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Abstract. The Computer-Aided Resuscitation Algorithm, or
CARA, is part of a US Army-developed automated infusion
device for treating blood loss experienced by combatants in-
jured on the battlefield. CARA is responsible for automati-
cally stabilizing a patient’s blood pressure by infusing blood
as needed, based on blood-pressure data the CARA system
collects. The control part of the system is implemented in
software, which is extremely safety-critical and thus must
perform correctly.

This paper describes a case study in which a verifica-
tion tool, the Concurrency Workbench of the New Century
(CWB-NC), is used to analyze a model of the CARA sys-
tem. The huge state space of the CARA makes it problematic
to conduct traditional “push-button” automatic verification,
such as model checking. Instead, we develop a technique,
called unit verification, which entails taking small units of
a system, putting them in a “verification harness” that exer-
cises relevant executions appropriately within the unit, and
then model checking these more tractable units. For systems,
like CARA, whose requirements are localized to individual
system components or interactions between small numbers of
components, unit verification offers a means of coping with
huge state spaces.

Key words: Model checking – state explosion – process al-
gebra – abstraction – state minimization – formal methods

1 Introduction

The Computer-Assisted Resuscitation Algorithm (CARA) is
a software system that provides closed-loop control to a high-
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output infusion pump [2]. Developed by researchers at the US
Walter Reed Army Institute for Research (WRAIR), the sys-
tem is intended to infuse fluids into patients who are in dan-
ger of developing hypotension due to blood loss sustained
because of battlefield injuries. The system also has civilian
applications in the treatment of shock trauma victims. In con-
trast with existing infusion systems, which require the con-
stant attention of medical personnel, CARA is designed to
operate automatically, thereby permitting a given number of
medical personnel to attend to many more casualties. CARA
is intended to be a component in the Life Support for Trauma
and Transport (LSTAT) system, a state-of-the-art stretcher be-
ing developed with support from the US Army [1].

The fact that human lives depend on CARA makes it im-
perative that the software function correctly. At the same time,
the complexity of the CARA system makes manual certifica-
tion of the correctness of the system a difficult and expensive
undertaking. In this paper we report on the use of an auto-
matic formal verification tool, the Concurrency Workbench
of the New Century (CWB-NC) [12–14], to analyze a model
of CARA to determine whether it is consistent with require-
ments given for the system. While such an analysis does not
guarantee that the deployed source code is correct, correct
models are easier to turn into correct code than informal re-
quirements are. At the same time, errors uncovered and elim-
inated at modeling time can be avoided at coding time, when
they are much more difficult and expensive to fix.

Automatic verification tools provide users with, on the
one hand, a modeling notation for systems, and, on the other,
a notation for expressing system requirements. The tools then
attempt automatically to determine whether a system model
meets its requirements. The motivation for such tool develop-
ment is to enable system designers to develop analyzable sys-
tem artifacts early in the system-development process so that
the ramifications of different design decisions, and errors and
ambiguities in designer thinking, may be uncovered as soon
as possible. Semantically, the modeling notations are based
on different variants of finite-state machines. Requirements
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are often given either in temporal logic [24,30] or also as
state machines [7,17,18,26]. The term model checking [10]
is often used to encompass algorithmic techniques for deter-
mining whether or not (formal) system models satisfy (for-
mal) system requirements.

While model-checking tools have become very popular
in the hardware community, their uptake in the field of soft-
ware verification has been limited. One of the principal rea-
sons for that is that for complex real-world systems, the se-
mantic models (state machines) of the systems constructed
for the purpose of analysis become so large that even pow-
erful workstations cannot handle them. The problem is com-
pounded when the system being modeled has real-time be-
havior, as the added obligation of tracking delays requires the
introduction of even more states into these models. The re-
sulting state explosion becomes even more dire when there
are parallel modules whose behaviors must be interleaved.

As a real-time system possessing a number of concurrent
components, CARA represents a difficult challenge to one in-
terested in modeling and verification. In our modeling effort
it quickly became obvious that no sufficiently detailed model
of the the system could be verified using traditional “push-
button” automatic verification, in which a user enters a model
and a property and just “hits return.” To cope with these chal-
lenges, we pursued an approach, which we call unit verifica-
tion in analogy with the “unit testing” approach to software
testing, for checking safety and liveness properties of mod-
els of software systems. Unit verification works by taking the
property to be proved on the system and suitably crafting a
“verification harness” based on that property. The “unit”, or
modules, inside the system to which the property is applica-
ble is isolated, and all the behavior of the process not relevant
to the property in question is “sealed” off. This transformed
“unit” is then minimized and run inside the harness, which
signals whether or not the property is satisfied by the system
by engaging in pre-designated “good” or “bad” transitions.

The theoretical benefits of this approach are obvious. Huge
state spaces become tractable because only the part of the
state space relevant to the property in question is traversed;
the uninteresting part of the system is abstracted away by “in-
ternalizing” the relevant state transitions. The conversion of
external actions into internal actions also aids in minimizing
the system to the furthest extent possible when verifying the
property in question. This use of a targeted traversal of the
state space leads to a dramatic reduction in the space needed
to store the model.

Unit verification is most effective when the property be-
ing verified refers to a single module. The more modules the
property spans (i.e. the more “global” it is), the less effec-
tive this approach is, due to state explosion. One’s choice of
module boundaries may thus be guided by the properties to
be verified later on so that a majority of the properties pertain
to a single module. For example, it might make sense to take
two closely-coupled functional units and model it as a single
module than as the parallel composition of two modules, so
as to facilitate unit verification.

The paper is organized as follows. Section 2 gives an
overview of the CARA system, while Section 3 introduces
basic mathematical concepts related to modeling and verifi-
cation and briefly discusses the tool used in the case study.
Section 4 then describes the CARA system in more detail,
while Section 5 presents our formal model of the system. The
section following introduces unit verification and describes
our experiences in using it to analyze the CARA model. Sec-
tion 7 then discusses related work, while the last section states
our conclusions and directions for future work.

2 CARA System Overview

The system under study is known as the CARA (Computer-
Aided Resuscitation Algorithm)control software [3–5], which
is being developed in the context of the CARA infusion-pump
project sponsored by the Walter Reed Army Institute of Re-
search (WRAIR) in collaboration with the Food and Drug
Administration (FDA). The goal of this project is to develop
a device that automatically infuses fluids into a trauma patient
as necessary in order to stabilize the patient’s blood pressure.

The information about CARA contained in this paper is
taken from three documents provided by WRAIR researchers.
These include a requirements document containing a num-
bered list of 148 requirements [4]; a question and answer doc-
ument regarding these requirements [5]; and a hazards analy-
sis document [3]. Additional clarifications on the system were
obtained from WRAIR personnel.

2.1 Background

CARA comprises software for monitoring and controlling
the operation of an M100 infusion pump, which is a device
that drives resuscitating fluids into an injured patient’s blood-
stream. The system is designed for use in a battlefield situ-
ation and is intended to assist a care-giver by automatically
monitoring the patient’s blood pressure and delivering fluid
as required to maintain a pre-selected blood pressure. Besides
controlling the pump, CARA also logs the patient’s condition
and provides diagnostic information in case problems arise
with either the patient or the machine. So the CARA soft-
ware’s chief responsibilities are to:

1. continually monitor and log the blood pressure of the pa-
tient;

2. use the blood pressure information to determine the con-
trol voltage to be applied to the pump to maintain a suit-
able rate of infusion; and

3. sound alarms and provide diagnostic information in case
of any sudden change in the patient’s condition or mal-
function of the infusion pump.

CARA is intended to increase the number of patients a
given number of medical personnel may care for. In a tra-
ditional resuscitation setting, injured patients are connected
to an infusion pump whose behavior is governed by differ-
ent hardware settings on the pump itself. These settings must
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Fig. 1. CARA Reference Model: Main Modes

be closely monitored by a care-giver, who continually adjusts
them depending on the condition of the patient and takes ac-
tion if a system malfunction occurs. In a battlefield setting,
when one care-giver may be attending many casualties at one
time, medical manpower is often insufficient, and patients
suffer debilitating and often fatal consequences relating to in-
adequately monitored infusion equipment. CARA represents
a way for automating the work of a care-giver so that the infu-
sion process can function with minimum human intervention.

2.2 Modes of Operation

The remainder of this section describes how the CARA soft-
ware achieves the aims just mentioned. The system has three
main modes of operation: Wait mode, Manual mode, and Auto-
control mode. Fig. 1 summarizes how the modes interact;
each mode is described below.

2.2.1 Wait Mode

The system is in this mode when the pump is off: it performs
no monitoring or pump control.

2.2.2 Manual Mode

The software enters manual mode when the pump is initially
turned on. When the system is in this state the software only
performs monitoring functions; it does not send control sig-
nals to the pump, which instead uses default hardware set-
tings set by the care-giver to drive the infusion rate. There are
several anomalous conditions constantly being monitored in
this mode, however: whether there is an air bubble inside the
tube, whether the tube through which fluid is being pumped is
free from leakage, and whether the pump is in proper working
order. There is a 5-second polling cycle for these conditions
along with a specified polling order. An error triggers several

alarms based upon how critical the associated condition is. If
the power supply to the pump is lost, the control goes to a
backup battery, and a high-priority alarm is sounded.

There are two ways to leave manual mode: the pump may
be turned off, or the care-giver may press the auto-control
mode button to transfer the software to auto-control mode.
This button is only enabled when the pump is in its normal
operative mode (i.e. no error conditions are present); the but-
ton that initiates this mode is disabled otherwise.

2.2.3 Auto-Control Mode

In auto-control mode, CARA assumes two roles: monitoring
the status lines from the pump as well as controlling the infu-
sion rate. In this mode it also supplies diagnostic information
to the care-giver via a display screen in case of exceptions
and maintains a log file of errors, trend data and other data
that would ordinarily be collected by the care-giver. When the
CARA system is in auto-control mode, the care giver plays a
much less active role, and when intervention is required the
software provides suggestions on how to proceed.

At the heart of the CARA system is a PID control al-
gorithm that takes as inputs the current and desired blood
pressures of the patient and, based on the difference between
these, adjusts the voltage driving the infusion pump.

CARA is designed to use up to three sources of blood
pressure data: an arterial line, pulse-wave transmission and a
cuff. Each of these sources can be used as input to the PID
control algorithm. Since these data sources may be simulta-
neously available the system uses a priority scheme to deter-
mine which source to use: an arterial line has highest priority,
followed by pulse-wave transmissions and a cuff, in that or-
der. Thus, if all three sources are available the arterial line is
used as the source of the patient’s blood pressure. If the arte-
rial line source is lost then the pulse-wave source is used, and
if that is also lost, then the cuff source is used.



4 Arnab Ray, Rance Cleaveland: Unit Verification: The CARA Experience

For reasons of patient safety the CARA also checks the
integrity of the blood-pressure data it collects. This “corrob-
oration process” involves checking values delivered by either
the arterial or pulse wave to those obtained via the cuff. If the
blood pressures are within an acceptable range of difference,
they are said to be corroborated, else they are are not corrobo-
rated. If an available source does not corroborate with the cuff
pressure, then the care-giver is prompted and presented with
the option of overriding and using the uncorroborated source
for the control algorithm. If the care-giver does not want to
override then the next priority source is sought to be corrob-
orated. If that too cannot be corroborated then the software
proceeds using the cuff pressure as the control pressure.

Once a blood-pressure source has been selected the data
it collects is used as input to the PID control algorithm. This
algorithm checks whether the current blood pressure is below
the target value or not. If it is below then it sets an appropriate
pump-control voltage. If the target blood pressure value has
been attained or exceeded then the control voltage is set to
zero, meaning that the infusion ceases.

The care-giver can reset the target blood-pressure value
by entering new input parameters, after which the PID al-
gorithm restarts. But this entering of new values cannot be
done unless all the components are working properly: any
error prevents the care-giver from entering new input param-
eters.

Re-corroboration of blood pressure sources takes place
every 30 minutes, except that when a new source becomes
available that has a higher priority than the source currently
being used, corroboration of the new source is attempted im-
mediately. Corroboration is also stalled when an override ques-
tion is pending. Once corroborated, a source will continue to
be used until the next re-corroboration cycle or until a higher-
priority source becomes corroborated. All sources are moni-
tored continually, and appropriate action is taken immediately
in case a source is lost. Thus, while a care-giver may have to
wait up to 30 minutes to detect that a corroborated source
has become uncorroborated, an immediate action (alarm and
state change) occurs if a corroborated source is lost.

When the blood pressure of all sources becomes zero,
alarms are sounded, and after waiting for specified periods
of time the software goes back to manual mode. A care-giver
can also return the system to manual mode by pressing the
appropriate button.

3 Modeling Preliminaries

In this section we describe the basic mathematical machin-
ery used in our modeling and analysis of the CARA system.
Before discussing the theory, however, we note that the fol-
lowing characteristics are important in the selection of an ap-
propriate framework.

Real time. The CARA system includes a number of timing
constraints. To be maximally useful, a modeling notation
should include support for these.

Component interaction. The CARA system includes many
components that interact either directly with one another
or with the environment. To model CARA effectively, a
modeling notation needs to support a flexible notion of
component interaction.

Subsystem analysis. To cope with state explosion our unit-
verification approach requires being able to isolate sub-
systems within a larger system. An appropriate model-
ing notation should therefore make it easy to treat system
modules independently.

3.1 Discrete-Time Labeled Transition Systems

The basic semantic framework used in our modeling is discrete-
time labeled transition systems. To define these we first intro-
duce the following.

Definition 1. A set � is a set of visible actions if is is non-
empty and does not contain � or � .
In what follows visible-action sets will correspond to the atomic
interactions users will employ to build system models. The
distinguished elements � and � correspond to the internal ac-
tion and clock-tick (or idling) action. For notational conve-
nience, given a visible-action set � we define:

�������
	��
�������
��������	��
�������
������������	��
�����������

We sometimes call the set ����������� an action set and ������� as
a controllable-action set (the reason for the latter being that
in many settings, actions in this set can be “controlled” to a
certain extent by a system environment).

Discrete-time labeled transition systems are defined as
follows.

Definition 2. A discrete-time labeled transition system (DTLTS)
is a tuple  "!#�$�%��&'��(�)+* where:

1. ! is a set of states;
2. � is a visible-action set (cf. Def. 1);
3. ,-&/.0!213� ��������� 14! is the transition relation, and
4. ( )
5 ! is the start state.

A DTLTS  6!#���7��&'��(�)+* satisfies the maximal-progress prop-

erty if for every ( such that ( �,-&8(�9 for some (�9 , (;: �,-&8(�9�9
for any (�9�9 .
A DTLTS  <!#�$�%��&=��( ) * encodes the operational behavior of
a real-time system. States may be seen as “configurations” the
system may enter, while actions represent interactions with
the system’s environment that can cause state changes. The
transition relation records which state changes may occur:
if  <(>��?���(�9�* 5 ,-& then a transition from state ( to (�9 may
take place whenever action ? is enabled. Generally speaking,
� is always enabled; other actions may require “permission”
from the environment in order to be enabled. Also, transitions
except those labeled by � are assumed to be instantaneous.
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While unrealistic at a certain level, this assumption is mathe-
matically convenient, and realistic systems, in which all tran-
sitions “take time”, can be easily modeled. We write (��, & (�9
when a system in state ( transitions, via action ? , to state (+9 .

If a DTLTS satisfying the maximal progress property is
in a state in which internal computation is possible, then no
idling (clock ticks) can occur.

DTLTSs model the passage of time and interactions with
a system’s environment. Discrete-time process algebras such
as Temporal CCS [27] enrich the basic theory of DTLTSs
with operators for composing individual DTLTSs into sys-
tems that may themselves be interpreted via (global) DTLTSs.
Such languages typically include operators for parallel com-
position and action scoping, among others. The variant of
Temporal CCS used in this paper, for instance, may be de-
fined as follows. Let

�
be a nonempty set of labels not con-

taining � and � , and fix � TCCS 	 � �;� ����� 5 � � , where
is a syntactic operator. Intuitively,

�
contains the set of com-

munication channels, with visible Temporal CCS actions of
the form � corresponding to receive actions on port � and
� corresponding to send actions on port � . Then (a subset
of) Temporal CCS is the set of terms defined by the follow-
ing grammar, where � . �

and � is a maximal-progress
DTLTS whose action set is � TCCS .

	�
�
 	
��� 	 � � 	�� � 	�� �
Intuitively, these constructs may be understood in terms of
the communication actions and units of delay (or idling) they
may engage in.

	 � � 	�� represents the parallel composition of	 � and
	��

. For the composite system to idle, both compo-
nents must be capable of idling. Non-delay transitions are ex-
ecuted in an interleaved fashion; moreover, if either

	 � or
	��

is capable of an output ( � ) on a channel � that the other is ca-
pable of an input on ( � ), then a synchronization occurs, with
both processes performing their actions and a � resulting: in
this case, no idling is possible until after the � is performed.
If �'. � then

	�� � defines a process in which the channels
or actions in � may be thought of as “local”. In other words,
actions involving the channels in the set � are prevented from
interacting with the outside environment. The net effect is to
“clip”, or remove, transitions labeled by such actions from	

. Other operators, including a hiding operator
	�� ��� that

converts actions whose labels are in � into � actions, may be
defined in terms of these.

This informal account may be formalized by giving rules
for converting Temporal CCS terms into DTLTSs in the stan-
dard Structural Operational Style [29].

Finally, DTLTSs may be minimized by merging seman-
tically equivalent but distinct states. In this paper a specific
equivalence, Milner’s observational equivalence [26], is used
for this purpose. Intuitively, two states in a DTLTS are obser-
vationally equivalent if, whenever one is capable of a transi-
tion to a new state, then the other is capable of a sequence of
transitions with the same “visible content” to a state that is
observationally equivalent to the new state. To define obser-
vational equivalence precisely, we use the following notions.

Definition 3. Let � 	  "!#�$�%��&'��( ) * be a DTLTS, with
(>��(�9 5 ! and ? 5 � ��������� .
1. (��	��8(�9 if there exists (7	 (��>�������6(! 	 (�9 such that for

all "$#&%('&) , (!* �,-& (+*-, � .
2. ( �	�� (�9 if there exists ( � ��( � such that ( �	�� ( � �,-&
( � �	�� (�9 .

3. The visible content, .? , of ? is defined by: .� 	0/ and .?
	=?
if ? :	=� .

4. A relation 1 .0!�13! is a weak bisimulation if, for every
? 5 ����������� and  "( � ��( � * 5 1 , the following hold.

(a) If ( � �, & (�9 � then there exists (�9 � such that ( ��2�	�� (�9 �
and  6(�9 � ��(�9 � * 5 1 .

(b) If ( � �, & (�9 � then there exists (�9 � such that ( � 2�	�� (�9 �
and  6(�9 � ��(�9 � * 5 1 .

5. ( � and ( � are observationally equivalent, written ( �43 ( � ,
if there exists a weak bisimulation 1 with  6( � ��( � * 5 1 .

Intuitively, ( �	�� (�9 if there is a sequence of internal tran-
sitions leading from ( to (�9 , while ( �	�� (�9 if there is a
sequence of transitions, one labeled by ? and the rest by � ,
leading from ( to (�9 . The visible content of � is “empty” ( / ).

It can be shown that observational equivalence is indeed
an equivalence relation on states, and that observationally
equivalent states in a DTLTS can be merged into single states
without affecting the semantics of the over-all DTLTS.1 It is
also the case that, in the context of the Temporal CCS oper-
ators mentioned above, DTLTSs may be freely replaced by
their minimized counterparts without affecting the semantics
of the overall system description. For finite-state DTLTSs,
polynomial-time algorithms for minimizing DTLTSs with re-
spect to observational equivalence have been developed [12,
16,19,28]. This concept will be used later when defining the
minimization procedure for unit verification.

3.2 Model Checking

In automated model-checking approaches to system verifica-
tion system properties are formulated in a temporal logic; the
model checker then determines whether or not they hold of
a given (finite-state) system description. A given temporal-
logic formula defines the behavior a system should exhibit as
it executes; as such, temporal logic extends more familiar no-
tations such as the propositional calculus with operators en-
abling one to describe how a system behaves as time passes.

In this work we use a (very small) subset of the modal
mu-calculus [21], a temporal logic for describing properties
of (discrete-time) labeled transition systems. The syntax of
the fragment is described as follows, where � is a visible-
action set (cf. Def. 1).

5 
�
 	 tt � ff �> 6?�*������ 5 �76�?98 ����� 5 �< "?�*���������� 5 ��6�?:8 ��������� 5
1 More precisely, the notion of observational equivalence can be lifted

to a relation between DTLTSs, rather than just between states in the same
DTLTS. It can then be shown that a DTLTS is observationally equivalent to
its minimized counterpart.
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Here ? 5 � ����� � �:/�� . The full mu-calculus contains other op-
erators, including conjunction, disjunction and recursion con-
structs; a full account may be found in [21].

These formulas are interpreted with respect states in a
given DTLTS. The formulas tt and ff represent the constants
“true” and “false” and hold of all, respectively no, states.
The remaining operators are modal in that they refer to the
transition behavior of a state. In particular, a state ( satisfies
 "?�*$����� 5 if there is another state (�9 such that ( �	�� (�9 and
(�9 satisfies

5
, while ( satisfies 6�?98 ����� 5 if every (�9 such that

( �	�� (�9 satisfies
5

. The operators  6?<*���������� and 6 ?98 ��������� are
similar except that they treat clock ticks as being analogous
to � -transitions. More precisely, we define the following.

Definition 4. Let � 	  "!#�$�%��,-& ��( ) * be a DTLTS, with
(>��( 9 5 ! and ? 5 ����������� .
1. ( �� (�9 if there exists ( 	 (��>����������(+ 	 (�9�� )�� "��

and ? � �������6?  such that ( � �	�,-& ( ��
	
	
 (  
� � ���,-& (  and
? * 5 � ���+��� for all � #0% #0) .

2. ( �� (�9 if there exists ( � ��( � such that ( �� ( � �, & ( � ��
(�9 .

So ( �� (�9 if there is a sequence of ��, and ��, transitions

leading from ( to (�9 , while ( �� (�9 if there is a sequence of
transitions, one labeled by ? and the rest either by � or � ,
leading from ( to (�9 .

We can now define  "?�*$��������� and 6�?98 ��������� more precisely. A

state ( satisfies  6?<*$��������� 5 if there is an (�9 such that ( �� (�9 and
(�9 satisfies

5
. Dually, ( satisfies 6�?98 ��������� 5 if every (�9 reachable

via a �� transition from ( satisfies
5

.
The operators  �*$����� , 6 8 ����� ,  �*���������� and 6 8 ��������� are not

primitive mu-calculus operators, but they can be encoded us-
ing the primitive operators.

In what follows we write � � 	 5 if � is a DTLTS whose
start state satisfies

5
.

3.3 The Concurrency Workbench of the New Century

In the case study we use the Concurrency Workbench of the
New Century (CWB-NC) [12–14] as the verification engine
for conducting our analysis of CARA.

The CWB-NC supports several different types of verifica-
tion, including mu-calculus modeling checking, various kinds
of refinement checking, and several types of semantic equiv-
alence checking. The tool also includes routines for minimiz-
ing systems with respect to different semantic equivalences,
including observational equivalence.

The design of the CWB-NC makes it relatively easy to
retarget it to different design languages. The Process Algebra
Compiler (PAC) tool [11,14] provides support for adapting
the design language processed by the CWB-NC. In the case
of CARA, we started with a basic Temporal CCS CWB-NC
front end included in the release of the tool and modified it
slightly to include constructs, such as the disabling construct
from LOTOS [8], that simplified the modeling of the system.

4 A CARA Reference Model

In order to develop formal models of CARA suitable for anal-
ysis by the CWB-NC we first define a reference model for the
system. This model has two components.

Modes. A high-level rendering of the modes the software
can be in. CARA’s modes are described in Section 2.2
and Fig. 1.

Architecture. A decomposition of the system into commu-
nicating components, each of which is modeled opera-
tionally using finite-state machines.

The architectural component of the reference model is given
in Fig. 2, which also provides an abbreviated description of
the interactions between the modules in the architecture. In
this diagram ovals represent system components, while cir-
cles constitute environment components.

The remainder of this section provides a brief descrip-
tion of each component in the CARA architecture. Before
giving this, however, we first note that none of the CARA
documents explicate the system architecture; we have instead
devised one based on the rationale that there should be one
module for each physical component or major control unit
of the system. Care was also taken to minimize the commu-
nication interfaces between components so that components
were as independent of each other as possible. The interpro-
cess communication, though not explicitly stated in the de-
sign documents, was assumed to be via synchronous message
passing or through shared variables.

4.1 Alarm

This Alarm module is modeled as a system that takes in two
types of error conditions, HighAlarm or LowAlarm. Depend-
ing on what type of an alarm it is, the alarm determines its
“silencing time,” that is, the amount of time that it will be si-
lenced when a care-giver presses the Silence Alarm button.
Note that the Alarm’s audible and visible indicators are com-
pletely deactivated only when all the conditions that caused
an alarm to be raised have been fixed.

4.2 Alarm Control

The Alarm module deals with the hardware component of the
visual and audible alarms. The decision as to when the alarm
module is to be set or reset is handled by the Alarm Con-
trol. As the name suggests, this is the controller process for
the Alarm. It takes as its input all possible alarm conditions
from all possible modules that can raise an alarm and then,
based on its internal logic, decides whether to raise a high
or a low alarm. This architecture makes it possible to make
the alarm-control logic independent of the actual hardware
modeling of the alarm. Thus, even if in the future the logic
for alarm-control changes, only this part of the system needs
to be changed. This paradigm of separating the physical de-
vice from its controller is a principle we have followed in the
entire reference-model design.
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Fig. 2. CARA Reference Model: System Architecture and Module Interaction.

4.3 Pump

The Pump module is the physical device that pumps fluids
into the patient. In our model the pump is modeled as a black
box: since the internal workings of the pump is outside the
scope of the design documents that were supplied, the pump
is taken to be a monolithic entity which only supplies data on
the pump-status lines. In other words, the pump is treated as
a source of data to the rest of the system, and nothing else.

4.4 Pump Control

The pump status is communicated to CARA in two ways: ei-
ther through interrupts (continuity, occlusion, power) or through
polling (air, emf, impedance). The Pump Control’s functions
are to monitor the interrupts continually, so that action may be
taken when they come, and to monitor the poll lines accord-
ing to a given frequency. The Pump Control is also responsi-
ble for determining when to raise an alarm and for conduct-
ing subsidiary checks when an error occurs (e.g. whenever an
emf-error occurs the impedance is also checked).

The Pump Control also takes input from the PID Algo-
rithm and changes the hardware settings of the pump so that it
can pump at the requisite rate. The control outputs are treated
as “visible actions” that are offered to the environment of the
CARA model. This is because we do not model the physical
workings of the Pump and thus cannot simulate Pump behav-
ior in response to a given control signal.

4.5 Display

The Display module consists of the interface presented to the
care-giver in order to control the CARA system. It comprises
buttons that enable the care-giver to make mode changes, in-
put new target blood-pressure values, or resolve corrobora-
tion questions regarding whether or not an uncorroborated
blood pressure is to be overridden.

4.6 Display Control

Display buttons are not always available to a care-giver. For
example, the system can only enter auto-control mode when
there are no error conditions in the system. Hence, if there is
an error anywhere in the system the Start Auto-control but-
ton should be “grayed out.” Similarly there is a priority to
the input windows that are offered to the user when multi-
ple user inputs are needed. For example, a corroboration win-
dow would have a higher priority than the new input parame-
ter window. Maintaining the priority information and suitably
activating/de-activating buttons is the job of the Display Con-
trol.

4.7 Mode Control

There are two ways of affecting a change in mode within
CARA. One is when the user engages in explicit button presses
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on the Display. This aspect is dealt with in the Display Con-
trol module. But there are other ways of changing mode. In
auto-control mode, for example, there are several error con-
ditions which, if persistent for specific periods of time, ne-
cessitate a change to manual mode. This autonomous mode
change is handled by the Mode Control.

In addition, there are error conditions to be signaled if a
required blood-pressure range is not attained within a specific
time after auto-control initiation. Mode Control also keeps
track of the time instant at which auto-control mode was en-
tered.

4.8 Sources

There three different Sources modules, one for each potential
source of blood-pressure readings: Arterial, Pulse-Wave and
Cuff. These are basically stub processes that model potential
patient behavior.

4.9 Source Control

The Source Controlmodules are also three different, indepen-
dent modules, one for each potential source. Source Control
primarily deals with the frequency of polling the respective
source being controlled. It also deals with the issue of when
to signal errors or, more specifically, how many poll failures
are required before an error is flagged. It additionally sup-
plies the eventual blood-pressure value to the Pressure Con-
trol module, and this value is used for the PID loop.

4.10 Pressure Control

This control module may be considered to be the most com-
plex module in the system. Its first function is to determine
which blood-pressure source to use as the controlling source.
It compares blood pressures from different sources to corrob-
orate them. It keeps track of when to corroborate the pres-
sure sources. If a blood-pressure source becomes uncorrobo-
rated, it signals the Display module to ask the override ques-
tion and takes action according to the user supplied input. If
a higher priority blood pressure than the current controlling
blood pressure starts reporting valid values and no override is
pending, it immediately takes action.

4.11 PID Loop

This module compares the controlling blood pressure value
to the user-set set-point value and controls the fluid-infusion
rate on the basis of whether the set-point has been attained or
not.

5 Modeling CARA in Temporal CCS

To model CARA so that it can be analyzed in the CWB-NC,
we first must encode the reference model described in the

previous sections in the version of Temporal CCS supported
by the tool. This section describes this encoding.

Our general modeling strategy is to “implement” each
module in the reference model as a DTLTS and then inter-
connect these DTLTSs using the other operators from Tempo-
ral CCS. In practice, because the Temporal CCS model must
concern itself with implementation details (e.g. how shared
variables are represented) that the reference model does not,
we used several DTLTSs for each reference module. For in-
stance, the Temporal CCS model contains 23 different in-
dividual DTLTSs to implement the 23 shared variables (21
boolean-valued, one eight-valued, and one nine-valued) used
to exchange data between the other modules. Table 1 lists the
DTLTSs in our Temporal CCS model, together with a brief
discussion of what behavior each DTLTS is responsible for.

Figs. 3 and 4 give example DTLTSs taken from our model.
In the case of the CuffControl module, what is shown
is the minimized version of the DTLTS; to simplify the dia-
gram, we have also omitted the clock-tick transitions (every
state has a clock-tick transition back to itself in this case).
This DTLTS encodes the followingbehavior. When instructed
to take a cuff reading, the cuff control executes an action to
get a cuff value. If the value is valid, then this is recorded, and
any alarm due to a lost cuff is disabled. If the value is invalid,
then another cuff reading is attempted. If the second value is
valid, then the previous sequence of events is repeated; other-
wise, the cuff is determined to be invalid, and an alarm raised.

The BPMonitorDTLTS is larger than CuffControl,
since the module it models is more complex. For clarity a
number of transitions, including clock-tick transitions that
lead back to the state from which they originate, have been
left out. In addition, sequences of clock-tick transitions have
been collapsed into single transitions labeled by the number
of clock ticks.

The Temporal CCS implementation of the Alarm mod-
ule consists of three separate DTLTSs: one for a high-priority
alarm, one for a low-priority alarm, and a controller that acti-
vates and deactivates the alarms as appropriate. These DTLTSs
are named HighRinger, LowRinger, and
AlarmController, respectively. The Temporal CCS ex-
pression Alarm is then:

� HighRinger � LowRinger � AlarmController� � �
where � contains the labels of the actions used by
AlarmController to activate and deactivate the alarms.

Table 2 contains size data for each of the Temporal CCS
DTLTSs given above. The second and third columns list the
number of states and transitions for each of these DTLTSs;
the next two give the sizes after the system have been min-
imized with respect to observational equivalence. The final
column gives the amount of CPU time needed to perform the
minimization within the CWB-NC. All the experiments were
carried out on a Sun workstation running Solaris 2.6, with a
360 MHz UltraSparc II processor, 256 MB of RAM, and 1
GB of swap space.

The sizes of these individual DTLTSs imply that the en-
tire CARA system contains in excess of � ����� 
 ��"�� � states.
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Table 1. Modules in the Temporal CCS Model of CARA.

Module Purpose
Alarm Raises alarms
CorrobControl Controls when corroboration takes place
AlarmControl Parses the different errors and signals the Alarm
AirChecker Checks the Air
EmfChecker Checks the Emf
ContinuityChecker Checks Continuity
OcclusionChecker Checks Occlusion
PumpPowerChecker Checks Power
Display Handles user input and window priorities
OverrideControl Controls the Override question
ModeControl Controls when mode change takes place
PressureControl Checks to see if desired pressure is attained within a certain time after infusion started
PIDControl Handles the PID Loop
PWaveControl Controls the acquisition of pulse wave
AlineControl Controls the acquisition of arterial line
CuffControl Controls the acquisition of cuff when all other sources are lost
BPMonitor Controls priority among different pressure sources and determines the controlling pressure source
BPDropMonitor Checks to see if there is a blood pressure drop after attainment of steady value
Misc. variables Shared variables used for inter-module communication

Table 2. Size Data for Modules in Table 1.

Original Size Minimized size Minimization
Module States Transitions States Transitions Time (sec.)

Alarm 104 452 19 76 0.600
CorrobControl 1,805 3,619 1,804 3,613 3.030
AlarmControl 6 66 6 66 0.820
AirChecker 893 2,504 225 606 2.440
EmfChecker 555 1,477 345 968 1.560
ContinuityChecker 6 18 4 12 0.010
OcclusionChecker 6 18 4 12 0.010
PumpPowerChecker 6 18 4 12 0.010
Display 68 343 44 205 0.360
OverrideControl 9 54 5 30 0.070
ModeControl 912 5,172 606 3,028 5.730
PressureControl 4 11 4 11 0.000
PIDControl 1,206 1,214 1,205 1,211 0.830
PWaveControl 163 209 153 180 0.180
AlineControl 163 209 153 180 0.120
CuffControl 11 26 9 20 0.010
BPMonitor 646 748 627 683 0.540
BPDropMonitor 18 66 13 41 0.050
Misc. variables � ��� �������	��
 � ��� �������	��
 � ��� ����������
 � ��� �������	��


N/A

Even after the components are minimized, the resulting sys-
tem still has over 
 � � 
 ��"���� states.

Modeling Effort

The tables in the previous section convey information about
the computational effort needed to minimize the models we
developed. However, the effort expended in a verification project
is not only due to the time elapsed between “pushing the but-
ton” and “getting a result”, but also the manpower needed
to construct the models in the first place. The work involved
in model creation is an iterative process involving inspecting

the requirements and simulating and refining the model un-
der development. It should also be noted that requirements
expressed in a natural language like English are imprecise,
and often reasonable assumptions have to be made with re-
spect to the constructed models. And Although this model-
construction phase is laborious and frequently frustrating, its
benefit cannot be overemphasized. The exercise of formally
encoding a system brings to the fore many ambiguities that
otherwise would slip into the system design; this process of
model elicitation, if fed back to the requirements team, can
typically also lead to better and more precise encodings of
requirements.
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Based on the above observations, evaluating a methodol-
ogy requires an account the human effort needed to construct
the models. In the case of this project, it took an approximate
of 60 man-hours to settle on a reference model of the CARA
system and about ten man-hours to encode it in the CWB-
NC. However, the reference-model creation and the encod-
ing/validationof the model went on side-by-side and involved
many iterations. It should also be noted that the effort would
have been significantly less if we had been able to interact
more with the actual system designers in order to clarify am-
biguities in the system requirements.

6 Verifying CARA: The Unit-Based Approach

The previous section gave a sense of our Temporal CCS model
of CARA. In this section we describe our efforts to check
specific properties of the model. These properties were ex-
tracted from the CARA requirements documents given to us
by WRAIR researchers [3–5].

Our initial intention was to take the model of Section 5,
translate requirements into the modal mu-calculus [21], and
use the CWB-NC’s model checker to check which properties
held and which did not. This approach proved untenable, ow-
ing to the large size of the model, even after the individual
components were minimized.

Instead, we pursued a strategy we refer to as unit verifi-
cation, and which was also used in [15], although it was not
referred to by this name in that paper. Such an approach is
feasible when requirements are given as scenarios (“when-
ever a certain behavior is observed, take these actions”) that
involve small subsets of the over-all components in the sys-
tem. The essential idea is to encode the relevant scenario as
a process that interacts with the components in question and
then check whether the outcome of the scenario is “success-
ful” or not.

In the rest of this section we first define unit verifica-
tion more precisely and talk about the properties that can be
checked using it. We then report on our experiences using
unit verification to study the CARA model.

6.1 Unit Verification

Unit verification derives its name from unit testing. In unit
testing, software modules are first tested in isolation before
being assembled into full systems. In order to test a mod-
ule that may, in the final system, not have an interface to the
external environment, one typically constructs a test harness
that drives the execution of the software under test. Unit test-
ing is frequently used in software projects because it gives
engineers an ability to detect bugs at the module level, when
they are easier to diagnose and fix. For unit testing to work,
of course, one must have module-level requirements at hand
so that test results can be analyzed.

In unit verification, the set-up is very similar to unit test-
ing: single modules are verified in isolation using “harnesses”

to provide the stimuli that the other modules in the system
(or the external environment) would generate once the mod-
ule is deployed. As with unit testing, this approach requires
the presence module-level requirements so that results can be
correctly interpreted.

6.1.1 Trace Properties

Unit verification deals primarily with trace properties: prop-
erties of system executions. In this section we sketch a basic
theory of such properties.

As executions may be thought of as sequences, we use
standard mathematical operations on sequences in what fol-
lows: if � is a set, then ��� is the set of sequences whose el-
ements come from � , if � � � 9 are sequences then � 
 � 9 is the
sequence obtained by concatenating them in the given order,
/ is the empty sequence, etc.

Definition 5. Let � 	  "!#�$�%��,-& ��(�)�* be a DTLTS.

1. Let (>��(�9 5 ! be states and � 5 � �������	��� be a sequence of
(non- � ) transition labels. Then

( �	�� ( 9 if

� � 	0/ and ( �	�� (�9 in Def. 3(1), or� 	 ? 
 � 9 and � ( 9�9 5 !���( �	�� ( 9�9 ���	�� ( 9 .
2. The language, � � �'��( � , of ( 5 ! is defined by:

� � �=��(	� 	'� � 5 � � ����� � � ��( �	�� ( 9 some ( 9 5 ! ���
3. The language, � � � � of � is defined by:

� � � � 	 � � �'��(�) �+�
The language of a state in a DTLTS contains the sequences
of visible actions / clock ticks that a user can observe as ex-
ecution of the DTLTS proceeds from the state. The language
of the DTLTS is just the language of the start state.

In this case study the properties we are concerned with
involve system executions and come in two varieties: safety
and quasi-liveness. These are defined as follows.

Definition 6. Let � 	  "!#�$�%��,-& ��( ) � be a DTLTS.

1. A safety or quasi-liveness property over � is any subset
of � ������� �	� .

2. � satisfies safety property 
 if and only if � � � � .�
 .
3. � satisfies quasi-liveness property � iff for every � ��(

such that ( ) �	�� ( , there exists � 9 5 � � �'��(	� such that� 
 � 9 5 � .

Intuitively, a safety property contains “allowed” execution
sequences; a system satisfies such a property if all the sys-
tem’s executions are allowed. A quasi-liveness property is
more complicated: it contains sequences that a system, re-
gardless of the current execution it has just performed, should
be able to “complete”. We call these properties quasi-liveness
because the definition of satisfaction does not require that
such “complete-able” executions actually be completed, only
that the system always be capable of doing so. At first blush,
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this requirement may not seem strong enough to ensure “live-
ness” in the tradition sense. However, our intuition is that,
if a quasi-liveness property is satisfied by a system, then in
any “reasonable” run-time setting employing some kind of
fair scheduling, a “complete-able” execution will eventually
be completed. These definitions are inspired by, but differ in
several respect from, the classic definitions of safety and live-
ness in [6].

6.1.2 Defining Unit Verification

The unit verification approach we advocate in this paper may
be used to check whether a system satisfies safety / quasi-
liveness properties as defined in the previous section. The
method consists of the following general steps, where � is
the module being analyzed and

	
is the property.

1. Construct a verification harness ��� 6 8 .
2. Plug � into � � 6 8 , yielding a new system � � 6 � 8 .
3. Apply a check to � � 6 � 8 to see if � satisfies

	
or not.

The checks applied to � � 6 � 8 depend on whether
	

is a
safety or quasi-liveness property.

In the remainder of this section we flesh out the unit ver-
ification approach in the context of Temporal CCS. We de-
fine what verification harnesses ��� 6 8 are and the checks that
are applied on ���46 � 8 . We also discuss optimizations to the
procedure that can be undertaken to improve (often greatly)
performance.

Verification Harnesses in Temporal CCS. Verification har-
nesses are intended to “focus attention” on interesting execu-
tion paths in a module being verified. The general form of a
verification harness is:

�����
� 6 8 � � �

where
�

is the set of all communication labels, � � is a (deter-
ministic) Temporal CCS expression that we sometimes call a
verification process, and 6 8 is the “hole” into which the mod-
ule to be verified is to be “plugged”.

As a practical matter, in our CARA work we did not de-
rive verification processes from properties; instead, based on
our reading of system requirements we directly constructed
the ��� components of our test harnesses and used them as
our representations of properties. We therefore explain how
properties may be extracted from DTLTSs in what follows.

In our setting, verification processes draw their visible ac-
tions from � TCCS (the Temporal CCS action set introduced in
Section 3.1) augmented with two special actions, good and
bad. The latter are used to determine what properties a veri-
fication process defines. Recalling that the semantics of Tem-
poral CCS specifies how Temporal CCS expressions may be
“compiled” into single DTLTSs, in what follows we assume
that our verification processes are single DTLTSs.

In order to characterize the properties associated with a
verification process � , we first note that � is intended to
run in parallel with the module being verified. In order to
guide the behavior of the module, � must synchronize with

the modules actions, meaning that when � wants the module
to perform an input action ? , � must perform the correspond-
ing output ? . In general, then, since module properties refer to
the actions in the module, to associate a module property with
� we need to reverse input / output roles in � ’s execution
sequences. To make this precise we introduce the following
notation.

Definition 7. Let � 5 � � TCCS����� � � be a sequence of externally

controllable actions. Then � 5 � � TCCS����� ��� is defined induc-

tively as follows, where ? 5 � TCCS����� .

1. / 	 /
2. ? 
 � 9 	 ? 
 � 9 , where �3	 � and � 	 � .

A verification process � defines both a safety property,
 ��� � , and a quasi-liveness property, � ��� � , as follows.


 ��� � 	 � � 5 � �������	� � �
: � � � � � � � � 	 � � 
 � �
	 � � 
 bad 5 � ��� � �

� ��� � 	 � � � � 5 � ��� � 	 � 
 good 5 � ��� � �
Intuitively, if bad is possible as the next action in an execu-
tion then the execution, and all possible ways of extending it,
are removed from 
 ��� � . Similarly, action sequences leading
to the enabling of good are included in the property 
 ��� � .
Defining Safety and Quasi-Liveness Checks. From the struc-
ture of ��� 6 8 one can see that the only actions that ���46 � 8
can perform for any � are ���+� � good and bad. This is due
to the fact that � � 6 � 8 	 ��� � � � � � � , and the

� �
opera-

tor prevents all but these actions from being performed. This
fact greatly simplifies the task of checking whether or not a
safety / quasi-liveness property encoded within a verification
process holds of a module.

Theorem 1. Let � be a Temporal CCS system model and
� be a verification process. Then the following hold.

1. � satisfies 
 ��� � if and only if ��� �9� � � � � 	 6 bad8 ��������� ff
2. � satisfies � ��� � if and only if ��� �:� � � � � 	 6 / 8 ���������� good *$��������� tt
Proof. Follows immediately from the definitions of � , � � , 

and � . The determinacy of � is important.

This theorem says that the correct “check” for the safety prop-
erty encoded in a verification process � is to see whether or
not the “plugged-in” verification harness, ��� ��� � � � , for-
ever disables the bad action: formula 6 bad8 ��������� ff holds ex-
actly when there are no execution sequences consisting of � ’s,
� ’s and a single bad action. Likewise, to check if � ’s liveness
property holds of � , it suffices to check that ��� �:� � � � sat-
isfies 6 / 8 ���������� good *$��������� tt: if so, then regardless of what �
does, there is still a possibility of ��� � � � � � evolving to a
state in which good is enabled.

In some cases, it may be more natural to “look for bugs”
rather than to try to prove the nonexistence of bugs. This
might be the case if, for example, one strongly suspects erro-
neous behavior. To determine if a module violates a verifica-
tion process’s safety property, one may perform the following
check:

��� �:� � � � � 	' bad *���������� tt
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If the answer is “yes” then a violation exists. Similarly, one
may check

��� �9� � � � � 	  /�*$���������:6 good 8 ��������� ff
to test whether or not � violates � ’s quasi-liveness property.

Optimizations. So far our basic unit verification methodol-
ogy consists of the following steps.

1. Formulate a verification process � .
2. To check whether or not � ’s safety / quasi-liveness prop-

erty holds of � , check whether or not simple modal mu-
calculus formulas hold of � “running in parallel with”
� .

In our case study work, we found that two simple optimiza-
tions greatly facilitated this process; we describe these here.

Minimization.Checking whether or not a mu-calculus prop-
erty holds of a system requires, in general, a search of the
system’s state space. Reducing the size of this state space
thus reduces the time required by this search. In the case of
��� �:� � � � , one way to reduce states in the parallel composi-
tion is to reduce states in � and � by minimizing them with
respect to observational equivalence.

Action Hiding. In general, the properties we confronted
in the CARA study only focused on a few actions in the
module being tested. For example, in a property of the form
“whenever a blood-pressure source fails, an alarm should be
sounded”, actions not related to detecting failure and raising
an alarm are unimportant. Mathematically, this is reflected in
the structure of a verification process: every state has a self-
loop for every unimportant action, since such actions do not
“affect” the verification result.

This observation can be exploited to reduce the state space
of ��� �:� � � � even further as follows.

1. Partition
�

into a set � of “interesting” labels and a set� 	 � ,�� of “uninteresting labels.”
2. Hide actions involving uninteresting labels in � , creating
�'9-	 � ��� � (and likewise for � , creating � 9 ).

3. Minimize � 9 and ��9 and perform the safety / quasi-liveness
check on ����9 �:�'9 � � � .

Hiding actions turns them into � ’s; this process enhances pos-
sibilities for minimization, since observational equivalence is
largely sensitive only to “visible” computation.

In the CARA study, we usually constructed � 9 directly,
without minimizing; so the benefits of this optimization ac-
crue mostly in the construction of � 9 .

A note of caution is in order here. Hiding actions in Tem-
poral CCS turns them into � actions. Since Temporal CCS
has the maximal progress property (cf. Def. 2 in Section 3),
introducing cycles of � ’s via hiding can cause timing behavior
to be suppressed (a � -cycle can cause “time to stop”). When
hiding actions, care must be taken not introduce such loops,
or divergences, as they are often called. The CWB-NC model
checker may be used to check for the presence or absence of
divergences.

Putting It All Together. What follows summarizes our gen-
eral approach to unit verification. To check a safety or quasi-
liveness property of a module � :

1. Formulate an appropriate verification process � .
2. Identify the interesting ( � ) and uninteresting (

�
) labels in

� .
3. Form � 9
	 � ��� � , which hides the actions involving

uninteresting labels in � . Make sure no divergent behav-
ior is introduced into � 9 .

4. Minimize � 9 , yielding �'9�9 .
5. Do the same on � if necessary, yielding �
9 9 .
6. To check � ’s safety property: determine whether or not

����9 9��:�'9�9 � � � � 	 6 bad8 ��������� ff.
7. To check � ’s quasi-liveness property: determine whether

or not ����9 9 �:�'9 9 � � � � 	 6 / 8 ���������� good *���������� tt.

6.1.3 Tool Support.

The CWB-NC tool includes several routines that support the
unit verification procedure described above. Primary among
these are two different routines for checking whether or not
mu-calculus formulas hold of systems. One, the basic model
checker, returns a “yes / no” answer quickly. Another, the
search utility, searches from the start state of a system for an-
other state satisfying a given property: if one is found, then
the simulator is “loaded” with a shortest-possible sequence
of execution steps leading from the start state to the state in
question. This enables the user to step through the given exe-
cution sequence to examine how the found state was reached.
The search utility is especially useful in the “bug searching”
procedure mentioned earlier. In particular, to determine if a
module � violates the safety property of verification process
� , it suffices to search from the start state of ��� � � � � �
for a state satisfying  bad * tt (a mu-calculus formula holding
of states from which bad is immediately enabled). If such a
state is found, then the safety property is violated, and the
execution sequence loaded into the simulator may be exam-
ined to determine why. In the case of quasi-liveness, the same
process may be searched for a state satisfying 6 good8 ��������� ff:
if such a state exists then the quasi-liveness property is vio-
lated.

The tool also contains a sort utility that, given a Tempo-
ral CCS system description, returns all the externally control-
lable (i.e. non- � ) actions the system can performed. The sort
command provides a convenient utility for checking whether
or not a safety property holds: check whether or not the har-
nessed process’s sort contains bad. It also may be used to
check for violations of quasi-liveness properties: if the har-
nessed process’s sort does not contain good, then the prop-
erty is violated. The latter is only a sufficient condition: just
because good is in the sort of such a process does not guar-
antee that the quasi-liveness property is satisfied.

The CWB-NC also includes a routine for minimizing sys-
tems with respect to observational equivalence.



14 Arnab Ray, Rance Cleaveland: Unit Verification: The CARA Experience

Table 3. Properties Checked on CARA Using Unit Verification.

Number Type Property
1 Safety “Two successive Emf checks occur no more than five seconds apart.”
2 Quasi-liveness “If an override question is asked and then not answered, a corroboration cycle will never start

again.”
3 Safety “The alarm module reacts properly to errors, i.e. a high-alarm condition results in a high ring and a

low-alarm condition results in a low ring.”
4 Safety “When an override question is pending, the system cannot take a new input parameter.”
5 Safety “When an alarm condition is present, the system cannot move from manual to auto-control mode.”
6 Safety “When the system is in an error state, no new input parameter will be accepted.”

6.2 Analyzing CARA Using Unit Verification

In this section, we concentrate on half a dozen properties of
CARA that we investigated using unit verification.

Table 3 summarizes the properties discussed in more de-
tail below. The properties were all derived from the CARA
requirements documents [3–5]. In each case, the property fo-
cuses on the localized behavior of one, and in one case two,
modules.

Table 4 summarizes the results obtained using unit verifi-
cation. The data reported includes the property, the size of the
relevant “harnessed module”, the CWB-NC command used
to check the relevant safety / quasi-liveness property (“chk”
for model checking, “search” for the state-space searching
procedure described above), the outcome of the check, and
the seconds of CPU time needed. The workstation used to
conduct the experiments is the same as the one mentioned in
Section 5.

As can be seen from the reported results, Properties 1
and 2 fail to hold of the model; we view these as products
of inconsistencies in the requirements. In the rest of this sec-
tion, we explain the sources of these anomalies and describe
in more detail the verification processes used to uncover the
problems. We also give more detail on the other properties.

6.3 Property 1: Amok Time

To explain the source of the problem with Property 1, we
mention some design requirements from [5].

1. Impedance and back Emf values are polled values. (vide
Q66)

2. When a polling request fails, retry two more times at one-
second intervals. Only if three attempts fail should an
alarm be raised. (vide Q74)

3. The followingsequence of events must occur at five-second
intervals. (vide Q70)
(a) Check Emf
(b) Update display of flow rate
(c) Check impedance value

We claim that these three requirements are not compati-
ble: if Requirements 1 and 2 are satisfied, then there is a case
when Requirement 3 will be violated.

To justify our claim, we first give an informal argument as
to why there would be a violation. Then we formally prove

it by constructing a suitable verification process that, when
combined with the appropriate module, is capable of emitting
a bad action.

Let us consider the following scenario. An Emf check
starts. The first reading at the end of one second (since Emf
is a polled signal) is an error. By Requirement 2 it is checked
again and again gets an error. (So far two seconds of time
have elapsed.) Then on the third attempt, a valid Emf read-
ing is obtained (time elapsed: three seconds). Then, based on
Requirement 3b the flow rate is adjusted. Since no data for
updating flow rates was given, we assume it is instantaneous.
Then the impedance check is performed. Since that too is a
polled value like the Emf, it follows the same discipline of
three bad readings before an error is flagged. Like the Emf,
let the first two readings, at a one-second intervals each, give
errors and the third reading give a good value. So the time
elapsed is six seconds. So even if an Emf check starts at that
second, six seconds have elapsed since the initiation of the
last Emf check. This violates Requirement 3, which states
that at most five seconds can have elapsed. The sequence of
events described is valid, and a sequence in which an alarm
is not raised. So it cannot be justified as an error run which
could be assumed to violate some other constraints. What we
have is a valid run violating the constraints imposed by the
specifications by making the time elapsed between two suc-
cessive Emf checks to be six seconds.

To show this formally, we apply unit verification to the
relevant module, which in this case is EmfChecker. The
transitions we are concerned with relate to those involving
erroneous (Emf 0) and valid (Emf 1) Emf readings and er-
roneous (Imp 0) and valid (Imp 1) impedance readings. All
other transitions in EmfChecker are hidden, i.e. converted
into � -transitions.

The verification process itself is a Temporal CCS process
constructed using the two DTLTSs given in Fig. 5. DTLTS
Timer awaits the enabling of its start action (idling loops
are omitted) and then counts down five seconds. At any time
during this five seconds, if it is capable of performing its end
action, then the timer is reset. If time expires and end hap-
pens, then bad is performed. This timer captures the five-
second upper bound in Requirement 3.

DTLTS Test, on the other hand, starts the timer by per-
forming start and then engages in the sequence of actions
described above: two successive erroneous reading of the Emf
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Table 4. Results of Properties Checked on CARA.

Property Harness size CWB-NC Time
Number States Transitions Command Result (sec.)
1 101 127 search False 0.280
2 5,423 7,247 chk False 17.820
3 65 107 chk True 0.190
4 32 72 chk True 0.210
5 85 757 chk True 3.440
6 18 32 chk True 0.070

start

Emf_0

1

Emf_0

1

1

Imp_0

1

Imp_0

1

end

1

start

5

end

Emf_1

Imp_1

bad

end

Test

Timer

Fig. 5. DTLTSs Timer and Test Used in Verification Process for Property 1.

followed by a valid one, and likewise for the impedance. At
the end, it stops the timer by emitting end.

The whole verification process is then given by the Tem-
poral CCS expression

� Timer � Test � � � start � end � �
The restriction operator ensures that only Test can start and
stop Timer. The net effect of this process is to attempt to per-
form a valid six-second execution sequence onEmfChecker.

The results in Table 4 vindicates our intuitions: Require-
ment 3 is violated.

As a final observation, we note that this use of unit verifi-
cation may be seen as a formalized counterpart to debugging.

In this case we informally observed what appeared to be a
problem and then constructed a verification harness that ex-
posed it.

6.4 Property 2: Locked in Life

As in the previous property, we first give an intuitive formu-
lation of the problem. The first relevant requirement for this
property is given as Q118 in [5], where the following ques-
tion is asked and answered.

What should be done if the 30-minute timer activities
are pending due to an unanswered override question,
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and another 30-minute timer expires ?

The system should continue waiting.

The second relevant requirement is mentioned in Q109 in the
same document:

What should be done to current corroboration attempts
if another higher priority source starts reporting?

The current corroboration attempts must complete be-
fore the new sources will be corroborated. This means
that the override question must be answered before
corroboration is attempted for any new source.

The problem with this is immediately clear: what would
be the situation if the override question is never answered?
By the above requirement, the system should continue wait-
ing for successive 
 " -minute intervals forever, meaning that
the system is in a live-lock. Even when a source comes up,
the system ignores it and keeps waiting (vide Q109). The im-
plications are severe. For example, suppose that the cuff pres-
sure goes down, the override question is asked, and it is not
answered. When the cuff comes up again, the corroboration
question is no longer relevant (as the original corroboration
question was initiated by the cuff becoming invalid). But the
question, despite being irrelevant, is still being asked. On top
of that, the system does not take any action based on the fact
that the cuff has come up and stops corroboration until the ir-
relevant override question is answered. Since the purpose of
this system is to operate with minimal manual intervention,
it seems a reasonable assumption that there might be scenar-
ios (e.g. a single care-giver attending to a large number of
wounded soldiers) when a particular override question may
remain unanswered for significant periods of time. For that
entire duration, all corroboration efforts will stop and the sys-
tem will take no steps to resolve the override question. Even
if the source comes up, the system will not be receptive to
it. Thus the pressure-control subsystem would stop working
until someone answers the override question.

To establish that this live-lock can indeed occur, we focus
on the CorrobControl module of Table 1, which handles
corroboration issues. The associated verification process is
given as a single DTLTS in Fig. 6, which “asks” the over-
ride question, awaits a blood-pressure reset action, and then
performs the good action. The reset action is never enabled,
however, by the corresponding action in CorrobControl,
and thus no good action is every performed by the harnessed
process. Again, our intuitionsare confirmed: the requirements
contain an inconsistency.

A simple solution for this can be given. There should be a
default answer to the override question which can be changed
at any time by the care-giver. If an override question is asked,
the system would wait for a specific time. If no resolution of
the override question is made during that time by care-giver
input, the override question would “time out” and the default
answer to the override question would be assumed. The sys-
tem then can proceed and not be live-locked any longer.

6.5 Properties 3–6

In contrast with Properties 1 and 2, Properties 3–6 hold of the
relevant “modules” of the system. In the case of Property 3,
the module to which the property is applicable is Alarm (cf.
Table 1). The verification process is depicted in Fig. 7 (idling
loops are omitted). Using the CWB-NC model checker, one
can determine thatAlarm responds correctly to alarm-raising
stimuli.

Property 5 is of interest because the “unit” to which unit
verification is being applied consists of two modules from Ta-
ble 1: Display and ModeControl. This is because the re-
quirement from which the property is drawn refers to actions
in Display (alarms) and ModeControl (mode switches).
The unit to which the relevant verification process is applied
has form

Display � ModeControl �
This example illustrates another feature of unit verification,
namely, that “units” may consist of several individual “mod-
ules”.

7 Discussion and Related Work

As should no doubt be evident by now, CARA is a non-trivial
system of significant complexity. Needless to say, modeling it
posed many challenges. One of the main problems lay in the
requirements themselves. Having been written over a period
of time, several inconsistencies had crept in, despite the best
efforts of the WRAIR researchers to apply rigorous, cleanroom-
based techniques to requirement capture [23]. A more precise
design language that would overcome the natural ambigui-
ties and unstructuredness of a textual description of such a
complex system would have been very helpful in this regard.
Another problem was that medical terms in the specification
document were not defined. This made it problematic for peo-
ple who were not domain experts in the field of medical in-
strumentation to understand the documents.

An important consideration was the tool to be used in the
analysis. Since the system’s operation was heavily dependent
on time and the most important properties were temporal in
nature, the modeling language had to be rich enough to sup-
port time in an elegant and simple way. Another requirement
was that the language should support a hierarchical architec-
ture. Hence the modeling language used was Temporal Cal-
culus of Communicating Systems, a timed extension of the
CCS language that contains support for concurrent hierar-
chical state machines and discrete time. As this language is
implemented as a front-end for the Concurrency Workbench
of the New Century, the natural choice for the tool was the
CWB-NC.

Once the obvious ambiguities in the requirements doc-
uments were resolved, the immediate problem lay in finding
suitable abstractions so that the model’s representation would
be amenable to model checking. If the system were modeled
in full detail, the state space became so large (due to state
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Fig. 7. Verification Process for Property 3.

explosion) that the system could not be analyzed in the tool
being used. The first attempts to reduce the system state space
were the application of the standard techniques of abstraction
and simplification.

In the process of trying to construct formal models of
the CARA system in the rather low-level languages provided
by formal verification tools like the CWB-NC, the abstrac-
tions and simplifications that were done made it very difficult
to make a strong case that the formalizations faithfully cap-
tured “the CARA system,” or that properties formally veri-
fied about the model had any implications for the real system.
Keeping in mind this, it was decided to keep abstractions and
simplifications to a minimum and not compromise on details.
Consequently, the modeling became intricate and sufficiently
detailed so that the system could be captured in its entirety
to remove doubts that the modeled system was actually the
CARA system in question.

Another possible source for a state explosion lay in the
representation of time. Each clock tick was represented by
a state. So a delay of 15 time units would mean 15 states.
And since there are many such clocks working in parallel, the
state space became enormous. An option would have been to
model time with non-determinism. But then again it would
defeat the utility of analysis as the interesting properties were
temporal in nature.

The challenges posed by all these design decisions led
us to investigate novel ways to reduce the state-space of the
models constructed. The solution was unit verification, which
constructs only relevant parts of the state space. When the
principle of unit verification was applied to the CARA sys-
tem, the results were spectacular. The hitherto intractable model-
checking efforts became very simple on the individual com-
ponents. Results were obtained in real-time. The CWB-NC
has automated ways for finding the externally visible actions
of a component. So the modeling effort involved hiding the
transitions not relevant to the property. This could be done in
a automated way using the workbench. Then a suitable test
had to be crafted, and the model checker used to find out if
the test ended in a success or failure test.

Overall fifteen properties were verified. Most of these prop-
erties were taken from the requirements documents and were
sanity checks. By sanity check, we mean properties which
relate to proper working of alarms, notification of pressure
losses to the appropriate modules and timings of corrobo-
ration efforts. Other properties related to switching between
manual and auto-control stages. Some of these properties could
be proved without unit verification on the modules but even in
those cases the state space lay in ten thousands. Other mod-
ules could just not be handled in a reasonable time. But once
unit verification was applied state spaces shrank to the order
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of hundreds with the result coming in seconds as compared
to minutes, hours or sometimes not at all!

A natural question that arises concerns the difficulty of
constructing verification processes from properties. In our work
we tended to construct the verification processes directly; the
“properties” we were encoded were not formalized indepen-
dently of the processes. This approach turned out to be very
natural for us: rather than devising properties declaratively
and then “operationalizing” them as verification processes,
we coded the operationalizations directly. Another benefit of
this approach is that the “property language” and the “mod-
eling language” are the same, meaning that a user need only
master one notation rather than two.

Related Work

The CARA system developed by WRAIR has been exten-
sively studied by research groups at the State University of
New York at Stony Brook (USB), Stanford University, the
University of Pennsylvania, North Carolina State University
and the New Jersey Institute of Technology. At USB in par-
ticular, several different threads of work of emerged, and we
comment on these here.

Arne Skou of Aalborg University in Denmark, in con-
junction with one of the authors of this paper (Arnab Ray),
developed some rudimentary models of the CARA system
during the Spring of 2001, when Skou was visiting USB [31].
He used the UPPAAL [20] tool to model and verify some of
the simplified models. UPPAAL provided a much more vi-
sually pleasing and intuitive interface to the user than CWB-
NC. But it was felt that its analytical power was weaker, ow-
ing to its modeling of continuous, rather than discrete, real
time: in particular, minimization of system descriptions was
difficult to undertake. For the CARA case study the CWB-NC
proved more versatile than UPPAAL; however, the tool suf-
fers from a text-based interface in the sense that simulating
the system is not a visually attractive experience. But what
it lacks in an intuitive GUI it makes up for in its expressive
power and analysis muscle. And the rich GUI of UPPAAL
was not always a blessing. It was observed that while design-
ing components with many states and inputs, the graphical in-
put language of UPPAAL became very difficult to work with
because it became hard to maintain the global overview of the
component. It was precisely due to this reason that a detailed
design of the blood-pressure control unit could not be given
in UPPAAL.

Another parallel effort in analyzing the CARA system
was undertaken by Gene Stark at USB. His approach was to
create a JAVA applet which simulated the low level function-
ing of the CARA system. The applet was based on a formal
CARA model which he constructed for the purpose, and it
provided a “control-panel” approach to simulating CARA,
in which users could “press buttons” and otherwise under-
take activities defined in the CARA documents. However, this
model, while precise, is not “formal” in the traditional sense
of the word, and no verification tools exist that would permit
e.g. model checking to be applied to it.

Arnab Ray was also associated with the efforts of the
Stanford group when he was a summer intern there in the
Summer of 2001. There the work of modeling was done us-
ing the Stanford Temporal Logic Prover [25], which threw
up new challenges in the modeling effort since STEP was a
infinite-state deductive system where properties were proved
by theorem proving and not by model checking.

Other researchers have also studied techniques similar to
unit verification for checking properties of systems. Elseaidy,
Cleaveland and Baugh [15] explore a method based on ob-
server processes for checking safety properties of real-time
system; the approach is essentially that of safety-property
checking described in this paper, although no mention is made
of liveness there. In a series of papers, most notably [9,32],
Cheung, Giannapolou and Kramer describe the use of “prop-
erty automata”, which run in parallel with a system to be
verified, and give algorithms for determining whether safety
and liveness properties hold in this setting. No mention is
made of real time in that work, however. Finally, work on
automaton-based model checking [22] is also related. In this
approach formulas to be checked are converted into automata
that “monitor” the states a system enters in order to determine
whether properties are violated or not. That work, however,
focuses on unlabeled transition-system models of systems, in
contrast with the work in this paper.

8 Conclusions and Directions for Future Research

In this paper we have focused on modeling and analyzing
properties of the Computer-Aided Resuscitation Algorithm
(CARA), an automated cardio-pulmonary resuscitation de-
vice intended for deployment in battlefield situations. We de-
veloped a detailed model in the Temporal CCS modeling lan-
guage as supported by the Concurrency Workbench of the
New Century, a verification tool. The model proved too large
to analyze in toto; we consequently focused on applying a
technique, unit verification, that permits collections of sys-
tem components to be analyzed independently of the rest of
the system. When these collections are small, unit verifica-
tion offers an attractive alternative to traditional global model
checking. This observation was borne out in the CARA case
study, in which checks of individual “unit” properties typi-
cally took only fractions of a second to perform.

Unit verification is not a panacea for automated verifica-
tion: it is likely to be of most use when there are detailed,
module-level requirements for the system, as there was with
CARA. As the number of modules that must be considered
for a property increases, the utility of unit verification vis à
vis traditional model checking is likely to wane.

As future work, it would be interesting to explore more
carefully what kinds of properties can be checked using unit
verification. Another case study would also be useful as a
means of further exploring the utility of the technique.
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