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Abstract. The success of model checking is largely based
on its ability to efficiently locate errors in software de-
signs. If an error is found, a model checker produces
a trail that shows how the error state can be reached,
which greatly facilitates debugging. However, while cur-
rent model checkers find error states efficiently, the coun-
terexamples are often unnecessarily lengthy, which ham-
pers error explanation. This is due to the use of “naive”
search algorithms in the state space exploration.
In this paper we present approaches to the use of

heuristic search algorithms in explicit-state model check-
ing. We present the class of A∗ directed search algorithms
and propose heuristics together with bitstate compres-
sion techniques for the search of safety property viola-
tions. We achieve great reductions in the length of the
error trails, and in some instances render problems an-
alyzable by exploring a much smaller number of states
than standard depth-first search. We then suggest an im-
provement of the nested depth-first search algorithm and
show how it can be used together with A∗ to improve
the search for liveness property violations. Our approach
to directed explicit-state model checking has been imple-
mented in a tool set called HSF-SPIN. We provide experi-
mental results from the protocol validation domain using
HSF-SPIN.

Keywords:Model checking – Directed search – Protocol
validation

1 Introduction

Model Checking [6] is a formal analysis technique that
has been developed to automatically validate1 functional

1 Within the scope of this paper we use the word “validation” to
denote the experimental approach to establishing the correctness of
a piece of software, while we use the word “verification” to denote
the use of formal theorem proving techniques for the same purpose.

properties for software or hardware systems. The proper-
ties are commonly specified using some sort of a tempo-
ral logic or using automata. There are two primary ap-
proaches to model checking. First, symbolic model check-
ing [28] uses a symbolic representation for the state set,
usually based on binary decision diagrams. Property val-
idation in symbolic model checking amounts to symbolic
fixpoint computation. Explicit state model checking uses
an explicit representation of the system’s global state
graph, usually given by a state transition function. An
explicit state model checker evaluates the validity of the
temporal properties over the model by interpreting its
global state transition graph as a Kripke structure, and
property validation amounts to a partial or complete ex-
ploration of the state space. In this paper we focus on
explicit statemodel checking and its application to the val-
idation of communication protocols. The protocol model
we consider is that of collections of extended communi-
cating finite state machines as described, for instance,
in [5] and [17]. Communication between two processes is
either realized via synchronous or asynchronous message
passing on communication channels (queues) or via global
variables. Sending or receiving a message is an event that
causes a state transition. The system’s global state space
is generatedby the asynchronouscross product of the indi-
vidual communicating finite statemachines (CFSMs).We
follow the Promela computational model [20].
The use of model checking in system design has one

great advantage over the use of deductive formal verifica-
tion techniques. Once the requirements are specified and
the model has been programmed, model checking valida-
tion can be implemented as a push-button process that
either yields a positive result, or returns an error trail.
Two primary strategies for the use of model checking in
the system design process can be observed.

– Complete validation is used to certify the quality of
the product or design model by establishing its abso-
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lute correctness. However, due to the large size of the
search space for realistic systems it is hardly ever pos-
sible to explore the full state space in order to decide
about the correctness of the system. In these cases, it
either takes too long to explore all states in order to
give an answer within a useful time span, or the size
of the state space is too large to be stored within the
bounds of available main memory.
– The second strategy, which also appears to be the one
more commonly used, is to employ the model checker
as a debugging aid to find residual design and code
faults. In this setting, one uses the model checker as
a search tool for finding violations of desired proper-
ties. Since complete validation is not intended, it suf-
fices to use hashing-based partial exploration methods
that allow for covering a much larger portion of the
system’s state space than if complete exploration is
needed.

When pursuing debugging, there are some more ob-
jectives that need to be addressed. First, it is desirable
to make sure that the length of the counterexample is
short, so that error trails are easy to interpret. Second,
it is desirable to guide the search process to quickly find
a property violation so that the number of explored states
is small, which means that larger systems can be de-
bugged this way. To support these objectives we present
our approach to directed model checking, i.e. model check-
ing combined with heuristic search.
Our model-checker HSF-SPIN extends the SPIN

framework with various heuristic search algorithms to
support directed model checking, e.g. A∗ [19] and itera-
tive deepening A∗ [24]. Experimental results show that
in many cases the number of expanded nodes and the
length of the counter-examples are significantly reduced.
HSF-SPIN has been applied to the detection of deadlocks,
invariant and assertion violations, and to the validation of
LTL properties. In most instances the estimates used in
the search are derived from the properties to be validated,
but HSF-SPIN also allows some designer intervention so
that targets for the state space search can be specified
explicitly in the Promela code.
We propose an improvement of the nested depth-

first search algorithm that exploits the structure of never
claims. For a broad subset of the specification patterns
described in [10], such as Response and Absence, the pro-
posed algorithm performs less transitions during state
space search and finds shorter counterexamples compared
to classical nested depth-first search. Given a Promela
never claim A the algorithm automatically computes
a partitioning ofA in linear time with respect to the num-
ber of states in A. The obtained partitioning into non-,
fully and partially accepting strongly connected compo-
nents will be exploited during state space exploration.

Precursor Work. Much of the content of this paper is
a revision of work that was first published in [13] and [12].
The former paper considers safety property analysis for

simple protocols. The latter paper extends this work by
providing an approach to validating LTL-specified live-
ness properties and experimenting with a larger set of
protocols. Previously unpublished results include the cor-
rectness result for the improved nested depth-first search
algorithm as well as an extended experimental evaluation
of our approach.

Structure of Paper. In Sect. 2 we review automata-based
model checking. Section 3 introduces into directed search
algorithms, including A∗. Heuristic estimate functions to
be used in safety property analysis of communication
protocols are suggested in Sect. 4. We describe the HSF-
SPIN tool set in Sect. 5 and present experimental results
for safety properties in Sect. 6. In Sect. 7 we propose an
improvement to the nested depth-first search algorithm
used in the analysis of liveness properties and show how
this algorithm can be combined with heuristic search.
Experimental results on liveness property validation are
given in Sect. 8. We discuss related work in Sect. 9 and
conclude in Sect. 10.

2 Automata-based model checking

In this Section we review the automata theoretic frame-
work for explicit state model checking (c.f. [6]), describe
the validation algorithms in use, and present a practical
model checker, the SPIN tool set.

2.1 Automata-theoretic framework

Since we model reactive systems with infinite behaviors,
the appropriate formalization for words over state se-
quences of these systems are Büchi automata. They in-
herit the syntactic structure of finite state automata but
have a different acceptance condition. An infinite run of
a Büchi automaton A over an alphabet ΣA of state sym-
bols is accepting if the set of elements of ΣA that appear
infinitely often in the run has a non-empty intersection
with the set of accepting states of A. This extends to fi-
nite runs by assuming that the final state will be repeated
forever. The languageL(A)⊆Σ∗A consists of all accepting
runs of A. It is sometimes helpful to specify requirements
on reactive systems by using some form of a Temporal
Logic. In this paper we use Linear Time Temporal Logic
(LTL) as defined in [27]. In LTL, the operator � repre-
sents the modality globally (G) and the operator� repre-
sents the modality eventually (F ).
In automata-based Model Checking we are interested

in determining whether the system M , represented by
Büchi automaton B, satisfies a property specification S,
given by another Büchi automaton A. A can either be
given directly, or it can be automatically derived from
an LTL property specification. While this derivation is
exponential in the size of the formula, typical property
specifications result in small LTL formulae so that this
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complexity is not a practical problem. The Büchi automa-
ton B satisfies A iff L(B) ⊆ L(A). This is equivalent to
L(B)∩L(A) = ∅, where L(A) denotes the complement of
L(A). Note that Büchi automata are closed under com-
plementation. In practice, L(A) can be computed more
efficiently by deriving a Büchi automaton from the nega-
tion of an LTL formula. Therefore, in the SPIN valida-
tion tool LTL formulae representing a desired property
are first negated, and then translated into an equivalent
Büchi automaton. In the terminology of the SPIN model
checker [21] and its Promela input language this automa-
ton is called a never claim, and we will adopt this termi-
nology throughout this paper.
As an example we consider the commonly used re-

sponse property which states that, whenever a certain
request event occurred, a response event will eventually
follow. Assume that the state following the occurrence of
the request is represented by the state predicate p, and
that a state following the response is denoted by q. The
corresponding LTL formula is φ :�(p→�q) and its nega-
tion is ¬φ :�(p∧ �¬ q). The Büchi automaton and the
corresponding Promela never claim for the negated re-
sponse property are illustrated in Fig. 1.
The emptiness of L(B)∩L(A) is determined using an

on-the-fly algorithm based on the synchronous product of
N and B, where L(N ) = L(A). Assume thatN is in state
s and B is in state t. B can perform a transition out of t if
N has a successor state s′ of s such that the label of the
edge from s to s′ represents a proposition satisfied in t.
A run of the synchronous product is accepting if it con-
tains a cycle through at least one accepting state of N .
L(B)∩L(A) is empty if the synchronous product does not
have an accepting run.
We use the standard distinction of safety and live-

ness properties. Safety properties refer to states, whereas
liveness properties refer to paths in the state transition di-
agram. Safety properties can be validated through a sim-
ple depth-first search on the system’s state space, while
liveness properties require a two-fold nested depth-first
search. When property violations are detected, the model
checker will return a witness (counterexample) which
consists of a trace of events or states encountered.

Fig. 1. Büchi automaton for response
property (top left) and for its
negation (bottom right)

2.2 Search algorithms

For the validation of safety properties a simple complete
state graph traversal algorithm is sufficient. This is usu-
ally either a depth-first (DFS) or a breadth-first (BFS)
search algorithm. When a property violating state is en-
countered, the search stack contains the witness that will
be made available to the user. BFS finds errors with mini-
mal witness length, but is rather memory inefficient. DFS
is more memory efficient, but tends to produce witnesses
of non-optimal length.
Since liveness properties refer to execution paths,

a different search approach is needed. The detection of
liveness property violations entails searching for accept-
ing cycles in the state graph. This is typically achieved
by nested depth-first search (Nested-DFS) that can be
implemented with two stacks as shown in Fig. 2. As
for safety properties, the search stacks will be used to
construct the witness. In case a property violation is
discovered, the first stack will contain the path into an
accepting state, while the second stack will illustrate the
cycle through the accepting state.

2.3 The model checker SPIN

SPIN [21] is a model checking tool implementing the
above discussed approach to automata-based model
checking. Its input language Promela permits the defin-
ition of concurrent processes, called proctypes in Promela
parlance, as well as synchronous or asynchronous com-
munication channels and a limited set of C-like data
structures. Concurrency in SPIN is interpreted using
an interleaving approach. Properties can be specified in
various ways. To express safety properties, the Promela
code can be augmented with assertions or deadlock state
characterizations. In order to express liveness proper-
ties, Promela models can be extended by never claims
that express undesired properties of the model. SPIN
also provides an automatic linear temporal logic (LTL)
to never claim translator. SPIN implements the syn-
chronous product construction approach to determine
the emptiness of the intersection of the Promela model

Nested-DFS(s)
hash(s)
for all successors s′ of s do
if s′ not in the hash table then Nested-DFS(s′)
if accept(s) then Detect-Cycle(s)

Detect-Cycle(s)
flag(s)
for all successors s′ of s do
if s′ on Nested-DFS -Stack then
exit LTL-Property violated
else if s′ not flagged then Detect-Cycle(s′)

Fig. 2. Nested Depth-First Search
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and the never claim. SPIN uses on-the-fly state space
exploration algorithms, and implements various opti-
mizations such as, for instance, partial order reduction.
Promela models can be simulated randomly, user-guided
or following an error trail. SPIN has a line-oriented as well
as a graphical user interface, called XSPIN. For a more
detailed discussion of SPIN we refer to the literature on
the SPIN web site2.

2.4 Error trails

If property violations are found, error trails contain im-
portant debugging information. Succinctness of these
trails is essential for an easy comprehension of the discov-
ered design faults. Lengthy trails can impede proper error
trail interpretation.
We illustrate the impact of long error trails with the

following example. We refer to the preliminary design of
a Plain Old Telephony System (POTS) that we first pre-
sented in [23]. This model was generated with the visual
modeling tool VIP. It is a “first cut” implementation of
a simple two-party call processing, and we know that it
is full of faults of various kind. However, in [23] we used
SPIN to show that this model is actually capable of con-
necting two telephones. The model consists of two user
processes UserA and UserB representing the environment
behaviour of the switch, as well as two phone handler
processes PhoneHA and PhoneHB representing the soft-
ware instances that control the internal operation of the
switch according to signals (on-hook, off-hook, etc.) re-
ceived from the environment. Due to space constraints we
have to rely on an intuitive understanding of call process-
ing behaviour and the type of signals that are used, for
a more detailed description we refer to [23].
Our objective now is to use SPIN in order to debug the

POTS model. We are first interested in knowing whether
certain inconsistent global system states are reachable.
For instance, such an inconsistent state is reached when
all user processes and one phone handler process are in
conversation states, indicating that they presume the two
phones to be connected, while the second phone handler
is not in a conversation state. Let p and q denote state
propositions that are true when phone handlers A and B
are in the conversation state, respectively. Let r and s de-
note state propositions representing the fact that phones
A and B are in the conversation state, respectively. The
absence requirement for this inconsistent global system
state, which is a safety property, can be characterized by
the LTL formula

¬�(p∧¬q∧ r∧s).

We used SPIN to validate this property. It turns out not
to be valid and SPIN produces an error trail leading into
a global system state violating the property as partially

2 netlib.bell-labs.com/netlib/spin.

illustrated in Fig. 3. For the engineer experienced in ana-
lyzing call processing sequences it becomes clear that the
undesired state is reachable because of race conditions
and a lack of synchronization between the UserB and
the PhonHB processes, which probably calls for using syn-
chronous communication at this interface. On the other
hand, the error trail that SPIN produces has a length of
2765 steps and comprises 462 message exchanges – it is
obvious that analyzing a trail of that length to locate the
cause of an error is an arduous task. The length of the
trail is surprising since using some backward analysis, and
when knowing the underlying state machine model, it is
easy to come up with a much shorter trail by hand, for
instance the trail comprising just 16 messages given in
Fig. 4.
The trail length phenomenon is partly due to the high

degree of nondeterminism inside the system which can be
attributed to the highly concurrent nature of a telephony

UserA UserB PhoneHA

off_hook

PhoneHB

off_hook

off_hook

on_hook dial_tone

dialdigit

on_hook

off_hook

dial_tone

dialdigit

busytone

dial_tone
off_hook

stop_ringtone

on_hook

off_hook

ringtone

conreq

connack

stopaudiblering disconnect

{wait}{conversation}{conversation}{conversation}

on_hook

... 440 further messages ...

Fig. 3. POTS example, error trail produced by SPIN. Names in
curly brackets denote local control states reached at the end

of the trail
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UserA UserB PhoneHA

off_hook

PhoneHB

dial_tone

dialdigit

audiblering

offhook

dial_tone
off_hook

stop_ringtone

on_hook

off_hook

ringtone

conreq

connack

stopaudiblering disconnect

{wait}{conversation}{conversation}{conversation}

on_hook

Fig. 4. POTS example, manually generated shorter error trail

switch. Another contributing factor is the search strategy
that SPIN uses when exploring the system’s state space.
Resolution of nondeterminism in Promela is random, but
SPIN implements this using a fixed priority scheme based
on the lexical structure of the Promela model3. SPIN will
first explore many execution sequences that do not lead
to the establishment of a phone call. This means for in-
stance that one phone calls the other, but then decides
to hang up, or both phones try to call each other con-
currently, before the call sequence converges towards the
successful establishment of a call. The depth-first search
strategy that SPIN employs will first try to explore all
action variants of the first process, and then try out the
next process, and so on. However, the target state would
be reached much more quickly if all processes did a few
steps so that a phone call was established. In conclusion,
SPIN is following a rather uniformed search strategy that
neither takes knowledge about the model nor knowledge
about the property to be validated into account when de-
ciding which of the possible successor states to explore
first. If, however, the state space of the PhoneA, PhoneB
and PhoneHA processes were explored in such a way that
every state transition brought them nearer to their own
local conversation state and if PhoneHB avoided the con-
versation state, and if globally such transitions were pre-
ferred over non-approximating transitions, then a much

3 Roughly speaking, this means the lexically first transition in
the “first” proctype instance is preferred over other concurrently
enabled transitions.

shorter error trail into the property violating state could
be expected. It is the objective of this paper to present
guided search algorithms using heuristic guidelines in the
state exploration similar to the one just described. When
discussing experimental results, we will see that for the
POTS example the automatically obtained shortest error
trail is 1.5 orders of magnitude shorter than the one gen-
erated by SPIN’s exploration.

3 Heuristic search algorithms

In this Section we introduce heuristic search algorithms
as alternatives to complete state space exploration in
model checking. We will restrict the discussion to safety
property searches and extend the discussion to liveness
properties later on in this paper.

3.1 Depth-first, breadth-first and best-first search

The detection of a safety property violation is equivalent
to finding a state in which the property is violated. The al-
gorithms used for finding the property violating states are
typically depth-first and breadth-first searches. Depth-
first search (DFS) is memory efficient, but does not pro-
vide optimal solutions. Breadth-first search (BFS), on the
other hand, is complete and optimal but very inefficient.
State space exploration in model checking safety prop-

erties can be understood as a search for a path to a failure
state in the underlying problem graph. Since this graph
is implicitly generated by node expansions, in contrast
to ordinary graph algorithms the search terminates once
a target state has been found. BFS and DFS explore
the state space without additional knowledge about the
search goal. The selection of a successor node in these
algorithms is following a fixed, deterministic selection
scheme. Heuristic search algorithms, however, take addi-
tional search information in form of an estimation func-
tion into account. This function returns a number repre-
senting the desirability of expanding a node. When the
nodes are ordered so that the one with the best evaluation
is expanded first and if the evaluation function estimates
the cost of the cheapest path from the current state to
a desired one, the resulting greedy best-first search (BF)
often finds solutions fast. However, it may suffer from the
same defects as depth-first search – it is not optimal and
the search may be stuck in dead ends or local minima.

3.2 Algorithm A∗

Algorithm A∗ [19] combines best-first and breadth-first
search for a new evaluation function f(u) by summing
the generating path length g(u) and the estimated cost
h(u) of the cheapest solution starting from u. Figure 5
displays the effect of A∗ compared to DFS, BFS and BF
and Table 1 depicts the algorithm in pseudo code. The
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Fig. 5. Different search strategies: DFS (top left),
BFS (top right), A∗ (bottom left)

and BF (bottom right)

Table 1. The A∗ algorithm searching for violations
of safety properties

A∗(s)
Open ←{}; Closed←{}; f(s)← h(s);
Insert(Open, s, f(s))
while (Open �= ∅)
u← Deletemin(Open); Insert(Closed,u)
if (failure(u)) exit Safety Property Violated
for all v in Γ(u)
f ′(v)← f(u)+1+h(v)−h(u)
if (Search(Open, v))
if (f ′(v)< f(v))
DecreaseKey(Open, v, f ′(v))

else if (Search(Closed , v))
if (f ′(v)< f(v))
Delete(Closed , v); Insert(Open, v, f ′(v))

else Insert(Open, v, f ′(v))

node expansion of u is indicated by access to the succes-
sor set Γ(u). The set Closed denotes the set of all already
expanded nodes and the list Open contains all gener-
ated but not yet expanded nodes. Similar to Dijkstra’s
single-source shortest path algorithm [9], A∗ successively
extracts the node u with minimal merit f(u) from the
set Open and terminates if this node represents a failure
state.
As the combined merit f(u) = g(u)+h(u) merely

changes the ordering of the nodes to be expanded, on fi-
nite problem graphs A∗ is complete. Moreover, by chang-
ing the weights of the edges in the problem graph from
1 to 1+h(v)−h(u), it can also be observed that A∗ in
fact performs the same computation as Dijkstra’s single-
source shortest-path algorithm on the re-weighted graph.

Fig. 6. The effect of heuristic search in a grid graph

If for all edges (u, v) we have 1+h(v)−h(u)≥ 0, opti-
mality of A∗ is inherited from the optimality of Dijkstra’s
algorithm. It can also be shown that the path length for
every expanded node is optimal, so that we correctly ter-
minate the search at the first target node.
If 1+h(v)−h(u)< 0, negatively weighted edges affect

the correctness proof of Dijkstra’s algorithm. In this case
we have f(u)+1+h(v)−h(u) < f(v) such that nodes
that have already been expanded might be encountered
on a shorter path. Contrary to Dijkstra’s algorithm, A∗

deals with them by possibly re-inserting nodes from the
set of already expanded nodes into the set of Open nodes
(re-opening). On every path from s to u the accumulated
weights in the two graph structures differ by h(s) and
h(u) only. Consequently, re-weighting cannot introduce
negatively weighted cycles so that the problem remains
(optimally) solvable. One can show that given a lower
bound estimate (admissible heuristic) the solution re-
turned by the A∗ algorithm with re-opening is indeed
a shortest one [16]. The main argument is that there is al-
ways a correctly estimated node on an optimal path in the
set Open. This node has to be considered before expand-
ing any non-optimal goal node.
Figure 6 depicts the impact of heuristic search in

a grid graph. If h is the trivial constant zero function, A∗

reduces to Dijkstra’s algorithm, which in case of uniform
graphs further collapses to BFS. Therefore, starting with
s all depicted nodes shown are generated until the goal
node t is expanded. If we use h(u) as the Euclidean dis-
tance to node t, then only the nodes in the hatched region
are ever removed from the Open set.

3.3 Iterative deepening A∗

Algorithm A∗ has one severe drawback. Once the space
resources for storing all expanded and generated nodes
are exhausted, no further progress can be made. There-
fore, the iterative deepening variant of A∗, IDA∗ [24] for
short, counterbalances time for space. It traverses the tree
expansion of the problem graph instead of the problem
graph itself with a memory requirement that grows linear
with the depth of the search tree. As shown in the pseudo-
code of Table 2, IDA∗ performs a sequence of bounded
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Table 2. The IDA∗ algorithm searching for violations
of safety properties

IDA∗(s)
Push(S, s, h(s)); U ← U ′← h(s)
while (U ′ �=∞)
U ← U ′; U ′←∞
while (S �= ∅)
(u, f(u))← Pop(S)
if (failure(u)) exit Safety Property Violated
for all v in Γ(u)

if (f(u)+1−h(u)+h(v)> U)
if (f(u)+1−h(u)+h(v)< U ′)
U ′← f(u)+1−h(u)+h(v)

else
Push(S, v, f(u)+1−h(u)+h(v))

DFS iterations. In each iteration, it expands all nodes
having a total cost not exceeding threshold U , which is
determined as the lowest cost U ′ of all generated but not
expanded nodes in the previous iteration. IDA∗ is com-
plete and optimal, since it expands all nodes with an
increasing threshold value for each possible merit value.
Since the average number of successors is often large,
the tree expansion grows exponentially with increasing
depth. Therefore, the last iteration in IDA∗ often domi-
nates the search effort.
Due to the depth-first structure of IDA∗, duplicate

state expansions may not be detected, resulting in re-
dundancy. Therefore, similar to depth-first and best-first
search as long as memory is available, all generated nodes
are kept in a transposition table. To allow dynamic up-
dates of node information, for each node in the table the
shortest generating path length and the corresponding
predecessor are also maintained.
To improve duplicate detection, IDA∗ can be com-

bined with bit-state hashing [20] which hashes an entire
state vector into a single bit wide table. The bit position
indicates whether the state has been reached before, or
not. In single bit-state hashing, a hash function h1 maps
a state S to position h1(S); S is stored by setting the bit
h1(S) and searched by querying h1(S). Double bit-state
hashing often improves state space coverage by applying
a second hash-function h2. A state S is stored in setting
h1(S) and h2(S) and detected as a duplicate if both bits
are set.
Bit-state hashing as shown in Fig. 7 implies that a re-

trieved node might be an unexpected synonym, since
there is no way to distinguish a real duplicate from
a false one. False duplicate detection induces an incom-
plete state space traversal, which can be compensated
by different hash functions in different runs. Therefore,
re-expanding a duplicate inside IDA∗ is dangerous, since
the information of generating path length and predeces-
sor path length might be false. Subsequently, we avoid
reopening and refer to this variant of IDA∗ as Partial
IDA∗. Note that the advantage of Partial IDA∗ com-
pared to A∗ is that it can track the solution path on

Fig. 7. Single and double bit-state hashing

the recursion stack which means that no predecessor
link is needed. Reopening in IDA∗ will not be encoun-
tered when the heuristic function is consistent. In this
case the priorities f = g+h increase on any generating
path, since f(u) = g(u)+h(u)≤ g(u)+h(u)+1+h(v)−
h(u) = g(u)+1+h(v) = g(v)+h(v) = f(v) for all edges
(u, v) in the tree expansion of the problem graph. Most
practical heuristics satisfy this criterion. The negative im-
pact of partial state space coverage due to bitstate search
is reduced by repeating the search with restarts on differ-
ent hash functions.

4 Search heuristics for safety properties

In this Section we introduce search heuristics used by our
tool HSF-SPIN in the analysis of safety properties for
Promela models.We use S to denote a global system state
of the model. In S we have a set P(S) ⊆ {Pi | i ≥ 0} of
currently active processes. For the sake of simplicity we
assume a fixed number of processes and write P instead
of P(S). For a process Pi we use pci to refer to the current
local control state. Ti denotes the set of transitions within
the proctype instance Pi and Si denotes the set of local
states of Pi.

Violation of Invariants. System invariants are state pred-
icates that hold over every global system state S. When
searching for invariant violations it is helpful to estimate
the number of system transitions until a state is reached
where the invariant is violated. Given a logical global
state predicate f , let Hf (S) be an estimation of the num-
ber of transitions necessary until a state S′ is reached
where f holds, starting from state S. Similarly, letHf (S)
denote the number of transitions necessary until f is vio-
lated, which is helpful when validating negations of state
predicates. Let a be a Boolean variable, and g and h log-
ical predicates. We give a recursive definition of Hf as
a function of f , with the first part of the definition given
in Fig. 8.
In the definition of Hg∧h and Hg∨h, the use of plus

(+) suggests that g and h are independent, which may
not be true. Consequently, the estimate is not necessar-
ily a lower bound, affecting the optimality condition for
A∗. Since it is our goal to obtain short but not necessarily
optimal paths, we tolerate these inadequacies. To obtain
lower bounds, we may replace plus (+) with max.
Formulae describing system invariants may contain

other terms, such as relational operators and Boolean
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f Hf (S) Hf (S)
true 0 ∞
false ∞ 0
a if a then 0 else 1 if a then 1 else 0
¬g Hg(S) Hg(S)
g∨h min{Hg(S),Hh(S)} Hf (S)+Hg(S)
g∧h Hg(S)+Hh(S) min{Hg(S),Hh(S)}

Fig. 8. Definition of Hf for Boolean expressions f

f Hf (S)

full(q) capacity(q)− length(q)
empty(q) length(q)

q?[t] length of minimal prefix of q without t
(+1 if q lacks message tagged with t)

a⊗ b if a⊗ b then 0, else 1

f Hf (S)

full(q) if full(q) then 1, else 0
empty(q) if empty(q) then 1, else 0

q?[t] if head(q) �= t then 0,
else maximal prefix of t’s

a⊗ b if a⊗ b then 1, else 0

Fig. 9. Definition of Hf for Boolean queue expressions
and relational operators in f

functions over queues. We extend the definition of Hf
and Hf as shown in Fig. 9. The function q?[t] refers to
the expression that is true when the message at the head
of queue q is tagged with a message of type t. All other
functions are self-explaining. The symbol⊗ represents re-
lational operators (=, �=,≤, <,>,≥).
Note that the estimate is coarse but nevertheless very

effective in practice. It is possible to refine these defini-
tions for specific cases. For instance,Ha=b can be defined
as a− b in case a≥ b and a is only ever decremented and
b is only ever incremented. However, we have not pursued
these refinements any further.
Another statement that typically appears in system

invariants is the at predicate which expresses that a pro-
cess P with a process id pid of a given proctype PT
is in its local control state s4. We will write this as
i@s, with s ∈ Si. The corresponding definition is given
in Fig. 10. We use pci to express the local state of pro-
cess Pi in the current global state S. The value Di(u, v)
is the minimal number of transitions necessary for the
finite state machine Pi to reach state u starting from

4 In Promela this is expressed as PT[pid]@s.

f Hf (S) Hf (S)

i@s Di(pci, s) if pci = s 1, else 0

Fig. 10. Definition of Hf for control
state predicates in f

state v, where u, v ∈ Si. The matrix Di can be efficiently
pre-computed with the all-pairs shortest-path algorithm
of Floyd/Warshall in O(|Si|3) time [8]. Note that |Si| is
small in comparison to the overall search space.

Violations of Assertions. The Promela statement assert
allows to label the model with logical assertions. Given
that an assertion a labels a transition (u, v), with u, v ∈
Ti, then we say a is violated if the formula f = (i@u)∧¬a
is satisfied.

Deadlock Detection. In concurrent systems, a deadlock
occurs if at least a subset of processes and resources is in
a cyclic wait situation. In Promela, S is a deadlock state if
there is no possible transition from S to a successor state
S′ and at least one of the processes of the system is not
in a valid end state5. Hence, no process has a statement
that is executable. In Promela, there are statements that
are always executable, amongst others assignments, else
statements, and run statements used to start processes.
For other statements, such as send or receive operations
or statements that involve the evaluation of a guard, exe-
cutability depends on the current state of the system. For
example, a send operation q!m is only executable if the
queue q is not full. The following enumeration describes
executability conditions for communication statements
over asynchronous channels and for boolean conditions:

1. Asynchronous untagged receive operations (q?x, with
x variable) are not executable if the queue is empty.
The corresponding formula is ¬ empty(q).

2. Asynchronous tagged receive operations (q?t, with t
tag) are not executable if the head of the queue is
a message tagged with a different tag than t yielding
the formula ¬q?[t].

3. Asynchronous send operations (q!m) are not exe-
cutable if the queue q is full which is indicated by the
predicate ¬full(q).

4. Conditions (Boolean expressions) are not executable
if the value of the condition corresponding to the term
c is false.

The Boolean function executable, ranging over tuples
of Promela statements and global system states, is sum-
marized for asynchronous operations and boolean condi-
tions in Fig. 11. Synchronous communication operations
(rendezvous send/receive) over a synchronous communi-
cation channel are only executable if another process is
capable of executing the inverse communication opera-
tion (receive/send) on the same channel. If this is the
case both operations are performed as an atomic system
transition.
In order to obtain a formula f characterizing the exe-

cutability of a synchronous send operation q!x of a pro-
cess Pj in a global system state S we proceed as follows.

5 In Promela, a local control state can be labeled as end to indi-
cate that it is a valid end state, i.e., that the system may terminate
if the process is in that state.



255

label(t) executable(t, S)

q?x, q asynchronous channel ¬empty(q)
q?t, q asynchronous channel q?[t]
q!m, q asynchronous channel ¬full(q)

condition c c

Fig. 11. Function executable for asynchronous communi-
cation operations and boolean conditions, where x is

a variable, and t is a tag

For q!x to be executable on a given channel q there must
be another process j such that in S process j has an
executable inverse q?x operation. In other words, the for-
mula describes a disjunction over all processes i �= j and
control locations u of process i such that there is an out-
going transition (u, v) labeled q?x:

∨

i=1..n,i�=j, u∈Si|∃t=(u,v)∈Ti∧label(t)=q?x

pci(S)@u

The corresponding formula for a synchronous receive op-
eration is obvious.
We now use f for estimating the number of transitions

required to execute a synchronous operation by applying
it to the Hf heuristic estimate function that we defined
above. As result we will obtain the minimum number of
local transitions that every process requires in order to
reach a state in which the inverse operation is executable.
Obviously, this number is a lower bound for the number of
global system state transitions necessary to perform the
synchronous rendez-vous operation.
The negation of the property f is likely to appear in

the characterization of deadlocks. Estimating the num-
ber of transitions required for reaching a state where
a given synchronous rendez-vous is not enabled will result
in computing the sum of H for each instance pci(S)@u.
The resulting estimate will be the number of pci(S)@u
terms that evaluate to true in state S. Since for a given i
at most one of these terms is true, the estimate will return
values between 0 and i−1. In other words the number
of transitions required for blocking a given synchronous
operation will be estimated as the number of local tran-
sitions required for each process to escape from a state
where the inverse operation can be executed.
We now propose estimator functions for the number

of transitions necessary from the current state to reach
a deadlock state.

Active Processes. In a deadlock state, all processes are
blocked. The active process heuristics uses the number of
active or non-blocked processes in a given state S:

Hap(S) =
∑

Pi∈P∧active(i,S)

1

where active(i, S) is defined as

active(i, S)≡
∨

t=(pci(S),v)∈Ti

executable(t,S)

Given that the range of Hap is [0..|P|], the active pro-
cesses heuristic may not be very informative for protocols
involving a small number of processes.

Characterization of Deadlocks. Deadlocks are global sys-
tem states in which no progress is possible. Obviously, in
a deadlock state each process is blocked in a local state
that does not possess an enabled transition. It is not triv-
ial to define a logical predicate that characterizes a state
as a deadlock state which could at the same time be used
as an input to the estimation function Hf . We first ex-
plain what it means for a process Pi to be blocked in
its local state u. This can be expressed by the predicate
blockeds which states that the program counter of process
Pi must be equal to u and that no outgoing transition t
from state u is executable.

blockeds(i, u, S)≡ pci(S) = u ∧
∧

t=(u,v)∈Ti

¬executable(t, S)

Suppose we are able to identify those local states in which
a process i can block, i.e., in which it can perform a poten-
tially blocking operation. Let Ci be the set of potentially
blocking states within process i. A process is blocked if
its control resides in some of the local states contained in
Ci. Hence, we define a predicate for determining whether
a process Pi is blocked in a global state S as the disjunc-
tion of blockeds(i, u, S) for every local state u contained in
Ci:

blocked(i,S) ≡
∨

u∈Ci

blockeds(i, u, S)

Deadlocks, however, are global states in which every pro-
cess is blocked. Hence, the disjunction of blocked(i,S) for
every process Pi yields a formula that establish whether
a global state S is a deadlock state or not:

deadlock (S) =
∧

i=1..n

blocked(i, S).

Now we address the problem of identifying those
local states in which a process can block. We call these
states dangerous. A local state is dangerous if the ex-
ecutability condition of every outgoing local transition
can be false. Note that some transitions are always exe-
cutable, for example those corresponding to assignments.
To the contrary, conditional statements and communica-
tion operations are not always executable. Consequently,
a local state which has only potentially non-executable
transitions should be classified as dangerous. Addition-
ally, we allow the protocol designer to identify states as
dangerous.
The deadlock characterization formula deadlock is

constructed before the verification starts and is used
during the search by applying the estimate Hf , with f
being deadlock. Due to the first conjunction of the for-
mula, estimating the distance to a deadlock state is done
by summing the estimated distances for blocking each
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process separately. This assumes that the behavior of
processes is entirely independent and obviously leads to
a non-optimistic estimate. We estimate the number of
transitions required for blocking a process by taking the
minimum estimated distance for a process to reach a local
dangerous state and negate the executability of each out-
going transition in that state. This could lead again to
a non-optimistic estimate since we are assuming that the
transitions performed to reach the dangerous state have
no effect on disabling the outgoing transitions of that
state.
It should be noted that deadlock characterizes many

deadlock states that could be never reached by the sys-
tem. Consider two processesPi, Pj having local dangerous
states u, v, respectively. Assume that u has an outgo-
ing transition for which the executability condition is the
negation of the executability condition for the outgoing
transition from v. In this particular case it is impossible
to have a deadlock in which Pi is blocked in local state
u and Pj is blocked in local state v, since either one of
the two transitions must be executable. As a consequence
the estimate could give good values to states unlikely to
lead to deadlocks. Another concern is the size of the re-
sulting formula. In an extreme case each state of each
process could be dangerous. This results in a formula of
size
∏
i=1..n |Si|. The estimate computation for this for-

mula will be rather costly while providing a poor guide
for the search algorithm. We believe that the use of the
user-guided characterization of states as dangerous can
be helpful to overcome this problem.

5 The HSF-SPIN tool set

We chose SPIN as a basis for HSF-SPIN. It inherits
most of the efficiency and functionality from the original
source of SPIN as well as the sophisticated search capa-
bilities from the Heuristic Search Framework (HSF) [11].
HSF-SPIN uses a large subset of Promela as modeling
language. HSF-SPIN possesses a refined state descrip-
tion of SPIN to incorporate solution length information,
transition labels and predecessors for solution extraction.
It provides an interface consisting of a node expansion
function, initial and goal specification. In order to dir-
ect the search, we implemented different heuristic esti-
mates. HSF-SPIN writes SPIN-compatible trail informa-
tion that can be visualized in the XSPIN interface. As
when working with SPIN, the validation of a model with
HSF-SPIN is done in two phases: first the generation
of an analyzer of the model, and second the validation
run. The protocol analyzer is generated with the program
hsf-spin which is a modification of the SPIN analyzer
generator. By executing hsf-spin -a <model> several
c++ files are generated. These files are part of the source
of the model checker for the given model. They are com-
piled and linked with the rest of the implementation,
incorporating, for example, data structures, search algo-

rithms, heuristic estimates, statistics and solution gener-
ation. HSF-SPIN also supports bit-state hashing by im-
plementing Partial IDA∗. HSF-SPIN can be invoked with
different parameters: kind of error to be detected, prop-
erty to be validated, algorithm to be applied, heuristic
function to be used, weighting of the heuristic estima-
tor. HSF-SPIN allows textual simulation to interactively
traverse the state space which greatly facilitates in ex-
plaining witnesses that have been found.
HSF-SPIN is still a prototype. Therefore, its perform-

ance in terms of time and space cannot compete with
SPIN. For example, an exhaustive exploration of the
state space generated by the GIOP protocol parameter-
ized with 2 clients and 2 servers is performed by SPIN
(without partial order reduction) in 226 seconds with
amemory consumption of 236MB, while our tool requires
341 seconds and about 441 MB of space. Further experi-
ments show that SPIN achieves a speedup of about factor
3 in comparison to HSF-SPIN.

6 Safety property validation experiments

In this Section we present out experimental results for
directed model checking of safety properties. The experi-
ments have been performed with SPIN version 3.3.10 and
HSF-SPIN version 1.0 and were executed on a SUN work-
station, UltraSPARC-II CPUwith 248Mhz under Solaris
5.7. If nothing else is stated the depth bound is set to
10,000 and no compression technique is used. In the case
of deadlock detection in HSF-SPIN, Hap is the estima-
tion function used, unless indicated otherwise. In all other
cases the formula based heuristic Hf is used. When com-
paring to SPIN it should be noted that this model checker
was invoked with partial order reduction enabled.

6.1 Shorter trails and computational effort

The first set of experiments is intended to show that A∗

always finds shorter trails compared to DFS while requir-
ing less computational effort than BFS, and that in some
cases A∗ performs better than DFS. By computational ef-
fort we mean the sum of the number of states stored, the
number of states expanded and the number of transition
performed. An additional objective is to show that BF
can require less computational effort than A∗, but that
BF often delivers sub-optimal solutions.
For each kind of safety error we use a representative

set of protocol models. Deadlock detection is performed
using the CORBA GIOP protocol [22] with a configu-
ration of 2 clients and 1 server, an 8-philosophers con-
figuration of the dining philosophers problem, a model
of an optical telegraph protocol [20] with 6 stations and
a model of a concurrent program that solves the sta-
ble marriage problem [29] with a configuration of 3 suit-
ors. Assertion violation detection experiments are carried



257

out with Lynch’s protocol, with a model of a relay cir-
cuit and with a faulty solution for the mutual exclusion
problem (mutex)6. Invariant violation is evaluated using
the POTS telephony model [23]7 and using an elevator
protocol8. For the POTS model, the invariant described
in Sect. 2.4 was used. In the elevator model, the invariant
was of the form �(¬opened∨stopped).
Tables 3, 4 and 5 depict the results of error detection

in these protocols with various search strategies. For each
protocol, the number of stored states (s), expanded states
(e), transitions performed (t) and the length of the error
trail (l) is shown. Similar to SPIN, we count a sequence
of atomic steps as one unique transition. The number of
expansion steps in SPIN is the number of stored states.
Columns 2 to 5 correspond to different search strategies
of HSF-SPIN, namely breadth-first search (BFS), depth-
first search (DFS), A∗ and best-first search (BF). The
last column corresponds to the exploration with SPIN’s
depth-first search (SPIN).
In all examples BFS and A∗ provide optimal coun-

terexamples. Compared to BFS the A∗ algorithm requires
less computational effort. The reduction in the number of
expansions, states and transitions varies from example to
example. This is mainly due to the quality of the heuris-

6 Available from netlib.bell-labs.com/netlib/spin
7 The Promela sources and further information about these
models can be obtained from www.informatik.uni-freiburg.de/
∼lafuente/models/models.html
8 Derived from www.inf.ethz.ch/personal/biere/teaching/

mctools/elsim.html

Table 3. Deadlock detection in various protocols

GIOP BFS DFS A∗ BF SPIN

s 40847 218 31066 117 326
e 37266 218 27061 65 326
t 151671 327 108971 126 364
l 58 134 58 65 134

Philosophers BFS DFS A∗ BF SPIN

s 3678 1341 67 493 1341
e 2875 1341 17 225 1341
t 15775 1772 73 622 1772
l 34 1362 34 66 1362

Optical BFS DFS A∗ BF SPIN

s 148591 20 83 83 20
e 110722 20 14 14 20
t 621216 20 83 13 20
l 38 44 38 38 44

Marriers BFS DFS A∗ BF SPIN

a 9459 10588 9208 7154 2530
e 9004 10588 8335 4124 2530
t 24064 29069 22298 9710 3116
l 50 72 50 61 72

Table 4. Detection of assertion violations
in various protocols

Relay BFS DFS A∗ BF SPIN

s 905 342 738 162 342
e 707 342 663 48 342
t 2701 718 2262 263 870
l 12 190 12 28 190

Lynch BFS DFS A∗ BF SPIN

s 80 48 73 49 46
e 77 48 70 46 46
t 94 49 87 59 48
l 29 46 29 29 46

Mutex BFS DFS A∗ BF SPIN

s 363 202 38 39 202
e 344 202 21 24 202
t 688 363 42 48 363
l 15 54 15 15 54

Table 5. Detection of invariant violations in various protocols

POTS BFS DFS A∗ BF SPIN

s 24546 – 6654 781 148049
e 17632 – 3657 209 148049
t 99125 – 18742 1067 425597
l 81 – 81 83 2765

Elevator BFS DFS A∗ BF SPIN

s 38662 279 38598 2753 292
e 38564 279 38506 2297 292
t 160364 356 160208 5960 348
l 203 510 203 421 510

tic estimate. For example, in the case of invariant vio-
lation detection for the elevator protocol, the savings in
trail length achieved by A∗ are rather weak. This can be
attributed to the integer range [0..2] of the heuristic es-
timation function which is very small considering that
the optimal solution has 203 steps. On the other hand,
while detecting the violation of the invariant of the POTS
protocol the heuristic function returns estimates in the
range [0..42]. With this range, the estimate function al-
lows for a much more differentiated successor selection in
A∗ which results in a much more informed search leading
to a strong reduction in the computational effort required
to detect the error. As can be expected, DFS finds error
trails significantly larger than the optimal one(s). For ex-
ample, the trail provided by SPIN’s DFS for the invariant
violation in the POTS protocol is about 20 times larger
than the optimal trail generated by HSF-SPIN visual-
ized in Fig. 12. This trail is even superior to the manually
generated short trail in Fig. 4. However, HSF-SPIN hap-
pens to find a different target state than the one found by
SPIN and this target state also corresponds to a different
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UserA UserB PhoneHA PhoneHB

off_hook

dial_tone

dial_digit

audiblering

offhook

onhook

ringtone

connectreq

stopaudiblering

connectack

stopringtone
offhook

{idle}{conversation}{conversation}{conversation}

Fig. 12. POTS example, error trail generated by HSF SPIN using
A∗ and Hf

race condition than the one found by SPIN. Neverthe-
less, this race condition can also be traced back to a lack
of synchronization between the UserB and PhoneHB pro-
cesses. While in most cases DFS performs better than
A∗ in terms of computational effort, in the philosophers
problem and in the POTS protocol the performance of
A∗ is superior to that of DFS. The reason for this lies
in the particular structure of these problems. For both
problems it is necessary that there is a sequence of ac-
tions in which every process performs one or a few steps in
order to get closer to the target state. DFS, however, will
try to first explore all possibilities for one process, before
it includes the behavior of other processes. As a conse-
quence, DFS will require more computational effort to
reach a target state than A∗. It should also be explained
why HSF-SPIN runs out of memory in the POTS ex-
ample, while the DFS in SPIN finds a counterexample.
This is due to the fact that the implementation of DFS
in SPIN is more efficient, and that we employed partial
order reduction. Finally, the experiments highlight that
although BF often requires less computational effort than
A∗, the established error trails are not optimal.

6.2 Heuristic estimates

In the previous section we have noted the important in-
fluence of the heuristic estimate function on the perform-
ance of A∗. Now we analyze different heuristic functions
proposed for deadlock detection. In particular we com-
pare the heuristic based on the number of active processes
Hap with formula based heuristic Hf combined with the

Table 6. Deadlock detection with A∗ and different
heuristic functions

Philosophers no Hap Hf Hf +U

e 2875 17 17 10
r 0..0 0..8 0..10 0..16

Optical no Hap Hf Hf +U

e 110722 14 342 342
r 0..0 0..12 0..14 0..12

Marriers no Hap Hf Hf +U

e 493840 432483 462235 192902
r 0..0 0..4 0..25 0..25

GIOP no Hap Hf Hf +U

e 37266 27061 28067 24859
r 0..0 0..6 0..12 0..25

proposed method for automatically inferring the dead-
lock formula f . With Hf +U we denote that the user ex-
plicitly defines dangerous states. In the example we chose
an “optimal” labeling, i.e., exactly those states are la-
beled as dangerous so that the resulting global control
state is a deadlock state.
In our experiments we use the deadlock solution to

the philosophers problem, the optical telegraph proto-
col, the marriers problem and the GIOP protocol. All
models have been configured as in the previous set of ex-
periments. Table 6 visualizes the number of expansions
required to find the deadlock state and the range of values
(r) that the heuristic estimate function is defined over. In
all cases the optimal solution is being found.
The results show that when applying the inferred

deadlock heuristic Hf user intervention improves the re-
sults in most cases. It is not easy to compare the in-
ferred heuristicHf withHap.Hap seems to perform worse
than Hf +U except in the optical telegraph protocol. In
the optical telegraph protocol the estimate Hap works
well, since the number of processes in the model is quite
high. In the case of the GIOP protocol and the marri-
ers model the number of processes is rather small and
Hap produces poor reductions in the number of expanded
states. It should be emphasized that the quality ofHf +U
highly depends on the quality of the designers labeling
of dangerous states. In summary, the experiments indi-
cate the influence of the quality of the heuristic estimate
function.

6.3 Finding errors where DFS fails

A further objective of the directed model checking ap-
proach is to detect errors in models where classical depth-
first exploration fails due to the exhaustion of memory
resources.



259

Table 7. Deadlock detection in the dining
philosophers problem

p BFS DFS A∗ BF SPIN

2 s 9 6 6 6 6
e 7 6 6 4 6
t 10 7 4 6 7
l 10 10 10 10 10

3 s 19 19 12 26 19
e 14 10 7 23 10
t 29 12 13 43 12
l 14 18 14 14 18

4 s 56 45 19 70 45
e 42 45 9 57 45
t 116 62 21 142 116
l 18 54 18 26 54

8 s 3768 1341 67 493 1341
e 2875 1341 17 225 1341
t 15775 1772 73 622 1772
l 34 1362 34 66 1362

14 s – – 199 1660 2164280
e – – 29 1963 2164280
t – – 211 684 27050400
l – – 58 114 9998

16 s – – 259 2201 –
e – – 33 893 –
t – – 273 2578 –
l – – 66 130 –

We perform a set of experiments with a scalable dead-
lock solution to the dining philosophers problem. We let
the experiments run without time limitations, but with
a hard memory constraint of 512 MB. Contrary to other
experiments, we allow SPIN to apply bitstate hashing
compression in order to emphasize the benefits of directed
search.
Table 7 shows results on deadlock detection in the

philosophers model with a growing number of philoso-
phers. The first column depicts the number of philoso-
phers in the model. The labeling of the other columns is
obvious.
While A∗ and BF seem to scale linearly with re-

spect to the increase of p, BFS and DFS do not. HSF-
SPIN’s BFS and DFS exploration are not able to find
the deadlock situation in configurations with more than
13 philosophers. SPIN can go a little further, but fails
in configurations with more than 15 philosophers. The
results show that there are models in which A∗ is able
to detect errors and in which depth-first search even
if combined with reduction and compression techniques
fails.

6.4 IDA∗ and bitstate hashing

We now show that for given memory and time con-
straints, IDA∗ in combination with bitstate hashing is

able to detect errors in problems in which A∗ and IDA∗

fail. Once the priority queue is full, A∗ will run out of
memory and once the transposition table is full, dupli-
cate states will force IDA∗ to run out of time. We use
the GIOP protocol with a seeded deadlock error and con-
figured with 3 clients and one server. We set the space
limit to 256 MB and the time limit to 120 minutes. Both
hash table sizes in A∗ and IDA∗ have been set to the
given memory bound. Table 8 depicts the number of ex-
pansion performed by A∗, IDA∗, and IDA∗ combined
with(double) bitstate hashing. To obtain the data in the
table we modify A∗ to print a snapshot of the expan-
sions every time the search depth increases, while for the
last two methods, the number of stste expansions corres-
ponds to the number of nodes in the current iteration.
The results show that only the combination of IDA∗ and
bitstate hashing is able to find the error in the proto-
col. IDA∗ exceeds the time and A∗ exceeds the space
limit.
A duplicate is a state with different generating paths.

Duplicates occur frequently in typical protocols. As long
as the visited lists of A∗ and IDA∗ are not full, all du-
plicate states are detected. When the memory bound is
reached, A∗ aborts since it is unable to allocate further
states for the open and closed lists. IDA∗ bypasses the
problem by exploring the tree expansion of the underly-
ing graph and possibly re-exploring state space sub-tree
structures. In some cases, there are too many duplicates
such that after the transposition table is full and IDA∗

fails to complete the next iteration within the given time
limit. However, IDA∗ with bitstate hashing prunes off du-
plicates optimistically, storing only a finger print (signa-
ture) of each state. This reduces the space requirements
by some orders of magnitudes (about 3 in the example
case), so that duplicates can be detected even in large
search depths. The loss of states by false positives is
marginal: in the example no state is wrongly identified
with double bitstate hashing until the depth is reached in
which IDA∗ gives up.

Table 8. Deadlock detection in the GIOP
protocol under memory constraints

Depth A∗ IDA∗ IDA∗+bitstate

58 150344 146625 146625
59 168191 164982 164982
60 184872 184383 184383
61 – 206145 206145
62 – – 229626
63 – – 255411
64 – – 282444
65 – – 311340
66 – – 341562
67 – – 373422
68 – – 407310
69 – – 442941
70 – – goal found
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7 Liveness property validation

One feature of the Nested-DFS algorithm described in
Sect. 2 is that a state, once flagged will not be expanded
again during the cycle detection. For the correctness of
the algorithm the post-order traversal of the search tree
is crucial, such that the second depth-first traversal only
encounters nodes that have already been visited in the
main search routine. The second search can be improved
by directed cycle detection search. Since we are aiming
for states that have been placed on the Nested-DFS stack
by the first traversal we can use heuristics to perform
a directed search for the cycle-closing states. Unfortu-
nately, in each of our benchmark examples, there is at
most one accepting cycle, so that there is nothing to im-
prove. The disadvantage of a pre-ordered nested search
approach (search the acceptance state in the never claim
and, once encountered, search for a cycle) is its quadratic
worst-case time and linear memory overhead, since the
second search has to be invoked with a newly initialized
list of flagged states. To address this drawback, we de-
veloped an improvement of the nested depth-first search
algorithm that exploits the structure of the never claim.
This algorithm is applicable to a large set of practical
property specifications, and can be combined with heuris-
tic techniques for more efficient search performance.

7.1 Classification of Never Claims

Strongly connected components (SCC) partition a dir-
ected graph into groups such that there is no cycle com-
bining two components. A subset of nodes in a directed
graph is strongly connected if for all nodes u and v there is
a path from u to v and a path from v to u. SCCs are max-
imal in this sense and can be computed in linear time by
applying Tarjan’s algorithm [8].
To illustrate how SCCs can help improve the Nested-

DFS algorithm, consider the never claim of Fig. 1.We find
two strongly connected components: the first is formed
by n0 and the second by na. Furthermore, there is no
path from the second SCC to the first. Accepting cycles
in the synchronous product automaton are composed of
states in which the never claim is always in the second
SCC. We can conclude that if the local never claim state
corresponding to a cycle-closing synchronous product au-
tomaton state belongs to the second SCC the cycle is
accepting. If, however, it belongs to the first SCC, it is not
accepting.
In order to generalize this observation suppose that we

have pre-computed all SCCs of a given never claim. Due
to the synchronicity of the product of the model automa-
ton and the never claim a cycle in the synchronous prod-
uct is generated by a cycle in exactly one SCC. If the cycle
is accepting, so is the corresponding cycle in the SCC of
the never claim. Suppose that each SCC is either com-
posed only of non-accepting states or only of accepting

states. Then global accepting cycles only contain accept-
ing states, while non-accepting cycles only contain non-
accepting states. Therefore, a single depth-first search
can be used to detect accepting cycles: if a state s is found
in the stack, then the established cycle is accepting if and
only if s itself is accepting.
The partitioning rules for SCCs given above can

be relaxed according to the following classification of
SCCs:

– We call an SCC accepting if at least one of its states is
accepting, and non-accepting (N) otherwise.
– We call an accepting SCC fully accepting (F) if all of
its cycles contain at least one accepting state.
– We call an accepting SCC partially accepting (P) if
there is at least one cycle that does not contain an ac-
cepting state, and one cycle that contains an accepting
state.

If the never claim contains no partially accepting SCC,
then accepting cycle detection for the global state space
can be performed by a single depth-first search: if a state
is found in the stack, then it is accepting, if the never
state belong to an accepting SCC. A special case oc-
curs if the never claim has an end state. When this state
is reached, the never claim is said to be violated and
a bad sequence has been found. Bad sequences are tack-
led similarly to safety properties by standard heuristic
search.
The classification of patterns in property specifica-

tions proposed in [10] reveals that an empirically col-
lected database of 555 practically used LTL proper-
ties partitions into Absence (A) (85/555), Universal-
ity (U) (119/555), Existence (E) (27/555), Response
(R) (245/555), Precedence (P) (26/555), and Others
(53/555). Using this pattern scheme and the scope mod-
ifiers Globally (G), Before (B), After (A), Between (B),
and Until (U) we obtain a partitioning into SCCs accord-
ing to Table 9. We indicate the presence of end states
with the letter S. Since the specification patterns are
given using LTL formulae, we derive the equivalent never
claims using the SPIN built-in LTL to never claim con-
verter. Then, we apply an algorithm that computes the
SCCs of the state transition graph of the never claim au-
tomaton and that classifies them into the different classes.
For example, Fig. 13 depicts the state transition graph
of the never claim corresponding to a response pattern

Table 9. SCC classification for LTL
specification patterns

G B A B U

A S,N S,N S,N S,N S,N,P
U S,N S,N S,N S,N,P,F S,N,P
E F S,P,N N,F S,N,P S,N,F
R N,F S,N,P,F N,F S,N,P,F S,N,P,F
P S,N,P S,N N,P S,N S,N,P
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Fig. 13. Never Claim for a response
between property

with between scope for which the corresponding LTL for-
mula is �((q∧¬r∧�r)→ (p→ (¬rU(s∧¬r)))Ur). The
graph is classified as follows: SCCs {0}, {1} and {6} are
of class N, {2, 3} is of class P and {4} of class F. State 9
is and end state and the rest of the states are transient
states.
Our approach is particularly useful for never claims

that only contain N and F components, as for instance the
Response pattern with a global scope. Given the preva-
lence of the Response pattern we conclude that our im-
provement of the Nested-DFS algorithm is applicable to
a large set of practical problems.

7.2 Improved Nested Depth-First Search

We now present the Improved-Nested-DFS (INDFS) al-
gorithm that is based on the above ideas, given in Fig. 15.
In this figure, SCC(s) is the SCC of state s, F-SCC(s)
determines if the SCC of state s is of type F (fully ac-
cepting), P-SCC(s) determines if the SCC of the state
is of type P (partially accepting) and neverstate(s) de-
notes the local state of the never claim in the global
state s.
The algorithm finds acceptance cycles without nested

search for all problems which partition into N- or
F-components. Except for P-SCCs it avoids the post-
order traversal. For P-SCCs we guarantee that the second
cycle detection traversal is restricted to the strongly con-
nected component of the seed. The algorithm considers
the successors of a node in depth-first manner and marks

Never Claim

Search Tree

in 2nd DFS

in 1st DFS

Search Path

Cycle establised

Cycle established

P-SCC

F-SCC

N-SCC

Fig. 14. Visualization of the different cases in
Improved-Nested-DFS

Improved-Nested-DFS(s)

hash(s)

for all successors s′ of s do

if s′ in Improved-Nested-DFS -Stack and

F-SCC (neverstate(s′)) then

exitLTL-Property violated

if s′ not in the hash table then

Improved-Nested-DFS(s′)

if accept(s) and P-SCC (neverstate(s)) then

Improved-Detect-Cycle(s)

Improved-Detect-Cycle(s)

flag(s)

for all successors s′ of s do

if s′ on Improved−Nested−DFS-Stack then

exit LTL-Property violated

else if s′ not flagged and

SCC(neverstate(s)) = SCC(neverstate(s′)) then

Improved-Detect-Cycle(s′)

Fig. 15. Improved Nested Depth-First Search

all visited nodes with the label hash. If a successor s′ is
already contained in the stack, a cycle C is found. If C
corresponds to a cycle in a F-SCC of the neverstate of
s′, it is an accepting one. Cycles for the P-SCCs parts in
the never claim are found as in Nested-DFS, with the ex-
ception that the successors of a node are pruned which
neverstates are outside the component. If an endstate in
the never claim is reached the algorithm terminates im-
mediately. A detailed proof of the correctness of INDFS
is given in Sect. 7.4.
Figure 14 depicts the different cases of cycles de-

tected in the search. The main idea for the correctness
of Improved-Nested-DFS is based on the fact that all cy-
cles in the state-transition graphs correspond to cycles in
the never claim. Therefore, if there is no cycle combining
two components in the never claim, so there is none in the
overall search space.
As mentioned above, the strongly connected compo-

nents can be computed in time linear to the size of the
Never Claim, a number which is very small in practice.
Partitioning the SCCs in non-accepting, partially accept-
ing and fully accepting can also be achieved in linear time
by a variant of Nested-DFS in the never claim.
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7.3 A∗ and Improved-Nested-DFS

So far we have not considered heuristic search for Im-
proved-Nested-DFS. Once more, we consider the example
of Response properties to be validated. In a first phase,
states are explored by A∗. The heuristic estimation func-
tion can easily be designed to reach the accepting cycles
in the SCCs faster, since all states that we are aiming
at are accepting. This approach generalizes to a hybrid
algorithm A∗ and Improved-Nested-DFS, A∗+INDFS
for short, that alternates between heuristic search in
N-SCCs, single-pass searches in F-SCCs, and Nested-
Search in P-SCCs. If a P- or S-component is encounterd,
Improved Nested-DFS is invoked and searches for cycles.
The heuristic estimate respects the combination of all
F-SCCs and P-SCCs, since accepting cycles are present in
either of the two components. The nodes at the horizon
of a F- and P-component lead to pruning of the sub-
searches and are inserted back into the Open-List of A∗,
which contains all horizon nodes with a neverstate in
the corresponding N-SCCs. Therefore A∗ + INDFS con-
tinues with directed search, if cycle detection in the F-
and P-components fails. Cycle detection search itself can
be accelerated with an estimation function heading back
to the states where it was started.
Figure 16 visualizes this strategy for a response prop-

erty. The never claim has the following SCCs: SCC0
which is a N-SCC, and SCCa which is F-SCC. The state
space can be seen as divided in two partitions, each one
composed of states where the never claim is a state be-
longing to one of the SCCs. In a first phase, A∗ is used for
directing the search to states of the partition correspond-
ing to SCCa. Once a goal state is found, the second phase
begins, where the search for accepting cycles is performed
by Improved-Nested-DFS.

7.4 Correctness of INDFS

The nested depth-first search algorithm in model check-
ing validates the emptiness of Büchi automata. It searches
accepting cycles in the problem graph that represents

... ... ...
...

...

...

...
......

...

n0

true

¬q

na

SCC0 SCCa

p ∧ ¬q

Search Tree

Goals for A* Improved-Nested-DFS
2nd Phase

Never Claim

1st Phase
A*

Fig. 16. Visualization of A∗ and Improved-Nested-DFS
for a response property

the state-space of a Büchi automaton and reports non-
emptiness if and only if there exists at least one accepting
cycle in the graph. A correctness proof of this algorithm
can be found in [6]. Our improvement to the nested
depth-first search algorithm is depicted in Fig. 15. To
prove the correctness of the algorithm we start with some
definitions.

Definition 1. A Büchi automaton is a five tuple
〈Σ, Q, δ,Q0, F 〉, where Σ is a finite alphabet, Q is the fi-
nite set of states, δ ⊆Q×Σ×Q is the transition relation,
Q0 ⊆Q is the set of initial states, and F ⊆Q is the set of
accepting states.

Definition 2. A run of a Büchi automaton over an in-
finite word v ∈ Σ∗ is a mapping ρ : {0, 1, ..,∞} �→Q such
that a) the first state is an initial state, that is, ρ(0) ∈Q0,
and b) moving from the i-th state ρ(i) to the (i+1)-st state
ρ(i+1) upon reading the i-th input letter v(i) is consistent
with the transition relation, that is, for all i≥ 0 we have
(ρ(i), v(i), ρ(i)+1)∈ δ.

Definition 3. Let inf(ρ) be the set of states that appear
infinitely often in a run ρ (when treating the run as an
infinite path). A run ρ of a Büchi automaton B over an
infinite word is said to be accepting if and only if some
accepting state appears infinitely often in ρ, that is, when
inf(ρ)∩F �= ∅. The language L(B) accepted by the Büchi
automaton B is then the set of infinite words, over which
all runs of B are accepting.

Let M be a finite state automaton representing the
model, and letN be the never claim. For this construction
the automatonM is interpreted as a Büchi automaton in
which all states are accepting.

Definition 4. LetM=〈Σ, QM , δM , QM0 , FM 〉 be a Büchi
automaton which states are all accepting, that is QM =
FM , and let N = 〈Σ, QN , δN , QN0 , FN 〉 be another Büchi
automaton. The synchronous productM⊗N ofM andN
is defined as:M ⊗N = 〈Σ, Q, δ,Q0, F 〉, where Q=QM ×
QN , Q0 = Q

M
0 ×Q

N
0 , F = FM ×FN = QM ×FN , and

((sM , sN ), a, (s
′
M , s

′
N)) ∈ δ if and only if (sM , a, s

′
M) ∈ δM

and (sN , a, s
′
N ) ∈ δN .

Büchi automata can be represented as directed graphs:
the set of vertices is Q and the edges are labelled by the
transition relation δ. Runs of the automaton over an infi-
nite word correspond to infinite paths in the graph, and
accepting runs to infinite paths containing infinite ac-
cepting cycles. An accepting cycle is defined as a cycle in
which at least one state is accepting.

Definition 5. A strongly connected component (SCC) of
a directed graph is a maximal set of vertices, such that each
vertex in the set is reachable from each other vertex of the
set in 1 or more steps9.

9 Requiring reachability in 1 or more steps is not the standard
definition of an SCC. However, the minimum path length of 1 is
necessary for a concise proof of our algorithm
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It is not difficult to show that pairwise reachability is
an equivalence relation such that the set of nodes can be
partitioned into equivalence classes of strongly connected
components. An important consequence of the definition
of SCCs is that all vertices of a cycle belong to the same
SCC. In the following we write scc(s) to denote the SCC
to which a state s belongs.
Let Q be the set of states of M ⊗N . We define

a partition function π from Q onto {0, . . . , k} in such
a manner that two states belong to the same par-
tition if and only if the state component of N be-
longs to the same SCC in the state transition graph
of N . More precisely, if s = (sM , sN) and i = scc(sN )
then π((sM , sN )) = i. Obviously, π defines a partition
of equivalence classes P0, . . . Pk of Q, where Pi = {s ∈
Q | π(s) = i}, i ∈ {0, . . . , k}.

Definition 6. A strongly connected component is called
non-accepting if none of its states is accepting, full-
accepting each cycle formed by states of the SCC is accept-
ing, and partial-accepting otherwise.

Definition 7. An equivalence class Pi of M ⊗N is
non-accepting, full-accepting or partial-accepting if the
corresponding strongly connected component i in N is
non-accepting, full-accepting or partial-accepting, re-
spectively.

Lemma 1. If there is a cycle C in Q, then π partitions
the states inQ in such a manner that all states of the cycle
belong to the same equivalence class in Q, i.e., C ⊆ Pi for
one i ∈ {0, . . . , k}.

Proof. Let C be a cycle in state transition graph of Q,
that isC = (s0, s1, . . . , sn) with sn = s0 and (si, a, si+1)∈
δ for all i ∈ {0, . . . , n−1}. Therefore, since si = (sMi , s

N
i )

and sNi ∈N , i∈ {0, . . . , n}, a cycleCN = (s
N
0 , s

N
1 , .., s

N
n =

sN0 ) exists with (s
N
i , a, s

N
i+1) ∈ δN for all i ∈ {0, . . . , n}.

Hence, for all si = (s
M
i , s

N
i ) and sj = (s

M
j , s

N
j ) in C we

have scc(sNi ) = scc(s
N
j ). This implies π(si) = π(sj) for all

si, sj ∈ C such that all states of C belong to the same
equivalence class. �

Lemma 2. A cycle C inM ⊗N is accepting if and only
if the corresponding cycle in N is accepting.

This is easy to see, since as defined, a state s =
(sM , sN ) of M ⊗N is accepting if and only if sN is an
accepting state ofN .

Lemma 3. All cycles in a non-accepting component are
non-accepting, all cycles in a fully-accepting component
are accepting. In partial-accepting components, there can
be accepting and non-accepting cycles.

Lemma 3 is immediately deduced from Definitions 6
and 7, and Lemma 2.
The following lemma is a well-known property of

depth-first search and is essential for proving the correct-
ness of our algorithm.

Lemma 4. Let s be a vertex that does not appear on any
cycle. Then the depth first search algorithm will backtrack
from s only after all the nodes that are reachable from s
have been explored and backtracked from.

It is easy to see that this lemma still holds for the first
search in both the original and in the improved nested
depth first search algorithm.

Theorem 1. The improved nested depth first search al-
gorithm returns a counterexample for the emptiness of the
checked automatonM ⊗N exactly when L(M ⊗N) is not
empty.

Proof. We have to show I) that a counterexample re-
turned by the algorithm corresponds in fact to an accept-
ing run of the automaton, and II) that no accepting run
is missed by the algorithm.
I) The first thing to show is that if the algorithm

finds an accepting cycle, then the cycle is in fact accept-
ing. The algorithm closes accepting cycles in the first and
in the second search. When the algorithm closes cycles
in the second search, it acts like the original algorithm.
As shown in [6], cycles closed in the second search are
accepting, since the second search is started from accept-
ing states only. On the other hand cycles closed in the
first search correspond only to cycles present in a full-
accepting equivalence class, and as shown in Lemma 2,
every cycle in a full-accepting component is accepting.
II) The difficult case is to prove that if the algo-

rithm finds no accepting cycle then L(M ⊗N) is in fact
empty. As shown above, accepting cycles can exist only
in full-accepting component or in partial-accepting com-
ponent. There are two cases if the algorithm fails to find
an existing accepting cycle: IIa) the cycle exists in a full-
accepting component and is missed in the first search, or
IIb) the cycle exists in a partial-accepting component and
is missed in the second search.
IIa) Suppose that an accepting cycle exists in a full-

accepting component and that the first search fails to find
it. Let s be the first state visited by the depth first search
that is reachable from itself and that belongs to a full-
accepting component. The first search misses that cycle
if in the moment in which the search is started from s,
every path from s to itself contains a an already visited
state. Let s′ be the first such state. Then s′ was visited by
the depth-first search before s and is reachable from itself
through the cycle (s′→· · ·→ s→ · · ·→ s′), and s′ belong
to the same full-accepting component by Lemma 1, which
contradicts our assumption.
IIb) Suppose now that an accepting cycle exists in

a partial-accepting component and that the second search
fails to find it. In this case a similar reasoning as in [6]
can be done to show that this cannot be happen. Let s be
the first accepting state belonging to a partial-accepting
component from which the second search starts but fails
to find a cycle even though one exists. In the moment in
which the second search starts from s there is at least one
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flagged state on a cycle through s. Let r be the first such
state, and let s′ be the state from which the second search
that flagged r was started. In the algorithm the second
search remains in the same equivalence class from which
the search was started. Therefore s, r and s′ must belong
to the same component. According to our assumptions,
the second search from s′ was started before the second
search from s. There are two cases:
II ′b: The state s

′ is reachable from s. Then there is
a cycle (s′ → · · · → r→ · · · → s→ · · · → s′) that could
not have been found previously, otherwise the algo-
rithm would already have terminated. By Lemma 3, the
cycle belongs to a partial-accepting component. However
this contradicts our assumption from which the second
search missed a cycle belonging to a partial-accepting
component.
II ′′b : The state s

′ is not reachable from s. If s′ ap-
pears on a cycle, then a cycle was missed before starting
the second search at s and the cycle belongs to a partial-
accepting component, since s and s′ belong to the same
component. According to the assumption, s is reachable
from r and, subsequently, s is reachable from s′. Thus,
if s′ does not occur on a cycle, by Lemma 4 we must
have discovered and backtracked from s in the first search
before backtracking from s′. Hence, according to the algo-
rithm, we must have started a second search from s before
starting it from s′. This contradicts the assumptions. �

8 Liveness property experiments

In this Section we describe experimental results in the
validation of liveness properties. The experimental setup
is largely as described in Sect. 6. We compare two algo-
rithms in this section, namely NDFS and INDFS. Both
algorithms have been implemented in HSF-SPIN. We
have also implemented INDFS inside SPIN, so that both
tools have the same algorithmic capabilities. Since the re-
sults produced by both tools are very similar in terms of
computational effort, we only give the values obtained by
HSF-SPIN in this Section.

8.1 INDFS for validating correctness

This first set of experiments is intended to show the ben-
efits of INDFS when validating liveness properties. In the
worst case, INDFS performs as many transitions and ex-
pansions as NDFS, while in a best case situation INDFS
can halve these values. The worst case occurs when the
never claim contains no F-SCCs, while the best case oc-
curs when the never claim contains exclusively SCCs of
this type. Note that all never claims are generated using
SPIN’s LTL-to-never-claim translation. We use a model
of the leader election algorithm as test case. As a worst
case we check the property ��oneLeader for which the
corresponding never claim is formed by a unique P-SCC.
For the best case situation we used the property�elected

¬elected

n0 na

¬elected

n0 na

¬oneLeader

true

true

Fig. 17. Never claims for ��oneLeader (bottom-right)
and �elected (top-left)

Table 10. Checking correctness of two live-
ness properties in the leader election algo-

rithm with NDFS and INDFS

��oneLeader NDFS INDFS

s 4779 4779
e 9556 9556
t 42307 42307

�elected NDFS INDFS

s 2380 2380
e 14086 7044
t 4759 2380

for which the corresponding never claim is formed by
a unique F-SCC. Figure 17 illustrates the never claims
that SPIN generates for each property.
Table 10 depicts the results of the experiments. The

number of transitions and expansions is shown. The num-
ber of stored states is also included in the table to show
that both algorithms explore exactly the same number
of states. The results show that in the worst case situ-
ation both NDFS and INDFS perform the same. On the
other hand, in the best case situation INDFS requires
about half of the transitions and expansions that NDFS
requires.

8.2 INDFS for error detection

Our objective now is to show that INDFS requires less
computational effort and provides better error trails than
NDFS. We also test the performance of the hybrid algo-
rithm that combines NDFS with A∗.
We first use a version of the GIOP model configured

with 1 server and 3 clients and with a seeded error that
causes the model to violates a response property stating
that when a client sends a request, a reply will always
be received. Second, we use a model of an elevator with
3 floors that violates the response property stating that



265

Table 11. Detection of violation of liveness
properties in two protocols

Elevator NDFS INDFS A∗+INDFS

s 192 187 29407
e 229 187 28309
t 280 215 130211
l 320 311 297

GIOP NDFS INDFS A∗+INDFS

s 7331 7260 86
e 7346 7260 81
t 33061 32984 93
l 289 155 155

whenever a request for the elevator exists in one level, the
elevator will eventually stop at that level and open the
door. Table 11 shows experimental results on detecting
the violation of LTL formulae. NDFS is compared with
INDFS and the algorithm that combines A∗ and NDFS
(A∗+INDFS).
The results show that INDFS provides small improve-

ments over NDFS in all categories. However, only for
the GIOP protocol the reduction is significant, INDFS
almost halves the length of the error trail. The hybrid
algorithm finds better solutions in all situations, but its
computational effort varies drastically. While in the ele-
vator experiment it requires about 15 times more state
expansions than INDFS, in the GIOP experiment it per-
forms 89 times less. The reason of this varying behavior
is that A∗+NDFS directs the search to the nearest full
accepting component of the state space. This component
may, however, be free of cycles. Only after this part of the
state space is entirely explored the nested search returns
control to A∗ which then directs the search into the next
full accepting part. While in the case of the GIOP proto-
col the algorithm finds a component with a cycle early on
in the search, in the elevator example the algorithm first
explores parts of the state space that include accepting
states, but no accepting cycles.

9 Related work

In earlier work on the use of directed search in model
checking the authors apply best-first exploration to pro-
tocol validation [25]. They are interested in typical safety
properties of protocols, namely unspecified reception, ab-
sence of deadlock and absence of channel overflow. In the
heuristics they use an estimate determined by identify-
ing send and receive operations. In the analysis of the
X.21 protocol they obtained savings in the number of ex-
pansion steps of about a factor of 30 in comparison with
a typical depth first search strategy. We have incorpo-
rated this strategy in HSF-SPIN. The approach in [25] is
limited to the detection of deadlocks, channel overflows

and unspecified reception in protocols with asynchronous
communication. To the contrary our approach is more
general and handles a larger range of errors and com-
munication types. While the measures in [25] are merely
stochastic and will not yield optimal solutions, the heuris-
tics we propose are in most cases lower bound estimators
and hence allow us to find optimal solutions.
Recent work [18] applies heuristic search to the veri-

fication of java programs. It is proposing heuristics that
increase coverage of the programwhile disregarding a tar-
geted search for error states. This approach does not
guarantee optimal counterexamples and accomplishes
faster error finding through improved code coverage.
The same holds for recent work [31] that proposes

the application of genetic algorithms for finding errors in
very large state spaces. Genetic algorithms require fitness
functions which are a variant of heuristic evaluation func-
tions. Different heuristics for deadlock detection and as-
sertion violation based on enabledness of transitions and
message exchanges are proposed.
The identification of three phases in the verification

process is at the heart of work documented in [7]. In ex-
ploratory mode the system designer tries to find a first
error, in fault finding mode s/he aims at meaningful coun-
terexamples, while in the maintenance mode one does
not expect errors at all. From this point of view, our ap-
proach concentrates on the first two modes. Moreover,
the authors in [7] analyze which algorithm is best-suited
for which mode. They use different variants of depth-first
search, breadth-first search and A∗. Some of the ideas for
the heuristic estimates are similar to ours, but the authors
do not elaborate on the specific heuristic estimates that
they use. Contrary to us, they do not consider IDA∗ and
restrict their work to safety properties. In comparison,
cur conclusions are slightly different from theirs.We agree
that a shortest path algorithm is suitable for the fault
finding mode, but we believe that directed search can also
be useful in the first exploratory mode: even in this phase
by guiding the search an error state can be found with less
computational effort than with blind search strategies.
The authors of [35] use BDD-based symbolic search

within theMurφ validation tool. The best first search pro-
cedure they propose incorporates symbolic information
based on the Hamming distance of two states. This ap-
proach has been improved in [32], where a BDD-based
version of the A∗ algorithm [15] for the µcke model
checker [3] is presented. The algorithm outperforms sym-
bolic breadth-first search exploration for two scalable
hardware circuits. The heuristic is determined in a static
analysis prior to the search taking the actual circuit lay-
out and the failure formula into account. The approach
to symbolic guided search in CTL model checking doc-
umented in [4] applies ‘hints’ to avoid sections of the
search space that are difficult to represent for BDDs.
This permits splitting the fix-point iteration process used
in symbolic exploration into two parts yielding under-
and over-approximation of the transition relation, respec-
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tively. Benefits of this approach are simplification of the
transition relation, avoidance of BDD blow-up and a re-
duced amount of exploration for complicated systems.
However, in contrast to our approach providing ‘hints’
requires user intervention. Also, this approach is not di-
rectly applicable to explicit state model checking, which
is our focus.
The need for heuristics is apparent in conformant

planning, where the symbolic representation compen-
sates partial knowledge of the current state. The work
of [2] trades information gain for exploration time with an
estimate preferring belief states with low cardinality.
Timed automata call for a finite partitioning of the

state space through a symbolic representation of states
as a reduced set of difference constraints. One example
is the real-time model checker Uppaal, which has also
been accelerated by heuristic search to optimize different
cost-functions with A∗ [1]. The techniques are reported to
reduce the explored state-space with up to 90%.
Exploiting structural properties of the Büchi Automa-

ton in explicit state mode checking has been considered
in the literature in the context of weak alternating auto-
mata (WAA) [30]. WAA were invented to reason about
temporal logics, generalize the transition function with
boolean expressions of the successor set, and partition
the automaton structure. The classification of the states
of a WAA differs from ours, since the partitioning into
disjoint sets of states that are either all accepting or all
rejecting does not imply our partitioning. The simplifica-
tion of Büchi automata proposed in [33] is inferred from
an LTL property, whereas our INDFS algorithm is based
on the analysis of the structure of Büchi automata. The
work in [33] also considers a partitioning according to
WAA-type weakness conditions and hence differs from
the approach taken in our paper.
The approach taken in [34] addresses explicit CTL∗

model checking in SPIN using hesitant alternating auto-
mata (HAAs). The paper shows that the performance of
the proposed ‘LTL non-emptiness game’ is in fact a refor-
mulation and improvement of nested depth-first search.
Both the partitioning and the context of HAA model
checking are significantly different from our setting.

10 Conclusion and outlook

We argued that in order to facilitate debugging the error
trails or witnesses that a model checker generates mini-
mizing their length is highly desirable. A reduction in the
number of visited states during state space search is also
desirable since this renders larger models tractable. Stan-
dard depth-first search algorithms used in explicit state
model checkers like SPIN are rather efficient in terms of
memory usage and computing time, but tend to produce
lengthy counterexamples.
We introduced into heuristic search algorithms, and

showed how to apply heuristic search to safety prop-

erty validation. The experimental results showed that
directed model checking with A∗ always returns shorter
error trails than DFS, and that in most instances the
trail length is optimal. Regarding computational effort
the results were mixed: in some instances A∗ was supe-
rior to SPIN and DFS, but in many cases A∗ was not
performing as well. It also became clear that the gain
obtained through directed model checking is better the
more differentiation the heuristic estimation function al-
lows. We also observed that for the dining philosophers
problem under constrained memory availability directed
model checking was able to solve a problem that could
not be solved by DFS. We expect that this effect is
linked to the highly symmetric nature of the problem, and
the high degree of coordination that is typical for this
example.
Next we proposed an improvement of the nested

depth-first search algorithm that exploits the structure of
the never claim to be validated. The INDFS algorithms
is applicable to the validation of liveness properties. We
showed that INDFS, which is not a directed model check-
ing algorithm, leads to modest improvements in terms
of error trail length compared to NDFS. In further ex-
periments we showed how the combined usage of A∗ and
NDFS can lead to significant reductions in error trail
length.
The incorporation of heuristic search strategies is

based on the observation that standard state space ex-
ploration algorithms perform a search that is rather un-
informed of the structure of the search problem. As raw
as the heuristics that we propose may be, it is surprising
to see them work rather well on many practical problems.
We are not primarily interested in optimal solutions,
which is why we can tolerate non-admissible heuristic es-
timates when optimistic estimates are not available.
In concurrent work [14] we describe an approach to

shorten existing error trails using refined state distance
metrics as heuristic estimates. This approach has already
been implemented in HSF-SPIN. For selected benchmark
and industrial communication protocols experimental ev-
idence is given that trail-directed model checking effec-
tively shortcuts existing witness paths.
We are nevertheless interested in improving the qual-

ity of the heuristics so that our approach becomes ap-
plicable to an even larger set of problems. One approach
assesses the fact that our assumption of independence in
combining sub-formulae is rarely fulfilled in practice. The
main idea in the not yet implemented approach of directed
stochastic model checking is to derive a stochastic model
for search prediction that takes correlations of proposi-
tions into consideration in order to direct the search.
Further work [26] investigates the combination of par-

tial order reduction techniques with the directed model
checking approach of HSF-SPIN. Both theoretically and
empirically we show that A∗ and IDA∗ can be combined
with partial order reduction methods. While the bene-
fit of the application of partial order reduction to A∗ is



267

limited, due to its similarity to DFS IDA∗ avails itself
rather nicely to partial order reduction.
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