
Int J Softw Tools Technol Transfer (2005) 7: 233–247 / Digital Object Identifier (DOI) 10.1007/s10009-004-0176-3

Averification approach to applied system security

Achim D. Brucker1, Burkhart Wolff2

1 Information Security, ETH Zürich, ETH-Zentrum, 8092 Zürich, Switzerland
e-mail: brucker@inf.ethz.ch
2Universität Freiburg, George-Köhler-Allee 52, 79110 Freiburg, Germany
e-mail: wolff@informatik.uni-freiburg.de

Published online: 25 January 2005 –  Springer-Verlag 2005

Abstract. We present a method for the security an-
alysis of realistic models over off-the-shelf systems and
their configuration by formal, machine-checked proofs.
The presentation follows a large case study based on a for-
mal security analysis of a CVS-Server architecture.
The analysis is based on an abstract architecture (en-

forcing a role-based access control), which is refined to an
implementation architecture (based on the usual discre-
tionary access control provided by the POSIX environ-
ment). Both architectures serve as a skeleton to formulate
access control and confidentiality properties.
Both the abstract and the implementation architec-

ture are specified in the language Z. Based on a logical
embedding of Z into Isabelle/HOL, we provide formal,
machine-checked proofs for consistency properties of the
specification, for the correctness of the refinement, and
for security properties.

Keywords: Verification – Security – Refinement –
POSIX – Z

1 Introduction

These days, the Concurrent Versions System (CVS) is
a widely used tool for version management in many in-
dustrial software development projects and plays a key
role in open source projects usually carried out by highly
distributed teams [3, 4]. (See http://www.cvshome.org.)
CVS provides a central database (the repository) and
means to synchronize local modifications of partial copies
(the working copies) with the repository. The repository
can be accessed via a network; this requires a security
architecture establishing authentication, access control,
and nonrepudiation. A further complication of the CVS

security architecture stems from the fact that the admin-
istration of authentication and access control is done via
CVS itself, i.e., the authentication table is accessed and
modified via standard CVS operations.
This work emerged from our own experiences with

setting up a CVS-Server for more than 80 users world-
wide. Besides overcoming a number of security problems
(see, e.g., http://www.cvshome.org/dev/security9706.
html), we had to develop an improved CVS-Server con-
figuration described in [1] meeting two system design
requirements: first, we had to provide a configuration
of a CVS-Server that enforces a role-based access con-
trol [13]; second, we had to develop an “open CVS-Server
architecture,” where the repository is part of the shared
filesystem of a local network and the server is a regu-
lar process on a machine in this network. While such
an architecture has a number of advantages, the cor-
rectness and trustworthiness of the security mechanisms
become a major concern. Thus, we decided to apply
formal modeling and analysis techniques to meet the
challenge.
In this paper, we present the method we developed for

analyzing the security problems of complex systems such
as the CVS-Server and its configuration. As a result, we
provide the following contributions:

1. A modeling technique that we call architectural mod-
eling, which has an abstraction level in between the
usual behavioral modeling used in protocol analysis
and code verification;

2. A technique to use system architecture models for
defining security requirements;

3. The presentation of the mapping from security re-
quirements to concrete security technologies as a data-
refinement problem;

234 A.D. Brucker, B. Wolff: A verification approach to applied system security

4. Mechanized proof techniques for refinements and se-
curity properties over system transitions; and

5. Reusable models for widely used security technologies.

In particular, we provide means to model a certain type
of security policies and show how security analysis can be
performed not only on the abstract but also on the con-
crete level.
The paper is organized as follows. After introducing

some background material, e.g., CVS, our chosen specifi-
cation formalism Z, and the architectural modeling style,
we present the model of the abstract system architecture.
We proceed with the model of the POSIX filesystem as
an infrastructure for the implementation architecture and
present the implementation architecture itself. Then we
describe the refinement relation between the system ar-
chitecture and the implementation architecture, and the
analysis of security properties at the different layers based
on formal proofs in an interactive theorem prover.

2 Background

2.1 The CVS operations

For the purpose of this paper, it is sufficient to mention
only the most common CVS commands (initiated by the
client). These are: login for client authenticating, add for
registering files or directories for version control, commit
for transferring local changes to the repository, and up-
date for incorporating changes from the repository (e.g.,
fetching the latest version from the repository) into the
working copy. Additionally, CVS provides functionality
for accessing the history, for branching, for logging infor-
mation (which is beyond the scope of this paper), and it
provides a mechanism for conflict resolution (e.g., merg-
ing the different versions), which is only modeled as an
abstract operation. Further, in order to facilitate both
the refinement and the security analysis, we will include
in our CVS model a operation that is, strictly speaking,
not part of CVS but part of the operating system: the
operation modify. This operation models changes of the
working copy, e.g., by editing a file.

2.2 Z and Isabelle/HOL-Z

As our specification formalism, we chose Z [16] for the fol-
lowing reasons: first, Z fits our modeling problem since
the complex states of our components suggest using a for-
malism with rich theories for data structures. Second,
the syntax and semantics of Z are specified in an ISO
standard;1 for future standardization efforts of operating
system libraries (e.g., similar to the POSIX [17] model
in Sect. 3.3.2), Z is therefore a likely candidate. Third, Z
comes with a data-refinement notion [16, p. 136], which

1 Z formal specification notation – syntax, type system and se-
mantics, 2002. ISO/IEC 13568:2002

provides a correctness notion of the underlying “security
technology mapping” between the two architectures and
a means to compute the proof obligations. We assume
a rough familiarity with Z (the interested reader is re-
ferred to excellent textbooks on Z such as [16, 18]).
As our modeling and theorem-proving environment

we chose Isabelle/HOL-Z [2], an integrated documenta-
tion, type-checking, and theorem-proving environment
for Z specifications built on top of Isabelle/HOL. Is-
abelle [9] is a generic theorem prover, i.e., new object
logics can be introduced by specifying their syntax and
inference rules. Isabelle/HOL is an instance of Isabelle
with Church’s higher-order logic (HOL) [7], a classical
logic with equality. Isabelle/HOL-Z is a conservative em-
bedding of Z into HOL (which is semantically isomor-
phic to Z). As a result, Isabelle/HOL-Z combines up-
to-date theorem-proving technology with a widespread,
standardized specification formalism and powerful docu-
mentation facilities.

2.3 Architectural modeling

As a means to identify conceptual entities of the prob-
lem domain and to structure the overall specification, we
found it useful to describe the architecture of the sys-
tem on several abstraction layers. Following Garlan and
Shaw’s approach [6, 15], architectures are composed of
components (such as clients, servers, or stores like the
filesystem) and connectors (like channels, shared vari-
ables, etc). In this terminology it is straightforward to
make the mentioned architectures more precise (as im-
plementation architecture, we present the intended “open
server architecture;” see Fig. 1). We assume for each op-
eration (such as add) a shared variable as connector that
keeps all necessary information that goes to and from
the components. This paves the way to formalize this
architecture by describing the transition relation of the
combined system by the parallel composition of the local
transition relations of the components synchronized over
the corresponding shared variable. Since such transition
relations can be represented in Z by operation schemas,
we can thus define, for example:

CVS_add=Client_add

∧Server_add\addshared variable

where ∧ is the schema-conjunction and \ the hiding op-
erator (i.e., an existential quantifier). Throughout this
paper we will only present combined operation schemas
and model properties over the transitive closure of their
transition relations.

2.4 Architecture refinement

When analyzing security architectures one can sepa-
rate an abstract security architecture (Sect. 3.2), which is

A.D. Brucker, B. Wolff: A verification approach to applied system security 235

Fig. 1. The different CVS-server architectures

merely a framework for describing the security require-
ments, from an implementation architecture (Sect. 3.3),
where a mapping to security mechanisms is described
(Fig. 2). By connecting the abstract and the concrete
layer formally, it is possible to reason about safety and se-
curity properties on the abstract level. Such a connection
between abstract and more concrete views on a system
and their semantic underpinning is well known under the
term refinement, and security technology mappings can
be understood as a special case of this. Various refine-
ment notions have been proposed [11, 18]; in our setting,
we chose to use only a simple data-refinement notion fol-
lowing Spivey [16].

2.5 Security models vs. security technologies

Many security models distinguish between objects (e.g.,
data) and subjects (e.g., users). Using role-based access
control (RBAC) [13] one assigns each subject at least one
role (e.g., “administrator” role), and access of objects is
granted or denied by the role a subject is acting in. Fur-
ther, roles can be hierarchically ordered, e.g., subjects
in the “administrator” role are allowed to do everything
other roles are allowed to. Our CVS-Server uses such a hi-
erarchic RBAC model.
In an RBACmodel, the decision as to which roles may

have access to which objects is made during system de-
sign and cannot be changed by regular users. In contrast,
in a discretionary access control (DAC) model, every ob-

Fig. 2. Refining security architectures

ject belongs to a specific subject (its owner), and the
owner is allowed to change the access policies at any time,
hence “discretionary.” For example, a DAC implementa-
tion that also allows grouping users is the Unix /POSIX
filesystem layer [17] access control.
Based on a DAC that supports groups, one can “im-

plement” an RBAC model by a special setup [12]. We
use a similar technique to implement a hierarchic RBAC
model for our CVS-Server on top of the POSIX filesystem
layer, which is described in Sect. 3.3.3. However, we will
analyze the concrete form in which DAC is implemented
in POSIX and not a conceptual model thereof.

3 The CVS-Server case study

The Z specification of the CVS-Server [1] consists of more
than 120 pages, and the associated proof scripts are about
13000 lines of code. The organization of the Z-sections
follows directly the overall scheme presented in Fig. 3.
The Z-sections AbsState and AbsOperations describe the
abstract system architecture of the client and the server
components. The Z-section SysConsistency contains the
consistency conditions (conservatism of axiomatic defini-
tions, definedness of applications, nonblocking operation
schemas) of the system architecture. This is mirrored at
the implementation architecture level by the structures
FileSystem, CVS-Server , and ImplConsistency. The Z-
section Refinement contains the usual abstraction pred-
icates relating the abstract and the concrete states, and
also the proof obligations for this refinement. The security
properties, together with the corresponding proof obliga-
tions, are defined in the Z-sections SysArchSec and Im-
plArchSec.

3.1 Entities of the security model

Following the standard RBAC model, we introduce ab-
stract types for CVS clients (users)Cvs_Uid, permissions

236 A.D. Brucker, B. Wolff: A verification approach to applied system security

Fig. 3. Organizing the specification into Z-sections

Cvs_Perm (which are isomorphic to roles in our setting),
and CVS passwords Cvs_Passwd used to authenticate
a CVS client for a permission:

[Cvs_Uid,Cvs_Perm,Cvs_Passwd] .

Permissions are hierarchically organized by the reflex-
ive and transitive relation cvs_perm_order (over permis-
sions Cvs_Perm) with cvs_adm as greatest element:

We turn now to the security entities and mechanisms
of the CVS-Server and the clients: first we have to model
the working copies and the repositories as maps assigning
abstract names Abs_Name to data Abs_Data (both types
are abstract in our model):

[Abs_Name,Abs_Data]

ABS_DATATAB≡Abs_Name→+ Abs_Data

A CVS-Server provides an authorization table, which
is used to control access within the repository. The server
stores for each file in the repository the required permis-
sion. These tables are modeled as follows:

AUTH_TAB ≡ Cvs_Uid×Cvs_Passwd

→+ Cvs_Perm

ABS_PERMTAB≡Abs_Name→+ Cvs_Perm

Clients possess in their working also a table that as-
signs to each abstract name a CVS client and another

map that associates each CVS client to the password pre-
viously used during the CVS login procedure. The inter-
play of these tables will be discussed later; here we just
define them:

ABS_UIDTAB ≡Abs_Name→+ Cvs_Uid ,

PASSWD_TAB≡ Cvs_Uxid→+ Cvs_Passwd .

3.2 System architecture

In this section, we give a brief overview of how we model
the system architecture, which is divided into: the state
of the server (including the repository), the state of the
client (including the working copy), and a set of CVS op-
erations working over both of them.
It is a distinguishing feature of a CVS-Server that it

stores the authentication data inside the repository such
that they can be accessed and modified with CVS oper-
ations. This implies certain formal prerequisites: we re-
quire an abstract name abs_cvsauth to be associated with
data that can be converted into an authentication table
via a postulated function authtab.

Modeling the server’s state as a Z schema is straight-
forward. The state contains the repository rep and the
map rep_permtab containing the required permissions for
each file. Accessing the authentication table inside rep
will require having the role cvs_adm. RepositoryState is
modeled as follows:

A.D. Brucker, B. Wolff: A verification approach to applied system security 237

The state of the client component contains the work-
ing copy wc, the wc_uidtab assigning a CVS client to
each file and a password table abs_passwd with creden-
tials (passwords) used in previous CVS login operations
(abs_passwd models the file .cvspass). Thus, for any data
in the working copy and whenever an access to it may be
processed, an individual role may be generated and vali-
dated by the server with respect to its current repository
state. Further, there is a set of abstract nameswfiles that
is used as filter in update and commit operations. This fil-
ter corresponds to the concept of the working directory
in the implementation, i.e., the effects of these operations
are restricted to files stored within the working directory:

In what follows, we define the abstract CVS opera-
tions that model combined state transitions of the client
and the repository. Due to space constraints, we only
present login and commit.
The login operation simply stores the authentication

data on the client side. This is used to authenticate a CVS
user for client permissions. The ∆ and Ξ notations are
used in Z to import the schemas in two variants: one
variant as a copy, the other by replacing all variables
by corresponding stroked variables (e.g., wc′) describing
the successor state. Ξ also introduces equalities enforcing
that the components of the previous state are equal to the
poststate components.

The commit (ci) operation usually takes a set of files
as arguments (here denoted by files?). The case that no
arguments may be passed is modeled by the possibility of
setting files? to the set of all files ABS_NAME .
Now we address the core of our hierarchic RBAC

model of the system architecture, the has_access predi-

cate. As a prerequisite, we define the shortcut is_valid_in
for checking that a CVS client, together with a credential
(password), represents a valid role with respect to the cur-
rent repository:

Further, the has_access predicate ensures is_valid_in
and that the permissions resulting from these credentials
are sufficient to access the requested file according to the
role hierarchy:

The commit operation consists of the construction of
a new repository rep′ and a new table with required per-
missions rep_permtab′ thatwere constructed via the over-
ride operator ⊕ from previous states of these tables. For
rep′, three cases can be distinguished: (i) either a file in
the repository does not occur in the working copy, inwhich
case it is unchanged; (ii) it occurs in the working copy but
not in the repository, in which case it is copied provided
a valid permission is available in the wc_uid_tab of the
working copy; or (iii) the file exists both in working copy
and repository, in which case the working copy file over-
rides the repository file whenever the client has access:

238 A.D. Brucker, B. Wolff: A verification approach to applied system security

The table rep_permtab′ is extended by permissions
for files that are new in the repository (based on the per-
missions used for committing these files). Further, the
table wc_uid_tab is updated by the add operation, which
we omit here.
In addition to these abstract models of the CVS op-

erations, we provide a modify operation that explicitly
models interactions of users with their files by modifying
the files of the working copy of the client state.

3.3 The implementation architecture

The implementation architecture of CVS-Server is in-
tended to model realistically the security mechanisms
used to achieve the security goals formalized in the pre-
vious system architecture. Therefore, it captures the rele-
vant operating system environment methods, i.e., POSIX
methods in our case, for accessing files and changing their
access attributes. We derived our POSIX model by for-
malizing the specification documents [17] and detailed
system descriptions [5] and by validating it by carefully
chosen tests and by inspections of critical parts of the
system sources. In this POSIX model, the CVS Filesys-
tem will be embedded, i.e., a repository is described as
some area in the filesystem where file attributes are set in
a suitable way.

3.3.1 Modeling basic data structures

We declare basic abstract sorts for POSIX user IDs, group
IDs, data (file contents left abstract in this model), ele-
mentary filenames, and file paths.

[Uid,Gid,Data,Name]

Path≡ seqName

We assume a static table groups that assigns to each
user a set of groups he belongs to. We also describe a spe-
cial user ID root, modeling the system administrator. As
we will show later, all security goals can only be achieved
for all users except root, because root is allowed to do (al-
most) everything.

groups: Uid → P Gid
root: Uid

3.3.2 Modeling the POSIX filesystem access control

Within POSIX, every file belongs to a unique pair of
owner (user) and group, and file access is divided into
access by the user (owner), the group, or other (world).
The POSIX discretionary access control (DAC) distin-
guishes access for reading (r), writing (w), and executing
(x). We also model the “set group id” (sg) on directo-
ries, which affects the default group of newly created files
within that directory (see [5] for more technical details

about the Unix /POSIX DAC):

Perm ::= ru|wu|xu|rg|wg|xg|ro|wo|xo|sg .

The filesystem consists of a map from a file path to file
content (which is either Data for regular files or Unit for
directories2) and of file attributes (assigning to each file
or directory the permissions,3 the user ID of the owner,
and the group it belongs to). Our concept of file attributes
may easily be extended by adding new components to its
records.

Unit ::=Nil

FILESYS_TAB ≡ Path→+ (Data+Unit)

FILEATTR ≡ [perm : PPerm;uid : Uid; gid :Gid]

FILEATTR_TAB ≡ Path→+ FILEATTR

We use type sums for modeling the FILESYS_TAB ,
which are not part of the Z standard. Type sums can sim-
ulate enumerations in Z-free type definitions on the fly.
The two functions Inl :X→ (X+Y) and Inr : Y → (X+
Y) are provided for building type sums.
For testing if a directory contains a specific entry (ei-

ther a file or a directory), we provide the function is_in.
Further, we provide functions that test for regular files
(is_file_in) and for directories (is_dir_in); their definitions
are straightforward:

At this point we are ready to model the filesystem
state, which mainly describes the mapping of (name)
paths to their attributes. As mentioned earlier, we require
that all defined paths be “prefix-closed,” i.e., all prefix
paths must be defined in the filesystem (thus constituting
a tree) and point to directories.

In addition to the filesystem state, we introduce
a state schema ProcessState for client-related informa-

2 We do not consider special files, like devices, named pipes or
process files.
3 The terms attributes and permissions are used interchangeably.

A.D. Brucker, B. Wolff: A verification approach to applied system security 239

tion, namely, the current user and group ID, the client’s
umask (which is used to set the initial file attributes on
new files), and current working directory (wdir). The
working directory is often used as an implicit parameter
to filesystem and CVS operations:

As a prerequisite for describing functions that do
modifications on the file system, we need to model the
POSIX DAC in detail. Therefore, we first introduce
a function has_attrib, which decides whether the at-
tributes (read, write, and execute) of a file are set with
respect to a specific user (and the groups he is a mem-
ber of). Within this function, a crucial detail of the
POSIX access model is formalized, namely, that file ac-
cess is checked by sequentially testing the following con-
ditions (leading to an overall failure if the first condition
fails):

1. If the user owns the file, he can only access the file if
the access attributes for users grant access.

2. If the user is a member of the group owning the file, he
can only access the file if the access attributes for the
group grant access.

3. Lastly, the access attributes for others are checked.

These requirements may lead to some unexpected conse-
quences, e.g., assume a user u is a member of the group
g and owner of a file with the permissions 〈|perm ==
{rg, ro}, uid == u, gid== g|〉. Curiously, file access will
be denied to him, while granted for all others in his group,
because the rights specified for the user precede the rights
given for the group.

Based on has_attrib we introduce shortcuts for check-
ing read, write, and execute attributes (e.g., has_w_
attrib) of files and directories as well as definitions
for checking the read, write, and execute access (e.g.,
has_w_access).

As an example of our approach to specifying POSIX
operations, we present the (shortened) file remove speci-
fication [17], which corresponds to unlink():

The unlink() function shall fail and shall not unlink the
file if:

– A component of path does not name an existing file
or path is an empty string.

– Search permission is denied for a component of the
path prefix, or write permission is denied on the
directory containing the directory entry to be re-
moved.

This text is formalized by a Z operation schema rm as fol-
lows: The first condition in the body is common for most
filesystem operations and requires that the path of the file
be a valid one in the filesystem table. The second condi-
tion requires that the client have write permissions on the
file and the working directory (“the directory containing
the directory entry to be removed”), which is checked via
the has_w_access predicate:

The definitions for the remaining filesystem opera-
tions are similar; see [1] for details.

3.3.3 Mapping CVS access control onto POSIX DAC

We turn now to a crucial aspect of the implementation of
the security goals by security mechanisms provided from

240 A.D. Brucker, B. Wolff: A verification approach to applied system security

standard POSIX DAC: any CVS role will be mapped to
a particular pair of a system owner and a set of system
groups. This mapping has the consequence of an inheri-
tance mechanism for generating default roles when creat-
ing new objects in the repository. Additionally, there is
a mechanism to “downscale” and “upscale” the permis-
sions in the repository for the CVS administrator (not
described here).
For every CVS operation, the server determines the

CVS role according to the client’s CVS ID and password.
These roles are then mapped to POSIX user and group
IDs, and these are compared to the file attributes of the
files and directories the operations operate on. This trans-
lation is done by the two functions cvsperm2uid and
cvsperm2gid.

It is important to note that CVS IDs (Cvs_Uid) are
independent of POSIX IDs (Uid) and that the POSIX
IDs that are used by CVS are disjoint from “normal”
POSIX user IDs, i.e., it is impossible to login with such
a special POSIX ID.
From these distinctness constraints it follows that the

POSIX system administrator and the CVS administra-
tor may be different. Moreover, we require that the group
table (administrated by the system administrator and no-
body else) be compatible with cvs_perm_order. These
requirements have to be assured during installation of
a CVS server.
The CVS repository is a subtree of the normal filesys-

tem; its root is denoted by the absolute path cvs_rep,
and all paths inside the repository are relative to the
root cvs_rep. Further, the administrative files of CVS are
stored in the CVSROOT directory, which is a subdirec-
tory of cvs_rep, and the file that contains all authenti-
cation information is called cvsauth and is located inside
CVSROOT .

3.3.4 Modeling the CVS filesystem

A major design decision for our specification is to enrich
the FileSystem state by new state components relevant
to CVS or, more precisely, the combined client/server
component of CVS. In CVS, working copies contain spe-
cific attributes assigned to the files; we restrict ourselves
to security-relevant attributes, i.e., the CVS client ID and
password, and the path rep where the file is located in the
repository. This information is kept in a separate table
implicitly associated to the working copies.

CVS_ATTR ≡ [rep : Path; f_uid : Cvs_Uid]

CVS_ATTR_TAB ≡ Path→+ CVS_ATTR

Due to space constraints, we only show some require-
ments of the combined POSIX and CVS filesystem:

– Working copies and the repository are distinct areas of
the filesystem.
– The repository contains a special directory that holds
the administrative data of CVS. Certain restrictive ac-
cess permissions must be ensured to this directory and
its contents to preserve the system integrity.
– Requirements on file attributes within the repository:

– Since the owners of files must be POSIX user IDs
that are disjoint from “regular” POSIX user IDs,
the group IDs must be legal with respect to the
CVS role hierarchy. This guarantees that regular
users only have the rights described by the file at-
tributes for others. Thus, our initial invariant for
the base directory of the repository implies that
such a user cannot do anything, using only POSIX
operations, within the repository.
– Read, write, and execute permissions are the same
for user and group. Together with our group setup
this ensures that the initial CVS role and all roles
with higher precedence will have the same rights to
access that file.

These invariants are formally described in the axiomatic
definition:

A.D. Brucker, B. Wolff: A verification approach to applied system security 241

We turn now to a formal description of the repository
within the filesystem. This invariant of the system is cap-
tured in the state schema Cvs_FileSystem:

In addition to rep_attributes, we impose similar re-
quirements for the administrative area of the repository
by the predicate attr_in_root. Further, we describe in
the predicate attr_outside_root the requirements for the
data in the repository, i.e., files that are subject to version
control. Both axiomatic definitions are omitted here.
We have now established a basis for the operations

on the combined POSIX and CVS environment. As
in Sect. 3.2, we present the login and commit operations in
order to compare the two different architecture levels.
Before we describe the operations of the CVS-

Server we need to model the access to the CVS
authentication table (get_auth_tab) that is part of the
cvs_rep�CVSROOT directory and underlies the stan-

Fig. 4. The specification of the commit command (implementation architecture)

dard access discipline of CVS-Server. In particular, the
authentication table is only modifiable by the CVS ad-
ministrator, but not by any other client of the system.

The login operation updates the variable cvs_passwd,
provided that for the combination of user ID and pass-
word the authentication will succeed.

In the commit operation, the current working direc-
tory wdir can be restricted by the parameter p? to just
one file or directory. All files below p? for which the
client has access will be committed. We use the function
cutPath to remove a given prefix from a path.

In contrast to the system architecture specification we
also must determine the POSIX file attributes of the files.
The particularity of the update and the commit operation
is the use of rep_access, which computes the paths into

242 A.D. Brucker, B. Wolff: A verification approach to applied system security

the repository to which the client has read access accord-
ing to his CVS role.

The schema cvs_ci (see Fig. 4) models the commit
command. We require that the client have read access for
the file or directory in the current working directory and
sufficiently high-ranking role to modify the repository.

4 Formal analysis

A formal model, even if successfully type-checked, is in it-
self not a value of its own: it must be validated, e.g., by
testing techniques or by formal proof activities as in our
approach. In this section, we present a formal consistency
check of the specifications, and we show that the imple-
mentation architecture is, in a formal sense, a refinement
of the abstract system architecture. We specify and prove
security properties of the type “no combination of user-
commands will enable a user to write into the repository,
except if he has the required access rights.”

4.1 Checking the consistency

Two types of “sanity checks” are useful and have been
carried out with HOL-Z [2] routinely:

– Checking definedness for all applications of partial
functions in their context; undefined applications usu-
ally indicate that some part of the precondition of
a schema context is missing; and
– Checking the state invariant of all operation schemas;
in particular, we require that in a schema, all syntactic
preconditions (i.e., the conjuncts in the predicate part
that contain occurrences of variables without stroke
“ ′ ” and “ ! ” suffix) suffice to show that a successor
state exists.

Violating these conditions results, not in logical inconsis-
tencies, but in unprovable statements or operation defini-
tions with undesired semantical effects.

4.2 Establishing the refinement

To prove that the concrete implementation architecture
correctly implements the abstract system architecture,

we have to define an abstraction schema R that relates
the components of the abstract state to the components
of the concrete state. In particular, we must map abstract
names and data to paths and files in the sense of the
POSIX filesystem, and the working copies and reposito-
ries of the abstract model must be related to certain areas
of the filesystem; the authentication tables must be re-
lated, the user must not be root (the refinement simply
does not work otherwise), and the file attributes in the
concrete filesystem must be convertible along the map-
ping discussed in Sect. 3.3.3.
Due to limited space, we will only show two con-

straints of R formally. As a prerequisite, let us define
a function Rname2path, which maps abstract names,
to file paths in the implementation model. One con-
straint is that abs_cvsauth is mapped to the right
path and the authentication tables in both models are
equal:

Rname2path(abs_cvsauth) = cvs_rep
�〈CVSROOT , cvsauth〉

authtab(rep) = get_auth_tab(files)

The last constraint we present here forces the abstract
working copy to have a counterpart in the implementa-
tion working copy:

Rname2path(|domwc|) = domwcs_attributes

To verify the refinement relation R, following Spivey
in [16], we must prove two refinement conditions for each
operation on the abstract state and its corresponding op-
eration on the concrete state: Condition (a) ensures that
a concrete operation terminates whenever their corres-
ponding abstract operation is guaranteed to terminate,
and condition (b) ensures that the state after the concrete
operation represents one of those abstract states in which
the abstract operation could terminate.
As an example of the refinement, we show the in-

stantiation of conditions (a) and (b) for the CVS login
operation. The refinement conditions, though, as defined
in [16], assume that both operations have the same in-
put parameters, but since we define them differently in
our two models, we introduce an additional schema Asm,
which is used to insert further assumptions into the re-
finement proofs (the effect could also have been achieved
by a suitable renaming):

In the case of the login operation, these assumptions
are simple since the parameters are of the same type but
differ in name. Instantiating conditions (a) and (b) for the
login operation and adding the assumption schema Asm

A.D. Brucker, B. Wolff: A verification approach to applied system security 243

leads to the following two proof obligations:

logina ≡ ∀ClientState;RepositoryState;

ProcessState;Cvs_FileSystem;

passwd?, cvs_pwd? :Cvs_Passwd;uid?,

cvs_uid? : Cvs_Uid.

Asm∧pre abs_login∧R =⇒ pre cvs_login

loginb ≡ ∀ClientState;RepositoryState;

ProcessState;Cvs_FileSystem;

ProcessState′;Cvs_FileSystem′; passwd?,

cvs_pwd? :Cvs_Passwd;uid?

cvs_uid? : Cvs_Uid.

Asm∧pre abs_login∧R∧ cvs_login

=⇒ (∃ClientState′;RepositoryState′.

R′∧abs_login)

The obligations for the other operations are defined anal-
ogously. So far, we have proved these obligations formally
for the refinement of login, add, and update. These proofs
have helped us considerably in identifying subtle side con-
ditions in our model and thus to get our real CVS config-
uration “right”.

4.3 Security properties in architecture layers

Specifying the security properties motivates a Z-section
for the system architecture and one for the implementa-
tion architecture, both containing a classical behavioral
specification. In SysArchSec we investigate security prop-
erties of the system architecture. In ImplArchSec we in-
vestigate the same properties and additional ones that are
specific to the implementation architecture.

4.3.1 General scheme of security properties

As an interface between the operation schemas of the two
architecture layers and the behavioral part allowing us to
specify safety properties, we convert suitably restricted
operation schemas of both system layers into explicit re-
lations over the underlying state. The purpose of these
restrictions is to provide a slot for side conditions that
are related to the security model and not the functional
model described in the previous sections:

rop1 = op1∧R1
· · ·

ropn = opn∧Rn

where each ropi represents the operation schema opi con-
strained by the restriction schemaRi. Further the schema
disjunction step represents the overall step relation of the
system, which is converted into a transitively closed rela-
tion trans:

step = rop1∨ . . .∨ ropn ,

trans = {step|(θstate, θstate′)}∗

In the literature, three types of properties can be dis-
tinguished: One may formalize properties over the set of
reachable states, the set of possible transitions, or the set
of possible sequences of states (traces) of a system. While
the first two types are only sufficient for classical safety
invariants (“something bad will never happen”), the lat-
ter two allow for the specification of liveness properties
(“eventually something good will happen”). The general
scheme for properties over reachable states and possible
transitions for safety properties and the schema for live-
ness properties looks as follows:

SPRS = ∀σ : trans(|init|)•Pσ

SPRT = ∀(σ, σ
′) : init� trans•P (σ, σ′)

LPRT = ∀(σ, σ
′) : init� trans•
∃(σ′′, σ′′′) : trans•P (σ, σ′, σ′′, σ′′′)

Note that the reachable states are restricted via the ex-
istential image operator or the domain restriction to the
states (respectively transitions) reachable from the set of
initial states init.

4.3.2 An instance of the general scheme: RBAC_write

We will exemplify the scheme SPRT for a crucial secu-
rity property, namely, “the user may write in the reposi-
tory only if he has RBAC-permissions,” which we will call
RBAC_write in what follows. Moreover, we will outline
the inductive proof.
As a prerequisite, we postulate two arbitrary sets

knows and invents ; a client “knows” a set of pairs of
roles and passwords and “invents” only files from a given
set of pairs from names to data. We assume invents
to be closed under the merge operation left abstract
in our model.4 On this basis, we define a security pol-
icy by providing suitable restrictions ropi for the system
operations.5 For example, we restrict the add operation
to elements in the domain of the invents-set, we assume
login is restricted to roles, and passwords to the client
knows set, themodify and add operations being restricted
to data the client “invents.” While these restrictions have
a more technical nature, a more conceptual restriction
of abs_ci is as follows: in the role cvs_adm, the authen-
tication table may only be altered such that rights are
withdrawn, not granted. A typical restriction looks as
follows:

abs_loginR≡abs_login

∧ [cvs_uid? :Cvs_Uid; passwd? :

Cvs_Passwd|

(cvs_uid?, passwd?) ∈Aknows]

4 This is very similar to the concept of abstract crypt functions
and the closures analz, synth, and parts in [10]; see discussion.
5 In practice, such security policies may be based on voluntary
self-restrictions of users or enforced by administrative means.

244 A.D. Brucker, B. Wolff: A verification approach to applied system security

Now we define the step-relation and its transitive closure
of the system architecture layer:

step ≡ abs_loginR∨abs_addR∨abs_ciR

∨abs_modifyR∨abs_up∨abs_cd

AbsState≡ ClientState∧RepositoryState

trans ≡ {step@(θAbsState, θAbsState′)}∗

Finally, for constructing the proof goal RBAC_write, we
instantiate the P in our schema SPRT by:

This property reads as follows: whenever there is
a change in the repository, and the changed file stems
from the users invents-set, the user must have valid
permissions according to the RBAC -model. We observe
that rbac_write is true whenever the repository does not
change, i.e., rbac_write(r, r, rt) holds.

4.3.3 A proof-outline

We will now present an exemplary proof (performed with
HOL-Z) for RBAC_write. The initial proof goal stating
that RBAC_write holds is refined by unfolding elemen-
tary definitions and simplification of Z notation to the
following proof state:

[[σ0 = (abs_passwd, rep, rep_permtab, wc,

wc_uidtab, wfiles);

σ1 = (abs_passwd
′, rep′, rep_permtab′, wc′,

wc_uidtab′, wfiles′);

AbsStateσ0;

AbsStateσ1;

(σ0, σ1) : {step@(σ0, σ1)}
∗

]] =⇒

σ0 : init

=⇒ rbac_write(rep, rep′, rep_permtab′)

Over this implication, we can now apply an induction rule
over the transitive closure:

This leads to two base cases and the induction step;
both base cases are trivially true due to observation
rbac_write(r, r, rt). Now it remains to show the induction
steps, which after some massaging look as follows:

[[. . .

σ00 = (abs_passwdx, repx, rep_permtabx,wcx,

wc_uidtabx,wfilesx);

σ01 = (abs_passwdy, repy, rep_permtaby, wcy,

wc_uidtaby, wfilesy);

σ10 = (abs_passwdz, repz, rep_permtabz, wcz,

wc_uidtabz, wfilesz);

σ00 : init =⇒ rbac_write(repx, repy, rep_permtaby);

(σ00, σ01) : {step@(σ0, σ1)}
∗;

(σ00, σ10) : {step@(σ0, σ1)}

]] =⇒ σ00 : init

=⇒ rbac_write(repx, repz, rep_permtabz)

Here, the point of proof refinement is the assumption
(σ00, σ01) : {step.(σ0, σ1)}∗, which can be decomposed via
the definition of step into a disjunction of schemas, where
the input variables are existentially quantified. A generic
tactic strips away the disjunctions and the existential
quantifiers in the assumption. The result is a case split
over all operations of the system architecture and univer-
sally quantified input parameters of all operations under
consideration. Now, the observation is crucial that all op-
erations except abs_ci do not change the repository and,
as a consequence of observation rbac_write(r, r, rt), im-
ply the truth of the step. We can therefore focus on the
case abs_ci:

[[. . .

(σ00, σ01) : {step.(σ0, σ1)}
∗;

rbac_write(repx, repy, rep_permtaby);

abs_ci(abs_passwdy, abs_passwdz, filesq, repy, repz,

rep_permtaby, rep_permtabz, wcy, wcz,

wc_uidtaby, wc_uidtabz, wfilesy, wfilesz)

(σ00) : init;

]] =⇒ rbac_write(repx, repz, rep_permtabz)

This is the core part of an invariance proof: the
system made a transition from an initial system state
(with repx) to another (with repy), performing an arbi-
trary combination of operations, and the system behaved
well (i.e., rbac_write(repx, repy, rep_permtaby)). Now
a commit operation (abs_ci) occurs, and the question is
if the resulting state (with repz) will also fulfill our safety
property.
The core of this subproof is, of course, a case distinc-

tion following the definition of abs_ci shown in Sect. 3.2:
a file may be

1. In the repository and not in the working copy: then
abs_ci will change nothing;

A.D. Brucker, B. Wolff: A verification approach to applied system security 245

2. In the working copy and not in the repository: then
abs_ci will only change the latter if the current cre-
dentials are is_valid_in, which implies write_correct
as the rep_permtab was changed accordingly;

3. In both the working copy and the repository: then
abs_ci will only change the file in the repository if the
current credentials allow for has_access, which im-
plies write_correct.

The interested reader may note that the overall scheme
of the proof follows the structure of the general scheme
of the property descriptions, which allows for automated
tactic support that copes with Z-related technicalities,
the choice of the inductions, the decomposition of the
specification, and the systematic derivation of state com-
ponents remaining invariant. Obviously, there is a high
potential for automation for this type of proofs, such that
the proof developer may be guided rather automatically
to the critical questions in the induction step.

4.3.4 Other examples

The verification of the analogous propertyRBAC_read is
straightforward; files in the working copy of a client are ei-
ther invented by him (via the modify operation) or stem
from the repository, where the client knows a password to
obtain sufficient permissions.
An important, but quite obvious, liveness property

in the LPRT -scheme is RBAC_do_write: Provided the
client has access, it can change a file arbitrarily and
perform operations leaving the repository changed ac-
cordingly; the proof immediately boils down to abs_ci,
which is designed to fulfill this property. At first sight,
RBAC_do_write looks very similar to RBAC_write;
however, note that both properties are independent: one
could model an absolutely secure CVS-Server that never
changes the repository. Such a model trivially fulfills
RBAC_write but is ruled out by RBAC_do_write.
So far, RBAC_write is formalized for a single-user

client/server setting. Extending the analysis to a mul-
tiuser client/server model requires only simple modifica-
tions in the definition of the step-relation; via renaming
of the working copies and the invents and knows-sets, in-
stances of abs_ci, abs_up, and modify for each client with
individual working copy can be generated. Adding suit-
able restrictions (e.g., invents- and knows-sets must be
pairwise disjoint), RBAC_write and similar properties
remain valid.
It is well known that security properties are usually

not preserved under refinement (see discussion later).
The reason is that implementing one security architecture
by another opens the door to new types of attacks on the
implementation architecture that can be completely over-
looked on the abstract level. For example, on the imple-
mentation architecture it is possible to realize an attack
on the repository by combinations of POSIX commands
such as rm and setumask, etc. (Sect. 3.3.2). In principle,

our method can be applied for this type of analysis of the
implementation architecture as well. In this setting, the
step-relation and the init-relation are defined as:

stepimpl ≡rm∨setumask∨· · ·∨ chmod

∨ cvs_login∨· · ·∨ cvs_update

initimpl ≡ConcState

∧ [wcs_attributes :CV S_ATTR_TAB|

wcs_attributes=∅]

Although the proofs on the implementation architecture
have the same structure as on the system architecture,
they are far more complex since concepts such as paths,
the distinction between files and directories, and their
permissions are involved. Moreover, they require new side
conditions (for example, the refinement can only be es-
tablished for the case where the user is not root) that were
systematically introduced by the abstraction predicateR.
On the other hand, the higher degree of detail on

the implementation architecture makes a formalization of
new types of security properties possible. For example,
since the crucial concept directory is present on the im-
plementation level and since the existence of files can only
be established by having access to all parent directories
of a file, one can express confidentiality properties such as
“the user cannot find out that a file with name x exists in
some directory of the repository” on this level.

5 Conclusion

5.1 Discussion

We demonstrate a method for analyzing the security in
off-the-shelf system components made amenable to for-
mal, machine-based analysis. The method proceeds as
follows. First, specify the system architecture (as a frame-
work for formal security properties); second, specify the
implementation architecture (validated by inspecting in-
formal specifications or testing code); third, set up the
security technology mapping as a refinement; and fourth,
prove refinements and security properties by mecha-
nized proofs. The demonstration of the method follows
a case study of a security problem for a real system,
the CVS client/server architecture. We believe that the
method is applicable for a wider range of problems such as
mission-critical e-commerce applications or e-government
applications.
The core of our approach is based on the presentation

of the security technology mapping as data refinement
problem. In general, it has been widely recognized that se-
curity properties cannot be easily refined – actually, find-
ing refinement notions that preserve security properties is
a hot research topic [8, 14]. However, standard refinement
proof technology still has its value here since it checks
that abstract security requirements are indeed achieved
by a mapping to concrete security technology and that

246 A.D. Brucker, B. Wolff: A verification approach to applied system security

implicit assumptions on this implementation have been
made explicit. Against implementation-specific attacks,
we believe that specialized security-property-refinement
techniques will be limited to restricted aspects. For this
problem, in most cases the answer will be an analysis on
the implementation level, possibly by reusing results from
the abstract level.
In our approach, the analysis is based on interactive

theorem proving while security analysis is often based
on model-checking techniques for logics like LTL, the
µ-calculus, or process algebras like CSP. While these
techniques offer a high degree of automation, they possess
well-known and obvious limitations: the state space must
usually be finite and in practice be very small, and the
analysis tends to be infeasible for many models, in par-
ticular those imposed by system specifications. As a con-
sequence, proof engineers tend to develop oversimplified
and unsystematically abstracted system models. In con-
trast, in our approach technical concerns like the size
of the system state space, aesthetic concerns like natu-
ralness of the modeling (in our example, we use archi-
tectural modeling), or methodological needs like realistic
treatments of system specifications do not represent fun-
damental obstacles to the analysis. We expect that the
need for realistic models may also enforce more general
and more reusable ones such that the investment can be
shared by different research groups, and such models may
finally make their way into standardization processes.
Moreover, we have the full flexibility of Z and HOL to ex-
press security properties at need.
Our case study shows that the presented technology

and method makes the treatment of complex security
problems possible. Naturally, the question arises as to
how long the formalization and the proof work took. This
question is hard to answer, partly because the method
and technical components had been developed during
the project, partly because library theorems had to be
proven, and partly because some contributors needed
time to learn Isabelle. The overall case study took about
18 man months, including the development of tool sup-
port. A considerable amount of time (about six man
months) was spent on the formalization and testing (i.e.,
reverse engineering) of the system, which was done by
Achim Brucker and Burkhart Wolff. The proof work was
done by Frank Rittinger, Harald Hiss, and BurhartWolff.
Using our tool support, we estimate that someone with
experience in theorem proving would be able to solve
a similar task (specifying a similarly complex system
and proving the core security properties) in less than
10 months. By improving the general technology (e.g.,
better frontends and tatic support) a further speedup by
a factor of two seems feasible.

5.2 Related work

Sandhu and Ahn described in [12] a method for em-
bedding role-based access control with the discretionary

access control provided by standard Unix systems. Our
model used this construction for providing the static roles
but extended it to a dynamic model.
Wenzel developed a specification of the basic Unix

functionality, which was done in Isabelle/HOL and is part
of the actual Isabelle [9] distribution. On the file system
part, only a simple access model, not supporting groups
and the concepts of set-id bits, is formalized.
Our behavioral analysis is based on the same founda-

tions as Paulson’s inductive method for protocol verifi-
cation [10]. Beyond the obvious difference that Paulson’s
research focus is on analysis (the language of protocols is
deliberately small and restrictive) and not on modeling,
technical differences consist merely in some details: Paul-
son uses specialized induction schemes that are automati-
cally derived from the protocol rules; these are considered
as inductive rules defining the set of system traces. In con-
trast, we use standard induction over transitive relations,
which leads to a different organization of the specification
and the security properties and leads to different tactic
support.

5.3 Future work

In our opinion, amazingly little work has been devoted to
the specification of the POSIX interface; due to its often
not intuitive features, its importance for security imple-
mentations, and its high degree of reuse, this is a particu-
larly rewarding area of research. We believe that our for-
malization is a starting point for a comprehensive, more
complete model of the filesystem-related commands.
Clearly, the formal proofs established so far do not

represent a complete analysis of the (real) CVS-Server.
Many more security properties remain to be formulated,
and, by setting up different operation restrictions Ri,
“best-practice” security policies can be formally investi-
gated. Moreover, in order to make implementation-level
security analysis more feasible, it could be highly reward-
ing to develop techniques andmethods to reuse (abstract)
system-level proofs on the more concrete levels.

References

1. Brucker AD, Rittinger F, Wolff B (2002) A CVS-Server se-
curity architecture – concepts and formal analysis. Technical
Report 182, Albert-Ludwigs-Universität, Freiburg, Germany

2. Brucker AD, Rittinger F, Wolff, B (2003) HOL-Z 2.0: A proof
environment for Z-specifications. J Univers Comput Sci
9(2):152–172

3. Cederqvist P et al (2000) Version management with CVS.
http://www.cvshome.org/docs/manual/

4. Fogel K, Bar M (2003) Open source development with CVS.
Paraglyph Press, Phoenix, AZ

5. Frisch Æ (1995) Essential System Administration. O’Reilly,
Sebastopol, CA

6. Garlan D, Shaw M (1993) An introduction to software archi-
tecture. In: Advances in software engineering and knowledge
engineering, World Scientific, Singapore, pp 1–39

7. Gordon MJC, Melham TF (1993) Introduction to HOL. Cam-
bridge University Press

A.D. Brucker, B. Wolff: A verification approach to applied system security 247

8. Jürjens J (2001) Secrecy-preserving refinement. In: Formal
Methods Europe (FME). Lecture notes in computer science,
vol 2021. Springer, Berlin Heidelberg New York

9. Nipkow T, Paulson LC, Wenzel M (2002) Isabelle/HOL –
A proof assistant for higher-order logic. Lecture notes in com-
puter science, vol 2283. Springer, Berlin Heidelberg New York

10. Paulson LC (1998) The inductive approach to verifying cryp-
tographic protocols. J Comput Secur 6:85–128

11. Roscoe A (1998) Theory and practice of concurrency. Prentice
Hall, Upper Saddle River, NJ

12. Sandhu R, Ahn G-J (1998) Decentralized group hierarchies in
UNIX: an experiment and lessons learned. In: Conference on
national information systems security, pp 486–502

13. Sandhu RS, Coyne EJ, Feinstein HL, Youman CE (1996) Role-
based access control models. IEEE Comput 29(2):38–47

14. Santen T, Heisel M, Pfitzmann A (2002) Confidentiality-
preserving refinement is compositional – sometimes. In: ES-
ORICS. Lecture notes in computer science, vol 2502. Springer,
Berlin Heidelberg New York, pp 194–211

15. ShawM,GarlanD(1996)Softwarearchitecture: perspectives on
an emerging discipline. Prentice Hall, Upper Saddle River, NJ

16. Spivey JM (1992) The Z notation: a reference manual. Pren-
tice Hall, Upper Saddle River, NJ.
http://spivey.oriel.ox.ac.uk/ mike/zrm/

17. The Open Group, IEEE (2002) The Single UNIX Specification
Version 3. [Supersedes “Single UNIX Specification Version 2”
(Unix 98) and “IEEE Standard 1003.1-2001” (POSIX.1)]

18. Woodcock J, Davies J (1996) Using Z: specification, refine-
ment, and proof. Prentice Hall, Upper Saddle River, NJ.
http://www.usingz.com/

