Int J STTT (2002) 4: 21-33 / Digital Object Identifier (DOI) 10.1007/s10009-002-0079-0

Verification and optimization of a PLC control schedule

Ed Brinksmal, Angelika Maderl, Ansgar Fehnker?

1 Faculty of Computer Science, University of Twente, Netherlands; E-mail: {brinksma,mader}@Qcs.utwente.nl
2 Electrical & Computer Engineering, Carnegie Mellon University, USA; E-mail: ansgar@ece.cmu.edu

Published online: 2 October 2002 — © Springer-Verlag 2002

Abstract. We report on the use of model checking tech-
niques for both the verification of a process control pro-
gram and the derivation of optimal control schedules. Most
of this work has been carried out as part of a case study for
the EU VHS project (Verification of Hybrid Systems), in
which the program for a Programmable Logic Controller
(PLC) of an experimental chemical plant had to be de-
signed and verified. The original intention of our approach
was to see how much could be achieved here using the stan-
dard model checking environment of SPIN/Promela. As
the symbolic calculations of real-time model checkers can
be quite expensive it is interesting to try and exploit the
efficiency of established non-real-time model checkers like
SPIN in those cases where promising work-arounds seem
to exist. In our case we handled the relevant real-time prop-
erties of the PLC controller using a time-abstraction tech-
nique; for the scheduling we implemented in Promela a so-
called variable time advance procedure. To compare and in-
terpret the results we carried out the same case study with
the aid of the real-time model checker UPPAAL, enhanced
with facilities for cost-guided state space exploration. Both
approaches proved sufficiently powerful to verify the de-
sign of the controller and/or derive (time-)optimal sched-
ules within reasonable time and space requirements.

Keywords: Formal methods — Verification — Model
checking — Hybrid systems — Scheduling

1 Introduction

The verification of hybrid systems is a research area of
rapidly growing importance in the formal methods com-

The work reported here was carried out while the second and
third authors were employed by the Computer Science Department
of the University of Nijmegen, Netherlands. The second author was
supported by an NWO postdoc grant, the third author by an NWO
PhD grant, and both were supported by the EU LTR project VHS
(Project No. 26270).

munity. The presence of both discrete and continuous
phenomena in such systems poses an inspiring challenge
for our specification and modelling techniques, as well as
for our analytic capacities. This has led to the develop-
ment of new, expressive models, such as timed and hy-
brid automata [3, 16], and new verification methods, most
notably model checking techniques involving a symbolic
treatment of real-time (and hybrid) aspects [7,11,17].

An important example of hybrid (embedded) systems
are process control programs, which involve the digital
control of processing plants, e.g., chemical plants. A class
of process controllers that are of considerable practical
importance are those that are implemented using Pro-
grammable Logic Controllers or PLCs. Unfortunately,
both PLCs and their associated programming languages
have no well-defined formal models or semantics, which
complicates the design of reliable controllers and their
analysis.

To assess the capacity of state-of-the-art formal
methods and tools for the analysis of hybrid systems, the
EU research project VHS (Verification of Hybrid Sys-
tems) has defined a number of case studies. One of these
studies concerns the design and verification of a PL.C pro-
gram for an experimental chemical plant.

In this article we report on the use of two model check-
ers for the verification of a process control program for
the given plant and the derivation of optimal control
schedules. It is a companion paper to [13], which con-
centrates on the correct design of the process controller.
The original intention of our approach was to see how
much could be achieved using the standard model check-
ing environment of SPIN/Promela [8]. As the symbolic
calculations of real-time model checkers can be quite ex-
pensive it is interesting to try and exploit the efficiency
of established non-real-time model checkers like SPIN in
those cases where promising work-arounds seem to exist.
In our case we handled the relevant real-time proper-
ties of the PLC controller using a time-abstraction tech-
nique; for the scheduling we implemented in Promela

22 E. Brinksma et al.: Verification and optimization of a PLC control schedule

a so-called variable time advance procedure [15]. For this
case study these techniques proved sufficient to verify the
design of the controller and derive (time-)optimal sched-
ules with very reasonable time and space requirements.
A first report on our experiences has been published
as [5], whose findings are further extended and elaborated
in this article.

One of the conclusions of our initial experiments as re-
ported in the initial publication [5] was that ... it would
be useful to be able to influence the search strategy of
the model checker more directly and guide the search first
into those parts ... where counterexamples are likely to
be found.” Since this publication a new version of the
real-time model checking tool UPPAAL has become avail-
able that employs a cost-guided evaluation strategy for
state-space exploration, viz., cost-optimal UPPAAL [4].
This tool is a natural candidate to support the derivation
of optimal control schedules in a real-time environment.
This motivated us to carry out the optimization part of
the case study again with cost-optimal UPPAAL, both as
an interesting exercise in its own right, and to collect data
to interpret and compare with the results obtained with
SPIN.

The rest of this paper is organized as follows: Sect. 2
gives a description of the batch plant, the nature of PLCs,
and a description of the control program that was sys-
tematically designed in previous work [13]. Section 3 de-
scribes the Promela models for the plant and the control
process, and their use for its formal verification and opti-
mization. Section 4 then introduces a cost-optimal Upp-
AAL model of the same processes, and presents the op-
timization results that were obtained using it. Section 5,
finally, evaluates the work and presents our conclusions.

2 Description of the system

The system of the case study is basically an embedded
system, consisting of a batch plant and a Programmable
Logic Controller (PLC), both of which are described in
more detail below. The original goal of the case study was
to write a control program such that the batch plant and
the PLC with its control program together behave as in-
tended. The intended behaviour is in the first place that
new batches can always be produced, and, in the second
place, optimality of the control schedule.

2.1 Description of the batch plant

The batch plant (see Fig. 1) of the case study is an ex-
perimental chemical process plant, originally designed for
student exercises. We describe its main features below;
a more detailed account can be found in Kowalewski’s de-
scription of the plant [10].

It “produces” batches of diluted salt solutions from
concentrated salt solutions (in container B1) and water

(in container B2). These ingredients are mixed in con-
tainer B3 to obtain the diluted solution, which is subse-
quently transported to container B4 and then further on
to B5. In container B5 an evaporation process is started.
The evaporated water goes via a condenser to container
B6, where it is cooled and pumped back to B2. The re-
maining hot, concentrated salt solution in B5 is trans-
ported to B7, cooled down and then pumped back to B1.

The controlled batch plant is clearly a hybrid sys-
tem. The discrete element is provided by the control
program and the (abstract) states of the valves, mixer,
heater, and coolers (open/closed, on/off). Continuous as-
pects are tank filling levels, temperatures, and time. The
latter can be dissected into real-time phenomena of the
plant on the one hand, such as tank filling, evaporation,
mixing, heating and cooling times, and the program ex-
ecution and reaction times (PLC scan cycle time), on
the other. The controller of the batch plant is a nice ex-
ample of an embedded system: the controlling, digital de-
vice is part of a larger physical system with a particular
functionality.

For the case study we decided to fix the size of a batch:
it consists of either a volume of 4.21 salt solution with
a concentration of 5g/1 and a volume of 2.81 pure water
distributed over two containers, or, when mixed, a vol-
ume of 71 salt solution of 3g/1 concentration in a single
container. With these batch sizes containers B1, B2, B4,
B6, and B7 have a capacity of two “units” of the rele-
vant volumes, and B3 and B5 of only one such “unit”.
The plant description [10] gives durations for the trans-
port steps from one tank to another. In our (timed) plant
model we used these durations as our basis, although the
actual durations might possibly be different.!

2.2 Programmable Logic Controllers

PLCs are special purpose computers designed for con-
trol tasks. Their area of application is enormous. Here,
we briefly emphasize the main characteristics of PLCs in
comparison to “usual” computers.

The most significant difference is that a program on
a PLC runs in a permanent loop, the so-called scan cycle
(see Fig. 2). In each scan cycle the program in the PLC
is executed once, where the program execution may de-
pend on variable values stored in the memory. The length
of a scan cycle is in the range of milliseconds, depend-
ing on the length of the program. Furthermore, a part
of each scan cycle is dedicated to data exchange with
the environment: a PLC has input points connected via
an interface with a dedicated input area of its memory,
and the output area of the memory is connected via an
interface with the output points of the PLC. On the in-
put points the PLC receives data from sensors, on the

1 Note that these durations, given in Table 1, differ from those
used in the initial report [5], which were chosen to be more compa-
rable to the figures used in similar work by Niebert and Yovine [14].

E. Brinksma et al.: Verification and optimization of a PLC control schedule 23

V6 V4

cooling
water

V2
cooling—p—{><—
water ¢———1

V15
e
o)/
. vi7
Xvio
Vig§
V26 X V22 vio Xvas X vag
(P15 <} (pis
Pl v27 % V20 P
@ ;25 ;2<}| . V24
Y Y Y
Fig. 1. The P/I-diagram of the batch plant
Table 1. Duration of plant processes in seconds
B1-B3 B2-B3 B3-B4 B4-B5 heat B5 B5-B7 cool B6 cool B7 B6-B2 B7-B1
320 240 600 330 1470 260 300 600 240 220

program
execution

phase

Fig. 2. A PLC scan cycle

output points the PLC sends data to actuators. Finally,
there are some activities of the operating system (self
checks, watch-dogs, etc.) that take place in a scan cycle.

The operation system itself is small and stable, which
is prerequisite for reliable real-time control. PLC pro-
grams are developed and compiled on PCs in special
programming environments and can be down-loaded to
the PLC.

There are different domain-specific programming lan-
guages collected in an IEC standard for PLCs [9]. In our
application we used Sequential Function Charts (SFC),
a graphical language that is related to Petri nets, and
the program executed in each scan cycle depends on the
places that are active at that moment. SFC thus provides
for the higher-level structure and the actual instructions
of our application are written in Instruction List (IL), an
assembly-like language. The PLC languages offer timers

24 E. Brinksma et al.: Verification and optimization of a PLC control schedule

as basic constructs, which also differs from most of the
usual programming languages.

The scan cycle mechanism makes PLCs suitable for
control of continuous processes (tight loop control). How-
ever, it has to be guaranteed that the scan cycle length
is always below the minimal reaction time that is re-
quired by the plant to control the entire system. In this
case study the scan cycle time is a few orders of magni-
tude smaller than what the reaction time has to be. The
execution time of a scan cycle is in the range of a few mil-
liseconds. For some applications the timing behaviour in
this range is relevant, e.g., for machine control. For our
chemical plant it is not relevant: it does not really matter
whether a valve closes 10 ms earlier or later. This property
is relevant when modelling the whole system. Here, we
can model the PLC as if executing “time-continuously”,
i.e., a scan cycle takes place in zero time. In comparison to
the PLC the plant is so “slow” that it cannot distinguish
areal PLC with scan cycles from an ideal time-continuous
control. For a more detailed discussion of modelling PL.Cs
see [12].

2.8 The control program

This section gives an informal description of the control
program as we used it in our verification and optimiza-
tion exercises. Its formal derivation and a description of
our other related verification activities can be found in
a previous publication [13].

In the plant we can identify a number of basic plant
processes, such as the transport of 4.21 salt solution from
container B1 to B3. All possible transport processes, the
evaporation process, and two cooling processes lead to 12
basic processes, which run in parallel. The activities of
each process are simply to open some valves, switch on
a mixer, pump or heater, and when the process is finished,
close and switch off everything again. Each process starts
its activities if its activation conditions are fulfilled, and
otherwise is in a wait state. An active process remains
active until its postconditions are fulfilled. Then it goes

back into its waiting state. This means that we have a so-
called closed loop control: the criterion to change state is
not that sufficient time has elapsed, but that a particular
event occurs.

It is not difficult to recognize this structure in the SFC
representation of the program given in Fig. 3. Control
starts in the state “START” and (because the transition
condition is “true”) immediately distributes to the 12
parallel wait states, waiting for the corresponding activa-
tion conditions 0; to become true. In a wait state a process
does nothing, i.e., it executes an empty program. If the ac-
tivation condition becomes true, control reaches control
state Pi. The program associated with Pi is executed in
every scan cycle for as long as control remains in Pi. The
IL programs P1, ..., P12 are given in Fig. 4. The instruc-
tions of IL are assembler-like. Here, we mainly load the
constants true or false into the accumulator and write the
accumulator value to one of the variables, e.g., Vi, rep-
resenting valve number i. The action qualifiers? P1 and
PO (to the left of each program) indicate when the corres-
ponding program blocks are executed. P1-labelled code is
only executed in the first scan cycle after the control loca-
tion has been reached; P0 indicates that the instructions
are only executed in the last scan cycle that the control is
at this location, i.e., when the postcondition evaluates to
true — one last scan cycle is executed after the postcondi-
tion has become true.

The main complexity of the program is hidden in the
design of the activation conditions ©;. We can assume to
have predicates Pi.X for each step Pi indicating whether
control is at the corresponding step or not (these vari-
ables are available in PLC programs). The conditions to
start a process (i.e., step) can now be stated informally as
follows:

1. The filling levels of the tanks must allow, for example,
for a transport step: the upper tank must contain

2 There exist more action qualifiers, e.g., to express that code
must be executed at every scan cycle; in our case they are not
needed for the control program code.

START
— true
—
waitl wait2 waitl12
-+ 61 —+ 62 —+— 68
P1 P2 P12
—— resultl —— result2 —t— resultl2

Fig. 3. The basic control program in Sequential Function Chart

E. Brinksma et al.: Verification and optimization of a PLC control schedule 25

Pl: | P1| LD true P2: | P1| LD true
ST V8 ST V9
PO | LD false PO | LD false
ST V8 ST V9
P3: | P1| LD true P4: | P1| LD true
ST V8 ST V9
ST Mixer ST Mixer
PO | LD false PO | LD false
ST V8 ST V9
ST Mixer ST Mixer
P5: | P1| LD true P6: | P1| LD true
ST Vi1 ST V12
PO | LD false PO | LD false
ST V11 ST V12
P7. | P1| LD true P8: | P1| LD true
ST Heater ST V15
PO | LD false PO | LD false
ST Heater ST V15
P9: | P1| LD true P10:[P1| LD true
ST V17 ST V29
PO | LD false PO | LD false
ST V17 ST V29
P11:[P1| LD true P12:] P1| LD true
ST V18 ST V20
ST V23 ST V24
ST V22 ST V25
ST V1 ST V5
ST V3 ST V6
ST Pumpl ST Pump2
PO | LD false PO | LD false
ST V18 ST V20
ST v23 ST V24
ST V22 ST V25
ST V1 ST V5
ST V3 ST V6
ST Pumpl ST Pump?2
Fig. 4. Instruction List Programs for steps P1. ..., P12

enough material, the lower tank must contain enough
space, etc. These conditions are encoded in the predi-
cates @; of Fig. 6.

. We do not want a tank to be involved in two (or more)
processes at a time. For example, when transferring
solution from B4 to B5 there should not be a concur-
rent transfer from B3 to B4. This requirement can be
formulated by conditions on valves: when solution is
transferred from B4 to B5 valve V11 must be closed for
the duration of the transfer (invariant). These require-
ments induce the conflict structure on the processes in
Fig. 5.

It is required that control is never at two conflicting
processes at the same time. This condition is split into
two parts: first, control cannot go to a process if a con-
flicting process is already active. These conditions are
encoded in the predicates ¥; of Fig. 7. Second, when
conflicting processes could get control at the same mo-

P11 P12

N

P10

e

P2/P4

Fig. 5. Priority graph of the processes P1, ..., P12; an arrow
indicates that there is a conflict between processes, where arrows
point to the processes with priority

$1 := (Bl =s0l42C Vv B1 = s01820C)
A B3 = empty
é; = (B2 = water28C Vv B2 = water56C)
A B3 = empty
&3 = (Bl =s0l42C Vv Bl = s0l82C)
A B3 = water28C
¢4 = (B2 = water28C Vv B2 = water56C)
A B3 = s0l42C
&5 := B3 =s0l70C
A (B4 = empty V B4 = s0170C)
P = (B4 =sol70C V B4 = s01140C)
A B5 = empty
&7 = B5 =s0l70C A (B6 = empty V
B6 = water28C Vv B6 = water28H)
&g := B5 =s0l42H A (B7 = empty V
B7 = s0l42C v B7 = sol42H)
&g := B7 =sol42H Vv B7 = sol84H
&0 := B6 = water28H Vv B6 = water56H
d11 = (B7 = sol42C v B7 = 801840)
A (Bl = empty Vv Bl = s0l42C)
&2 ;= (B6 = water28C VvV B6 = water56C)

A (B2 = empty V B2 = water28C)

Fig. 6. The tank filling conditions

ment only the one having priority gets it. These priori-
ties are fixed, and their priority graph in Fig. 5 is cycle
free. They induce the predicates ©; in Fig. 8.

The execution mechanism of PLCs guarantees a syn-
chronous execution of the parallel steps, in the sense that
within each scan cycle each program that is attached to
an active step is executed once. It is this mechanism that
gives the conditions ©; their intended effect.

3 Verification and optimization with SPIN

To verify the correctness of the PLC program of Fig. 3
we made a Promela model of the plant and the control
program, and used SPIN to check that all execution se-
quences of their composition satisfy the property that
“always eventually batches are produced”. This implies
that under ideal circumstances in which no material is

26 E. Brinksma et al.: Verification and optimization of a PLC control schedule

¥, = & A-P2X A-P4X A-P5X A-PI11.X

U, = $ A-PLXA-P3IXA-P5 XA-PI2X

U3 = P33 A-P2X A=-P4X A =-P5X A -PI11.X

Uy = P4 A-P1LXA-P3XA-P5 XA-P12.X

¥Us = P53 A-PLXA-P2X A-P3XA-P4X
A= P6.X

Vs = P A P5XA-P7TX A-P8X

Uy = P2 A=-P6EXA-P8X A-P10.X A -PI12.X
Us = Pg A P6XA-P7TXA-PIX A-PI11.X
Yy := P9 A - P8X A-Pl11.X
Uip i= P10 A P7.X AN-PI12.X
¥, ;= 13 A= PLXA-P3IXA-P8X A-PIX
Uipg i= P10 A -P2X A-P4X A-P7.X A=P10.X
Fig. 7. Activation conditions testing for active conflicting
processes

@7 = Q7

Bg = Yg A6y

B = Yg AN 6O7 N\ - Og

Os5 = WUs A - BOg

O = U1 A6

B3 = Y3 A - BOs

By = U A=O1 A= O3 A\ 6B5

Oy = Uy AN-"O; A= O3 \N—- 65

Oy ;= Y A6

O10:= Yo A - Oy

O11:= 11 A= 6O1 A= 6O3 A6 A6

O13:= Uias A= O3 A= O4 AN BO7 A— 6By

Fig. 8. Predicates encoding the priority between conflicting
processes; there are (non-circular) evaluation dependencies

lost through leakage or evaporation, control is such that
new batches will always be produced. Subsequently, we
refined the models to find more sophisticated variations
of the control program that are time-optimal, in the sense
that the average production time of a batch is mini-
mal. These optimal scheduling sequences were produced
as counter-examples to properties stating suboptimal be-
haviour. The details of these exercises are given below.

3.1 Correctness of the PLC program

Both the plant as described in Sect. 2.1, and the informal
control program description of Sect. 2.3 can be translated
into Promela in a straightforward way, the crucial part of
the modelling exercise being the real-time properties of
the plant in combination with the PLC execution mech-
anism given in Sect. 2.2. In this case there are two basic
principles that allow us to deal with the entire system by
essentially abstracting away from time (see also [12] for
a more general account in the context of PLCs):

1. The control program is independent of the time that
the production steps take. In the model each of the
production steps P1, ..., P12 may take some unspeci-
fied time: when activated (e.g., by opening a valve) the

control enters an ‘undefined’ state that will eventually

be left to reach a final state once the corresponding

postcondition holds. In this way every consistent real-
time behaviour of the plant is subsumed, including the

real one. Proving correctness for the general case im-

plies correctness of the real case.

2. The execution speed of the control program is much
faster than the tolerance of the plant processes, as was
already mentioned above. This has two important im-
plications:

— We can abstract away from the scan cycle time
and assume that scan cycles are executed instanta-
neously.

— We can assume that the plant is scanned contin-
uously so that state changes are detected without
(significant) delay.

The model of the combined behaviour of the plant and
the control program is obtained by putting the models of
the control process and all the plant processes in parallel.
Doing this, we must make sure that the continuous exe-
cution of the control program does not cause a starvation
of the plant processes. This is taken care of by allowing
only fair executions of our Promela model: in each exe-
cution no active process may be ignored indefinitely. We
must be careful, however, not to lose the other import-
ant property, viz., that each state change of the plant is
detected “immediately”. Our model takes care of this by
forcing a control program execution after each potential
state change of the plant.

The Promela model of this case study is too big to be
part of this paper. The full version can be retrieved from
the VHS document repository [2]. Here we present two
excerpts, one of the plant model and one of the control
program model, to illustrate the main features.

Figure 9 contains the Promela process that models the
transfer of solution from container B1 to B3. It combines
the behaviours underlying steps P1 and P3. The model
consists of a do-loop that continuously tries to start the
transfer of a unit of salt solution from B1 to B3. If the
right conditions are fulfilled control will enter the body
of the loop, and will mark the beginning of the trans-
fer step by instantaneously (using the Promela atomic
construct) changing the contents of both containers to
undefined transitional states. At some later moment it
will execute the second part of the body, instantaneously
changing the transitional states to the corresponding ter-
minal states, marking the end of the transfer. 2 The cycle
variable is a global flag that forces the execution of a scan
cycle after the execution of each atomic step in the plant
(flag is raised at the end of each such atomic step). After

3 Here, and in other parts of the Promela model, we have initially
added assert statements that express invariants that should hold
at the corresponding control location (serror being shorthand for
assert(false)). These are used to check for the correctness of the
model in initial simulation and verification trials, and are removed
during the actual verification to avoid unnecessary growth of the
state space.

E. Brinksma et al.: Verification and optimization of a PLC control schedule 27

proctype B1toB3()

do
{ : atomic{ (cycle==0 &% Bi!=cempty && v8) ->
if
: (B1==s0142C) -> Bil=undefl
:: (Bl==s0184C) -> Bi=undef2
: else -> error
fi ;
if
:: (B3==cempty) -> B3=undefl
:: (B3==water28C && mix) -> B3=undef2
: else -> error
fi ;
cycle=1
}
assert(v8 && (B3!=undef2 || mix)) ;
atomic{ (cycle==0 && v8) ->
if
:: (Bl==undefi) -> Bl=cempty
: (Bi==undef2) -> Bl=s0142C
:: else -> error
fi ;
if
:: (B3==undefl) -> B3=s0142C
:: (B3==undef2 && mix) -> B3=s0170C
: else -> error
fi ;
cycle=1
}
od
}

Fig. 9. The Promela model of transfer between B1 and B3

the execution of a scan cycle (also modelled as an atomic
process, see below) the flag is lowered. Each atomic step
in the plant is guarded by the test cycle==0.

The Promela process that models the control program
is listed in Fig. 10. This is a straightforward translation
of the PLC program of Fig. 4. The do loop of Control
repeatedly executes an atomic scan cycle, in which the
processes P1,... P12 are scheduled sequentially. To deal
with the symmetric sub-cases of each step (i.e., the dis-
juncts between parentheses in Fig. 6) the range of the
main counter is extended and a second loop counter
j is introduced. Modulo these small adaptations the
O-predicates of Fig. 8 are captured by the theta(i,j),
and the result (i, j) correspond to formalizations of the
result conditions of the PLC program (the uninstantiated
resulti labels of Fig. 3). PB1(i) and PB2 (i) correspond to
the code of the P1 part, and the PO part of the PLC pro-
gram, respectively. The variables px[i] correspond to the
Pi.X activity predicates of the program mentioned ear-
lier. Note that at the end of each scan cycle the global flag
cycle is lowered, as required.

Whereas the assertions in the model served to check
on our own understanding of the model, the main correct-
ness requirement that “always eventually a new batch is
produced” was verified using the SPIN facilities for model
checking LTL formulas. As a correctly operating plant is
constantly recycling the same volume of batch material in
this case the notion of when a batch is being produced is
not completely straightforward. We have interpreted the

proctype Control()
{ int i,j ;
do
:: atomic{ i=1 ; j=1 ;

do
:: (ik15) ->
if
: (theta(i,j) && 'px[procnr(i)]) -> PB1(i)
:: (result(i,j) && px[procnr(i)]) -> PBO(i)
:: else -> skip
fi ;
if
i1 (3==1) -> j=2
r (G==2) -> j=1 ; i=i+1
fi
1t (i==15) -> goto endcycle
od ;

endcycle: cycle=0

od

Fig. 10. The Promela model of the control process

production of diluted salt solution in container B3 as the
production of a batch, but other choices would have been
equally defensible (e.g., storing a unit of this solution in
B4, etc.). The correctness requirement was formalized as
the following LTL property:

00 (B3==50170C) A 0O (B3 ==cempty) (1)

expressing that the contents of container B3 is infinitely
often filled with the diluted salt solution, and infinitely
often empty*. Inspection of the Promela model for pro-
cesses involving B3 shows that there are two possible ex-
ecution sequences:

1. B3 is empty, then filled with concentrated solution
from B1, then mixed with water from B2 giving the
desired diluted solution (s0170C), and finally being
emptied again, or

2. B3 is empty, then filled with water from B2, then
mixed with concentrated solution from B1 giving the
desired diluted solution (s0170C), and finally being
emptied again.

As the two constituent properties of (1) must both be
fulfilled, neither of the above scenarios is allowed to get
stuck at some state, making the statement equivalent to
the desired requirement that new batches of diluted solu-
tion are always eventually produced.

Verification results. It turned out to be feasible to apply
the model checker sequentially to the different initializa-
tions of our model with material from zero up to eight
batches (including the intermediate different possibilities
for half batches; 30 runs in total). In order to avoid the
explosion of the more than 8100 possible initial configu-
rations that are in principle possible, we considered only
configurations filling the plant “from the top”, i.e., fill-
ing tanks in the order B1,... ,B7. The other initializations

4 The constant cempty was chosen to be different from the
Promela reserved word empty.

28 E. Brinksma et al.: Verification and optimization of a PLC control schedule

are reachable from these by normal operation of the plant.
As satisfaction of correctness property (1) for our ini-
tial configurations implies its satisfaction for all reachable
configurations, this is sufficient. Using simulations of our
model we convinced ourselves that our model did indeed
include the required normal operation steps.

After initial simulations and model checking runs had
been used to remove small mistakes from our model (iden-
tifier overloading, initialization errors), the model was
systematically checked for property (1) with the 30 dif-
ferent initializations with batch volumes described above.
No errors were reported, except for initializations with
batch volumes 0, 0.5, 7.5, and 8, as should be the case,
since the plant can only be productive if at least one batch
volume can be circulated. The model checking was done
using SPIN version 3.3.7 on a SUN Enterprise E3500-
server (6 SPARC CPUs with 3.0 GB main memory). The
model checking was run in exhaustive state space search
mode with fair scheduling. The error states reported un-
reachable in all runs. The shortest runs were completed in
the order of seconds and consumed in the order of 20 MB
memory; the longest run required in the order of 40 MB
and 100 MB.

3.2 Deriving optimal schedules

The control schedule of Fig. 3 that we have shown to be
correct by the procedure sketched in the previous sec-
tion, follows an essentially crude strategy. After each scan
cycle it enables all non-conflicting processes in the plant
whose preconditions it has evaluated to hold true. It is not
a priori clear that this strategy would also lead to a plant
operation that is optimal in the sense that the average
time to produce a batch is minimal.

To determine optimal schedules for the various batch
loads of the plant we have refined the models of the previ-
ous section as follows:

1. We added a notion of time to the model. To avoid an
unnecessary blow-up of the state space due to irrel-
evant points in time, i.e., times at which nothing in-
teresting can happen, we have borrowed an idea from
discrete event simulation, viz., that of variable time
advance procedures [15].

2. We refined the plant model using the information from
Table 1, such that each process in the plant will take
precisely the amount of time specified.

3. We refined the model to introduce scheduling alter-
natives for the control program. This was done by
a nondeterministic choice selecting between subsets of
the maximal set of allowed non-conflicting processes,
as determined by the original control program.

The search for optimal schedules was conducted by
finding counterexamples to the claim:

O(batches < N) (2)

where batches is a global variable that counts the num-
ber of times that a brine solution is transferred from B3
to B4. This property is checked for increasing values of N
in the context of a given maximal clock value maxtime,
i.e., no events will be possible when time exceeds the
value of maxtime. The assumption is that for maxtime
large enough such counterexamples will display regular
scheduling patterns. Below, we elaborate on each of the
above points and the search procedure.

A variable time advance procedure. In real-time discrete
event systems events have associated clocks that can be
set by the occurrence of other events. An event occurs
when its clock expires. Such systems can be simulated by
calculating at each event occurrence the point in time at
which the next event will occur, and then jumping to that
point in time. This is known as variable time advance [15].

We wish to apply this idea to our model because it will
not litter the global state space with states whose time
component is uninteresting, in the sense that there is no
process in the plant that begins or ends. As we can only
calculate when plant processes will end once they have
started, we can only use this time advance procedure if we
assume that processes will always be started when others
end (or at time 0). It is not difficult to see, however, that
we will not lose schedules this way that are strictly faster
then what we can obtain using this policy.

Claim. For each schedule s there exists a schedule s’ in
which no scheduled event occurs later and processes are
exclusively started at the beginning of the schedule or
when other processes end.

Proof sketch. Assume that s is a schedule. If s has the de-
sired format take s’ = s, otherwise there exists in s a first
scheduling of a process p with a start event b, and a ter-
mination event e, such that the occurrence of b, does not
coincide with a termination event of another process p’.
Let t be the latest point in time of a process termina-
tion occurrence before by, or, if no such occurrence exists,
the start time of the schedule. Any process that conflicts
with p must have terminated at or before ¢, or started at
or after s(e,) to avoid overlapping with p, where s(e) de-
notes the time at which event e is scheduled according to
s. However, then we can produce a new schedule ns by
putting ns(b,) =t, ns(e,) = s(ep) — (s(bp) —ns(by)) and
ns(e) = s(e) for all other events. If ns has the desired for-
mat take s’ = ns, otherwise repeat the same procedure
starting with ns. Because processes do not have arbitrar-
ily small processing times (i.e., they are non-Zeno), the
desired schedule s’ is obtained in the limit.

The variable time advance procedure is implemented
by the Promela process Advance given in Fig. 11. The
basic idea of Advance is quite simple: when it becomes ac-
tive it will calculate the next point in time when a plant
process will terminate. To do so it uses the global ar-
ray ptime(i) containing the termination times of the
processes i, whose values are calculated as part of the

E. Brinksma et al.: Verification and optimization of a PLC control schedule 29

proctype Advance()
{ int i ; short minstep ;
do
: atomic{(promptcondition) ->
minstep=maxstep ; i=1 ;
do
¢ (i<13) >
if
i (px[i] && ((ptime(i)-time)<minstep)) ->
minstep=(ptime(i)-time)
:: else -> skip
fi ;
i=i+1
:: (i==13) -> goto step
od ;
step: time=time+minstep

}

od

Fig. 11. The Promela model of the time advance process

Promela processes modelling the plant, and the global
time variable time, which is controlled by Advance. The
activation of Advance is controlled by the predicate
promptcondition. This predicate is true if and only if all
processes that have been enabled by the control program
have indeed become active and none have yet terminated.

The refined plant model. The refined model of the plant
differs from the original model by adding some simple
timing information to the plant processes. The (atomic)
start event of each plant process is used to calculate the
termination time of that process. The termination event
of each plant process is then guarded with the additional
condition that the global time time must equal the calcu-
lated termination time.

The refined control model. To allow the new model of the
control program to enable any subset of the permissible
plant process events at any time, we split the loop of the
original model of Fig. 10. The first of the two loops scans
only for termination conditions of plant processes and ex-
ecutes the corresponding control fragments PBO(i). Sub-
sequently, any of the conditions ¥; of Fig. 7 can be set
nondeterministically to the value false before the sec-
ond loop is entered. This loop scans the remaining valid
preconditions of the plant processes of which the corres-
ponding control fragments PB1 (i) are then executed. All
guards in both loops of the new version contain tests to
monitor the progress of time and will stop control if time
exceeds maxtime. This will cause the combined plant and
control model to terminate.

The refinement as described above causes an expo-
nential blow-up of the branching structure of the control
process, as maximal sets of non-conflicting events are re-
placed by a choice between all their subsets. This leads
to a corresponding blow-up of the exploration time for
the state space, even if no new states are reached in this
way. To control this phenomenon a global system pa-
rameter cuts is introduced that specifies the maximal

number of events per branching point that may be post-
poned when enabled. Without the use of this parameter
the state space exceeded our resources in practically all
experiments (> 1 GB memory, > 40 min response time).

Finding optimal schedules. Looking for optimal sched-
ules we restricted ourselves to the interesting cases in-
volving initial plant loads of one through seven batches.
For our initial experiments we fixed maxtime to be 5000
time units (50000s). For each initial load we needed
two or three runs to determine the maximal number of
batches for which counterexamples could be produced in
a very short time (in the order of seconds system time). It
turned out that all counterexamples produced contained
schedules that rapidly (i.e., within 700 time units) con-
verged to a repeating pattern with a fixed duration. None
of the counterexamples required a cuts value greater
than 2.

The best measurements in terms of shortest periods
detected, are collected in Table 2. The interpretation of
the columns is as follows:

load: indicates the number of batches with which the
plant is initialized,

simtime: indicates the the duration (in simulated time
units) of the counterexample traces,

batches: the number of batches produced in that trace,

states: the number of states visited to produce the trace,

steps: the number of atomic steps executed,

period: period of the periodic behaviour in time units.

A first analysis of Table 2 shows the state space that
needs to be searched to produce the counterexamples is
very small, and could make one suspicious of the qual-
ity of the results that are obtained. Here, one should
realize that the state space of the model has been kept
small by the consequent use of atomic constructs for
large Promela code chunks, the use of variable time ad-
vance, and the fact that the reachable part of the plant
model state space is not so large (e.g., it does not have
complicated data structures or queues). As the column
with the atomic step counts indicates the small num-
ber of states does not make it a trivial model check-
ing problem. This is caused by the substantial nonde-
terministic branching in the model, where many alter-

Table 2. SPIN schedule measurements

load simtime batches states steps period
1 3476 10 711 94253 380
2 4968 25 1715 239277 206
3 4732 25 1652 230236 206
4 4774 25 1736 241261 206
5 3947 20 1423 196627 206
6 4120 20 1459 201685 206
7 3320 10 1935 2568780 314

30 E. Brinksma et al.: Verification and optimization of a PLC control schedule

natives must be evaluated before a counterexample is
produced.

Six of the measured periods can easily be shown to
be optimal! For a plant with a batch load of 1 this can
be readily checked by hand by moving a single batch
through the plant and measuring the total duration of
the critical branches of the path. In the earlier experi-
ments [5] (which use slightly different plant process dura-
tions), we thought that we had made a mistake when we
measured the same period for most initialization loads of
the plant. Closer analysis of the schedules, however, re-
vealed that this is the result of the fact that the plant
has one process that clearly dominates the time consump-
tion during the production of batches, viz., the heat-
ing of container B5 (147 time units). Since filling B5,
heating it, and emptying B5 must be part of every pro-
duction cycle, the average production time of a batch
must be greater or equal than 33+ 147+ 26 = 206 time
units. This makes the schedules for loads 2-6 optimal
as well.

The schedule for the load of seven batches is almost
certainly optimal. It was found by imposing a very tight
maxtime upper-bound for the production of ten batches,
after a more relaxed upper-bound had already produced
a period of 346 time units (cf., UPPAAL results below).
Further tightening of the upper-bound lead to loss of
counterexamples, which means that with a load of seven
batches, ten batches cannot be produced within 3320
time units. By itself, this does not prove that there is no
shorter period, however, as this might require an initial
behaviour that is less productive than that of the schedule
that we found.5

It must be concluded that the plant can be scheduled
in the overall optimal time of 2060 s for all loads, except
for the extreme loads of 1 and 7. Because of our analysis
above, these are not only time optimal schedules, but also
resource optimal ones, in the sense that the (expensive)
heating and distillation equipment B5 is in continuous
use. From the energy perspective, probably the schedule
for load 2 is optimal, as this involves the circulation, heat-
ing and cooling of the smallest volume.

4 Optimization with Uppaal
4.1 The UPPAAL model

The translation from the plant and control models into
a UPPAAL model is quite straightforward, and in many
points similar to the philosophy of the Promela model.
The main differences between the models are the repre-
sentation of time, naturally, as this is a built-in feature of
UPPAAL, and the scheduling of the concurrent processes.

5 Qur earlier results [5], which used different process durations,
showed easily produced optimal schedules for loads 1,2,3,4, and 7,
with optimal schedules obtained for loads 5 and 6 only after sub-
stantial tightening of upper-bounds.

In the Promela model the latter is restricted by fairness
conditions and the use of the cycle flag variable. The
UppPAAL model enforces this by another, more explicit re-
striction that is explained below.

The UpPPAAL model is a parallel composition of a plant
automaton and a control automaton. The plant automa-
ton is given as a parallel composition of 12 sub-automata,
representing the basic plant processes. Each of these plant
automata is equipped with a clock that measures the
duration of the process after it has started. As an ex-
ample, the UPPAAL model for the transport of concen-
trated salt solution from container B1 to container B3 is
given in Fig. 12. Location SO represents the passive con-
trol state of the process. As soon as the control process
has opened and closed the appropriate valves, etc., the
process starts. This immediate activation is achieved by
a synchronization on the urgent channel urgon (an Upp-
AAL feature: a channel on which enabled synchroniza-
tions cannot be delayed. After the time of the duration
of the process has passed, the container volumes are up-
dated depending on their previous values. After a process
finishes the control program is activated twice (by syn-
chronization on the channel compute), for reasons given
below.

As with Promela, the execution of the control au-
tomaton is modelled based on the assumption that the
execution of the PLC control program is instantaneous.
Technically, this can be implemented using the committed
location feature of UPPAAL. Once reached, committed lo-
cations have to be left without time delay or interleaving
with other transitions. In our model all locations of the
control automaton are modelled as committed locations,
apart from the first one that represents the waiting state

process P13{
clock x12;
state SO, S1{x12<=32}, S2, S3;
commit S2, S3;
init SO;
trans SO -> S1 {guard Pumpi==0, V8==1,
V9==0, V11==0, Mixer==1;
sync urgon?;
assign x12:=0; },
S1 -> 82 {guard x12==32, Bil==1, B3==0;
assign B1:=0, B3:=2; },
S1 -> 82 {guard x12==32, B1==2, B3==0;
assign Bl:=1, B3:=2; },
S1 -> 82 {guard x12==32, Bil==1, B3==1;
assign B1:=0, B3:=3; 1},
51 -> 52 {guard x12==32, B1==2, B3==1;
assign Bl:=1, B3:=3; },
S2 -> S3 {sync compute!; I},
S3 -> S0 {sync compute!; };

Fig. 12. The UPPAAL model of transfer between B1 and B3

E. Brinksma et al.: Verification and optimization of a PLC control schedule 31

of the control process. Without restrictions, repeated in-
stantaneous execution of the control program would lead
to Zeno-behaviour. In the Promela model such behaviour
is prevented by imposing a fairness requirement. These
are not available in UPPAAL. In the UPPAAL model exe-
cution of control steps is restricted to those points in time
when the conditions in the plant change, as these are the
only moments when the control process can change also
its state. More precisely, it is the case that each change
in the state of the plant requires two control program ex-
ecutions: one to finish some process (close valves etc.),
and one to start up new ones. In general, starting up new
processes could be delayed for some time, but this is not
needed. As was already argued for the Promela model, no
(time-)optimal schedules are lost by assuming that new
processes only start when some other process finishes.

The control automaton itself consists of two sequen-
tial parts, again similar to the Promela model. In the first
part the activation conditions for processes are evaluated,
including a nondeterministic choice of a subset of the pro-
cesses that can be activated. As in the Promela case, this
nondeterministic step is prerequisite for finding optimal
schedules. In the second part the control sets the actuator
variables for valves, pumps, heater, and mixer.

4.2 Optimal schedules with cost-optimal UPPAAL

Behrmann et al. [4] proposed an extension of UPPAAL
that includes concepts from branch and bound algorithms
to provide generic support for optimal search strategies in
a real-time context. This extension makes it possible to
derive optimal solutions for problems that can be mod-
elled in terms of so-called Uniformly Priced Timed Auto-
mata. In this model a cost function increases with a fixed
rate as time elapses or with a specified amount if a tran-
sition is taken. This cost function is implemented using
a UPPAAL clock variable with special operations, but
such that the currently implemented data structures in
UPPAAL suffice.

Among the techniques that were adopted in cost-
optimal UPPAAL are heuristic search orders. Heuristic
search orders are obtained by assigning priorities to sym-
bolic states. The symbolic state is extended with a prior-
ity field and the model checker selects the next state with
the highest priority. To change priorities one has to dec-
orate the transitions with an assignment to the priority
field.

In our cost-optimal UPPAAL model of the case study
we have defined the cost to be identical to the time
elapsed, i.e., the cost rate equals 1, and added the prior-
ity variable heur that is calculated according to the ex-
pression 1*bonus+100*depth-cost. The variable bonus
is used to reward selecting larger rather than smaller sub-
sets of enabled process start events, as is shown in Fig. 13.
This heuristic directs the exploration such that the con-
troller tries first to start all permissible plant processes.
The bonus is made extra rewarding for the selection of the

evaporation process, which should be in (almost) continu-
ous use for an optimal exploitation of the plant resources.

The variable depth is used to reward a depth-first
over breadth-first process scheduling policy by reward-
ing the starting of enabled plant processes substantially
better (by a factor 1000) than their delay (by selecting
later transitions of already active processes). This is done
as good scheduling solutions are likely have many con-
currently active plant processes. Transition SO -> S1 in
Fig. 14 models the beginning of the process P13. We in-
crease the priority if this transition is taken to reward the
start of P13. Transitions that start other processes and
transitions of the controller that enable processes to start
are rewarded similarly.

Using this heuristic we could produce optimal sched-
ules for the batch plant without resorting to an initial
upper bound maxtime on time, as was done using SPIN.
The heuristic has a similar effect on the reduction of the
search space as the cuts parameter in the SPIN case. For
the experiments we asked UPPAAL to produce schedules
for the same initial load and the same number of batches
as SPIN did. Table 3 gives the results of these experi-
ments. For loads 1-6 with the heuristic UPPAAL found an
initial solution that has the same period and same sim-
time as the best solution found by SPIN. The solution for
load 7 converges to a schedule with period 346. For the

A1l -> A2{assign bonus:=bonus+(T11==171:0);},
Al -> A2{guard T11==1; assign T11:=0;},

A2 -> A3{assign bonus:=bonus+(T12==1 71:0);},
A2 -> A3{guard T12==1; assign T12:=0;},

Fig. 13. Rewarding the selection of enabled processes (selection
variable is not set to 0, if it was 1 before)

process P13{

clock x12;

state SO, S1{x12<=32}, S2, S3;

commit S2, S3;

init SO;

trans SO -> Si{guard Pumpl==0, V8==1,

V9==0, V11==0, Mixer==1;

sync urgon?;
assign x12:=0, depth:=depth+l; },

S1 -> S2{guard x12==32, Bil==1, B3==0;
assign B1:=0, B3:=2; },

S1 -> S2{guard x12==32, B1==2, B3==0;
assign Bl:=1, B3:=2; },

S1 -> S2{guard x12==32, Bil==1, B3==1;
assign B1:=0, B3:=3; },

S1 -> S2{guard x12==32, B1==2, B3=={;
assign Bl:=1, B3:=3; },

S2 -> S3{sync compute!; 1},

S3 -> SO0{sync compute!; };

}

Fig. 14. The depth is increased if a process starts; with depth the
heuristic gives preference to depth-first search

32 E. Brinksma et al.: Verification and optimization of a PLC control schedule

Table 3. This table shows the first solution found by cost-optimal
UPPAAL, either with heuristic search or depth-first

heuristic depth first
search search
load batches simtime states simtime states
1 10 3476 14063 4178 17547
2 25 4968 35952 11048 45781
3 25 4732 34584 10992 45 385
4 25 4774 35344 11288 46 181
5 20 3947 28 808 9294 37716
6 20 4120 29568 9294 37716
7 10 3320 14377 4418 17957

same set of problems depth-first search finds worse solu-
tions and explores more states. Other experiments show
that depth-first search cannot find a solution at all if we
set a reasonable upper-bound maxtime on the time, as we
did for SPIN.

Cost-optimal UPPAAL offers the option to start back-
tracking as soon as it finds an initial solution. It uses the
cost of this solution to prune states that are more expen-
sive. The bound on the cost is lowered each time it finds
a better solution. UPPAAL was not able to find better
schedules within reasonable CPU-time and memory for
initial loads 1-6. For load 7 it was able to find a sched-
ule with simtime 3288. Backtracking yielded a schedule
that produces the last batch within 314 time units; this
is the period SPIN found for its best schedules. To do
so UPPAAL explores 74240 states, which takes 16.5s on
a Pentium IIT 500 MHz.

5 Conclusion

In this paper we have shown how the Promela/SPIN en-
vironment can be used to verify and optimize control
schedules for a small-size PLC controlled batch plant.
The approach in this paper relies quite heavily on the
structured design of an initial control program in our pre-
vious work [13], and on the analysis of formal approaches
to PLCs [12].

It is interesting to see that we succeeded in deal-
ing with this real-time embedded system using standard
Promela and SPIN. For the verification of the initial con-
trol program this was due to a property of the plant,
viz., that we could assume instantaneous and immedi-
ate scanning of all state changes of the plant. This is
a consequence of the tolerance of the plant processes
for much slower reaction times than those realized by
the PLC control. This makes us conclude that this ab-
straction can be used for checking non-timed correctness
criteria in all process control problems that have this
property.

The original task we set ourselves was just to check the
correctness of the plant control in the sense that the de-

signed program would in principle always be capable of
producing more batches for any reasonable initial load.
Having achieved that task we wondered how the model
might be used to also look at the optimality of the sched-
ules. As we wanted to treat this in terms of small mod-
ifications of the model only, we added time in the form
of an explicit time advancing process. This is very close
in spirit to the real-time Promela/SPIN extension DT-
Spin [1]. Given the particular properties of the plant,
however, viz., that without loss of optimality plant pro-
cesses can be assumed to start when others terminate,
we could do this by only generating those points in time
in which plant events could take place. From the sched-
ules that we obtained we can conclude that in this case
study this variable time advance procedure reduced the
generated state space by approximately a factor of 20 (the
average distance in time between events in a trace being
close to 20 time units).

Although more experiments are certainly needed, we
believe that variable time advance procedures can be
useful for this kind of application. One way to think of
them is as an explicitly programmed analogue of the no-
tion of time regions as in timed automata [3]. Taking
advantage of specific properties of systems such as ours
an explicit approach can sometimes yield better results.
On the basis of our modified model we could find op-
timal schedules in an interactive mode: up to five runs
with different parameter values, each taking between sec-
onds and a few minutes of user time on a SUN En-
terprise E3500-server (most in the seconds range). This
is certainly due to the particular characteristics of the
given plant, with its very critical heating process. In add-
ition, we have been lucky in the sense that the optimal
schedules often were found in those parts of the search
tree that were explored earlier. Given the small num-
bers of explored states it might seem that the gain by
using variable time advance over the explicit addition
of a clock variable to the model (as in DTSpin) is im-
material (going from O(103) states to O(10*~5). One
should keep in mind, however, that the number of atomic
steps required to produce a counterexample would also
grow by a factor 20, taking it to O(10°~7), which most
likely would interfere with the use of the model-checker
in an interactive mode to find (almost) optimal schedules
quickly.

Another approach to the optimal scheduling for the
VHS case study 1 is reported by Niebert and Yovine [14].
Here the problem is analysed using the tools OpenKro-
nos and SMI. It is difficult to compare the results of
this approach directly with ours, as they also include
the production of the initial loads in their schedules,
which we just assume to be present. The more gen-
eral findings seem to be consistent with ours, however.
OpenKronos could be used successfully to produce op-
timal schedules for loads of up to three batches before
falling victim to the state explosion problem. The sym-
bolic model checker SMI produced results for six batches

E. Brinksma et al.: Verification and optimization of a PLC control schedule 33

and more, with a computation time of approximately
17 min per batch.

Since our initial experiments with Promela and SPIN
an implementation of cost-optimal UPPAAL has become
available. We have used this tool to redo the optimiza-
tion part of the case study and compared it to our
SPIN results. The results obtained with this variant of
UPPAAL did confirm correctness of our results. Com-
pared to SPIN, cost-optimal UPPAAL certainly offers
a more convenient interface for handling guided state-
space explorations. For SPIN the latter can only be
done indirectly by repeated verification runs with dif-
ferent parameter settings under control of the user. In
cost-optimal UPPAAL the user can control everything
directly by defining heuristic cost functions, so that
fewer multiple runs are required, although some addi-
tional experimentation is needed to fine-tune the heuris-
tic used.

On the basis of the limited experience gained by this
case study, the situation is best characterized as fol-
lows. Given the current situation, cost-optimal UPPAAL
is probably the more convenient tool to search for op-
timal schedules for this kind of application if an Upp-
AAL model is available or can be developed. In view of
the very reasonable performance of SPIN using the tech-
niques described in this paper, however, developing a
UPPAAL model may not pay off if a good Promela model
is available, as for this case study. In our case such a model
was in fact produced because it proved much easier to
develop a Promela model for the (time-abstracted) veri-
fication of the plant, then to do so with UPPAAL. Given
this situation it can be concluded that it would be very in-
teresting to look also into the possible extension of SPIN
with cost-guided state space exploration features. This
could prove to be a powerful combination for the applica-
tion of SPIN to optimization problems. Recent work by
Edelkamp et al. [6] combining SPIN with heuristic dir-
ected search algorithms also shows the viability of such
a combination.

References

1. DTSpin homepage.:
http://www.win.tue.nl/~dragan/DTSpin.html

2. VHS: sources of case study 1.:
http: //www.cs.kun.nl/~mader/vhs/cs1.html

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor Com-
put Sci (138):183-335, 1994

4. Behrmann, G., Fehnker, A., Hune, T.S., Larsen, K.G., Petter-
son, P., Romijn, J.: Efficient guiding towards cost-optimality
in UpPAAL. In: 7th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS 2001), 2001

5. Brinksma, E., Mader, A: Verification and optimization of a
PLC control schedule. In: Proc. SPIN2000, Lecture Notes in
Computer Science, vol. 1885. Springer, Berlin Heidelberg New
York, 2000

6. Edelkamp, S., Lafuente, A.L., Leue, L.: Directed explicit
model cheking with HSF-SPIN. In: Model checking software,
Lecture Notes in Computer Science, vol. 2057. Springer, Berlin
Heidelberg New York, 2001

7. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Hytech: a model
checker for hybrid systems. Software Tools Technol Transfer
(1):110-123, 1997

8. Holzmann, G.J.: The model cheker sPIN. IEEE Trans Software
Eng 23(5):279-295, 1997

9. International Electrotechnical Commission: IEC International
Standard 1131-3, Programmable Controllers, Part 3, Pro-
gramming Languages, 1993

10. Kowalewski, S.: Description of case study CS1 “experimental
batch plant”.
http: //www-verimag.imag.fr/VHS/main.html, July 1998

11. Larsen, K.G., Petterson, P., Yi, W.: Uppaal in a nutshell. Soft-
ware Tools Technol Transfer (1):134-153, 1997

12. Mader, A.: A classification of PLC models and applications.
In: Boel, R., Stremersch, G. (eds) Discrete event systems —
analysis and control. Kluwer, Boston, Mass., USA, 2000. Pro-
ceedings of WODES2000

13. Mader, A., Brinksma, E., Wupper, H., Bauer, N.: Design of
a PLC control program for a batch plant — VHS case study 1.
Eur J Control 7:416-439, 2001

14. Niebert, P.; Yovine, S.: Computing optimal operation schemes
for multi batch operation of chemical plants. VHS deliverable,
May 1999. http: //www-verimag.imag.fr/VHS/main.html

15. Shedler, G.S.: Regenerative stochastic simulation. Academic,
New York, 1993

16. Vaandrager, F.W., van Schuppen, J.H.: In: Hybrid systems:
computation and control, Lecture Notes in Computer Science,
vol. 1569. Springer, Berlin Heidelberg New York, 1999

17. Yovine, S.: Kronos: a verification tool for real-time systems.
Software Tools Technol Transfer (1):123-134, 1997

