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Abstract. A strength of model :hecking is its ability

to automate the detection of subtle system errors and

produce traces that exhibit those (rrors. Given the high-

computational cost of model checking most researchers

advocate the use of aggressive property-preserving ab-

stractions. Unfortunately, the more aggressively a system

is abstracted the more infeasible i)ehavior it will have.

Thus, while abstraction enables efficient model checking

it also threatens the usefulness of model checking as a de-

fect detection tool, since it may be difficnlt to determine

whether a counter-example is feas ble and hence worth

developer time to analyze.

We have explored several stJategies for address-

ing this problem by extending an explicit-state model

checker, Java PathFinder (JPF), t,) search for and ana-

lyze counter-examples in tile presen,:e of abstractions. We

demonstrate that these techniques; effectively preserve

the defect detection ability of model checking in tile pres-

ence of aggressive abstraction by aIJplying them to check

properties of several abstracted mu] _i- threaded Java pro-

grams. These new capabilities are n( ,t specific to JPF and

can be easily adapted to other model checking frame-

1 Introduction

In the past decade, model checking has matured into

an effective technique for reasoning about realistic com-

ponents of hardware systems and communication pro-

tocols. The past several years have witnessed a series

of efforts aimed at applying model checking techniques

to reason about software implementations (e.g., Java

source code Ill, 15,33]). While the conceptual basis for

applying model checking to software is reasonably well-

understood, there are still unsettled questions about

whether effective tool support can be constructed that

allows for realistic software requirements to be checked

of realistic software descriptions in a practical amount

of time. Most researchers in model checking believe that

property-preserving abstraction of the state-space will be

necessary to make checking of realistic systems practi-

cal (e.g., [8, 14, 26]). There are a variety of challenges in

bringing this belief to reality. This paper addresses one

of those cimllenges, namely, the problem of automating

the analysis of counter-examples that have been produced

from abstract model checks in order to determine whether

works; we describe how this was dine for the Bandera they represent real system defects: ,
toolsetl The work described in this paper involves the integra-
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tion of two recently developed tools for model checking

Java source code: Bandera [11] and Java PathFinder [33].

Bandera is a toolset that provides automated support for

reducing a program's state space through the applica-

tion of program slicing and the compilation of abstract

definitions of program data types. The resulting reduced

Java program is then fed to JPF which performs an op-

timized explicit-state model check for program properties

(e.g., assertion violations or deadlock). If the search is free

of violations then the program properties are verified. If

a violation is found the situation is less clear. Bandera

MS ID: STTTOO88

17 June 2002 10:36 CET



usesabstractionsthatpreservetie abilitytoproveall

paths properties (e.g., such as assertions or linear tem-

poral logic formulae). To achieve ,._tate space reduction,

however, the ability to disprove such properties is sacri-

ficed. This means that a check of an abstracted system

may fail either because the program has an error or be-

cause the abstractions introduce sptwious executions into

the program that violate the property. The former are of

interest to a user, while the latter are a distraction to the

user, especially if spurious results o :cur in large numbers.
Safe abstractions often result in program models

where the information required to decide conditionals is

lost and hence nondeterministic choice needs to be used

to encode such conditionals (i.e., to account for both true

and false results). Nondeterminist c choice is also used

in the implementation of abstract operations, to model

the lack of knowledge about spe.:ific abstract values.

Such abstractions are safe for all paths properties since

they are guaranteed to include all }ehaviors of the unab-

stracted system. The difficulty lies in the fact that they

may introduce many behaviors tha= are not possible. To

sharpen the precision of the abstra_ t model (by eliminat-

ing some spurious behaviors) one ufinimizes the use of

nondeterminism and it can be sho_ n that the absence of

nondeterminism equates to feasibili_:y [31].

Several approaches have been proposed recently for

analyzing the feasibility of counter-_xamples of abstracted

transition-system models [3, 7, 23]. While our work shares

much in common with these apwoaches, it is distin-

guished from them in four ways: (i) it treats the abstrac-

tion of both the program's data aild the property to be

checked; (ii) the feasibility of a coun ,er-example is judged

against the semantics of a real prcgramming language;

(iii) we advocate multiple approach,_.s for analyzing feasi-

bility with different cost/precision profiles; and (iv) our

work is oriented toward detecting defects in the pres-

ence of abstraction. Our work makes a contribution by

adapting counter-example analysis ' echniques developed

in simplified settings to support th,_ analysis of systems

written in modern programming h, nguages. Concretely

we have enhanced JPF with two n_'w capabilities. JPF

can now perform a state-space search that is bounded

by nondeterministic-choice operati, ms; a property vio-

C.S. P_is_reanu et al.: Finding feasible abstract counter-examples

to Java or to JPF. To illustrate this, we describe how we

enhanced the Bandera toolset to implement the choice-

bounded search using the Spin [21] model checker.

Section 3 presents our approach for abstracting Java

programs using nondeterminism. Section 4 describes the

two techniques for analyzing program counter-examples

that were added to JPF and their adaptation to Ban-

dera. Section 5 describes several defective Java applica-

tions whose counter-examples were analyzed using these

techniques. In Sect. 6 we discuss related work and we con-
clude in Sect. 7. In the next section, we give some brief

background on Bandera and ,IPF.

2 Background

2.1 The Bandera tool-set

Bandera ill] is an integrated collection of program an-

alysis and transformation components that allows users

to selectively analyze program properties and to tailor

the analysis to that property so as to minimize analy-

sis time. Bandera exploits existing model checkers, such

as Spin [21] and JPF [33], to provide state-of-the-art an-

alysis engines for checking program-property correspon-

dence.

To bridge the gap from Java to model checker input

language Bandera is organized much like an optimizing

compiler. Java programs are translated to intermediate

representations that are amenable to different kinds of

program analyses and transformations. A typical series of

analyses and transformations is as follows:

1. Compilation of Java is performed using traditional

parsing and semantic analysis techniques. The result

of this process is a 3-address representation of the pro-

gram at the level of granularity of Java Virtual Ma-

chine (JVM) byte-codes [25]; tim specific representa-
tion used is Jimple provided by the SOOT compilation

framework [32]. The property to be checked is trans-
lated from the Bandera Specification Language [9]

(BSL) into a form that refers to Jimple variables and

locations.

2. Program slicing automates the elimination of program

lation that lies within this space has a counter-example components that are irrelevant for the property under

that is deterministic and is hence h asibl¢, JPF can. also a_nalysis. S!icing c_riteria are automatically extracted

perform simulation of the concrete program guided by from the observable predicates that are referenced in

an abstract counter-example; if a co responding concrete

program trace exists then the counte_-example is feasible.

An important contribution of our we rk is that we provide

convincing evidence that these te, hniques are effective

in detecting feasible counter-examples under aggressive

abstraction. We report the results cf analyzing counter-

examples produced from model ch_cks of properties of

seven non-trivial multi-threaded Jav _ programs.

While our presentation focuses oa tools for abstract-

ing and model checking of Java prog:_ams, it is important

to note that the approach develope_i here is not specific

3.

the property. Our Java slicer treats multi-threaded

programs [20] and is based on calculation of the pro-

gram dependence graph.
Data abstraction automates the reduction in size of

the data domains over which program data range [18]

by replacing implementation types (e.g., an integer)

with abstract types (e.g., that records the sign of the

integer value). A user identifies fields of Java classes

that appear relevant to the property being checked

(e.g., those that are referenced in the BSL specifica-

tion) and selects abstract types for those fields. A type
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inference algorithm is applied i.o calculate a consistent

set of abstract types for the r._st of a program's data.

This type-based approach to Lbstraction is a special-

ized form of predicate abstra,_tion (e.g., [4, 5, 34]). It

is restricted to non-relational predicates, but has the

advantage of allowing operati,,ns on abstract types to

be calculated once and reused in abstracting different

programs.
4. Jimple simplifications are applied to perform tra-

ditional compiler optimizatims that may reduce

the state space (e.g., calculation of variable live-

hess information, local name packing, and method

inlining).
5. Transition system generation converts the resulting

sliced, abstracted, and simpli led Jimple representa-

tion to a model checker indepm _dent transition system

notation called BIR (Bandera ;ntermediate Represen-

tation). BIR is essentially a guarded-assignment lan-

guage that includes support t.)r object-oriented fea-

tures, such as, the definition _f collections of struc-

tures for representing heap-alocated data and the

definition of locks and wait s(ts that can be associ-

ated with structure instances. _IR also provides sup-

port for determining the visib lity of each transition

relative to the specification being checked and col-

lapsing consecutive invisible tz:ansitions into atomic

steps.

6. Model checker input generati,n defines representa-

tions for BIR types and mlplementations of BIR

guards and assignments. This translation is greatly

simplified due to the fact that the majority of BIR's

constructs map almost directly to constructs found in

model checker input languages such as Promela (the

input language of Spin). The object-oriented features

of BIR (e.g., support for collect ons, locks, and query-

ing the inheritance hierarchy) require more care in

translating. The generated model is checked by invok-

ing the appropriate tool.

7. Counter-ezample display is inv,&ed when a violation

of the property is detected. _I he low-level counter-

example is mapped back to a _,equence of BIR tran-

sitions. A simulator for BIR a.lows for moving for-

ward and backward through th_ counter-example and

querying values of BIR state c,,mponents, which are

mapped back to Java variables _nd instances for dis-

play to the user.

We discuss data abstraction in more detail in Sect. 3 and

the adaptation of the final three steps of this process to

treat abstract counter-examples in :;ect. 4.

2. 2 Java PathFinder

Java PathFinder [33] is a model checker for Java pro-

grams that can check any Java prod;ram, since it is built

on top of a custom made JVM JPF:s companion tool [34]

implements predicate abstraction fo : programs written in
Java.

In JPF special atteution is paid to reducing the

memory usage, rather than execution speed as is typ-

ical of commercial JVMs, since this is the major effi-

ciency concern in explicit-state model checking. Users

have the ability to set the granularity of atomic steps

during model checking to: byte-codes, source lines (the

default) or explicit atomic blocks (through calls to

beginAtomic() and endAtomic() methods from a spe-
cial class called Wrify). To model nondeterministic

behavior, a special method is called that the model

checker will trap during execution. A JPF counter-

example indicates how to execute code from the initial

state of the program to reach the error. Each step in

the execution contains the name of the class the code

is from, the file the source code is stored in, the line

number of the source file that is currently being exe-

cuted, a nnmber identifying the thread that is execut-

ing and if the executed code involved a nondetermin-

istic choice it also includes which choice was made.

Using only thread numbers and nondeterministic choice

numbers in each step JPF can simulate the erroneous

execution.

Recent enhancements to JPF include both the add-

ition of new capabilities as well as improvements in im-

plementation (and therefore performance). JPF now sup-

ports temporal logic property checking in Linear Time

Temporal logic (LTL) in addition to the default mode
where it checks for deadlocks and user-defined assertions.

Furthermore, new heuristic search capabilities have been

added (for deadlock and assertion checking only) that

allows breadth-first search (BFS) where all the succes-

sor states of the current state are put into a priority

queue depending on a user-specified heuristic function

(default heuristic is BFS). For example, when search-

ing for a deadlock in a Java program one might specify

a heuristic that will favor exploration of states in which

more threads are blocked, since the more threads are

blocked the closer one should be to a state where all

threads are blocked (i.e., a deadlock).

JPF is integrat ed with Bandera after step 4 of

Sect. 2.1. The Jimple representation of the program can

either be converted directly to byte-codes or decompiled

to Java which is then compiled to byte-codes.

3 Program abstraction

Given a concrete program and a property, the strategy

of verification by using abstraction involves: (i) defining

an abstraction mapping that is appropriate for the prop-

erty being verified and using it to transform the concrete

program into an abstract program; (ii) transforming the

property into an abstract property; (iii) verifying that the

abstract program satisfies the abstract property; and fi-

nally (iv) inferring that the concrete program satisfies the

concrete property. In this section, we snmmarize founda-

tional issues that underlie these steps.
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2.1 Data abstraction

The abstract interpretation (AI) [12} framework as de-

scribed in a large body of literature establishes a rigorous

semantics-based methodology for :onstructing abstrac-

tions so that they are sa/e in the sense that they over-

approximate the set of true exezutable behaviors of

the system (i.e., each executable behavior is covered

by an abstract execution). Thus, when these abstract

behaviors are exhaustively compa'ed to a specification

and found to be in conformance, we can be sure that

the true executable system beha-iors conform to the

specification.

We present an AI, in an informal manner, as: a domain

of abstract values, an abstraction function mapping con-

crete program values to abstract wlues, and a collection

of abstract primitive operations ((,ne for each concrete

operation in the program). Substit,lting concrete opera-

tions applied to selected program -.,ariables with corres-

ponding abstract operations of an _I yields an abstract

program [8].

For example, to abstract from e_ erything but the fact

that integer variable x is zero or i_ot one could use the

signs AI [1] which only keeps track :)f whether an integer

value is negative, equal to zero, or i ositive. The abstract

domain is the set of tokens {neg, zero, pos}. The abstrac-

tion flmction maps negative numb,,rs to neg, 0 to zero,

and positive numbers to pos. Abstr_mt versions of each of

the basic operations on integers are used that respect the

abstract domain values. For exampl _, an abstract version

of the addition operation for signs it :

1negI{zer°'pos,hegel neg

Abstract operations are allowed to return sets of values

to model lack of knowledge about sp._cific abstract values.

C.S. Pis'areanu et al.: Finding feasible abstract counter-examples

This imprecision is interpreted in the model checker as

a nondeterministic choice over the values in the set. Such

cases are a source of "extra behaviors" introduced in the

abstract model due to its over-approximation of the set of

behaviors of the original system.

3.2 Property abstraction

When abstracting properties, Bandera uses an approach

similar to [22]. Informally, given an AI for a variable x

(e.g., signs) that appears in a proposition (e.g., x>0),

we convert the proposition to a disjunction of propo-

sitions of the form x==a, where a are the abstract

values that correspond to values that imply the truth

of the original proposition (e.g., x==pos implies x>O, but

x==neg and x==zero do not; it follows that proposition

x>O is abstracted to x==pos). Thus, this disjunction

under-approximates the truth of a concrete proposition

insuring that the property holds on the original pro-

gram if the abstracted property holds on the abstract

program.

3.3 Abstraction implementation

In Bandera, generating an abstract program involves the

following steps: the user selects a set of AIs for a pro-

gram's data components, then type inference is nsed

to calculate the abstractions for the remaining program

data, then the Java class that implements each AI's ab-

straction function and abstract operations is retrieved

from Bandera's abstraction library, and finally the con-

crete Java program is traversed, and concrete literals and

operations are replaced with calls to classes that imple-

ment the corresponding abstract literals and operations.

Figure 1 shows excerpts of the Java representation of

the signs AI. Abstract tokens are implemented as inte-

ger values, and the abstraction function and operations

have straightforward implementations as Java methods.

public class Signs {

public static final int NEG =0;

public static final int ZER0=I;

public static final int POS =2;

public static int abs(int n) {

if (n < O) return NEG;

if (n == O) return ZERO;

if (n > 0) return POS;

}

public static int add(int a, int b) {

int r;

Verify.beginAtomic();

if (a==NEG k& b==NEG) r=NEG;

-- else if (a==NE G _ b==ZERO)-r=NEG;

else if (a==ZERO _& b==NEG) r=NEG;

else if (a==ZERO _ b==ZERO) r=ZERO;

else if (a==ZERO k_ b==POS) r=POS;

else if (a==POS aa b==ZERO) r=POS;

else if (a==POS &_ b==POS) r=POS;

else r=Verify.choose(7);

Verify.endAtomic();

return r;

}

Fig. 1. Java Representation of signs AI (excerpts)
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ForJavabase-types,thedefini:ionsof abstractopera-
tionsareautomaticallygeneratedusingatheoremprover
(see[18]fordetails).Nondetermnisticchoiceisspecified
bycallstoVerify. choose (bite), which JPF traps dur-

ing model checking and returns nondeterministic values

between the abstract values en:oded in the bit-vector

bits. Specifically, gerify.cho,*se(7) denotes a non-

deterministic choice between tb_ values NEG, ZERO and

POS. Abstract operations execwe atomically (via calls

to Verify.beginttomic() and Verify.endk, tomic())

since they abstract concrete byte-codes (e.g.,

Signs. add() abstracts iadd).

4 Finding feasible counter-e).arnples

We have seen in the previous secSon that, if a specifica-

tion is true for the abstracted program, it will also be true

for the concrete program. Howe,rer, if the specification

is false for the abstracted prograin, the counter-example

may be the result of some behavi(,r in the abstracted pro-

gram which is not present in the o_ iginal program. It takes

deep insight to decide if an abstl act counter-example is

feasible (i.e., corresponds to a con :fete computation).

We have developed two techniques that automate

tests for counter-example feasibility: model checking on

choose-free paths and abstract cmnter-example guided

concrete simulation.

._.1 Choose-free state space search

We have enhanced a model checke" with an option to per-

form an adaptive depth-bounded search that backtracks

whenever an instruction that intr(duces nondeterminism

is encountered (i.e., a Verify.ctoose() call). The ap-

proach exploits the result from [:ll, Theorem 5], which

states that every path in the abstracted program where all

assignments are deterministic has _ corresponding path in

the concrete (unabstracted) progra n.
The result is a corollary of t m fact that if an ab-

stract system is deterministic, tlen it is equivalent to

the concrete system (i.e., there i:_ a simulation equiva-

lence between the concrete and abstract systems). The

result in [31] is stated for predicate abstraction applied

discussed in Sect. 3, our abstraction approach introduces

nondeterminism in expression evaluation; consequently

both assignments and conditionals may be nondetermin-

istic. Compiling Java to a byte-code representation effec-

tively "normalizes" a program by adding Boolean tempo-

rary variables for all the expressions in conditionals, thus

insuring that in the abstracted program, only the assign-

ments may be nondeterministic as a result of abstraction.

Intuitively, the evaluation of an abstract operation

is deterministic (i.e., its implementation does not refer

to choose instructions), if its outcome is a unique ab-

stract value. A transition (or assignment) is deterministic

if all evahmted operations are deterministic, while a path

is deterministic if it involves only deterministic transi-

tions. For every deterministic transition in the abstract

program, there is a corresponding transition in the con-

crete program; hence,- every deterministic abstract path

has a corresponding path in the concrete program. For

example, consider assignment x=x+l; in some concrete

program, where the initial value of variable x is 0, and

assume that we decide to abstract x with signs. The ab-

stracted assignment is deterministic, since +,b_ applied

to zero and pos is deterministic, and its unique outcome

is pos; for the corresponding abstracted transition that

changes the state of x from zero to pos, there is a con-

crete transition, that changes the value of x from 0 to 1.

Assume now that the (concrete) initial value of x is -1.

Then, the corresponding abstracted assignment is non-

deterministic_ and its outcome may be zero, pos or neg.

For a corresponding abstract transition that changes the

value of x from neg to pos or from neg to neg, there is no

concrete transition.

Sai'di uses [31, Theorem 5] to judge a counter-example

feasible and drive abstraction refinement, whereas we use

it to bias the model checker to search for feasible counter-

examples. By construction, the sub-space explored by

this search constitutes a deterministic abstract model of

a portion of the concrete program's behavior. The theo-

rem ensures that paths that are free of nondeterminism

correspond to paths in the concrete program. A more

general definition of deterministic paths can be found

in [13]; we should also note that determinism corresponds

to completeness in abstract interpretation (see e.g., [19]),

which states that no loss of precision is introduced by

to programs described as guarded.assignment transition the abstraction. It follows that if a counter-example is

systems where only the- assignments may be nondeter- reported- in a choose-free search then it represents a leas-
ministic as a result of abstraction The theorem applies

to our approach since: (i) predicate abstraction subsumes

type-based abstraction, where the abstract domain is fi-

nite [31]; and (ii) Java program, can be modeled by

a guarded-assignment transition _ystem enriched with

types for modeling object referelces, locks, and wait-

sets [25] (this is what Bandera's BIR model does)) As

i The statement of [31, Theorem 5] re luires also that no loss of

precision is introduced by abstracting th* properties. We are inter-
ested here only in determining path feasfl .ility, and for this purpose
the property under consideration is irreh rant (see also Sect. 4.4).

ible execution. If this execution also violates the property,

then it represents a feasible counter-example.

Consider an abstracted program whose state space is

sketched in Fig. 2. Black circles represent states where

some assertion is violated. Dashed lines represent tran-

sitions that refer to choose, while solid lines refer to in-

structions other than choose. Model checking on choose-

free paths will report only the error path 1-3-6, although

path 1-2-4 leads to a state where the assertion is false

(and it may correspond to an execution in the concrete

program).
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_ Stal e space searched

Fig. 2. Model checking on ch, ,ose-[ree paths

To illustrate this more concr(_tely, consider check-

ing the fragment of code on the left of Fig. 3 against

tile assertion at line [4], where initially Global. done is

false; the abstracted code (using ;igns for i) is shown

to the right of the original. In the abstracted pro-

gram, nondeterminism is introdu:ed through method

Signs.it() that implements th,; abstract operation

for integer <. After one pass thr(:ugh the while loop,

the abstract value of i becomes _,os and the value re-

turned by Signs.lt(i,Sig ns.P0"c:) can be either true

or false. However, the abstract program does expose

a choose-free counter-example: it the thread that is

an instance of hThread executes line [6] before the

main thread begins the executioi, of the while loop,

the assertion in line [4] is violaUd when the body of

the loop is executed for the first time (and the ab-

stract value of i is zero). This c:mnter-example does

not contain nondeterministic choio_s since the value re-

turned by Signs.lt(i,Signs. POS), when i is zero, is

uniquely true.

4.1.1 .JPF Implementation

Our technique could be implemented in any model

checker, l)ut the design of JPF made these modification

particularly easy. 3PF is essentially a special-purpose

JVM that interprets each byte code ill the compiled

version of a Java program. Since choose operations are

represented as static method calls, trapping and process-

ing those operations specially only required modification

of the code for the static method invocation byte-code.

Specifically, whenever the next instruction to be executed

in a thread is a choose method call, this thread is consid-

ered not to be enabled. We made sure that the search on

choose-free paths does not introduce deadlocks (choose

instructions are interpreted as infinite self-loops).

We also implemented a choose-free heuristic search

within JPF. This heuristic favors exploration from states

that have the least mlmber of nondeterministic choice

statements currently enabled. This has the effect of try-

ing to explore the choose-free state-space before explor-

ing parts of the state-space that requires a choose state-

ment (i.e., nondeterministic choice) to be executed. Note

that unlike in the previous choose-free search described,

here the exploration does not stop when no choose-free

path is found, but continues to explore the whole ab-

stract state-space. It is however easy to detect when

a counter-example produced during a heuristic search is

choose-free or not by just checking whether any choose

statements were executed on the path. Consider again

the abstracted program whose state space is sketched in

Fig. 2. During choose-free heuristic search, JPF first ex-

plores the state space that is bounded by the transitions

that introduce nondeterminism (so it will report the same

error path 1-3-6). Once all choose-free path prefixes are

considered without finding a counter-example, the algo-

rithm proceeds to explore the rest of the state space. This

class App {

public static void main(

[1] new hThread() .start() ;

[2] int i=O;

[3] while (i<2) {

[4] assert ( !Global. _one)

[5] i++ ;

}

}

}

[6]

class AThread extends Thread {

public void run() {

Global.done=true;

}
}

..){
class App {

public static void main(...) {

[1] new AThread().start();

[2] int i=Signs.ZERO;

[3] while(Signs.lt(i,Signs. P0S)) {

[4] assert(!Global.done);

[5] i=Signs.add(i,Signs. POS);

[6]

}

}

}

}
class hThread extends Thread {

public void run() {

Global.done=true;

}

Fig. 3. :;imple example of concrete (left) and abstracted (right) code
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means that, in Fig. 2, if the onl" erroneous state would

have been state 4, JPF would h_,ve discovered it (and it

would have reported error path 1-2-4). The only draw-

back to this heuristic search is that storing the states that

comprise tile frontier of the cho( se-free subspace can be

expensive.

4.1.2 Bandera implementation

Bandera represents choose operat ions as explicit BIR op-

erators. The implementation of _ BIR ChooseExpr de-

pends on the model checker being targeted. For example,

an assignment to a local variable, x, of Boolean typed

ChooseExpr would be implement_ d in Promela as:

£f

:: true -> x = 0;

:: true -> x = 1;

fi;

When a choose-free search is desiled the implementation

of ChooseExprs is modified to force the thread executing

the choose into a self-loop. This c_uses the model checker

to explore extensions of the trac_ in other threads. For

example, the assignment above we uM be implemented in

Promela as:

loc: goto loc;

This basic strategy can be used in _ny of the model check-

ers that we have studied.

a counter-example where Global.done is set true after

the loop in the main thread is executed two times. This

means that the assertion is reachable (and violated) by

the (abstract) trace
[1] - [2] - [3] - [43 - IS] - [3] - [4] - IS] - [3] - [4]

in the main thread. 'While this is clearly possible in

the abstract program (since, after the abstract value of ±

becomes pos, the condition at line [3] can be nondeter-

ministically true or false), it is not possible in the concrete

program. To see this, we simulate the steps from tile ab-

stract trace on the concrete program: after executing the

loop two times, the value of i is 2 so the exit condition of

the loop is true and the loop is exited. At this point a line

mismatch is detected and the simulation stops.

It is possible to detect the infeasibility of an abstract

trace earlier, using a technique similar to forward analysis

(e.g., [7]). During simulation at each step on the concrete

program, we check the correspondence between concrete

and abstract values. This can be done by abstracting the

values of variables (e.g., via calls to Signs. abs ()) in the

concrete simulation and comparing them to the abstract

values in the counter-example.

Our simulation technique works because we analyze

programs that do not exchange data with their environ-
ment and Java defines default initial values for all data

(thus a program has a single initial state). More general

simulation techniques, that handle multiple initial states,

are discussed in Sect. 6.

4.2 Abstract counter-example guid_ d concrete simulation

In Banders, the generation of an _bstracted program is

automatic and is done in such a way that there is a clear

correspondence between the concr_ te and abstracted pro-

gram: for each line in the concrete 1,rogram, there is a sin-

gle line in the abstracted program Since byte-codes ex-

ecute atomically, for each "concrete" byte-code, there is

a set of "abstract" byte-codes that execute atomically.

This property of Bandera abstract on, together with the

fact that all Java variables have kr_own initial values, al-

lows for simulation of the concrete program based on an

abstract counter-example.

This is done by executing the steps in the abstract

4.2.1 JPF Implementation

In simulation mode JPF can execute a pre-determined

path by looking at which thread is executing and the

nondeterministic choice taken by the thread (if one ex-

ists). Steps in the path contain additional information,
such as the class name and line number of the execut-

ing thread, that can be used to determine the execution

context. When executing the concrete system using the

error-path generated from analysis of the abstract sys-
tem we check whether the class name and line number

expected by the error path is matched by the execution in

the system. A mismatch indicates that the abstract path

is not feasible in the concrete system. Since JPF states

trace. For clarity, we discuss the simalation in terms of the store variable values explicitly it is easy to extend the

execution_ of !ines of Java source code, but simulation can checking of abstract/concrete state correspondence to in-

also be performed at a finer level (,.g., byte-code). Each clude data; this requires the abstraction functions (e.g.,

step contains information about the thread to be run next

and the line of the counter-exampl-. At each step of the

concrete execution, we check that tie concrete line to be

executed corresponds to the abstract line in the counter-

example. If the lines match throuI,,hout the simulation

then the abstract trace is feasible, ol herwise, the abstract

trace is spurious. To check whethe_ the feasible trace is

a counter-example, we have also to ( beck if it violates the

property.

Consider again the example fr(,m Fig. 3 where the

result of model checking the ab. _tracted program is

Signs.abs() from Fig. 1).

4.2.2 Bandera implementation

As mentioned in Sect. 2 Bandera includes a simulator for

systems represented in BIR. Assuming location corres-

pondence between the original and abstracted program,

as above, Bandera's transition system generation phase

will produce BIR for the original and abstracted program

whose locations correspond. The original BIR simulator

assumed that a sequence of transitions was available to
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drive the simulation, consequently there was no provision

for determining tile enabled transit ons in a state and se-

lecting from them. To determine fed dbility of the abstract

BIR trace, we modified the sinmlatc r so that at each state

in the abstract trace we can:

-determine which concrete BIF transitions are en-

abled;

- detect whether the next abstra_ t BIR transition cor-

responds to one of those transiti,)ns;

- if not, then the abstract counter example is infeasible;

- otherwise, the concrete simulati )n is extended by the

corresponding transition.

BIR states store variable values expl :citly so, as with JPF,

extending checking of abstract/con,:rete state correspon-

dence to include data is straightforvard.

4.3 Methodology

C.S. PSsNreanu et al.: Finding feasible abstract counter-examples

modifying the selection of abstractions guided by the

counter-example reported in the first run of the model

checker. For a discussion of abstraction refinement, see

Sect. 6.

We note that using JPF's choose-free heuristic search

has the advantage that we do not have to run the model

checker twice to get a result. This changes the methodol-

ogy above in the following way. Tile abstracted program
is fed to a model checker, to perform choose-free heuris-

tic search. If the result is true, then the specification is

true for the original program. If the result is false and the

counter-example is choose-free, then it is reported to the

user; otherwise, we perform the counter-example guided

simulation.

Our met.hodology for model ched ing and abstraction

involves the integration of the above two techniques

as illustrated in Fig. 4. The input (concrete) program

and the specification are abstra(ted (using abstrac-

tions from Bandera's library) as described in Sect. 2

and the transformed program is re( to a model checker.

If the result of model checking is true, then the spe-

cification is true for the concrete program. If the re-

stilt is false, we rerun the model c} ecker to search only

choose-free paths ill the model. Ithe model checker

finds a choose-free counter-exampe, it is reported to

the user otherwise we perform connter-example guided

simulation. If the simulation succee(: s, a counter-example

is reported, but if a mismatch i,_ detected then ab-

stractions need to be refined. The refinement involves

4-4 Discussion

In general, the result of model checking an abstract

program is false either because the concrete program

does not satisfy the property (in which case the counter-

example is feasible and indicates a real defect), or because

the abstraction is not suitable for checking the property.

In the latter case, the abstract counter-example (:an be

one of the following:

not feasible due to over-approximation of tile behavior

of the concrete program (e.g., the spurious counter-

example of the program in Fig. 3).

feasible but not defective due to under-approximation of

the property to be checked.

The latter case is illustrated by the code in Fig. 5, where

both x and y are abstracted to signs. The predicate in the

assertion is abstracted in such a way that if the assertion

is true in the abstracted program, it follows that it is true

Program & Property

____

I Bandert _efine selections [Guided Simulation(abstraction) Mismatch_ (JPF) Counter-example

_stract program _'''''_ l 1

& _roperty _-" | "

Property truel ." ] Property falssl

.-'_stract ITru e

t{ -- .-_ounter=example[ '" '-

----,-] ." J Choose-free

TrueM°delChec}(_ --[ModelCheck(JPF)ICounter-example

Fig. 4. Model checking and refinement

[1] x=l ;

[2] y=x+l ;

[3] assert(x<y) ;

[1] x=Signs.POS;

[2] y=Signs.add(x,Signs.POS);
[3] asssrt((x==Sig ns.NEG && y==Signs.ZERO) II

(x==Signs.NEG && y==Signs.POS) I[

(x==Signs.ZERO _& y==Signs.POS));

Fig. 5. I_ xample of spurious error introduced by property abstraction
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in the concrete program. Abstra :t trace [1] -[2] - [3] vi-

olates tile assertion, since after s .ep [2], both x and y are

pos. However, in the concrete t rogram, the assertion is

true.

In our experience this secmd case is rare, since in

Bandera users are guided to inane abstraction selections

that are able to decide both the truth and falsity of the

propositions used in the property to be checked. Only

when such a selection is impo,,sible is it necessary to

cheek whether the feasible counter-example is defective

or not.

We note that both choose-fre_ model checking and ab-

stract counter-example guided concrete simulation can be

directly applied to an executable program slice. If a trace

is feasible in the sliced program, it is also feasible in the

original program [20]. We also note that the techniques

presented here can be applied for checking safety proper-

ties expressed in any universal te_ aporal logic.

4. 5 Abstraction and nondetermin sm

When building safe abstraction_, we use explicit non-

determinism (i.e., special instru(tions to be interpreted

by verification tools as nondeterndnistic choice). We also

use explicit nondeterminism whel_ modeling the environ-

ment in which a program executes. For example, during

our analysis of the DEOS kernel ?)resented in Sect. 5, we

used nondeterminism to model t ,e behavior of the ker-

nel's environment, which consists ff the user applications

running on the kernel and the hadware. We distinguish

(syntactically) (i.e., we use two d fferent special instruc-

tions) between internal nondeter ninism, introdnced by
data abstractions to model lack c f knowledge about ab-

stracted variable values, and ext._rnal nondeterminism,

introduced because of the lack of k:mwledge about the en-

vironment in which a program exe :utes.

Implicit nondeterminism is u:ed to model the pos-

sible decisions that a thread sched tier would make. Ana-

lyzing concurrent systems requires safe modeling of the

possible scheduling decisions that are made in execnting
individual threads. Since software :s often ported to oper-

ating system's with different sche(iuling policies, a prop-

erty checked nnder a specific polic : would be potentially

invalid when that system is executed under a different

pp]icY. To address_ this, the appr(,ach taken i!l existing

model checkers is to implement what amounts to the most

general scheduling policy (i.e., n(ndeterministic choice

among the set of runnable threads). Properties verified

under such a policy will also hold under any more restric-

tive policy. Fairness constraints a:e supported in most

model checkers to provide the ability to more accurately

model realistic scheduling policies (e.g., by eliminating

starvation). The Java language has a relatively weak spe-

cification for its thread schedulint/ policy. Threads are

assigned priorities and a scheduler must ensure that "all

threads with the top priority will eventually run" [2].

Thus, a model checker that guar_ ntees progress to all

rnnnable threads of the highest priority will produce only

feasible schedules; JPF implements this policy.

The choose-free search technique is set to be bounded

only by the internal nondeterminism introduced by data

abstraction. This means that during choose-free search,

a model checker analyzes a program's behavior that may

be nondeterministic because of the thread scheduler or

the environment (but not because of data abstraction).

5 Experience with defective Java applications

To illustrate the potential benefits of the techniques de-

scribed in the previous section, we applied them to several

small to medium-size multi-threaded Java applications.

These applications used both lock synchronization and

condition-based synchronization (i.e., wait/notify).

The systems are: RAX (Remote Agent experi-

ment) [34], a Java version of a component extracted

from an embedded spacecraft-control application, Pipe-

line [10], a generic framework for implementing multi-

threaded staged calculations, RWVSN, Lea's [24]

generic readers-writers synchronization framework,

DEOS [28,34], the scheduler from a real-time execu-

tive for avionics systems that was translated from C++,

BoundedBuffer [27], a bounded buffer implementation

in Java that is amenable to simultaneous use by mn]tiple

threads, NestedMonitor [27], a version of the bounded

buffer implementation that uses semaphores instead of

Java condition-based synchronization, and Replicated-

Workers [17], a parameterizable parallel job scheduler.

The following table gives some basic measures of the

size of the system; SL OC stands for the number of source

lines of code.

Program SL OC Classes Threads

RAX 55 4 3

Pipeline 103 5 5
RWVSN 590 5 5

DEOS 1443 2O 6

BoundedBuffer 127 5 5

NestedMonitor 214 6 3

ReplicatedWorkers 954 11 5

............................................... and

concurrency constructs, including abstract classes, inher-

itance, and java. util. Vector.
The RAX, DEOS, BonndedBuffer, and Nested-

Monitor examples had known errors that we checked

for. For the Pipeline, RWVSN and ReplicatedWork-

ers examples we seeded faults in the program. For ex-

ample, we dropped a negation (!) in two programs and

changed <= into < (simulating an off-by-one error) in the

other. It is interesting to note that not all seeded faults

could be detected given the properties we checked for,

so we altered the faults until we generated a property

violation. In our experiments, we encoded the proper-
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tiesto becheckedasassertions(ratherthantemporal
logicformulae),inordertouseJPF'snewheuristic-search
capabilities.

5.1 Description of experiments
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details for the examples amt model checks are available

at [16].

We now describe several model ch_ cks for the abstracted

systems and the automated analgsis of the resulting

counter-examples. Figure 6 gives the data for each of

the model checking runs, using JI:F to perform choose-

free search, depth-first search, breadth-first search, and

choose-free heuristic search. For each run, we report

the abstraction that was used, th, size of the counter-

example, the total of user and system time to execute

the checking and the memory used in verification. All

model checks were performed on _, SUN ULTRA5 with

a 270MHz UltraSparc IIi and 512 _IB of RAM. The re-

sults are slightly different from [2_], due to the use of

the updated (and improved) versioiL of the JPF tool. l_fll

5.1.1 RAX

We model checked the RAX example to detect dead-

locks using two different abstractions. Figure 7 shows

excerpts from the original and the generated abstract

Java program. The abstraction of the program was driven

by our selection that the Evont.count field should be

abstracted with signs. Bandera's abstraction type in-

ference determined that the local count variables in

the FirstTask. run () method should also be abstracted,

since there are two event objects allocated; this amounts

to four abstracted variables in the system.

Running JPF (using depth-first search) on this ab-

stracted system detects a deadlock and produces a 103-

step counter-example. Analysis of this counter-example

reveals that it is spurious. After 35 steps in the counter-

Program Choose-flee Depth-first Breadth-first Choose-flee

search search search heuristic search

RAX(signs) Size: 30

Memory: 2.5M

Time: 12.3s

103 30 30

2.3M 2.5M 3M

12.4s ll.8s ll.4s

RAX(even-odd) Size:

Memory:

Time:

None found 72 30 30

2.8M 4AM 8.6M

12.7s 13s 16.9s

Pipeline(signs) Size: 55

Memory: 2.2M

Time: lls

55 22 22

67.1M 1.6M 1.6M

3:22.3s lO.8s lO.9s

RWVSN(signs) Size: 70

Memory: 11.7M

Time: 49.2 s

27056 64 64

182.9M 91M 94.8M

11:29.6s 4:17.4s 4:18.4s

DEOS( signs ) Size: 192

Memory: 317.8M

Time: 19:38.5 s

294

228.2M

11:59.5s

Out of memory

BoundedBuffer( signs ) Size:

Memory:

Time:

None found 5303 56

43.3M 159.7M

1:29.5s 7:29.7s

BoundedBuffer( range(O.. . )) Size: 353

Memory: 19.4M

Time: 2:46s

Out of memory

NestedMonitor( signs ) Size: 22

Memory: 1.9M

Time: 23.3s

56

128.9M

5:54.6s

ReplicatedWorkers( signs

5918 56 56

57.6M 53.5M 30.6M

3:51s 5:12.7s 1:23.s

111 22 22

1.5M 711.1k 1.6M

6.7s 5.5s 3.1s

Size: 423 423

Memory: 3.6M 3.6M
Time: 27.1s 27.8s

Out of memory

Fig. 6. Data for experiments_

Out of memory
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[ I] class Event {

[ 2] int count=O;

[ 3] public synchronized voic wait_for_eventO {

[ 4] try{wait();}

[ 5] catch(InterruptedExcep_ion e){};
}

[ 6] public synchronized void signal_event() {
[ 7] count - count + 1;

[ 8] notifyAll();

}

}

[ 9] class FirstTask extends Th'ead {

[10] Event eventl,event2;

[11] int count=O;

[12] public void run() {

[13] count = eventl.count;

[14] while (true) {

[15] if (COunt == eventl._ ount)

[16] eventl.wait_for_evEnt();

[17] count - eventl.count;

[18] event2.signal_event();

}

}

}

[19] class SecondTask extends T_read {

[20] Event eventl,event2;

[21] int count=0;

[22] public void run() {

[23] count = event2.count;

[24] while (true) {

[25] eventl.signalevent()

[28] if (count -- event2.c_unt)

[27] event2.wait_for_eve:tt();

[28] count = event2.count;

}

}

[ 1] class Event {

[ 2] int count - Signs. ZERO;

[ 3] public synchronized void wait_for_event() {

[ 4] try {wait();}

[ 5] catch(InterruptedErception e){};

}

[ 6] public synchronized void signal_event() {

[ 7] count = Signs.add(count,Signs. POS);

[ 8] notifyAll();

}

}

[ 9] class FirstTask extends Thread {

[10] Event eventl,event2;

[11] int count = Signs. ZERO;

[12] public void run 0 {

[13] count = eventl.count;

[14] while (true){

[15] if (Signs.eq(count,eventl.count))

[16] eventl.wait_for_event();

[17] count - eventl.count;

[18] evsnt2.signal_event();

}

}

}

[19] class SecondTask extends Thread {

[20] Event eventl,event2;

[21] int count=Signs. ZERO;

[22] public void run() {

[23] count = event2.count;

[24] while (true) {
[25] eventl.signal_event();

[26] if (Signs.eq(count,event2.count))
[27] event2.wait_for_event();

[28] count = event2.count;
}

}

}

Fig. 7. RAX Program with deadlock (excerpts)

example the trace reaches the c(_nditional at line 15.

In the real system, the branch cmdition is false, but

due to the nondeterminism of Yigns.eq() for posi-

tive parameters the abstract system enters the condi-

tional. JPF is able to find a 30-stel) choose-free counter-

example. Running JPF using the heuristic searches

(i.e., both breadth-first search a_d choose-free heuris-

tic search) discover the same counter-example (also 30-

steps long). We ran JPF in simulation mode guided by

this 30-step counter-example and it was shown to be

feasible.

It is clear that the presence of spurious coun_ter-

examples is closely related to the pr )perty being checked,

tile program and the abstraction's s,elected. We reran our

model checks changing the abstraction for Event. count

field to record information about th,_ evenness or oddness

of its values. This produced a 72-,,top counter-example

(using depth-first search) and a 30-_tep counter-example

(using both heuristic searches), bu'. JPF was unable to

find a choose-free counter-example. At this point, we ran

JPF in simulation mode guided by the 72-step and the 30-

step counter-examples and while th,_e counter-examples

did contain nondeterministic choice,', they were shown to

be feasible.

5.1.2 Pipeline

The Pipeline example consists of an application that

uses the methods of a Pipeline class to manage exe-

cution of a multi-threaded staged computation. The ap-

plication constructs and starts execution of a pipeline,

calls stop() to end execution of the pipeline, and calls

add() to provide input to the computation. We model

checked a precedence property for the Pipeline system

stating that "no pipeline stage (i.e., thread) will ter-

minate until the stop method is called". We encoded

this usir_g a Boo!ean vari_ab]e, stopCalled, set to true

when the stop() method had been called and embedded

assert (stopCalled) at the return point of the stage run

methods.

This example was abstracted by identifying a loop

index variable that controlled the number of times the

add() method was called and abstracting it to signs.

Type inference determined that five additional fields

and local variables also needed abstraction. JPF found

a choose-free counter-example that is similar to the ex-

ample in Fig. 3 in that it occurred on the first iteration

of an abstracted loop. We ran JPF in simulation mode

to analyze the counter-examples produced during depth-
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first search and the heuristic se_:rches, and they were

shown to be feasible.

5.1.3 RWVSN

RWVSN consists of an apphcati m that extends Lea's

RWVSN class [24] to implement an _bject with a readers-

writers synchronization policy. Th_ t object is then shared

by several threads that read and wJ ite through the R_/VSN

interface. We checked that access b:' a reader exchlded ac-

cess by a writer by setting a Booleali variable, in_writer,

in the writer's critical section and :esetting it upon exit,

and embedding assert ( ! in_writer) in the reader's crit-

ical section.

Abstraction was applied to three integer fields of

the R_/VSN class abstracting them to signs. JPF found

a choose-free counter-example; the counter-example pro-

duced during depth-first search wa_ analyzed and found

not feasible, while tile counter-exan_ples produced during

heuristic searches were shown to be feasible.

5.1.4 DEOS

The DEOS real-time scheduling kernel has been the

subject of several recent case studies in model checking

code [18, 28, 34]; we performed the a_)straction and analy-

sis as described in [18]. The properW being checked is an

assertion that encodes a test for time partitioning in the

scheduler component of the system We used JPF to de-

tect a subtle implementation error related to the kernel's

time partitioning requirement that was originally discov-

ered and fixed during the standard formal review pro-

cess. That requirement is that "app ication processes are

guaranteed to be scheduledfor theiJ budgeted time dur-

ing a scheduling unit". The requirement was encoded as

a method that observes the state of the kernel and asserts

that budgets are allocated in each s,:heduling unit. Calls

to this method are inserted whene_er the kernel sched-

ules an application process; this gum antees the detection

of property violations. To analyze the. DEOS kernel, addi-
tional code was written to simulate the behavior of user

applications and the hardware envizonment (e.g., a tick

generator thread simulates a hardwere clock for time re-

lated processing in the kernel). We modeled the environ-

ment using explicit external nondete_ minism.

We used dependence analysis driven by the location

of the assert statement and the data values it referenced

to identify a single field (out of 92 as influencing the

property. We selected the signs AI fo: that field and type
inference determined that two more fields should be ab-

stracted. Checking the property on the abstracted system

detected a choose-free counter-example (i.e., a counter-

example that does not contain int,_rnal nondetermin-

ism introduced by the abstraction). _fhe counter-example

found using depth-first search turned out to be feas-

ible when simulated. JPF ran out of memory during the

heuristic searches.

5.1.5 BoundedBuffer

The BoundedBuffer program uses a synchronization

object that monitors the access to a bounded buffer into

which I)roducer threads put items and consumer threads

get items. The monitor class maintains an array of o_

jects, two indices into that array representing the be-

ginning and the end of the active segment of the array
and a counter of the items stored into the buffer. A con-

stant SIZE defines the maximum number of items that

may be stored in the buffer. Calls to put items into the

buffer are guarded by a check for a full buffer using the

Java conditional wait/notify idiom; calls to get items

into the buffer are guarded sinfilarly by a check for an

empty buffer. As in [27], we ignored the details of what
items are stored in the buffer and how these items are

stored.

We analyzed an instance of the problem with two

producer and two consumer threads. The abstraction of

the program was driven by our selection that the con-

stant SIZE should be abstracted with signs. Bander-

a's abstraction type inference determined that variable

count, that stores the number of items currently stored

in the buffer, should also be abstracted. Running JPF

(using depth-first search) on this abstracted system de-

tects a deadlock and produces a counter-example; an-

alysis of this counter-example reveals that it is Sl)urious.

No choose-free counter-example were found. Using the

heuristic searches, JPF found counter-examples that were

shown to be feasible.

We reran our model checks changing the abstrac-

tion for SIZE with range(O..1) abstraction [18], which

tracks concrete values 0 and 1, but abstracts the values

less than 0 and greater than 1, by using the set of to-

kens { belowO, zero, one, above1 }; this produced a choose-

free counter-example. We ran JPF in simulation mode

guided by the counter-example produced using depth-

first search and it was shown to be not feasible; the

counter-examples reported by the heuristic searches were

found to be feasible.

5.1.6 NestedMonitor

The NestedMonitor program is an implementation of

the bounded buffer that may deadlock because of nested

monitor calls. We analyzed an instance of the program

with one producer thread and one consumer thread.

As with the previous example, we abstracted the con-

stant SIZE (that records the number of items that are

stored in the buffer) using signs. Checking the abstracted

system yielded feasible counter-examples with each of the

techniques.

5.1.7 ReplicatedWorkers

The ReplicatedWorkers system is a parameterizable

job scheduler, where the user configures the computation
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to beperformedineachjob,tt edegreeof parallelism
andseveralpre-definedvariationsofschedulerbehavior.
Aninstanceofthisframeworki:;acollectionofsimilar
computationalelements,called_orkers.Eachworkerre-
peatedlyaccessesdatafromashaedworkpool,processes
thedata,andproducesnewdataelementswhicharere-
turnedtothepool.Usersdefine:henumberofworkers,
thetypeofworkdata,andcomputationstobeperformed
byaworkeronaitem.Wechectedforpropertermina-
tion(i.e.,thatthecomputationc.mnotterminateunless
theworkpoolisemptyorawork,_rsignalstermination).
Weencodedthiswithanasserti(n thatusesavariable,
GiobalDone,settotruewhenaw_,rkerthreadsignalster-
mination.Toanalyzetheframew¢rk,additionalcodewas
writtentosimulatethebehavior,)fadriverthatinvokes
theframework'soperationsandofstubsthatimplement
theworkdonebyworkers.SimilartoDEOS,wemodeled
theenvironmentusingexplicitexternalnondeterminism.

Thesigns abstraction was app] led to the variable that

stores the number of work items in the pool. Checking the

abstracted system yielded a choos_,-free counter-example.

The counter-example reported by the depth-first search

was found to be infeasible and du 'ing heuristic searches,

JPF ran out of memory.

5.2 Discussion

While these programs represent a range of different pat-

terns of concurrency (e.g., clients and server, pipelines,

and peer-groups) and the larger .:;xamples are real ap-

plications, we do not claim that our results generalize

to a broader class of multi-thread,A Java programs. We

do, however, believe the results su_:gest that the counter-

example analysis techniques we have developed have

merit and can significantly reduce tile burden users face

when analyzing counter-example: from checks of ab-

stracted systems.
There are three criteria that _e believe are relevant

when considering the effectiveness of the techniques pre-

sented in this paper: guarantees ot counter-example fea-

sibility, length of counter-example, and memory/time re-

quirements of the analysis.
The data clearly show that cot_nter-examples can be

reduced significantly in length with respect to depth-first

search; this alone makes it easier to diagnose the program

fault. Choose-free search and both heuristics are effective

in finding such short counter-examl les. In some eases, tile
heuristics are more effective in reducing counter-example

length. This is due to the fact that choose-free search

operates depth-first in the snbspace hounded by choose

operations.
While breadth-first search cm produce shorter

counter-examples than choose-free search, they are not

guaranteed to be feasible. This is why we investigated

the choose-free heuristic, which is a hybrid of the two

that performs a breadth-first traw-rsal of the subspace

bounded by choose operations. The price of the heuristic

feasible abstract counter-examples 13

searches is that they explicitly store the search frontier,

unlike the depth-first searches. This can lead to signifi-

cant memory consnlnption, depending on tile problem.

For the two largest examples we considered, DEOS and

ReplieatedWorkers, these searches exhansted mem-

ory while choose-free search completed successfully. More

experiments with large software systems is needed to un-

derstand the relative effectiveness of choose-free search

and its heuristic variant.

We believe that tile guarantee of feasibility is im-

portant since it will focus the user's attention on only

those counter-examples for which analysis will lead to

fault detection. In general, one wmfld prefer a shorter

feasible counter-example to a longer one. Another pos-

sible variation of choose-free search that is guaranteed

to produce the shortest choose-free counter-example,

as the heuristic search does, but without tile cost as-

sociated with a breadth-first traversal is to perform

an exhaustive depth-first search of the choice bounded

sub-space recording the shortest counter-example en-

countered and overwriting it when a shorter one is

found.

We note that the heuristic searches can be used only

for checking for assertion violations and for deadlock,

while choose-free search can be used when checking prop-

erties written in temporal logic.

Finally, we observe that choose-free search can be an

effective way to exploit more aggressive abstraction ap-

proaches. The application of source-level predicate ab-

straction techniques to the DEOS and RAX is described

in detail in [34]. In that work a predicate abstraction

and an invariant for DEOS and four different predicate

abstractions for I.tAX were used to produce abstract

models that preserved both truth and falsity of the prop-

erties being checked. In contrast, the checks described in

this paper sacrifice precision for more aggressive abstrac-

tion, and state-space reduction, while choose-free search

enables the recovery of feasible counter-examples.

6 Related work

In our previous work [18], we focused on tile specifica-

tion, generation, selection and compilation of abstrac-

tions for Java programs. In this paper, we detail tech-

niques for analyzing counter-examples and provide ev-
idence for their usefulness on several non-trivial Java

programs.
The abstractions we use correspond to/ree abstrac-

tion relations from [14]. When looking only at the choose-

free paths, the model checker examines (on-the-fly) paths

that under-approximate the behavior of the concrete pro-

gram. These paths correspond to the ones introduced by
constrained abstraction relations [14]. Both free and con-

strained abstractions are used to build mized transition

systems for model checking full CTL. We use these ab-

stractions in a different way: free abstract transitions for
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verifying properties and constraine:t abstract transitions

when looking for defects.

Most existing work on counl:er-example analysis

(e.g., I3,r,23,30,311) is oriented towards the goal of

verification; counter-example anal}sis drives abstraction

refinement for the purpose of provi lg a property. In con-

trast, our work is oriented toward defect detection, and

we view the integration of our wor]: with abstraction re-

finement techniques as an interesting research topic for

the future. Our biasing of the model checker yields a com-

plete coverage of the sub-space o' guaranteed feasible

paths in the system rather than simI,ly assessing the feasi-

bility of a single counter-example fr_ m an unbiased model

check.

The simulation technique from [7] can handle pro-

grams with multiple initial states al,d it uses forward an-

alysis to perform a symbolic simul ttion of the concrete

system using predicates that char;,cterize the program

data values. Unlike our simulation t,_chnique, the method

from [71 does not keep a correspondence between con-

crete and abstract transitions; hen(e, rather than deter-

mine the next concrete state, it ml st compute (at each

step of the simulation) the set of all possible next con-

crete states. This method, which is implemented in the

symbolic model checker NuSMV [61 is dependent on the

computability of the inverse of the abstraction function

and also on the decidability of wh._ther a set of states

is empty or not. Similar restrictio,_s apply to the ap-

proaches presented in [23, 30], where theorem proving is

used to rule out spurious counter-,xamples. Backward

analysis, that computes pre-images of the violating ab-

stract state over the given trace, is _lsed to obtain infor-

mation to refine the abstractions. In :{LAM [3], sequential

C programs are abstracted into Bo{ lean programs (pro-

grams in which variables and proce, ture parameters are

always Boolean). Feasibility of abstre ct counter-examples

is checked using symbolic execution, in which a heuris-

tic decision procedure is used to try and decide whether

the abstract path is feasible or not. I rnlike our approach,

these tools and techniques are not c_mcerned with prop-

erty abstraction.

We note that, although we set ou_ presentation in the

context of Bandera's abstraction, otl er forms of data ab-

straction, like JPF's predicate abstraction, would also be

treated properly. By that we mean t hat a path through

the predicate abstracted code that is choose-free or that

can be mapped to a concrete executi( n is feasible.

7 Conclusion

In this paper, we have suggested several approaches for

finding feasible abstract counter-examples when model

checking software. These include a_laptations of state

space search algorithms to focus on lhe choose-free sub-

space and abstract counter-example g uided simulation of

the concrete program.

Based on experimentation with an implementation of

these techniques in a Java model checking tool we have

found the combination of techniques to be capable of

detecting guaranteed feasible counter-examples in every

case. This enables users to apply aggressive abstractions

to their programs l,o speed analysis -without sacrificing

the ability to detect errors.

Our approach treats both abstraction Of program data

and the property to be checked. Furthermore, it takes into

account the differences between abstraction in the envi-

ronment and abstraction in the system under analysis.

Thus, our approach is well-adapted to finding errors in

real software.

We have demonstrated that choose-free search and

abstract counter-example guided concrete simulation are

not tightly bound to a particular model checking frame-

work by adapting them from JPF to Bandera.

Finally, we believe that our light-weighteounter-

example analysis techniques can be combined with other

counter-example analysis methods to provide a suite of

methods that vary in cost and in their ability to precisely

analyze cmmter-examples.
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