also include strong reporting
facilities.

For a managed and efficient verification phase, it
should be easy to navigate through the model of the
system, the abstractions of the model, the relations be-
tween the models, and the properties and the verification
results. Preferably, these navigation features should be
integrated within the verification tool. Clearly, the SCM
functionality should be a offered as a “sandbox” environ-
ment: SCM functionality should not hamper the verifier
in the verification of the system.

4 Xspin/Project

In this section we briefly discuss Xspin/Project, an
extension of Xspin for the management of validation
data. Xspin/ Project has been developed to validate
and support the ideas that we presented in the previous
sections. Xspin/Project is discussed in greater detail
in [43].
Xspin [23] is a graphical front-end to the verifica-

tion tool Spin. With Xspin the user can edit, simu-
late, and verify models written in the specification lan-
guage Promela. Xspin/ Project is an extension of
Xspin [23] to manage the simulation and verification
activities when using Xspin: every validation activity
can be saved into a database of versioned verification
objects.
Xspin/Project uses PRCS – the Project Revision

Control System [36] – as its underlying SCM system.
PRCS is a version-control system for collections of files
with a simple operational model, a clean user interface
and high performance. PRCS is freely available from
[35]. The current version of PRCS is implemented using
RCS [50] as its back-end storage mechanism. PRCS has

some additional features which makes it well suited for
integration intoXspin [43]:

– Conceptually close to validation objects. PRCS defines
a project version as a labeled snapshot of a group of
files, and provides operations on project versions as
a whole. Thus, a project version naturally relates to
a specific validation model and all its validation re-
sults.

– Version naming scheme. PRCS’ version naming
scheme corresponds closely to the version concepts
from the validation framework: abstraction and revi-
sions of these abstractions.

– Simple operational model. In PRCS, each project ver-
sion is identified by a single distinguished file, the ver-
sion descriptor; this file contains a description of the
files included in that particular version. Adding files
(i.e., validation results) only involves adding the file-
name to this version descriptor file.

Figure 9 shows the architecture of Xspin/Project. The
Project-part of Xspin/Project is responsible for col-
lecting the Promela models and simulation and verifi-
cation results from Xspin and passing them to PRCS.
Furthermore, the Project-part integrates a visual front
end to PRCS into Xspin. The Project-extensions are
written inTcl/Tk [38, 54].

Each Promela model Mi,j can be saved into the
PRCS repository. Furthermore, the contents of any mes-
sage box of Xspin which is the result of some simu-
lation or verification run can be saved into the PRCS
repository. Xspin/Project uses a special file, i.e.,
description.log in which it stores additional informa-
tion – i.e., parts of the verification data Ri,j – about the
validation files (e.g., validation goals, options, directives,
timestamps) into the current version of the project. In
a nutshell the current version of Xspin/Project can be
characterized as follows:

– Xspin/Project implements a visual front-end to
PRCS into Xspin. To the user, Xspin/Project
is presented as a conceptual database of Promela
models together with their validation results.

– The user of Xspin/Project can save all its simula-
tion andverification activities into thePRCSdatabase.

Fig. 9. Architecture of Xspin/Project
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Furthermore, the user is given the possibility to anno-
tate these validation activities.

– All essential verification data such as directives and
options to the C compiler and the pan verifier are au-
tomatically saved into the PRCS repository.

– Xspin/Project ensures the integrity of thePromela
models and their validation models.

Xspin/Project uses plain PRCS as its underlying con-
figuration management tool. This means that all addi-
tional powerful features (such as diff and merge) of
PRCS are also available to the user. However, these ad-
vanced features of PRCS are not (yet) available from
within Xspin/Project. To exploit these features, one
should use PRCS’ command-line options.

In Fig. 10 a screenshot of a validation session with
Xspin/Project has been captured. The added function-
ality of Xspin/Project provides the user with a consis-
tent, flexible and reproducible environment to edit and
validate Promelamodels. The user of Xspin should not
be unnecessarily hampered during the validation trajec-
tory. Below, we discuss the user awareness with respect
to the features added by Xspin/Project on top of the
originalXspin (see Fig. 10):

Fig. 10. Screen capture of a validation session with Xspin/Project

– Accessing PRCS. An extra top-level menu has been
added to Xspin: “Project”. This menu is used to ac-
cess mostXspin/Project functions, such as:

– Starting a new project.
– Opening an existing project.
– Loading (checking out) a particular Promela
model (i.e., an explicit version of the project).

– Saving (checking in) a particular Promela model
and all its recorded validation results.

– Adding files explicitly to the current version. This
may be useful when non-Xspin files are relevant to
a validation run or when one has forgotten to save
aXspin file into the repository.

– Cleaning up the directory. Using this function all
files that have been saved previously in the reposi-
tory are removed from the current directory.

– Saving validation results. To every dialog box con-
taining validation output (e.g., simulation traces,
message sequence charts) an extra button has been
added: “Save into Repository”. When pressing this
button, Xspin/Project will show a dialog box
where the user can annotate the particular file with
some notes on the particular validation run. The
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file and the (optional) notes are subsequently saved
into the repository. Furthermore, for verification
runs, Xspin/Project saves all options that are
needed to build and run the pan verifier into the
description.log file.

– Forcing version integrity. Modification of a Promela
model is prohibited until all validation results on the
model have been saved into the version repository.

Xspin/Project is a prototype tool to aid the vali-
dation engineer who uses Xspin. With respect to the
discussion on verification management in the first part
of this paper, several features are not yet implemented.
Xspin/Project does not yet support automatic rever-
ification of Promela models, for instance. Even so, the
current version of Xspin/Project already promises to
be a great help in managing the version space explosion
when using Xspin.

5 Conclusions

In current research on automated verification, much ef-
fort is put into verification algorithms, whereas control
and management issues have – at best – limited support.
Currently, model checkers are being used as efficient de-
bugging tools. As long as nasty errors are being exposed,
this may be satisfactory enough. However, when one is
aiming at the systematic verification of a system, one
needs more than just a smart debugging tool.

This paper has discussed the practical problems of
the verifier who uses a model checker to verify a (de-
sign of a) system. Apart from the inherent state space
explosion of the model of the system, the verifier has
to deal with the data explosion of the modelling phase
and the versioned product space explosion of the veri-
fication phase. In Sect. 3 all objects of the verification
phase and their relations were enumerated. A reverifica-
tion pseudo-algorithm was presented to make sure that
errors found in the model do not invalidate previous ver-
ification runs.

Verification tools should be supported by basic SCM
functionality. A verification engineer should be able to
navigate efficiently through the versioned product space
to understand and manipulate the relations between the
various objects. We have shown that limited SCM sup-
port can readily be added to (visual) model checking
tools. The current version of Xspin/ Project presents
the user with a conceptual database forPromelamodels
and their validation results. Future additions to Xspin/
Project might include: (i) reporting facilities; (ii) auto-
matic reverification; (iii) reuse of options and directives;
and (iv) comparison of different models.

Future work to achieve a complete “systematic ver-
ification methodology” should include the definition of
methods and policies to guide the modelling and verifica-
tion phase.With respect to this at least the following lines
of research seem interesting:

– Modularisation andabstraction.Kesten andPnueli [29]
describe the main tools of compositionality and ab-
straction in the framework of linear temporal logic. In
Sect. 3 we have seen that abstraction is the key process
of the verifier in the verification phase.

– Compositional model checking. The function related as
described in Sect. 3.3 might be partly automated by
using techniques from the area of compositional model
checking [1, 34, 47].

– Property patterns. Dwyer et al. [15, 16] propose a pat-
tern-based approach to the presentation, codification,
and reuse of property specifications for finite-state
verification. Their results should guide the verification
engineer during the modelling phase in constructing
the set of properties S which have to be verified.
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