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1 Introduction

The increasing complexity in the design of concurrent
software artifacts demands new validation techniques.
Model checking [4] is a widespread technique for auto-
mated verification of concurrent systems that has been
recently applied to the verification of software. Unfor-
tunately, the use of model checking tools [13] is often
limited by the size of the physical memory, due to the
state explosion problem. In order to deal with this prob-
lem, various reduction techniques have been proposed in
the literature. Among those, symmetry reductions [3],
[8] and partial-order reductions [10], [25] have gained
substantial credibility over the past decade. Both tech-
niques are automatic and can be applied on-the-fly, dur-
ing model checking. The reduction achieved can be sig-
nificant, in the best cases exponential in the size of the
state space.

Symmetry reductions exploit the structure of states
in order to identify symmetric states that are gener-
ated by the model checker. The intuition behind these
strategies is that the order in which state components
(threads, objects) are stored in a state does not influ-
ence the observable behavior of the system. That is, the
successors of two symmetric states are also symmetric.
Many criteria have been proposed to decide whether two
states are symmetric on-the-fly, without any informa-
tion about the future states. They usually exploit the
ordering of threads [6], communication channels and the
structure of temporal logic formulas used to express cor-
rectness requirements [8]. A symmetry is an equivalence
relation, and, ideally, the reduced state space will have
only one state representing each symmetry equivalence
class. Unfortunately, detecting all symmetries usually re-

quires very expensive computations, that may make such
reductions impractical, in general.

Partial order reductions exploit the commutativity
of concurrent transitions, which lead to the same state
when executed in different orders. The decision whether
two transitions are independent, so that they can be
safely swapped, is usually made using compile-time static
analysis. In practice, this information is a conservative
approximation of the real run-time independence. Using
more static information about the system helps identi-
fying more independent actions, however it is compu-
tationally more expensive. It has been shown [7] that
symmetry and partial order reductions are orthogonal
strategies and can be used in combination to achieve
better verification results.

The main contribution of this paper is a framework
for applying both reduction methods to a particular class
of software, namely dynamic concurrent programs, for
which the number of state components (objects, threads)
is continuously modified as a result of their ongoing exe-
cution. This concept can be used to formalize the seman-
tics of most high-level object-oriented programs, such as
the ones written in Java or C++. We show how exist-
ing reduction techniques can be tailored to exploit the
dynamic nature of software systems in order to achieve
more effective verification results.

Preliminary results of this work have been presented
in [19] and [20]. In [19] we present a canonical symmetry
reduction that applies only to the heap of the program,
while [20] is mostly concerned with the relation between
heap and thread symmetry, as well as between symme-
try and partial order reductions. We define a framework
that allows us to express different symmetry reductions
formally and compare their efficiency, in terms of canon-
ical properties. Then we describe an explicit-state explo-
ration algorithm that combines heap with thread sym-
metry reduction on-the-fly. Finally, we investigate fur-
ther optimizations, by relating heap symmetries with
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partial order reductions. Preservation of temporal logic
properties is discussed throughout the paper. A proto-
type implementation of the ideas described in this pa-
per has been done in dSPIN [17], an extension of SPIN
[13], especially designed for software model checking. We
performed a number of experiments with dSPIN, on two
non-trivial test cases, in order to obtain a practical as-
sessment of our ideas. More recently, a reduction method
based on the theory presented in this paper has been im-
plemented in the BOGOR software model checker [26].
A detailed description can be found in [27].

The rest of the paper is organized as follows. In the
remainder of this section we present related work. Then,
section 2 gives an informal introduction to the basic sym-
metry concepts by means of an example. Section 3 intro-
duces the theoretical framework used to describe sym-
metry reductions. Section 4 describes two instances of
this framework, namely heap and thread symmetries, us-
ing small-step operational semantics. Section 5 discusses
the complexity of the Orbit Problem within the frame-
work of dynamic systems. Section 6 presents algorithms
for reduced state space search in presence of symme-
tries and discusses the combination of heap and thread
symmetries on-the-fly. Section 7 relates symmetry with
partial order reductions. Section 8 discusses implemen-
tation and presents experimental results, and Section 9
concludes.

1.1 Related Work

Among the first to use symmetries in model checking
were Clarke, Filkorn and Jha [3], Emerson and Sistla
[8] and Ip and Dill [22]. These approaches consider sys-
tems composed of a fixed number of active components
(memories, caches, processors) [3], variables of a special
symmetry-preserving data type (scalarset) [22] as well
as symmetries of temporal specifications [8]. The issue
of sorting permutation to reduce the complexity of repre-
sentatives computations has been addressed by the work
of Dams, Bosnacki and Holenderski [6]. The problem of
exploiting heap symmetries in software model checking
has been informally addressed by Lerda and Visser in
[24]. To our knowledge, they are the only other group
that have addressed heap symmetries to date. Their ap-
proach looks attractive due to its simplicity, but no for-
mal evidence of its canonical properties has yet been
provided by the authors.

2 Motivating Example

This section presents an example program for which de-
tection of heap symmetries can be used to reduce the
number of states. To improve readability, the example is
written in Java, but one can easily cast it in a different
object-oriented concurrent language.

class MessageQueue {
Message head = new Message(0);
Message tail = head;

synchronized void send(Message m) {
Message curr = head;
Message last = head;
while (curr!=null && curr.prio>m.prio) {
last = curr;
curr = curr.next;

}

if (curr==null)
tail = m;

last.next = m;

m.next = curr;

(a)

class Message {

int prio;

Message next;

Message(int p) { prio = p; }
}

class Client extends Thread {
MessageQueue q;
int p;
public void run() {

Message m = new Message(p);
q.send(m);

(b)
Fig. 1. Message Queue Example

The program fragment in Figure 1 illustrates the
implementation of a message dispatcher ensuring com-
munication between an arbitrary number of clients and
servers. Messages are instances of class Message, con-
taining priority numbers, as shown in Figure 1 (b). Such
messages are produced by client threads, shown in Fig-
ure 1 (b), and sent to the MessageQueue in Figure 1
(a) using its send method. The messages are stored in a
priority queue in the ascending number of their priority
numbers. We will not concentrate on the details of the
clients, assuming that priority numbers are the result of
some internal computation. We focus on the following
issue: due to the concurrency involved, messages are in-
serted in the request queue in a fixed order that does
not always match the order in which these objects have
been created. As a consequence, the representation of
the message queue in memory differs between schedul-
ing scenarios, even though the semantics of the program
computations remains the same.
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Fig. 2. Message Queue Configurations

Consider a program in which two Client threads
concurrently create two messages with priorities 1 and 2,
respectively, and send them to a shared message queue.
We describe two possible interleavings of these threads
assuming that the program uses a next-free allocator,
i.e., the first free memory location will always be re-
turned by the allocator. A general abstraction of the un-
derlying memory is given in terms of a discrete, totally
ordered set of locations denoted by [y, 1, I3, etc. Figure
2 shows two possible configurations of the heap, in which
messages are represented by boxes, labeled with prior-
ity numbers, and pointers are depicted as arrows labeled
with field identifiers. The MessageQueue class is initial-
ized by storing in a dummy message having priority 0.
One scenario considers that the first client thread creates
a message at memory location [, setting its priority to 1
and sends it to the queue. The second thread then pro-
ceeds by creating another message at location l», setting
its priority to 2 and then sending it to the queue. The
resulting heap configuration is shown in Figure 2 (a). In
the second scenario, we have the second client proceed
first, allocate a message at location [; with the priority
number 2, and send it to the message queue. The first
client will then proceed with the creation of a message,
and since the next available location is I», a message with
priority 1 will be created at this location. As messages
are queued following the order of their priorities, the sec-
ond created message will be inserted before the first one
and the resulting heap configuration will be the one in
Figure 2 (b).

Both program configurations are equivalent since the
position of objects in memory does not affect the behav-
ior of the message queue. Nevertheless, an explicit-state
model checker has no way to detect this fact, since it
compares the states according to the values stored in
memory. Notice however that the two states in Figure 2
can be obtained one from another by permuting the last
two objects. Whenever this situation occurs, we say that
the two states are symmetric.

3 Background

In this section we present some background notions re-
garding symmetry. In the classical literature [3], [8], sym-
metries are defined using the notion of automorphism
i.e., internal isomorphisms that preserve the transition
relation between states. However, using automorphisms
to define symmetry fails to capture the dynamic aspect
of computation. Indeed, when considering a program in
which the number of state components (such as objects
or threads) may experience an unbounded growth along
an execution path, one cannot consider only one group of
permutations as the group of system automorphisms. By
doing so, one would fail to detect symmetries between
successor states in which new components have been cre-
ated. Instead, we consider a (possibly infinite) family of
such groups and chose one at the time, by keeping track
of the number of components in every state.

Formally, let us denote by G,, the set of all bijec-
tive functions (permutations) on the set {1,2,...,n}.
It is easy to show that (G,,o,Id) is a group, where o
denotes functional composition and Id denotes the iden-
tity function. If we extend each permutation = € G, to
N i.e., considering that n(i) = ¢ for all i > n, we have
the following subgroup relations:

GiCG; <= i<J (1)

Given an alphabet of actions X and a set of atomic
propositions P, we represent program executions by means
of Kripke structures K = (S, R, L), where:

— S is a set of states,

— R C Sx X xS is a transition relation, and (s, a,t) €
R is denoted by s Sk t,

— L: S — 27 is a function that labels states with sets
of atomic propositions.

Unless otherwise specified, we will implicitly consider
K = (S,R, L) as the working structure throughout the
paper. In the following developments, we will assume
that states have some structure, namely, that each state
is a finite set of components that can be partitioned in
types. One can think for instance of active processes and
heap-allocated objects as separate types of state compo-
nents. We formally denote by 7 the set of all types and
by N the family of functions 5, : S — N, one for each
type 7 € T, such that, for each state s € S, n.(s) is the
number of 7-components in s. It is furthermore assumed
that, during its execution, a program may only create
new components and never delete the existing ones. For-
mally, if s —*5 t then 1, (s) < n,(t) for each 7 € T.

By analogy with natural numbers, we denote by Gg
the set of all bijective functions = : S — S. For any
state s, and any permutation 7 € G,,_(5), we denote by
7 (s) the application of 7 only to the 7-components of
s. Formally, for each type 7 € 7 we consider an opera-
tor () : G, — Gg that lifts a permutation on natural
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numbers to a permutation on states. We assume that an
()- operator meets the following requirements:

— m, preserves the number of state components i.e.,
Nwom, =n, forall ,w € T, and,

— different permutations on different types act indepen-
dently i.e., m; owl, = 7, o7,.

We are now ready to define the symmetry relation.
By Hlew’ we denote the composition of permutations

7T107T20...7Tk.

Definition 1. Let 7 be the set {7, 72,...7%}. We say
that two states s, t € S are symmetric, denoted by s = ¢,
if and only if the following hold:

1. L(s) = L(t),
2. there exists a sequence of permutations 7* € G, (s)>
where 1 < i < k, such that IT} 7l (s) = t.

Ti

This definition is a slight generalization of the classical
symmetry relation [3] [8], tailored to deal with multiple
component types. The first item ensures that symme-
try is equivalence with respect to the atomic proposi-
tions that can be observed in a state. Notice that, if two
states s and ¢ are symmetric, then n,(s) = n,(¢) for any
T € T. Also, since composing different types of permu-
tation applications is commutative, the order of types in
T is not important. The following defines a restriction of
symmetry to exactly one component type, by implicitly
requiring that, for all types other than 7, the permuta-
tions be identities.

Definition 2. Let 7 € T be a type. We say that two
states s,t € S are T-symmetric, denoted by s =, t, if
and only if the following hold:

— L(s) = L(t), and,
— there exists m € G (5 such that 7 (s) = t.

It is clear that =, C =, for any component type 7 € T .

Using basic group theory, it can be shown that = is
an equivalence relation on states' The equivalence class,
also known as the orbit, of a state s is denoted by [s].
The quotient of a structure with respect to a symmetry
relation is defined as follows:

Definition 3. Given a structure K = (S,R,L) and a
symmetry relation = C S x S, the quotient of K with
respect to = is K= = (S', R', L"), where:

-8 ={[s] | s €S},
-R = {([8],@, [t]) | (s,a,t) € R})
— L'([s]) = L(s), for all s € S.

The states of a quotient structure are equivalence classes
of states from the original structure and a transition oc-
curs between two equivalence classes whenever a transi-
tion (labeled with the same action) occurs between states

I Reflexivity holds taking as 7 the identity, symmetry holds be-
cause for each m € G, #~! € G and associativity is a consequence
of the fact that G is closed under functional composition.

from the original structure. It is obvious, from the first
point of Definition 1, that L' is well defined for the quo-
tient structure. We remind that symmetric states have
equal numbers of components, therefore by abuse of no-
tation, we define n,([s]) = n,(s), for each 7 € T and
each s € S. Since the set S’ is a (possibly non-trivial)
partition of S, it is potentially more efficient to model
check a temporal logic formula on K,=_ instead of K,
provided that they represent equivalent computations.

Let us turn back to the argument regarding the use
of automorphisms in the definition of symmetry. For-
mally an automorphism of a structure K is a bijec-
tive function ¢ : S — S such that, if s ——x ¢ then
Y(s) =k (t), for any s,t € S. Analogously, the set of
all system automorphisms (Autk,o,Id) forms a group.
In the classical literature on symmetry [3], [8], state per-
mutations are considered only if they can be shown to
be system automorphisms. This condition can be how-
ever too restrictive to be applied to dynamic system.
Assume, for simplicity, that 7 = {7} i.e., there exists
only one type of symmetry in the system. Then we have
Autg C ;e Gn. (s)- If we consider the existence of an
initial state sg € S such that every other state s € S
is reachable from sg, we have 7,(s) > n,(so), and, by
(1) we have G, (55 € Gy, (5)- Hence Autgx C G, (s)-
Notice that, since most components are created as re-
sult of computation, it is usually the case that G, ()
is very small, therefore only a small number of system’s
symmetries can be identified.

To avoid this, in our approach we define equivalence
of executions using directly the classical notion of bisim-
ulation [12], strengthened with equivalence with respect
to the set of atomic propositions P:

Definition 4. Let Ky = (51, Ry, L) and Ky = (S, Ra,
L,) be Kripke structures over the set of actions X'. A bi-
nary relation &~ C S x Sy is a bisimulation if and only
if, for all s; ~ s2 and a € X, all the following hold:

— L1(s1) = La(s2),
-Vt €85. (sl,a,tl) € Ry impliesdty € S5 . (SQ,OA,tQ) S
R2 and tq %tz,
—Vit, €85;y. (32,a,t2) € Ry implies3t; € S; . (sl,a,tl) S
R1 and t1 =~ to.

If ~ is total on S; and S we say that K; and K, are
bisimilar, and denote this by K; ~ Ks. To apply sym-
metry reductions to a structure K it suffices to prove
that any symmetry = is a bisimulation. An important
consequence is that, in this case, K and K= are bisim-
ilar.

Lemma 1. Given a structure K = (S,R,L) and an
equivalence relation =~ C S x S that is also a bisimu-
lation. Then K and K are bisimilar.

Proof: Directly from Definition 3 and Definition 4. 0O
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It is known fact that bisimilar states cannot be dis-
tinguished by formulas of mu-calculus or any of its sub-
logics, such as computation-tree logic (CTL) or linear-
time temporal logic (LTL) [4].

4 Semantic Aspects of Symmetry

This section is concerned with defining symmetry for a
wide class of real-life software systems, namely multi-
threaded dynamic programs. Basically, a multithreaded
dynamic program can create new objects and spawn new
threads along its execution. We will carry on future de-
velopments using a toy language that features both dy-
namic objects and multithreading. The first part of this
section (4.1) will therefore define a Simple Pointer Lan-
guage (SPL), that will be used in most proofs throughout
the rest of the paper. Next (4.2), we define two types of
symmetry, namely heap and thread symmetry for SPL.

4.1 A Simple Pointer Language

In the following we present an imperative multithreading
language that captures the features of real-life object-
oriented languages (C++, Java, etc.) related to the dy-
namic creation of objects and threads. Namely, we con-
sider only three kind of actions: setting a pointer to null,
assigning between two arbitrary pointers in the heap and
creating a new object and assigning a pointer to it. As-
signment actions are used in guarded statements, where
guards consists of equalities of pointers or nullity tests.
There are no types (in fact, all variables are of pointer
type) and no variable declarations in our language. We
consider that a variable is declared upon its first use.

Figure 3 shows the abstract syntax of SPL. There is
a set of variable names Vars and a set of thread names
ThreadNames. A program P consists of a number of
thread declarations. Each thread has a name T followed
by a body composed of a sequence of control locations
c. Each control location has attached one or more state-
ments s. The first control location of a thread named
T is, by convention, labeled inity. A statement s is ei-
ther a guarded assignment, a new object creation or a
start action. Notice that the object and thread creation
statements are implicitly assumed to have a true guard.
A guard is a propositional logic expression f built out
of observables p. An observable can either compare two
pointer access paths o and 7 for equality or test a path
for undefinedness.

We assume that there is always a designated main
thread that starts running first. For the sake of simplic-
ity we neglect the case selection and goto constructs.
Also there are no variable declarations, assuming that a
variable is defined the first time its name is used in the
left-hand side of an assignment. As a convention, vari-
able names that start with a capital letter denote global

T,main € ThreadNames
¢, inity € Pc
u,v, U,V € Vars

o, T E Vars™

P := (thread T begin (c: s)+ end)+
s:=f > o=-e|u=new | start(T)
e:=null | o

p:=o0 =7 | null(o)

f=plHAVHI-fA|T

Fig. 3. Abstract Syntax of SPL

variables, while the other ones denote local variables. As
one expects, threads evolve in parallel, communicating
via global (shared) variables.

Ezample Figure 4 (upper part) presents a sample SPL
program that creates a list with two elements. The list
is pointed to by the global variable H and linked with
a selector n. Each node in the list is assigned a refer-
ence f to another cell. If each object is allocated at the
next free memory location, this program always gener-
ates symmetric states, corresponding to the different in-
terleavings of the two instances of thread 7. Two such
interleavings and the resulting states are shown in Fig-
ure 4 (lower part). By 7(0),T(1),... we denote the ac-
tions corresponding to (only one of) the statements at
location T in the first and second instances of thread T,
respectivelly.

We can now sketch the semantics of SPL by describ-
ing the small-step operational semantics of its state-
ments. The global semantics of the program will be the
transition system obtained, as usual, by parallel compo-
sition of its active threads? and we shall not detail this
construction here.

Figure 5 presents the semantic domains used to de-
scribe SPL. As usual, a store (a member of the Stores
domain) is a partial mapping between variables and val-
ues. For simplicity reasons, it is assumed that variables
can only take memory location values, from the set Locs.
A heap (a member of the Heaps domain) is a pair whose
first component is a partial mapping between locations
and stores. We will refer to the stores in the range of
this mapping as to objects. The second component of the
heap is a location used to define the allocation policy; it
keeps track of the last allocated memory cell. A thread
(a member of the Threads domain) is a pair consisting of
a program counter and a store for local variables. A pro-
gram counter is the value of the current control location
of the thread and a member of the Pcs domain.

2 Since communication is by shared memory, we can assume
that each thread’s action alphabet is disjoint from the others.
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thread main

begin

INitmain: H = new
maing:  start(T)
mainy:  start(T)
end

thread T

begin

nitr: v = new

To: - null(H) Anull(Hn) > Hn=v
- null(Hn) > Hnn=v

Ti: v.f = new

end

initmain,main0,main1,initT(0),T0(0), T1(0),initT(1),TO(1),T1(1)

RO (OHO)

initmain,main0,main1,initT(0),T0(0),initT(1),T0(1),T1(0),T1(1)
f f

)

Fig. 4. SPL Program Example

H n n

J

)

N

In analogy with the heap, a pool (a member of the
Pools domain) is a pair that keeps track of all active
threads at a time; the first component of a pool is a
partial mapping between thread identifiers (members of
the Tids domain), while the second component holds the
identifier of the last created thread. As a convention,
for a partial mapping f we denote by f(z) = L the
fact that f is undefined in z. For a partially ordered
set (A, =X) we denote by (A, =) the partially ordered
set (AU {L}, =), where L <" z, for all x € A, and
x <"y if and only if 2 <y, for all z,y € A. We consider
the domain of a partial function to be the set of points
where it is defined i.e., dom(f) = {z | f(z) # L}. For a
pair (a,b), let (a,b);; = a and (a,b);, = b. We conclude
the description of the semantic domains assuming the
existence of the following strict and total orders:

— <y € Vars x Vars,

— <. C Pecs x Pcs and a total function next : Pcs —
Pecs that returns the next element with respect to
<. i.e, the control label of the next statement to be
executed; the set Pcs is supposed to be infinite and
countable,

— <; € Locs x Locs and a total function new : Locs —
Locs that returns the next element with respect to
<y i.e., the next free memory location; the set Locs
is supposed to be infinite and countable,

— <4 C Tids, x Tids, and a total function start :
Tids — Tids that returns the next element with re-

Stores = Vars — Locs

Heaps = (Locs — Stores) x Locs
Threads = Pcs x Stores

Pools = (T'ids — Threads) x Tids

Fig. 5. Semantic Domains

[null]?, = L
s(U) feo=U
[o]%, = (p(x) ) (w) if o =u
at h([7]%,,v) if o = 1o A [r]7, £1
L otherwise
where st = (s, (1, 1), (7, )
[c = T]]:t = ([[U]]:t — [[T]]:t)

[pull(e)];, = ([o]s = L)

Fig. 6. Denotations of Expressions

spect to <; i.e., the next free thread identifier; the
set T'hreads is supposed to be infinite and countable,

With the above definitions and assumptions, we define
now a program state st to be an element of the States
set, defined as follows:

st = (s, (h,1),(p,t)) € States = Stores x Heaps x Pools

The first component of a state is the global store, the
second is a heap holding all existing objects, and the
third one is a thread pool keeping all active threads.

Figure 6 gives the denotation of the SPL constructs
that can be evaluated without side effects. For a frag-
ment of abstract syntax ast, the operator [ast]}, € LocU
{true, false} returns the value of the ast expression as
evaluated by the thread referenced by tid x in state st.
The denotational definitions are compositional, following
the structure of expressions. The straightforward defi-
nitions for the f non-terminal are omitted for brevity
reasons.

The denotation of null is 1, as null cannot rep-
resent a valid heap location. We distinguish between
global and local variables, as globals are evaluated on
the shared store, while locals are evaluated on the cur-
rent thread’s local store. The denotation of a sequence of
variable names o is the location found after the traversal
of the heap, or L, if the path is dangling. Pointer aliasing
and undefinedness tests are defined as usual.

Finally, the structural operational rules from Figure
7 define the semantics of the three statements in SPL.
Given the abstract syntax tree of a statement ast, the
operator st b, ast ~ st’ describes the transformation of
a state st under the execution of statement ast by thread
x. For a better understanding of the rules in Figure 7,
we can highlight the following commonality: each rule is
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applicable only if the value of the program counter ¢ of
the current thread = matches the location of the state-
ment occurring in the postcondition. All rules reflect the
implicit change of control within the current thread.

Intuitively, rules (2), (3) and (4) deal with three se-
mantically different cases of assignment, based on whether
the left-hand side of the assignment is a global variable,
local variable or a heap access expression. In the first
case, the global store s is updated, in the second case we
update the local store of the thread referenced by x, and
in the third case the object pointed to by 7 in the heap
h is updated accordingly.

Rules (5) and (6) define the meaning of the object al-
location actions, distinguishing the case when the newly
allocated object is pointed to by a global variable (5)
from the case when its location is assigned to a local
variable (6). Both rules conclude that the heap h must
be updated by adding a new empty object Av.L to a
fresh location k. The assignment of k£ to the left hand
side is handled as in the previous.

The last rule (7) defines the thread creation action
start. A new thread is created, whose program counter
is initialized with the first control location of 7', namely
initT, and whose local store is empty. Notice that, unlike
objects, threads are not pointed to by variables. Even if
this condition might seem to be a limitation, it captures
the essential difference between heap-allocated objects
and dynamically created threads: an active thread causes
observable state changes even if it is not referenced by
a program variable, while an object can contribute to a
global state change only if it is still referenced by at least
one variable.

As a last remark, all allocator actions exploit the or-
ders on the Locs and Tids sets, respectively. Namely,
the next available element, as returned by the new and
start functions, are used for allocation of fresh compo-
nents. In the remainder of this paper we shall denote
such allocation strategies as next-free.

4.2 Heap and Thread Symmetry

Having defined a model language that is both concurrent
and dynamic, we can proceed with defining state sym-
metries. The rather generic Definition 1 is specialized for
SPL, by defining state permutations. More precisely, let
T = {heap, thread} be the set of state component types.
Since the set Loc of memory locations was supposed to
be countable, let Locs = {lo,l1,...} and w(lx) = lz(x). A
similar definition is given to the permutation of thread
identifiers T'ids. A permutation 7 : A — A is implicitly
extended to A, by setting (L) = L i.e., we consider
strict permutations only. With these considerations we

st = (57 (h7 l)7 (pa t)) p(:l:) = (C7 S,) d = nea:t(c)
p=[x—(,s)p [fI5 =true [e]i, =m @
sthyc: f—=U=e~ ([U—m]s,(h1),(p,t))

st = (Sa (ha l)a (pa t)) P(ﬂ?) = (C7 SI) d = next(c)
[f15, = true [el;, =m s" = [u — m]s’

stbec: fsu=e~ (s, (h]D),(z— (c,s)]p,t)) (3)
st = (57 (h7 l)7 (pa t)) p(a:) = (Cy S,) d = neﬂ?t(C)
p=[z—( sp [fI;, =true  [e];,=m
7L, = 0 = v > mph(k) "
sthec: f— rv=e~ (s,([k = oh,l),([,¢))
st = (s, (h,1),(p,t)) p(z) = (c, S') c = next(c)
p=[r—(,s)p k=new(l) K =[k— Iv.l]h 5)
st l_z c:U =new~ ([U — k]S, (h,7k)7 (p’ t))
st = (s, (h,1),(p,t)) p(z) = (c, S') c = next(c)
p=[r—(,s)p k=new(l) K =[k— Iv.l]h
s =[u—k]s (©)
stz c:u=new~> (s, (W, k), ([x = (¢, s")]p,t))
st = (57 (ha l)7 (pa t)) p(:l:) = (G 51) d = nemt(c)
t' = start(t) p' =[xz — (¢, s"][t' = (initr,  v.L)]p )
st o ¢ start(T) ~ (s, (h, 1), (p/, 1))

Fig. 7. Operational Semantics

have, for a state st = (s, (h,1), (p,t)):

Theap(st) = (7(s), (W (h), 1), (7(p),1)) (8)
7(s) = dv.w(s(v)) (9)

7(h) = Mv.w(h(r1(1),v)) (10)

T(p) = At.(p(t) 1, 7 (p(t)2)) (11)
Tthread(st) = (s, (b, 1), (7(p), 1)) (12)
T(p) = At.p(r (1)) (13)

Equation (8) defines the semantics of a heap permuta-
tion. Intuitively, the values of all variables in the global
store (9), heap (10) and local stores (11) are permuted.
Although not formally defined, applying a permutation
to the local store (second component) of a thread has
the same form as (9).

The objects in the heap need to be permuted by the
inverse permutation, in order to consistently reflect these
changes, see (10). The following Lemma 2 ensures that
same dereferencing sequences still point to the same ob-
jects in a permuted heap.

Since threads are not referenced by variables, per-
muting threads (12) has a simpler form (13).

The number of heap allocated objects in a state st =
(s, (h,1),(p,t)) iS Nheap(st) = dom(h) and the number of
active threads is npreqqa(st) = dom(p). It is obvious that
Ny o, =1, for all 7,w € {heap, thread}. Moreover we
have Theap © Pthread = Pthread © Theap since %(ﬁ(p)) =
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p(7(p)), as shown below:

7(p(p)) = T(At.p(p™' (1))
= M. (p(p~" (1)), T (p(p~" (1)) )
= p(AL.(p(t) 1, 7 (p(F),5))
= p(@(p))

Having a language with a complete operational se-
mantics, together with formal definitions of state per-
mutations, completes the definition of state symmetry
for SPL. In order to apply Lemma 1 to the symmetry

relation defined here, it remains to be shown that it is
indeed a bisimulation.

Lemma 2. Let 0 € Varst be a sequence of variable
names, st € State be a state and @ € G, ., (st),P €

Ginreaa(st) be two permutations. Then the following hold:

m([o]5),
[[U]]st
Proof: Let st = (s, (h,1), (p,t

1. By induction on the length of o. The base case is
|o| = 1. Then either o0 = U is a global variable, and
in this case [o]7, () = 7(s(U)) = n([o]5,). Oth-

erwise 0 = u is a local variable and [o], 4 =
cap

H(0(0) (1) = 7(ol) () — ([oT). For sho in-

duction step we have o = rv and [o]}, = h([7]},,v).

By the induction hypothesis, [7]7 ., = 7([7]5,),

therefore [o7, . = 7(b(x~ ([1T2,... (u)o0)) =
w(([715 ) = m([o]%)-

2. Also by induction on the length of . The only inter-

1. IIU]]frheap (st) =
2. [[U]]P(w

Pthread(st)

)) throughout this proof.

esting case is 0 = u. Then we have [[a]]p(x

Penread(st)

p(p(p(x))) 2 (u )—p(p‘l(p(w)))w( u) = [o]5;-

O

An immediate consequence of Lemma 2 is that the
denotation of each observable expression, as defined by
the abstract syntax in Figure 6, is preserved by state
permutations:

UL = o0 = Iy (14)

An interesting result is the dual of (14): any two states st
and st’ such that, for all observables f we have [f], =
[f15., are symmetric. In other words, any observational
equivalence is a symmetry. However, giving the proof
here would be outside the scope of this paper. The in-
terested reader is referred to [21] for a proof.

The next step in proving that symmetries of SPL are
indeed bisimulations is to show that the results of any
action taken in two symmetric states are symmetric.

Lemma 3. Let st € State be a state and s be a state-
ment, as defined by the abstract syntaz in Figure 3. Then
for any s-successor st' of st (st b, s~ st') and any two
permutations ™ € G, (st),p € Gp,p.00a(sty there exist
two permutations ©' € Gy, (ser), P € Gy aa(str) SUCh

that Wheap(pthread(St)) l_P(ﬂv) 5 ﬂ—;zeap (p;khread(St,))' More-

over, the following hold:

1. if s is not defined by either rule (5) or (6), then ©' =
.
2. if s is not defined by rule (7), then p' = p.

Proof: Let st = (s, (h,l),(p,t)) throughout this proof.
By induction on the structure of the inference tree for s.
If st' was obtained by an application of either rule (2),
(3) or (4)7 then nheap(Stl) = nheap(St) and nthread(Stl) =
Nthread(st). In this case take 7' = 7 and p’ = p. Let
m = [e];, throughout the proof. By Lemma 2 we have

[[e]]ii)ap(pmmad(st)) = n([e];) = 7(m). By (14) we have
L1, = L7127

Wheap Pthread
st, it is also enabled in Theap(Pthread(st)) and viceversa.

If, in particular st was obtained by an application of:

(st))> SO whenever s is enabled in

— rule (2), we apply the same rule in state Theqp(pthread(st))

for thread p(x), and since [U — w(m)]7(s) = 7([U —
m]s), we have the result.

— rule (3), let p(xz) = (¢,s'). Applying the same rule
in state Theap (Prhread(st)) for thread p(x), we obtain
the result after the following simplifications:

= pllz = (¢, 7([u — m]s")|7 (p))
= p(@([z = (¢, [u = m]s")]p))
=7(p([x = (', [u = m]s")]p))

— rule (4), let k¥ = [7]5,- By Lemma 2 we have that

[0 unrecatory = 7([7T5) = 7(R). Applying the
same rule in state Theap(Pthread(st)) for thread p(x),
we obtain the result after the following simplifica-
tions:

[v = w(m)]7(h)(x(k)) = [v = m(m)]x (h(K))

If st' was obtained by an application of either rule (5)
or (6), then k = new(l) is a fresh location i.e., h(k) =
L. In this case we have Npeap(St') = Nheap(st) + 1 and
Nthread(St') = Nenreada(st). Let us take 7' = [k — k]r and
p' = p. If, in particular st' was obtained by an applica-
tion of:

— rule (5), we apply the same rule in state Theqp(Pthread
(st)) for thread p(x). The result is obtained due to
the simplification 7 ([U — k]s) = [U — k|7 (s).

— rule (6), we apply the same rule in state Theap(Pthread
(st)) for thread p(x). Let p(z) = (¢, s') and notice
that 7' ([u — k]s') = [u — k]7(s') and 7' (p) = 7(p).
The result is obtained as follows:

(@) = (¢, [u — K7 ()]0 (7 ()
= [p(@) = (¢, 7 ([u = K]s")]p(x' ()
= (@([x = (¢, [u = m]s")]p))
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Finally, if st' was obtained by an application of rule (7),
then nheap(Stl) = nheap(St) and nthread(Stl) = nthread(St)"‘
1, since t' = start(t) is a fresh thread identifier. We take
7' =7 and p' = [t' — t']p. Let p(z) = (¢, s"). Applying
rule (7) in state Theap(pthreqa(st)) for thread p(z), we
obtain the result after the following simplifications:
(o) > (¢, 7 — (initr, Aol |57 ()
=p'([x = (¢, 7SN = (initr, w.null)|7(p))
70 ([z = (¢, sH[t' = (inity, \w.null)]p))

a

The global semantics of an SPL program is expressed
by a Kripke structure K,y = (State, —spi, Lspi) where
st —>Sspl st if and only if st F, s ~ st' for some thread
z € Tid and some statement s, and Lgy(st) = {f €
P | 3z € Tid . [f];, = true} for a predefined set P of
observables. We recall here that the largest bisimulation
(=) has been introduced by Definition 4.

Theorem 1. Given two states st,st’ € State, if st =
st' then st ~ st'.

Proof: By (14) and the definition of Ly, we have that
st = st' implies Lgp(st) = Lgp(st'). The second point
of Definition 4 follows by Lemma 3 and the definition of
—rspr- O

As said before, this result is what enables us to use
heap and thread symmetries in order to reduce the state
space of an SPL program, leading to a more efficient
verification of temporal logic properties.

5 The Orbit Problem

The key issue in order to make use of symmetry in model
checking is establishing whether two states are in the
same orbit. In general, the aim is at defining a function
which takes two states as arguments and returns true
if and only if the two states are in the same orbit. The
computational complexity of such a function is discussed
in [3], by relating the Orbit Problem to the Graph Iso-
morphism Problem: given two graphs G; = (V;, E1) and
G2 = (V3, E»), is there a bijection ¢ : Vi — V5 such that
(u,v) € Ey if and only if (¢ (u),¥(v)) € Ex?

Theorem 2 (Clarke et al.). The Orbit Problem is as
hard as the Graph Isomorphism Problem.

Proof: See [3]. O

However, the latter problem is known to be in NP3
for unlabeled graphs and can be shown to be in P for
deterministic labeled graphs.

The results presented in this section relate these clas-
sical complexity issues [3] to the previous definitions, re-
garding the semantics of dynamic concurrent programs.

3 But hasn’t been shown to be complete for its class. A closely
related problem, the Subgraph Isomorphism Problem is known to
be NP-complete.

In particular, we will show that, for object-manipulating
single-threaded programs, the orbit problem is linear,
whereas for multi-threaded programs, the problem is in
NP (5.1). In addition to that, a general framework to
develop heuristic solutions for the Orbit Problem is pre-
sented (5.2). The framework uses sorting techniques to
compute orbit representatives. One can also say that an
instance of the Orbit Problem is solved whenever the
representative function is canonical. We can therefore
assess the quality of our solution based on sorting if we
can estimate the performance of the sorting techniques.
Finally (5.3), we present a heuristic to solve the orbit
problem for heap.

5.1 Complexity Issues

Given astate st = (s, (h,1), (p,t)) € State we shall define
a unique labeled graph Gg; such that two states st and
st are symmetric if and only if their graphs are isomor-
phic. Such constructions are classical in static analysis,
being known under the name of shape graphs [23], [29].
Formally, we define G5 = (Vyt, Egt, ) where:

— Vst = dom(h) U dom(p) U {i} is the set of vertices.
— Egy C Vg x (Vars U {e}) x Vi is the set of edges,
namely:

Eq ={(,Ul) |l € LocAs(U) =1}
U{(1,e,1) | ¢ € Tid}
U {(tu,1) | ¢ € Tid Ap(t) 5 (w) = 1}
U {(ll,u,lg)} | l1,l2 € Loc A\ h(ll,u) = l2}

— ¢ is the root node of the graph.

There is one node for each location that is defined in
the heap and one node for each active thread. In addi-
tion, we consider a unique root node, distinct from all
other nodes. There is one edge for each global variable
that is defined in the state, one for each active thread
and one for each variable connecting two objects. Each
edge representing a variable is labeled with that vari-
able’s name, except for the thread edges who are labeled
with a special symbol €. Notice that the graph is rooted
i.e., there are no incoming edges to the root node. In
the following developments, we assume that each loca-
tion in the shape graph is reachable from the root node.
The following lemma captures a key property of shape
graphs:

Lemma 4. Let st,st’ € State be two states. Then st
and st' are symmetric if and only if G5 = (V, E, 1) and
Gg = (V' E',\) are isomorphic.

Proof: Let st = (s, (h,1), (p,t)) and st' = (s', (k' 1), (P, 1))
throughout the proof. “=” Assume the existence of two
permutations m € Gy, (st) and p € Gy,,....(st) such

that st' = Theap(Pthread(st)). Then we have s’ = 7(s),
' = 7(h) and p' = p(7(p)). Let us define ¢ : V. — V'
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as follows: ¢(1) =/, ¥(l) = =n(l) for each | € V N Loc,
and ¢ (t) = p(t) for each t € V NTid. We prove that ¢ is
indeed an isomorphism between G4 and G . Obviously
1 is a bijection. It remains to be shown that it preserves
indeed graph structure:

1. ,U,l) e Eiff s(U) =1iff s'(U)
(1) iff (1), U,9(1)) € E".

=n(s(U)) ==(l) =

2. (1,e,t) € E iff t € dom(p) iff p(t) € dom(p') iff
(¥(e )&ﬂ/}(t)) E B
3. ( u,l) € E i p(t),(u) = Uiff p'(p(t))5(u) = 7(I)
ff (p(t),u, (l)) € B iff (¢(1),u,¥(1)) € E'.
4. (ll,u lg) E iff h(ll, ) = l2 lff hl( (ll) ’LL) = 7T(l2)

iff (Y(1h),u,9(12)) € E".

“<” Let ¢ : V — V' be an isomorphism between Gy
and Gy . It is sufficient to show that (1) =/, ¥(l) €
Loc for alll € VN Loc and ¢(t) € Tid for all t € VNTid.
Then we have two permutations 7 € Gy, ., (st) and p €
G pinreaa(st)s Which are the restrictions of ¢ to Loc and
T'id respectively. The conclusion then follows from the
points (1) to (4) above. Assume that ¥(¢) # ¢'. It follows
that either (1) =1 € V' N Locor ¢(1) =¢ € V' NTid.
Since there is no incoming edge to ¢ there should be no
incoming edge to ¥(¢). This contradicts both cases, since
there is at least one incoming edge to each I’ € V N Loc
by the assumption that each location in a shape graph
is reachable from the root node, and there is an edge
(t/,e,t") toeach t' € V'NTid. So (1) = +'. Assume that
(1) € Loc, for some I € V' U Loc. Then either ¢(I) =/
or ¢(I) = ¢' for some t' € V' NTid. In the first case there
exists at least one incoming edge to [ and there is no
incoming edge to ¢/, which leads to a contradiction. In
the second case there exists an edge (¢, ¢,t') but there
is no incoming e-edge to [, so we have again reached
a contradiction. Therefore 1(I) € Loc. The assumption
P(t) € V' NTid is disproved in a similar way. O

We have reduced the problem of deciding whether
two states are symmetric to deciding whether two shape
graphs are isomorphic. Since shape graphs are non-de-
terministic in general, the problem is in NP. Notice how-
ever that the only sources of non-determinism for shape
graphs are the e-transitions between the root node and
the identifiers of the active threads. However, in case of
sequential programs, the generated shape graphs are de-
terministic, since there exists only one such e-transition.
The isomorphism problem in this case is in P. Moreover,
the algorithm presented in the next section is linear in
number of objects, for the sequential case. This is namely
due to the fact that the branching degree (i.e., maximum
number of outgoing edges) of a shape graph is bounded
by a constant, as the number of variable identifiers used
in a program is constant.

5.2 Sorting Permutations

Given the previous complexity results, we must turn
our attention to heuristic techniques that give partial

solutions. We shall also restrain to explicit-state model
checking techniques that require the computation of or-
bit representatives.

Definition 5. Given a structure K = (S, R, L) and an
equivalence relation =, a function r : S — S is said to
be a representative function for = if and only if, for all
s € 5, we have s = h(s).

Given a structure and a representative function, the
state exploration algorithm will generate the image of
the original structure through the representative func-
tion on-the-fly. Two states are identified as symmetric,
when their representatives match. The effectiveness of
the reduction is given by the following property of rep-
resentatives functions:

Definition 6. Given a structure K = (S, R, L) and an
equivalence relation =, a representative function r : S —
S for = is said to be canonical if and only if, for all
s,s' € S we have s = s' < r(s) =r(s).

The main idea behind the heuristics used in this pa-
per is to obtain state representatives by a sorting algo-
rithm. Since states, in our setting, are not necessarily
linear, sorting is not necessarily applied only to vectors,
but also to graph structures. In a first step, we can ab-
stract from the actual structure of states introducing the
notion of sorting permutation:

Definition 7. Let K = (S, R, L) be a structure and & :
SxNxN — {true, false} be a partial boolean mapping.
Given a state s € S and type 7 € T, a permutation
© € Gy, is said to be sorting for s with respect to & if
and only if, for all 0 < i,j < n.(s), n(i) < 7(j) <<=
&(s,i,7) = true.

In the following, we refer to the £ function as to the sort-
ing criterion. The reason why £ is allowed to be partial
is a rather technical formality: we are not interested in
the values &(s,i,7) where ¢ or j are greater than n.(s).
However, not every boolean mapping ¢ allows for the
existence of sorting permutations. Take for instance a
symmetric mapping £(s,1,j) = £(s,j,¢) for all 4,5 > 0.
If a sorting permutation exists, then we have

w(i) <7(j) = &(s,1,7) <= &(s,5,1) <= 7(j) <7(i)

which is a contradiction.

The intuition behind sorting criteria and sorting per-
mutations are better explained by means of an example.
Let v : {1,...,n} — N be a (finite) vector whose ele-
ments are natural numbers. Let &(v,4,j) = v(i) < v(j).
One can say that v’ is a sorting of v with respect to £ if,
for all i < j we have £(v',4,j) = true. The permutation
(i,7) where v(i) = v'(j) for all 1 < 4,5 < n is then the
sorting permutation for £.

A sorting criterion is an abstract specification of a
sorting problem. As said, we consider that an algorithm
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solving the sorting problem will give, for a state, the rep-
resentative of its orbit. Despite this level of abstraction,
we can give necessary and sufficient conditions that need
to be met by a sorting criterion in order for the induced
representative function to be canonical. Since in practice
it is easier to define a separate sorting criterion for each
type of state component, we shall state the following re-
sult in particular for a given 7-symmetry (Definition 2).
The generalization to full symmetry is immediate.

Theorem 3. Let K = (S,R,L) be a structure, 7 € T
be a type, = C S x S be a T-symmetry relation and
¢ : S xNxN — {true, false} be a sorting criterion.
Then the sorting permutations induced by & are canonical
representative functions for =, if and only if, for each
state s € S and 0 < 0,5 < n.(s), i # j, the following
hold:

— & remains invariant under permutations of s, i.e,
V/]T € G77-r(8)7 6(5727]) = g(WT(S))W(i))W(j)) a’nd’
— & induces a strict total order on the set {1,...,n:(s)
]

ie., [£(s,1,5) V E&(s,5,0)] A =[E(s,4,5) A E(s,7,19)
true.

—

Proof: " <" Let s, t be two symmetric states in S.
Then, by Definition 1, ,(s) = n,(t) = n and there ex-
ists # € G, such that ¢ = 7w.(s). Let p and € be the
sorting permutations induced by ¢ for s and t, respec-
tively. We need to prove that p,(s) = 6,(¢) or, equiva-
lently, that 0 = # o 7w o p~! is the identity permutation.
Let us assume that o is not the identity, therefore it can
be expressed as a product of disjoint non-trivial cyclic
permutations: o = (o, ..., k) ° (yo,---,y1)o.... Let us
consider the first such cycle (zo, . .., zx) that maps every
T; N0 T(j41) mod k- Without loss of generality, consider
that zg < ... < x}, i.e., we take the elements of the cycle
in their natural order. Since p is sorting for s, we have
that &(s,p~(z0),p " (zx)). By the first condition we
have, equivalently, that &(m,(s), m(p~ (o)), 7(p~ ! (z1)))
holds. Since o(x) = zo and o(xg) = x1, or equivalently,
w(pH(21)) = 0-L(z0) and 7(p~(z0)) = 01 (1), we
obtain &(7,(s),0 1 (x1),0 (z0)) holds. Since 6 was sup-

posed to be sorting for t = 7, (s) then &(¢,0(zg),0 1 (1))

also holds, which contradicts the second condition of the
theorem. " =" Suppose p and 6 are canonical represen-
tatives, i.e., p = 6 o w. Since p and @ are bijective, for
all i # j, there exists 1 < z,y,z,w < n, x # y and
z # w such that ¢ = p(z) = 0(z) and j = p(y) = O(w).
Since p is sorting for s and 6 is sorting for 7 (s) we have
E(s,z,y) = &(m-(s), z,w) and, equivalently £(s,z,y) =
&(mr(s),m(x), m(y)) since p = 6 o 7. This proves the first
condition. For the second condition, observe that, for
all z,y, (p(x) < p(y)) vV (p(y) < p(@))) A (=(p(z) <
p(y)) V =(ply) < p(z)) = true therefore ({(s,z,y) V
E(s,y,x)) A (=&(s,x,y) V —&(s,y,2)) = true. This con-
cludes our proof. 0O

This result leverages the means for solving the diffi-
cult task of proving strategies canonical. It will be ap-
plied next, in order to compare two techniques, involving

the detection of state symmetries induced by permuta-
tions of heap objects and threads. It will be also shown
that the reduction strategy for heap symmetry is canon-
ical, while the one for thread symmetry is not.

5.8 State Sorting

Considering the SPL semantics defined previously, we
introduce two types of sorting problems: heap sorting
and thread sorting. As said, in order to specify a sorting
problem we need to define a sorting criterion £ : S x
N x N — {true, false}. Then one can decide whether
the reduction is canonical using Theorem 3.

To sort the heap, consider the set C'hains = Tids | X
Vars™. A chain is a pair (t,0) whose first element is a
thread identifier or 1 and second element is a sequence
of variables. As a convention, x = L if and only if the
first symbol of o must denote a global variable. We recall
the existence of two strict and total orders: <, C Varsx
Vars and <; C Tids x Tids. Let <* be the pointwise
order induced by <; and the lexicographical extension
of <, to Vars™ ie., (t,0) <* (t',0') if and only if ¢ <; ¢’
and o <% o’. The denotation of a chain (z,0) in a state
st € States is [(z,0)],, = [o]; i.e., the location reached
by thread ¢ in st, following the path o. Each location
I € dom(h) can be therefore associated the set of all
incoming chains. Moreover, these sets are disjoint, as one
variable cannot point to two different locations. Since
<* is total, each non-empty subset C of C'hains has a
unique minimal element inf* C € C. As a convention,
inf* ) = L. We can therefore associate each location in
a state a unique chain as follows:

trace : State x Locs — Chains |
*
trace(st,l) = inf{c € Chains | [c],, =}

The sorting criterion for heap objects is denoted by &peqp
and is defined as follows:

Eheap(o,m,n) = trace(o,ly,) <* trace(o, 1) (15)

Since <* is strict and total, the second condition of The-
orem 3 is met by Epeqp- In order to show that peqp in-
duces a canonical representative function for =cqp, it is
sufficient to show that peqp is invariant under state per-

mutationsi.e., Epeap (s, M, N) = Epeap (Theap(st), #(m), m(n)).

However, this is an easy consequence of the following
lemma:

Lemma 5. Given a state st € States, for allm € G
andl € Locs, we have trace(st,l) = trace(mpeqp(st), 7(l)).

Proof: By Lemma 2 we have [c],, ) = 7([c],,) for
any ¢ € Chains. Hence trace(st,l) = trace(mheqp(st), 7(1)).
O

Consequently, the strategy that uses heap sorting
is canonical, yielding optimal reductions. As an exam-
ple, consider the situation in Figure 2, where the up-
per part depicts state st, and the lower part depicts

Mheap (5t)
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state stp. Considering that head and tail are global vari-
ables, and that the ordering on variable identifiers is:
head <, next <, tail, we have:

trace(stq,lo) = (L, head)
trace(stq,l1) = (L, head, next)

trace(stq,l2) = (L, head, next, next)

Since trace(stq,lo) <* trace(stq,l1) <* trace(sty,l2)
the heap in st, is already ordered. For st; we have:

trace(sty,lp) = (L, head)
trace(sty, 1) = (L, head, next, next)
trace(sty,l2) = (L, head, next)

Since trace(sty,lo) <* trace(sty,ls) <* trace(sty,l1),
the sorting permutation for st is {(0,0), (1,2),(2,1)}.

The problem of sorting threads has however no easy
solution. This fact is an unsurprising consequence of the
previous complexity result. In fact, one can define a sort-
ing criterion &preqq that meets the first point of Theo-
rem 3 and induces a total order on T'ids which is not
strict i.e., &nread(st,m,n) = Enread(st,n,m) for some
m # n. As an example, a heuristic proposed in [6], uses
the values of the program counters in the sorting crite-
rion. Let ¢ <. ¢” stand for ¢/ <. "V = ¢”. For a state
st = (s, (h,1),(p,t)), we define:

fthread(Staman) = p(m) = (cla SI) A (16)
p(n) _ (CII’SII) Al <. !

Two distinct threads having the same value of the pro-
gram counter cannot be uniquely ordered by &ipreqq- Ide-
ally, the number of such threads should be as small as
possible. This can be achieved by strengthening the con-
dition in the sorting criterion i.e., finding another crite-
rion &};,...4 such that &, ... = &nread. In practice, this
is achieved by using more information about a thread
than just the value of its program counter. This issue is
further investigated in [27].

6 Model Checking with Symmetry Reductions

Given a representative function r : S — S i.e.; a func-
tion that satisfies Definition 5, Figure 8 shows the basic
depth first search state exploration algorithm with sym-
metry reductions, that generates on-the-fly the quotient
structure of a program. The algorithm uses the primi-
tives add_state, add_transition and state not_added
which are responsible of the bookkeeping of states and
transitions. In particular, we consider that transitions
are held in a set structure (implemented e.g. using a
hash table with collision detection) in which case multi-
ple additions of the same transition will be ignored.
The correctness of this algorithm is ensured by the
fact that the representative of each state is symmetri-
cal, and hence bisimilar, with the state itself. There-
fore, when the representative state is already in the state

DFS(s)
add_state(r(s))
for each transition s - t do
add_transition(r(s) —— r(t))
if state_not_added(r(t)) then DFS(¢) fi
od
end DFS

Fig. 8. Symmetry Reduced Depth First Search

space, the algorithm can safely backtrack, since all suc-
cessors of the representative state, which are bisimilar to
the successors of the newly generated state, have been
already explored.

In the remainder of this section, we will discuss effec-
tive computations of the r function. Based on the previ-
ous complexity results, r can be computed in polynomial
time for single-threaded programs that allocate objects
on the heap. One can attempt to simplify the problem,
computing first a representative function reqp, only for
the heap of a state, disregarding the active threads. Sec-
ond, another representative r¢preqq only for the active
threads is computed and the final representative is the
composition of the two functions. Next the two repre-
sentative functions are applied to the current state, the
result being a representative of the current state’s orbit.
Notice that, since the 7¢preqq¢ might not be canonical, it
is possible to store more than one representative state
per orbit. This affects the algorithm’s efficiency but not
correctness, for reasons discussed previously. Subsection
6.1 discusses the computation of canonical representa-
tives for heap symmetry, while subsection 6.2 presents
an algorithm that combines heap and thread symmetry,
for more efficient reduction.

6.1 Computing Heap Sorting Permutations

Considering the heap sorting criterion defined by (15),
the problem is to find a sorting permutation satisfying
Definition 7. Since the {peqp criterion gives rise to canon-
ical representative functions, there exists only one such
permutation, according to Theorem 3. Proceeding under
the simplifying assumption that each defined location in
the heap is also reachable by a sequence of variables from
some global or local variable, we show that the algorithm
in Figure 9 computes indeed heap sorting permutations.

Intuitively, the algorithm in Figure 9 builds the depth-
first spanning tree of a shape graph Gg; in a state st, as-
signing each memory location | € Locs its corresponding
depth-first order number & (line 5). A sorting permuta-
tion Theqp is build incrementally, in this way. We recall
that a strict total order <, on the set of variables was
assumed to exist.

The function ordered : Store — Vars* returns, for
a given store, the <,-ordered sequence of variables that
are defined in that store. This is in fact the key for the
correctness of our algorithm: each time a store is visited,
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Input: a state o = (s, (h, 1), (p,t))
Output: sorting permutation 7 € Gy, .., (st)

SORT(store)
1 for next v from ordered(store) do
2 l; = store(v)

3 if [; not marked do
4 mark [;

5 ™ =[i— kT

6 k=k+1

7 SORT(h(l;))

8 od

9 od

end SORT

begin main

k=0;7m=Az. L

10 SORT(s)

11 for each 0 < t < M¢pread(st) do
12 (c,8") =
13 SORT(s
14 od

end main

p(t)
")

Fig. 9. Generation of Sorting Permutations for Heap Objects

the next variable in the <, order is chosen and its value
(location) is explored. It is easy to see that, when a se-
quence of recursive calls to SORT visits a location [, the
values held by the local variable v along the sequence of
calls, prefixed with the thread identifier ¢ chosen at line
11, forms the minimal chain ¢ such that [c],, =, or else,
¢ = trace(st,l). Our correctness claim is as follows:

Lemma 6. A reachable location [ is visited by the SORT
algorithm before another reachable location I' in a state
st € States if and only if trace(st,l) <* trace(st,l").

Proof: “=” Assume that SORT reaches [ before!’. Then
SORT chooses to follow trace(st,l) before trace(st,l").
Then either:

1. the SORT procedure that reaches [ was started before
the one that reaches I’, either at line 10 or at line
13, in a previous iteration of the loop. In both cases
we have trace(st,l) |, <t trace(st,l'), |, and therefore
trace(st,l) <* trace(st,l').

2. acall to SORT reaches [ before a recursive call started
at line 7 reaches I’. In this case trace(st, 1) is a prefix
of trace(st,l").

3. SORT chooses to follow trace(st, 1) before trace(st,l")
and the choice is made at line 1. Then trace(st,l) =
(t,0), trace(st,1") = (t,0') and o, ¢’ have a common
prefix. Let z; (z2) be the value chosen at line 1 in
the first (second) case. Then z; <, z2 and therefore
trace(st,l) <* trace(st,l').

“&” Let trace(st,l) = (t,0) and trace(st,l') = (t',0').

Then (t,0) <* (t',0") either because:

1. t <; ', then the SORT procedure reaching [ was

started before the one reaching I’ at either line 10 or
13, therefore [ will be reached before I'.

2. t =t and o is a prefix of ¢’ then [’ is reached after
[ by a recursive call to SORT in line 7.

3.t =t and o and ¢’ have a common prefix. Let 7
be the longest such prefix and let " be a location
such that trace(st,l") = (t,7). Also let z; be the
first symbol on ¢ after 7 and x> be the first symbol
on ¢’ after 7. Since 7 was the longest common prefix
we have x1 <, x2. Then the call SORT(h(I")) in line
7 will choose z; before 2 and consequently reach [
before I'. O

Since all locations were supposed to be reachable in st,
the mapping built in line 5 is indeed a permutation. The
fact that the permutation is indeed sorting for &pcqp fol-
lows from Lemma 6 and the way the mapping is built
(line 5), by pairing each location index with its corre-
sponding depth-first number.

The algorithm in Figure 9 works properly, in prin-
ciple, only in states where all locations are reachable
i.e., in states that do not contain garbage objects. When
a state contains garbage, the output of the algorithm
might not be a permutation at all. This restriction can
be however easily lifted in practice. Since the algorithm
marks all reachable locations (line 4) in a state, it can be
also used to perform on-the-fly garbage collection dur-
ing model checking [18]. When the unmarked locations
are freed, the remaining ones can be reindexed and the
result will become a permutation.

Consider for example the configuration in Figure 2
(b) in which the indexes of all reachable locations oc-
cur increased by one and Iy has become garbage. The
SORT algorithm running in this state with the order-
ing head <, next <, tail outputs the partial map-
ping = = {(1,0),(3,1),(2,2)}, which is undefined in
0. By eliminating the garbage location [y, all indexes
from the domain of 7 decrease by one, and the result is
{(0,0),(2,1),(1,2)}, which is the needed sorting permu-
tation.

The worst-case complexity for the algorithm in Fig-
ure 9 running in state st is O(||Gs:||), where ||Gt|| is the
size of the shape graph G5 = (V, E, ) for st i.e, ||Gg|| =
[IV]] + ||E||- Notice however that ||E|| < ||Vars|| - ||V]],
therefore the heap sorting algorithm requires at most
O(lIG.tll) = OUIVI+1[Vars||-[IV]]) = O([V]) time. It
st = (s, (h,1), (p,1)) then ||V]| = ||dom(h)]|+||dom(p)||+
1. In other words, computing heap sorting permutations
can be done in time linear in the number of existing
objects and threads.

6.2 Combining Heap and Thread Symmetry

Unlike heap-allocated objects, the set of active threads
in a state has a linear structure, since we have assumed
no references between threads. The problem of sorting
threads reduces therefore to a classical vector sorting
problem and we will not discuss it furthermore. Instead,
we rather focus on finding an approximative solution to
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the orbit problem, by generating sorting permutation
independently, for the heap and threads, and combining
the two permutations on-the-fly.

This idea originates with the observation that, given
a state st € States and two permutations m € Gy, . (st)
and p € Gy, ...(st), their applications to st are commu-
tative i.e. Theap(Pthread(5t)) = Pthread(Theap(st)). How-
ever, using this straightforward composition to define
the representative function A for the algorithm in Figure
8 faces the following problem: if = has been computed
in o using the sorting criterion &peqp, it might be the
case that 7 is no longer sorting, according to &peqp, for
Pthread(st). As a result, applying the heap permutations
computed according to peqp, by the algorithm in Figure
9, does not give the canonical representatives for heap-
symmetric states. The reason lies within the definition of
€heap (15), since a chain that reaches a location may be
prefixed with a process identifier, and therefore the mini-
mal chain for a location [, trace(st, [), may depend on the
order of processes. In other words, permuting processes
may affect the canonical property of the heap symmetry
reduction.

If SORTpreqq denotes a sorting function for threads,
usually implemented by a classical vector sorting algo-
rithm, and SORT},p is the function implemented by
the algorithm in Figure 9, the representative function is
computed as follows:

r(s)
begin
p = SORTthread(s)
™= SORTheap(pthread(s))

return Tpeqp (pthread(s))
end

This function can be used with the algorithm in Fig-
ure 8 to generate the symmetry reduced structure of a
program.

7 Symmetry versus Partial Order Reductions

Together with symmetries, partial order based methods
are commonplace techniques for reducing the state space
of a system. The basic idea is that, if we describe the ex-
ecution of a system as a set of interleaving sequences
of actions, one can define an equivalence relation on se-
quences and group them into equivalence classes. Each
such equivalence class leads to a unique state in the
system. For example, assume that actions « and (§ are
independent i.e., the order in which they are executed
is not important. Thus, the sequences uafBv and ufav
are equivalent. If a specification would not distinguish
between equivalent sequences, it would be sufficient to
consider only one representative out of each class, thus
generating a much smaller state space. The problem is
similar to the orbit problem, however the approaches dif-
fer in many ways. The contribution of this section is to

further factor out the common points between the two
reduction techniques, and present a combined reduction
method that takes advantage of these similarities.

The previous work of Godefroid [11] also uses partial
order information to detect symmetries between states,
however it focuses mostly on flat programs, by defining
permutations of actions and inferring that symmetric
states are reached from the initial state by transition-
symmetric paths.

A starting point is the observation that classical def-
initions of independence [10], [25], cannot consider allo-
cator actions. The reason is that different interleavings
of allocators lead to symmetric but different states. In
practice, this corresponds to the very common situation
in which various interleavings of threads that perform
heap allocations generate heap symmetric states.

Our approach exploits the nature of dynamic pro-
grams that make use of the next-free allocation policy
for which a semantics has been provided by the rules
in Figure 7. The notion of independence is extended via
symmetry to define symmetric independence. It can be
shown that paths differing only by a permutation of ad-
jacent symmetric independent actions lead to symmet-
ric states. By conservatively exploiting this observation,
when using partial order reductions in combination with
symmetry reductions we can achieve better results if dy-
namic models of behavior are considered. The rest of this
section is organized as follows: subsection 7.1 introduces
the concepts of independence and symmetric indepen-
dence, subsection 7.2 discusses the reduced state space
exploration algorithms, and subsection 7.3 defines sym-
metric independence for the SPL language.

7.1 Symmetric Independence

For the rest of this section, let K = (S, R, L) be a Kripke
structure over a set of actions X'. An action « is said to
be enabled in state s if there exists a state ¢ such that
s —x t. By enabledx (s) we denote the set of all actions
enabled in s, according to the structure K. We can now
introduce the concept of independent actions.

Definition 8. A symmetric irreflexive relation I € X' x
X is said to be an independence relation for K iff for
all (a,8) € I and for each s € S such that «a,8 €
enabledk (s), we have:

—if s % t then 3 € enabledk(t)
—if for some s', 5" € S, 5 % ' L tands D s 3 t',
then ¢t = ¢'.

All partial order reduction algorithms [10], [25], [14]
exploit (conservative under-approximations of) action
independence. In practice, it has been shown that larger
independence relations yield better partial order reduc-
tions. The contribution of this work to improving partial
order reductions is based on defining and exploiting a
weaker notion than the one from Definition 8.
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Definition 9. Given a symmetry relation = on S, a
symmetric irreflexive relation Ig € X' x X is said to be a
symmetric independence relation for K iff for all («, ) €
Is and for each s € S such that a, 3 € enabledk(s), we
have:

—if s 3 t then 3 € enabledx (t)
— if for some s',s" € S, s > s Btands B ',
then t =t'.

The only change with respect to the Definition (8)
is that, in Ig, two transitions are allowed to commute
modulo symmetry. An independence relation is trivially
a symmetric independence. Let us notice however that
Is can be much larger than I, since the number of states
in a symmetry equivalence class can be exponential in
the number of state components e.g., objects, processes.
Dually, one can refer to the notion of dependence, which
is defined as D = ¥ x X'\ I. Similarly, we can define the
notion of symmetric dependence as Dg = X x X\ Ig. We
can now formally relate the two notions of independence.

Lemma 7. Given a symmetry relation = C S x S, I is
a symmetric independence for K if and only if I is an
independence for K .

Proof: " =" Let (o, 3) € I and «, 8 € enabled,_([s]).
Let us prove the first point of Definition 8. Since, by The-
orem 1, K and K,= are bisimilar, a, 3 € enabledk(s).
Let s’ be the a-successor of s in K. Since I is a symmet-
ric independence for K, 8 € enabledg (s'). Again since
K and K are bisimilar, 3 € enabledk,_([s']). Since s'
is the a-successor of s in K, [s'] is the a-successor of [s]
in K. For the second point of Definition (8), we have

s % s B tands 3 s % ¢ in K. Since I is a symmet-
ric independence for K, t = t', therefore [t] = [t']. " <"
This direction of the proof uses similar arguments. 0O

Let us notice that the possibility of using symmet-
ric independence instead of classical independence is rel-
ative to the ability of building the quotient structure
with respect to the symmetry relation considered. In
other words, it is essential, for the symmetry considered
in Definition 9, to compute a canonical representative
function.

A second point of discussion concerns visibility of
actions. An action « is said to be invisible with respect
to a set of atomic propositions P C P iff, for all s,t € S
such that s = ¢ it is the case that L(s)NP = L(t)NP. For
a quotient structure K ,= = (S', R', L"), as introduced by
Definition 3, we have that L(s) = L'([s]) for each s € S,
therefore it is easily shown that an action is invisible in
K if and only if it is invisible in K /.

7.2 PO Reductions with Symmetric Independence

The main result of this section is based on a previous
result by Emerson et al. [7]: performing partial order

DFS(s)

1 add_state(s)

2 push_state(s)

3 for each a in ampley(s) do

4 for each transition s i);(/E t do

5 add_transition(s —» t)
6 if state_not_added(t) then DFS(t) fi
7 od
8 od
9 pop_state()
end DFS
(a)
DFS(s)

1 add_state(s)

2 push_state(s)

3 for each a in ample,(s) do

4 for each transition s i)K/: t do

5 add_transition(r(s) LN r(t))

6 if state_not_added(r(¢)) then DFS(¢) fi
7 od

8 od

9 pop_state()

end DFS

(b)
Fig. 10. DFS with Partial Order and Symmetry Reductions

reduction on an already built quotient structure yields
the same structure as using an algorithm that combines
both partial order and symmetry reduction on-the-fly.
Given a structure K = (S, R, L) and a symmetry rela-
tion = C S x 5, Figure 10 (a) shows the classical state
space exploration algorithm with partial order reduc-
tions on the already built quotient structure K ,—=. This
algorithm is however not meant to be used in practice.
It is only presented here for the sake of future proofs.

The algorithm keeps an explicit stack of states (ac-
cessed in lines 2 and 9). In order to generate the successor
states (line 4), only transitions from a subset ample,(s) C
enabledk ,_(s) are considered. The algorithm in Figure
10 (a) is correct* provided that the set ample,(s) meets
the following constraints [4]:

— (C0-a) ample,(s) # 0 <= enabledx,_(s) # 0.

— (Cl-a) on every path that starts with s in K,=, an
action that is dependent on some action in ample,(s)
cannot be taken before an action from ample,(s) is
taken.

— (C2-a) if ample,(s) C enabledy,_(s) then every a €
ample,(s) is invisible.

— (C3-a) if ample,(s) C enabledy,_(s) then, for every
a € ample,(s) such that s i);g/z t,t & Stack.

Assume now that we are given a canonical represen-
tative for =, say r : S — S. Figure 10 (b) shows an
algorithm that combines symmetry with partial order re-
ductions on-the-fly. Notice that this algorithm works di-
rectly on the original structure K. A first difference with

4 Property preservation for partial order reductions uses the no-
tion of stuttering path equivalence, a weaker notion than bisimu-
lation. For more details, the interested reader is referred to [25].
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respect to the (a) algorithm is the use of the representa-
tive function r (lines 5 and 6) to generate the quotient
structure on-the-fly. Second, the selection of transitions
is made by a function ample, that uses the symmet-
ric independence relation instead. We shall present first
the conditions for ample; and then show their equiva-
lence to the ones that define ample,. This equivalence
leads to the following fact: for each choice of transitions
ample,(r(s)) in K= it is always possible to choose the
same transitions in K, by ampley(s), and viceversa.

In order to define the ample, function, we change
conditions (C0-a) and (C2-a) into (CO-b), (C2-b) by syn-
tactically replacing ample, with ampley, and K,= with
K. The rules (C1-b) and (C3-b) are as follows:

— (C1-b) on every path that starts with s in K, an
action that is symmetric dependent on some action
in ampley(s) cannot be taken before an action from
ampley(s) is taken.

— (C3-b) if amplep(s) C enabledx(s) then for every
o € ampley(s) such that s —= ¢ ¢, then r(t) ¢ Stack.

Since, by Lemma 1, K and K,= are bisimilar, we
have that enabledk (s) = enabledy,_(r(s)), which leads
to conditions (C0-a) and (CO0-b) being equivalent. Also,
from the previous discussion concerning visibility of ac-
tions, we can conclude that (C2-a) and (C2-b) are equiv-
alent. Since, by Lemma 7, a symmetric independence on
K is an independence on K, =, we can infer that con-
ditions (Cl-a) and (C1-b) are equivalent. Equivalence
of (C3-a) and (C3-b) can be shown as an invariant of
the lockstep execution of the algorithms in Figure 10: at
each step, the contents of the stack of algorithm (a) is the
image of the contents of stack (b) via the representative
function h.

Theorem 4. Given a structure K = (S,R,L) and a
symmetry relation = C S x S, for each run of Algorithm
(a) on the quotient structure K = there exists a run of
Algorithm (b) on K such that the generated stale spaces
are the same, and viceversa.

Proof: This proof is done between the lines of Theorem
19 from [7]. O

According to [25], partial order reduction preserves
all formulas of the LTL_X (next-free LTL) logic. An al-
gorithm for partial order reduction that preserves prop-
erties expressible in CTL*_X can be found in [9]. As a
consequence of this and Theorem 4, combining partial
order based on symmetric independence with symmetry
reductions, preserves all properties written as next-free
temporal logic formulas.

The efficiency of the algorithm in Figure 10 (b) re-
sides chiefly in the use of symmetric independence to
choose from the set of enabled transitions. Since any
symmetric independence is a non-trivial superset of the
classical independence relation, our algorithm outper-
forms classical combinations of partial order and sym-
metry reductions [7].

7.8 Symmetric Independence for SPL

Notice that Definition 9, which introduces the largest
symmetric independence with respect to a symmetry re-
lation, is not very useful in practice. Indeed, given this
definition, one cannot decide whether two actions are
independent without checking if the successor states are
symmetric, which in turn can be also expensive. We over-
come this problem as usual, giving a conservative ap-
proximation of the symmetric independence relation for
SPL.

In brief, we show that any two heap allocator actions,
such that the right-hand sides are distinct variables, are
symmetric independent with respect to the =pqp rela-
tion. We recall the small-step operational semantics of
these actions, defined by rules (5) and (6) in Figure 7.
The following fact is a direct consequence of the next-
free allocation policy i.e., the first available memory cell
is always allocated.

Lemma 8. Let K, = (State, —gpi, Lspi) be the tran-
sition system of an SPL program, st € States be a state
and a = [a = new|, § = [b = new| be two statements,
where a and b denote distinct variables. If st —

spl

sty iﬁ(ﬂ,l sty and st LK sth S sth, then

—_ !
Sty =heap Sty-

spl spl

Proof: The proof is a case analysis on the rules that
define o and 3. We shall give the proof only for the case
in which both statements are applications of rule (5), the
rest of the cases being similar. Let Locs = {ly,l2,...} be
ordered according to <; and st = (s, (h, k), (p,t)), where
I, denotes the last allocated memory cell. Assuming that
new(l;) = lj4q for all i > 1, according to the next-free
strategy, we have:

$, ([lk+1 = 0lh, lg41), (py1))

(b= lit2]s,

[lk+2 = o]h, lk42), (p, 1))

b = lpga]s, ([lk1 = o], les1), (P, 1))

b— lrqa][
[

]
sto = (la = lk+1]
]

sty =

sty = a = lgio]s,

([
([
([
1=
([
([

lky2 = oh,lpi2), (p,t))

If we choose 7 € Gy, T =[k+1 > k+2][k+2 = k+
1]1d, it is easy to verify that mheqp(stz2) = sth, therefore
Sty =heap Sth. O

Since allocator statements are always enabled in SPL
i.e., we implicitly assume a true guard on those state-
ments, the first point of Definition 8 is always met. Visi-
bility of such actions depends on the set of program ob-
servables. We recall that an observable predicate in SPL
can only compare two variables for equality or test for
undefinedness. If a variable occurring on the right-hand
side of an allocator statement does not occur in an ob-
servable term, we can safely conclude that the allocation
is invisible. Hence, if 7 is the set of invisible allocator ac-
tions, then 7 x 7 is a symmetric independence for K.

lk+1 — 0]
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As a concluding remark, let us notice that the sym-
metric independence relation for SPL has been defined
exclusively with respect to the heap symmetry. Since a
canonical representative for heap symmetry can be effec-
tively computed, the generation of the quotient structure
with respect to =peqp is possible. This is exactly what
enables us in this case to use Lemma 7 for proving the
correctness of our approach.

8 Implementation and Experience

The heap symmetry and partial order reductions with
symmetric independence have been implemented in the
dSPIN model checker [17]. We performed experiments
involving two test cases: the first one is a model of an
ordered list shared between multiple updater threads,
and the second models an interlocking protocol used for
controlling concurrent access to a shared B-tree struc-
ture. Both models are verified for absence of deadlocks,
as we performed these tests mainly to assess the effec-
tiveness of our reduction techniques.

dSPIN is an automata theoretic explicit-state model
checker designed for the verification of software. It pro-
vides a number of novel features on top of standard
SPIN’s [13] state space reduction algorithms, e.g., partial-
order reduction and state compression. The input lan-
guage of dSPIN is a dialect of the PROMELA language
[13] offering, C-like constructs for allocating and refer-
encing dynamic data structures. On-the-fly garbage col-
lection is also supported [18]. The presence of garbage
collector algorithms in dASPIN made the implementation
of heap symmetry reductions particularly easy. The algo-
rithm used to compute sorting permutations is in fact an
instrumented mark and sweep garbage collector. The ex-
plicit representation of states allowed the embedding of
such capabilities directly into the model checker’s core.
This served to bridge the semantic gap between high-
level object oriented languages, such as Java or C++,
and formal description languages that use abstract rep-
resentations of systems, such as finite-state automata.

The first test case represents a dynamic list ordered
by node keys. The list is updated by two processes that
use node locks to synchronize: an inserter that adds given
keys into the list, and an extractor that removes nodes
with given keys from the list. The example scales in the
maximum length of the list (L).

The second example is an interlocking protocol that
ensures the consistency of a B-tree* data structure ac-
cessed concurrently by a variable number of replicated
updater processes. Various mutual exclusion protocols
for accessing concurrent B-tree* structures are described
in [1] and our example has been inspired by this work.
The example scales in the number of updater processes
(N), B-tree order (K) and maximum depth of the struc-
ture (D).

Table 1. Experimental Results
i. Ordered List Example

L SI4+SR SR SI -

8 296 296 766 766

9 727 727 2.29e4-03 | 2.29e+03

10 1.75e+03 1.75e+03 | 4.62e+03 | 4.62e+403

ii. B-Tree* Example

N, K, D SI+SR SR ST -
2,2,3 1.2 6.8 1.2 94
2,4, 3 3 18 3 766
2,4, 4 32 142 * *

Symmetries arise in both examples because different
interleavings of the updater processes cause different al-
location orderings of nodes with the same data. The
results of our experiments are shown in Table 1. The
table shows the number of states (divided by 10° and
rounded) generated by the model checker with standard
partial order reduction only (-), with partial order based
on symmetric independence only (SI), with symmetry
reductions only (SR) and with combined partial order
and symmetry reductions (SI+SR). We mark with x the
cases when the model checker has exhausted both the
physical and virtual memory of the computer.

In the first example (Ordered List) partial order re-
ductions using symmetric independence do not contribute
to the overall reduction of the state space. The reason is
that the allocator statements in this model handle only
global variables, being therefore labeled as “unsafe” by
the dSPIN transition table constructor. On the contrary,
in first two instances of the second example (Btree*)
partial order reductions using symmetric independence
manage to detect all heap symmetries arising as result
of interleaving allocators, therefore symmetry reductions
do not contribute any further to the overall reduction.
The results show that combining partial order with sym-
metry reductions can outperform each reduction tech-
nique applied in isolation.

9 Conclusion

In this work, we have tackled issues related to the ap-
plication of model checking techniques to software ver-
ification. Programs written in high-level programming
languages have a more dynamic nature than hardware
and network protocols. The size of a program state is
no longer constant, as new components are added along
executions. We have formalized this fact by means of se-
mantic definitions of program states and actions. This
semantics allows definition of various symmetry criteria
for programs. We gave such criteria formal definitions,
and described algorithms for on-the-fly symmetry reduc-
tions in automata theoretic model checking. In particu-
lar, we have discussed the combination of two orthogonal
symmetry reductions, related to heap objects and pro-
cesses. We have also shown how our heap symmetry re-
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duction technique relates with partial order reductions.
The emphasis is on how to adapt existing state space
reduction techniques to software model checking. The
ideas in this paper have been implemented in a software
model checker that extends SPIN with dynamic features.
Using this prototype implementation, a number of ex-
periments have been performed. Preliminary results are
encouraging, making us optimistic about the role sym-
metry and partial order reductions can play in enhancing
model checking techniques for software.
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