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Abstract. The method of Invisible Invariants was de-
veloped originally in order to verify safety properties of
parameterized systems in a fully automatic manner. The
method is based on (1) a project&generalize heuristic to
generate auxiliary constructs for parameterized systems,
and (2) a small model theorem implying that it is suffi-
cient to check the validity of logical assertions of certain
syntactic form on small instantiations of a parameterized
system. The approach can be generalized to any de-
ductive proof rule that (1) requires auxiliary constructs
that can be generated by project&generalize, and (2) the
premises resulting when using the constructs are of the
form covered by the small model theorem.

The method of invisible ranking , presented here, gen-
eralizes the approach to liveness properties of parameter-
ized systems. Starting with a proof rule and cases where
the method can be applied almost “as is,” the paper pro-
gresses to develop deductive proof rules for liveness and
extend the small model theorem to cover many intricate
families of parameterized systems.

1 Introduction

Uniform verification of parameterized systems is one of
the most challenging problems in verification. Given a
parameterized system S(N) : P [1] ‖ · · · ‖ P [N ] and a
property p, uniform verification attempts to verify that
S(N) satisfies p for every N > 1. One of the most pow-
erful approaches to verification that is not restricted to
finite-state systems is deductive verification. This ap-
proach is based on a set of proof rules in which the user
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has to establish the validity of a list of premises in order
to validate a given temporal property of the system. The
two tasks that the user has to perform are:

1. Provide some auxiliary constructs that appear in the
premises of the rule;

2. Use the auxiliary constructs to establish the logical
validity of the premises.

When performing manual deductive verification, the first
task is usually the more difficult, requiring ingenuity,
expertise, and a good understanding of the behavior of
the program and the techniques for formalizing these
insights. The second task is often performed using the-
orem provers such as pvs [OSR93] or step [BBC+95],
which require user guidance and interaction, and place
additional burden on the user. The difficulties in the
execution of these two tasks are the main reason why
deductive verification is not used more widely.

A representative case is the verification of invariance
properties using the proof rule inv of [MP95]: in order
to prove that assertion r is an invariant of program P ,
the rule requires coming up with an auxiliary assertion ϕ
that is inductive (i.e. is implied by the initial condition
and is preserved under every computation step) and that
strengthens (implies) r.

In [PRZ01,APR+01], we introduced the method of
invisible invariants , that offers a method for automatic
generation of the auxiliary assertion ϕ for parameterized
systems, as well as an efficient algorithm for checking the
validity of the premises of inv.

The generation of invisible auxiliary constructs is
based on the following idea: it is often the case that an
auxiliary assertion ϕ for a parameterized system S(N)
has the form ∀i : [1..N ].q(i) or, more generally, ∀i 6=
j.q(i, j). We construct an instance of the parameterized
system taking a fixed value N0 for the parameter N . For
the finite-state instantiation S(N0), we compute, using
bdds, some assertion ψ that we wish to generalize to an
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assertion in the required form. Let r1 be the projection of
ψ on process P [1], obtained by discarding references to
variables that are local to all processes other than P [1].
We take q(i) to be the generalization of r1 obtained by
replacing each reference to a local variable P [1].x by a
reference to P [i].x. The obtained q(i) is our candidate for
the body of the inductive assertion ϕ : ∀i.q(i). We refer
to this generalization procedure as project&generalize.
For example, when computing invisible invariants, ψ is
the set of reachable states of S(N0). The procedure can
be easily generalized to generate assertions of the type
∀i1, . . . , ik.p(i).

Having obtained a candidate for the assertion ϕ, we
still have to check the validity of the premises of the
proof rule we wish to employ. Under the assumption that
our assertional language is restricted to the predicates of
equality and inequality between bounded-range integer
variables (which is adequate for many of the parameter-
ized systems we considered), we proved a small-model
theorem, according to which, for a certain type of as-
sertions, there exists a (small) bound N0 such that such
an assertion is valid for every N iff it is valid for all
N ≤ N0. This enables using bdd-techniques to check
the validity of such an assertion. The cases covered by
the theorem are those whose premises can be written in
the form ∀i∃j.ψ(i, j), where ψ(i, j) is a quantifier-free as-
sertion that may refer only to the global variables and
the local variables of P [i] and P [j] (∀∃-assertions for
short).

Being able to validate the premises on S[N0] has the
additional important advantage that the user never sees
the automatically generated auxiliary assertion ϕ. This
assertion is produced as part of the procedure and is im-
mediately consumed in order to validate the premises of
the rule. Being generated by symbolic bdd-techniques,
the representation of the auxiliary assertions is often
extremely unreadable and non-intuitive, and it usually
does not contribute to a better understanding of the pro-
gram or its proof. Because the user never gets to see it,
we refer to this method as the “method of invisible in-
variants .”

As shown in [PRZ01,APR+01], embedding a ∀i.q(i)
candidate inductive invariant in inv results in premises
that fall under the small-model theorem. In this paper,
we extend the method of invisible invariants to apply to
proofs of the second most important class of properties –
the class of response properties . Response properties are
liveness properties that can be specified by the tempo-
ral formula

�
(q→ � r) (also written as q=� � r) and

guarantee that every q-state is eventually followed by an
r-state. To handle response properties, we consider a cer-
tain variant of rule well [MP91], which establishes the
validity of response properties under the assumption of
justice (weak fairness). As is well known to users of this
and similar rules, such a proof requires the generation
of two kinds of auxiliary constructs: helpful assertions
hi that characterize, for transition τi, the states from

which the transition is helpful in promoting progress to-
wards the goal (r), and ranking functions , which measure
progress towards the goal.

In order to apply project&generalize to the automatic
generation of the ranking functions, we propose a variant
of rule well. In this variant rule, called DistRank, we
associate, with each potentially helpful transition τi, an
individual ranking function δi : Σ 7→ [0..c], mapping
states to integers in a small range [0..c] for some fixed
small constant c. The global ranking function can be
obtained by forming the multi-set {δi}. In most of the
examples we consider, it suffices to take c = 1, which
allows us to view each δi as an assertion, and generate
it automatically using project&generalize.

If, when applying rule DistRank, the auxiliary con-
structs hi and δi have no quantifiers, all the resulting
premises are ∀∃-premises and the small-model theorem
can be used. One of the constructs required to be quan-
tifier free are the helpful assertions that characterize the
set of states from which a given transition is helpful.
Many simple protocols have helpful assertions that are
quantifier-free (or, with the addition of some auxiliary
variables, can be transformed into protocols that have
quantifier-free helpful assertions). Some protocols, how-
ever, cannot be proven with such restricted assertions.
To deal with such protocols, we extend the method of
invisible ranking in two directions:

• Allowing expressions such as i± 1 to appear both in
the transition relation as well as the auxiliary con-
structs; This is especially useful for ring algorithms,
where many of the assertions have a p(i, i + 1) or
p(i, i− 1) component.

• Allowing helpful assertions (and ranking functions)
belonging to transitions of process i to be of the form
h(i) = ∀j.H(i, j), whereH(i, j) is a quantifier-free as-
sertion; Such helpful assertions are common in “un-
structured” systems where whether a transition of
one process is helpful depends on the states of all its
neighbors. Substituted in the standard proof rules for
progress properties, these assertions lead to premises
that do not conform to the required ∀∃ form, and
therefore cannot be validated using the small model
theorem.

To handle the first extension we prove, in Subsection 6.1,
a modest model theorem. The modest model theorem es-
tablishes that ∀∃-premises containing i ± 1 subexpres-
sions can be validated on relatively small models. The
size of the models, however, is larger when compared to
the small model theorem of [PRZ01].

To handle the second extension, we introduce a novel
proof rule, PreRank: The main difficulty with helpful
assertions of the form h(i) = ∀j.H(i, j) is in the premise
that claims that every “pending” state has some helpful
transition enabled on it (D3 of rule DistRank in Sec-
tion 2). Identifying such a helpful transition is the hard-
est step when applying the rule. The new rule, PreRank
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(introduced in Section 7), implements a new mechanism
for selecting a helpful transition based on the establish-
ment of a pre-order among transitions in each state. The
“helpful” transitions are identified as the transitions that
are minimal according to this pre-order.

We emphasize that the two extensions are part of
the same method, so that we can handle systems that
both use ±1 and require universal helpful assertions. For
simplicity of exposition, we separate the extensions here.

Overview of Paper. In Section 2 we present the gen-
eral computational model of fts and the restrictions
that enable the application of the invisible auxiliary con-
structs methods. We also review the small model theo-
rem, which enables automatic validation of the premises
of the various proof rules. In addition, we outline a pro-
cedure that replaces compassion requirements by justice
requirements, which justifies our focus on proof rules
that assume justice only. Section 3 introduces the new
DistRank proof rule and explains how we automati-
cally generate ranking and helpful assertions for the pa-
rameterized case. We refer to the new method as the
method of invisible ranking . We use a version of the to-
ken ring protocol for an ongoing example in this section.
Section 4 shows how to enhance the project&generalize
method to enable the generation of invariants in the form
of boolean combinations of universal assertions. This is
demonstrated on a (different) version of the token ring
protocol. In Section 5 we study a version of the Bakery
algorithm, that seems beyond the scope of the invisi-
ble ranking method, and show how enhancing a proto-
col with some auxiliary variables can make it a suitable
candidate for the method.

The method studied in Sections 3–5 is adequate for
cases where the set of reachable states can be satisfac-
torily over-approximated by boolean combinations of ∀-
assertions, and the helpful assertions as well as individ-
ual ranking functions δi can be represented by quantifier-
free assertions. Not all examples can be handled by as-
sertions which depend on a single parameter. In Sec-
tion 6 we describe the modest model theorem, which al-
lows handling of i± 1 expressions within assertions, and
demonstrate these techniques on the Dining Philosopher
problem. In Section 7 we present the PreRank proof
rule that uses pre-order among transitions, discuss how
to automatically obtain the pre-order, and demonstrate
the technique on the Bakery algorithm. Finally, we dis-
cuss the advantages of combining several pre-order re-
lations, and demonstrate it on Szymanski’s protocol for
mutual exclusion [Szy88].

All our examples have been run on tlv [Sha00]. The
interested reader may find the code, proof files, and out-
put of all our examples in:

cs.nyu.edu/acsys/Tlv/assertions.

Related Work. This is the full version of [FPPZ04b,
FPPZ04a]. See [ZP04] for a survey on the method of

invisible constructs and an earlier version of invisible
ranking.

The problem of uniform verification of parameterized
systems is undecidable [AK86]. One approach to remedy
this situation, pursued, e.g., in [EK00], is to look for re-
stricted families of parameterized systems for which the
problem becomes decidable. Unfortunately, the proposed
restrictions are very severe and exclude many useful sys-
tems such as asynchronous systems where processes com-
municate by shared variables.

Another approach is to look for sound but incom-
plete methods. Representative works of this approach
include methods based on: explicit induction [EN95],
network invariants that can be viewed as implicit in-
duction [LHR97], abstraction and approximation of net-
work invariants [CGJ95], and other methods based on
abstraction [GZ98]. Other methods include those rely-
ing on “regular model-checking” (e.g., [JN00]) that over-
come some of the complexity issues by employing ac-
celeration procedures, methods based on symmetry re-
duction (e.g., [GS97]), or compositional methods (e.g.,
([McM98]), combining automatic abstraction with finite-
instantiation due to symmetry. Some of these approaches
(such as the “regular model checking” approach) are re-
stricted to particular architectures and may, occasion-
ally, fail to terminate. Others, require the user to pro-
vide auxiliary constructs and thus do not provide for
fully automatic verification of parameterized systems.

Most of the mentioned methods only deal with safety
properties. Among the methods dealing with liveness
properties, we mention [CS02], which handles termina-
tion of sequential programs, network invariants [LHR97],
and counter abstraction [PXZ02].

2 Preliminaries

In this section we present our computational model, the
small model theorem, and the procedure that allows to
remove compassion (strong fairness). We assume that
the reader is familiar with LTL, CTL, first-order logic,
and fixpoint operators.

2.1 Fair Transition Systems

As our computational model, we take a fair transition
system (fts) [MP95] S = 〈V,Θ, T ,J , C〉, with:

• V = {u1, . . . , un} — A finite set of typed system
variables . A state s of the system provides a type-
consistent interpretation of the system variables V ,
assigning to each variable v ∈ V a value s[v] in its
domain. Let Σ denote the set of all states over V .
An assertion over V is a first-order formula over V .
A state s satisfies an assertion ϕ, denoted s |= ϕ, if
ϕ evaluates to t by assigning s[v] to every variable v
appearing in ϕ. We say that s is a ϕ-state if s |= ϕ.
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• Θ — The initial condition: An assertion characteriz-
ing the initial states. A state is called initial if it is a
Θ-state.

• T — A finite set of transitions. Every transition τ ∈
T is an assertion τ(V, V ′) relating the values V of
the variables in state s ∈ Σ to the values V ′ in an
S-successor state s′ ∈ Σ. Given a state s ∈ Σ, we
say that s′ ∈ Σ is a τ -successor of s if 〈s, s′〉 |=
τ(V, V ′) where, for each v ∈ V , we interpret v as s[v]
and v′ as s′[v]. We say that transition τ is enabled
in state s if it has some τ -successor, otherwise, we
say that τ is disabled in s. Let En(τ) denote the
assertion ∃V ′.τ(V, V ′) characterizing the set of states
in which τ is enabled, and let ρ denote the disjunction
of all transitions, i.e. ρ =

∨
τ∈T τ . The assertion ρ

represents the total transition relation of S.
• J ⊆ T — A set of just transitions (also called weakly

fair transitions). Informally, τ ∈ J rules out compu-
tations where τ is continuously enabled, but taken
only finitely many times.

• C ⊆ T — A set of compassionate transitions (also
called strongly fair transitions). Informally, τ ∈ C
rules out computations where τ is enabled infinitely
many times, but taken only finitely many times.

For technical reasons, and with no loss of generality,
we assume that T always contains the idling transition
τ0 : V ′ = V , which preserves the values of all system
variables. Taking such a transition is often described as
a stuttering step. We also require that the idling transi-
tion is taken to be a just transition.

Let σ : s0, s1, s2, . . ., be an infinite sequence of states.
We say that transition τ ∈ T is enabled at position k

of σ if τ is enabled on sk. We say that τ is taken at
position k if sk+1 is a τ -successor of sk. Note that several
different transitions can be considered as taken at the
same position.

We say that σ is a computation of an fts S if it
satisfies the following requirements:

• Initiality — s0 is initial, i.e., s0 |= Θ.
• Consecution — For each ` = 0, 1, ..., state s`+1 is a
ρ-successor of s`.

• Justice — for every τ ∈ J , it is not the case that τ is
continuously enabled beyond some point j in σ (i.e.,
τ is enabled at every position k ≥ j) but not taken
beyond j.

• Compassion – for every τ ∈ C, it is not the case that
τ is enabled at infinitely many positions in σ but
taken at only finitely many positions.

Note that the idling transition being just implies that
every computation contains infinitely many stuttering
steps.

2.2 Bounded Fair Transition Systems

To allow the application of the invisible constructs meth-
ods, we further restrict the systems we study, leading

in N : natural where N > 1
tloc : [1..N ]

N

i=1

P [i] ::




loop forever do


0 : if tloc = i then tloc := i ⊕
N

1

go to {0, 1}
1 : await tloc = i
2 : Critical







Fig. 2.1. Program token-ring

to the model of bounded fair transition systems (bfts),
that is essentially the model of bounded discrete systems
of [APR+01] augmented with fairness. For brevity, we
describe here a simplified two-type model; the extension
for the general multi-type case is straightforward.

Let N ∈ N+ be the system’s parameter . We allow
the following data types:

1. bool: the set of Boolean and finite-range scalars;
2. index: a scalar data type that includes integers in

the range [1..N ];
3. data: a scalar data type that includes integers in the

range [0..N ]; and
4. Any number of arrays of the type index 7→ bool.

We refer to these arrays as Boolean arrays .
5. At most one array of the type b : index 7→ data. We

refer to this array as the data array .

Atomic formulas may compare two variables of the same
type. E.g., if y and y′ are index variables, and z is an
index 7→ data array, then y = y′ and z[y] < z[y′]
are both atomic formulas. For z : index 7→ data and
y : index, we also allow the special atomic formula
z[y] > 0. We refer to quantifier-free formulas obtained
by boolean combinations of such atomic formulas as re-
stricted assertions .

As the initial condition Θ, we allow assertions of the
form ∀i.u(i), where u(i) is a restricted assertion.

As the transitions τ ∈ T , we allow assertions of the
form τ(i) : ∀j : ψ(i, j) for a restricted assertion ψ(i, j).
This results in total transition ρ : ∃i : ∀j : ψ(i, j). For
simplicity, we assume that all quantified and free vari-
ables are of type index.

Example 2.1 (The Token Ring Algorithm).
Consider program token-ring in Fig. 2.1, which is a
mutual exclusion algorithm for any N processes.

In this version of the algorithm, the global variable
tloc represents the index of the process currently holding
the token. Location 0 constitutes the non-critical section
which may non-deterministically exit to the trying sec-
tion at location 1. While being in the non-critical sec-
tion, a process guarantees to move the token to its right
neighbor, whenever it receives it. This is done by incre-
menting tloc by 1, modulo N . At the trying section, a
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V :

{
tloc : [1..N ]
π : array[1..N ] of [0..2]

Θ : ∀i.π[i] = 0

T :






τ 1
0 (i) : ∀j 6= i : π[i] = 0 ∧ tloc = i ∧ tloc′ = i ⊕

N
1

∧π′[i] ∈ {0, 1} ∧ pres(π[j])
τ 2
0 (i) : ∀j 6= i : π[i] = 0 ∧ tloc 6= i ∧ π′[i] = 1∧

pres(π[j], tloc)
τ1(i) : ∀j 6= i : π[i] = 1 ∧ tloc = i ∧ π′[i] = 2∧

pres(π[j], tloc)
τ2(i) : ∀j 6= i : π[i] = 2 ∧ π′[i] = 0 ∧ pres(π[j], tloc)
τid : ∀j : pres(π[j], tloc)

J : {τ 1
0 (i), τ1(i), τ2(i), τid | i ∈ [1..N ]}

Fig. 2.2. bfts for Program token-ring

process P [i] waits until it receives the token, which is
signaled by the condition tloc = i.

Fig. 2.2 describes the bfts corresponding to program
token-ring, where for a variable v ∈ V , pres(v) de-
notes v′ = v and for a set U ⊆ V , pres(U) denotes∧

v∈U pres(v). When there is no danger of confusion, we
use pres(a1, . . . , ak) instead of pres({a1, . . . , ak}). Note
that tloc is an index-variable, while the program counter
π is an index 7→ bool array. Actually, π is of type
index 7→ [0..2], but it can be encoded by two boolean
arrays, hence we are justified in referring to it here and
in future examples as a index 7→ bool array.

Strictly speaking, the transition relation as presented
above does not conform to the definition of a Boolean
assertion since it contains the atomic formula tloc′ =
i ⊕

N
1. However, this can be rectified by a two-stage

reduction. First, we replace tloc′ = i⊕
N

1 by (i < N ∧
tloc′ = i+ 1) ∨ (i = N ∧ tloc′ = 1). Then, we replace
the formula τ(i) : ∀j 6= i : (. . . tloc′ = i+ 1 . . .) by
τ(i, i1) : ∀j 6= i, j1 : (j1 ≤ i ∨ i1 ≤ j1) ∧ (. . . tloc′ =
i1 . . .) which guarantees that i1 = i+ 1.

Note that transition τ2
0 (i) is not listed as a just tran-

sition. This allows a process to remain forever in its
non-critical location (0), as long as it diligently transfers
any incoming token to its right neighbor. Also note that
this system has an empty set of compassion transitions,
which we omitted from the presentation in Fig. 2.2.

Example 2.2 (The Bakery Algorithm).
Consider program bakery in Fig. 2.3, which is a vari-
ant of Lamport’s original Bakery Algorithm that offers
a solution to the mutual exclusion problem for any N

processes.

In this version of the algorithm, location 0 constitutes
the non-critical section which a process may nondeter-
ministically exit to the trying section at location 1. Lo-
cation 1 is the ticket assignment location. Location 2 is
the waiting phase, where a process waits until it holds
the minimal ticket. Location 3 is the critical section, and
location 4 is the exit section. Note that y, the ticket ar-
ray, is of type index 7→ data, and the program location
array (which we denote by π) is of type index 7→ bool.

in N : natural where N > 1
local y : array [1..N ] of [0..N ]

where y = 0

N

i=1

P [i] ::




loop forever do


0 : NonCritical

1 : y := maximal value to y[i] while
preserving order of elements

2 : await ∀j 6= i :


 y[j] = 0 ∨

y[j] > y[i]




3 : Critical

4 : y[i] := 0







Fig. 2.3. Program bakery

Note also that the ticket assignment statement at 1 is
non-deterministic and may modify the values of all tick-
ets. Fig. A.1 in Appendix A.1 describes the bfts corre-
sponding to program bakery.

Let α be an assertion over V , and R be an assertion over
V ∪V ′, which can be viewed as a transition relation. We
denote by α ◦R the assertion characterizing all states
which are R-successors of α-states. We denote by α ◦R∗

the states reachable by an R-path of length zero or more
from an α-state. In a symmetric way, we denote by R ◦α
the assertion characterizing all the states which are R-
predecessors of α-states.

2.3 The Small-Model Theorem

Let ϕ : ∀i∃j.R(i, j) be an ∀∃-formula, where R(i, j) is a
restricted assertion which refers to the state variables of
a parameterized bfts S(N) in addition to the quantified
(index) variables i and j. We show that if there exists
some model that does not satisfy this assertion, then
there exists a model smaller than a certain bound that
does not satisfy it. It follows that in order to check the
validity of this formula it is enough to check all models
up to the given bound. The proof follows by contract-
ing a model that does not satisfy ϕ to a smaller model
that does not satisfy ϕ. In order to decrease the size of
the model we consider the existentially quantified vari-
ables in the negation of ϕ. These variables refer to some
processes in the model that does not satisfy ϕ. We keep
the processes refered to by these variables and throw
away the rest.

For simplicity, we assume that the only data vari-
able/constant that may appear in R is the data constant
0. Let N0 be the number of universally quantified vari-
ables, free index variables, and index constants appear-
ing in R. The following theorem, stated first in [PRZ01]
and extended in [APR+01], provides the basis for the
automatic validation of the premises in the proof rules.

Theorem 2.1 (Small model property).
Let ϕ be an ∀∃-formula as above. Then ϕ is valid over
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S(N) for every N ≥ 2 iff ϕ is valid over S(N) for every
N ≤ N0.

For completeness of presentation we include the proof.

Proof. We denote by ψ the formula ∃i∀j.¬R(i, j), which
is the negation of ϕ. Assume ψ is satisfiable in state s of a
system S(N1) for N1 > N0. We show that it is satisfiable
in a state s′ of a system S(N) for some N ≤ N0.

Let V∃ be the set of index variables that appear
existentially quantified in ψ. Let F be the set of index
constants (including 1) and variables which appear free
in ψ. Note that state s provides an interpretation for all
the variables in F and all the arrays which appear in
s. Similarly, let V∀ be the set of index variables that
appear universally quantified in ψ, i.e., the j variables.

The fact that ψ : ∃i∀j.¬R(i, j) is satisfiable in s

means that there exists an assignment α which inter-
prets all variables of V∃ by values in the domain [1..N1]
such that (s, α) |= χ, where χ : ∀j.¬R(i, j), and (s, α) is
the joint interpretation which interprets all system vari-
ables according to state s and all V∃-variables according
to the assignment α.

Let U = {u1 < u2 < · · · < uk} be a sorted list
of values assigned to the V∃ ∪ F -variables by α and s.
Obviously, k ≤ N0. Let f :U → [1..k] be the bijection
such that f(u) = i iff u = ui.

Similarly, let D = {0 = d0 < d1 < d2 < · · · < dr}
be a sorted list of all the values assigned by s to the
elements b[ui] for the data array b and i ∈ [1..k]. We
always include 0 in D, even if it is not obtained as the
value of some b[ui]. Obviously, r ≤ k. Let g:D → [1..r]
be the bijection such that g(d) = j iff d = dj .

We construct a state s′ of system S(k) and an assign-
ment α′ : V∃ 7→ [1..k], such that (s′, a′) |= χ. The state s′

is an interpretation defined as follows: For each variable
v ∈ F , s′ interprets v as s′[v] = f(s[v]). That is, s[v] = ui

iff s′[v] = i. For every boolean array a : index 7→ bool
we have s′[a[i]] = s[a[ui]], i.e., the value of a[i] in state
s′ equals the value of a[ui] in state s. For the data ar-
ray b : index 7→ data, we take s′[b[i]] = g(s[b[ui]]), for
each i ∈ [1..k]. That is, s′[b[i]] = j iff s[b[ui]] = dj . Next,
we define the interpretation α′ as follows: For each vari-
able v ∈ V∃, α′ interprets v as α′[v] = f(α[v]). That is,
α[v] = ui iff α′[v] = i.

We proceed to show that (s′, α′) |= χ. To do so,
consider an arbitrary assignment β′ assigning to each
variable v ∈ j a value β′[v] ∈ [1..k]. We will show that
(s′, α′, β′) |= ¬R(i, j). As we show this for an arbitrary
assignment β′, it follows that (s′, α′) |= ∀j.¬R(i, j). That
is, (s′, α′) |= χ.

Consider the assignment β interpreting each v ∈ j
as ui iff β′[v] = i. It follows that β interprets each vari-
able v ∈ j by a value in [1..N1]. Since (s, α) |= χ, it
follows that (s, α, β) |= ¬R(i, j). By induction on the
structure of the formula ¬R(i, j), we can show that every
sub-formula γ ∈ ¬R(i, j) evaluates to t under the joint

interpretation (s, α, β) iff γ evaluates to t under the in-
terpretation (s′, α′, β′).

We conclude that (s′, α′) |= χ, which leads to the
result that ψ is satisfied in the state s′ of system S(k).
ut

The small model theorem allows to check validity
of ∀∃-assertions on small models. In [PRZ01,APR+01]
we obtain, using project&generalize, candidate induc-
tive assertions for the set of reachable states that are
∀-formulae, checking their inductiveness required check-
ing validity of ∀∃-formulae, which can be accomplished,
using bdd techniques.

2.4 Removing Compassion

The proof rule we are employing to prove progress prop-
erties assumes an incompassionate system (system with
no compassionate transitions). As outlined in [KPP03]1

every fts S can be converted into an incompassionate
fts S = 〈V, Θ, T,J, ∅〉, where

V : V ∪ {nvrτ : boolean | τ ∈ C}
Θ : Θ

T :
⋃

τ∈T \C

f1(τ) ∪
⋃

τ∈C

f2(τ)

J :
⋃

τ∈J\C

f1(τ) ∪
⋃

τ∈C

f2(τ)

where f1, f2: T → T are defined by:

f1(τ) = τ ∧ pres(Nvr)

f2(τ) =


 τ ∧ pres(Nvr) ∨

¬nvrτ ∧ nvr ′τ ∧ pres(V \ {nvrτ})




Nvr = {nvr τ | τ ∈ C}

This transformation adds to the system variables, for
each compassionate transition τ , a new boolean variable
nvrτ . The intended role of nvr τ is, non-deterministically,
to identify a point in the computation beyond which τ is
never enabled. The new transition relation includes two
types of transitions: For each original non-compassionate
transition τ , a transition f1(τ) that behaves like τ while
preserving the values of all nvr τ variables. For each orig-
inal compassionate transition τ ∈ C, T contains a tran-
sition f2(τ) that either takes τ and preserves all nvr τ

variables, or changes nvr τ from f to t and preserves all
other variables. Intuitively, as long as nvr τ = f, f2(τ)
is enabled and, to comply with the justice requirement
associated with f2(τ), either τ is taken infinitely often,
or nvrτ eventually set to t. Once nvr τ is set to t, τ is
not expected to be enabled (and therefore taken) ever
again.

Let Err denote the assertion
∨

τ∈C(En(τ) ∧ nvr τ ),
describing states where both τ is enabled and nvr τ holds,
which indicates that the prediction that τ will never be

1 The proof in [KPP03] is an adaptation of the proofs in [Cho74,
Var91] to the case of transition systems.
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enabled is premature. For a computation σ of S, de-
note by σ⇓V the sequence obtained from σ by project-
ing away the nvr variables. The relation between S and
its compassion-free version S is stated by the following
claim.

Claim. Let σ be an infinite sequence of S-states. Then
σ is an S-computation iff there exists an Err -free com-
putation σ of S such that σ⇓V = σ.

Proof. In one direction, let σ = s0, s1, . . . be a compu-
tation of S. We will show how to define the values of
nvrτ at each position of the computation, such the re-
sulting sequence of S-states σ̃ = s̃0, s̃1, . . . is an Err -free
computation of S.

The intention is to guarantee that transition τ ∈ C
is continuously disabled beyond some position j of σ iff
nvrτ is set to t at some position beyond j. For sim-
plicity, assume that the compassionate transitions are
T = {τ1, . . . , τk}, and that we may refer to nvr τi

simply
as nvr i.

The initial values are determined as follows: for each
i = 1, . . . , k, the initial value of nvr i is taken to be t iff
τi is disabled at all positions of σ.

Next, we consider a step from position j to position
j+1. If sj [V ] 6= sj+1[V ] then we let s̃j+1[Nvr ] = s̃j [Nvr ].
That is, if at least one system variable of system S is
modified in step j, then all the Nvr variables preserve
their values.

On the other hand, if step j is a stuttering step,
i.e. sj [V ] = sj+1[V ], we search for a transition τi ∈ C
such that s̃j [nvr i] = f but τi is disabled at all posi-
tions beyond j. If there exists such a transition, let m
be such a transition with the minimal index. We set
s̃j+1[nvrm] = t and s̃j+1[nvr `] = s̃j [nvr `], for all ` 6= m.

If there does not exist a τi such as described above,
we let again s̃j+1[Nvr ] = s̃j [Nvr ].

Since, as previously observed, all computations con-
tain infinitely many stuttering steps, the above definition
guarantees that nvr i eventually turns t iff τi eventually
becomes continuously disabled. Furthermore, we never
have a state in which τi is enabled while nvr i = t.

In the other direction, consider an Err -free computa-
tion σ of S. We claim that σ = σ⇓V is a computation
of S. Suppose, by contradiction, that some τ ∈ C is en-
abled infinitely often but taken only finitely often in σ.
Then it must be the case that f2(τ) is enabled infinitely
often in σ. As τ is taken finitely often in σ it must be
the case that nvr τ is set in σ as not to violate J. Since
τ is enabled infinitely often, it is enabled after nvr τ is
increased and σ is not Err -free. ut

We can therefore conclude that for every q and r,

S |= q =� � r iff S |= (q ∧ ¬Err) =� � (r ∨ Err)

Which allows us to assume that all bftss we consider
here have an empty compassion set.

For a parameterized system with
transitions T (N) where ρ =

∨
τ∈T (N) τ ,

set of states Σ(N),
just transitions J ⊆ T (N),
invariant assertion ϕ,
assertions q, r, pend and {hτ | τ ∈ J }, and
ranking functions {δτ : Σ → {0, 1} | τ ∈ J }

D1. q ∧ ϕ → r ∨ pend
D2. pend ∧ ρ → r′ ∨ pend ′

D3. pend →
∨

τ∈J
hτ

D4. pend ∧ ρ → r′ ∨
∧

τ∈J
δτ ≥ δ′τ

For every τ ∈ J
D5. hτ ∧ ρ → r′ ∨ h′

τ ∨ δτ > δ′τ
D6. hτ ∧ τ → r′ ∨ δτ > δ′τ
D7. hτ → En(τ )

q =� � r

Fig. 3.1. The liveness rule DistRank

3 The Method of Invisible Ranking

In this section we present a new proof rule that allows,
in some cases, to obtain an automatic verification of live-
ness properties for a bfts of any size. We first describe
the new proof rule, and then present methods for the au-
tomatic generation of the auxiliary constructs required
by the rule using token-ring as an ongoing example.

3.1 A Distributed Ranking Proof Rule

In Fig. 3.1 we present proof rule DistRank (short for
Distributed Ranking) for verifying response properties
for bftss whose only fair transitions are just. The rule
is configured to deal directly with parameterized sys-
tems. As in other rules for verifying response proper-
ties ([MP91], e.g.), progress is accomplished by the ac-
tions of helpful transitions in the system. In a para-
meterized system, the set of transitions has the struc-
ture T (N) = {τ`[i] | ` ∈ [0..m] and i ∈ [1..N ]} for
some fixed m. Typically, [0..m] enumerates the locations
within each process. For example, in program token-

ring, T (N) = {τ`[i] | ` ∈ [0..2] and i ∈ [1..N ]}, where
each transition τ`[i] is associated with location ` ∈ [0..2]
within process i ∈ [1..N ]. Requiring that τ`[i] is just
guarantees that it is taken or disabled infinitely often,
thus that τ`[i] is not continuously enabled and never
taken beyond some point.

Assertion ϕ is an invariant assertion characterizing
all the reachable states. Assertion pend characterizes the
states which can be reached from a reachable q-state
by an r-free path. For each transition τ , assertion hτ

characterizes the states at which τ is helpful . These are
the states s that have a τ -successor s′, and the transition
from s to s′ leads to a progress towards the goal. This
progress is observed by immediately reaching the goal
or a decrease in the ranking function δτ , as stated in
premises D5 and D6. The ranking functions δτ measure
progress towards the goal. The disabling of τ is often
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caused by τ being taken (D6), but may also be caused by
some condition turning false (D5). We require decrease
in ranking in both cases.

Premise D1 guarantees that any reachable q-state
satisfies r or pend . Premise D2 guarantees that any suc-
cessor of a pend -state also satisfies r or pend . Premise D3
guarantees that any pend -state has at least one transi-
tion which is helpful in this state. Premise D4 guarantees
that ranking never increases on transitions between two
pend -states. Note that, due to D2, every ρ-successor of a
pend -state that has not reached the goal is also a pend -
state. Premise D5 guarantees that taking a step from
an hτ -state leads into a state which either already sat-
isfies the goal r, or causes the rank δτ to decrease, or is
again an hτ -state. Premise D6 guarantees that taking a
τ -transition from an hτ -state either reaches the goal r or
decreases the rank δτ . Premise D7 guarantees that in all
hτ -states τ is enabled. Together, premises D5, D6, and
D7 imply that the computation cannot stay in hτ for-
ever, otherwise justice w.r.t τ is violated. Therefore, the
computation must eventually decrease δτ . Since there are
only finitely many δτ and until the goal is reached they
monotonically decrease, we can conclude that eventually
an r-state is reached.

3.2 Automatic Generation of the Auxiliary Constructs

We now proceed to show how the auxiliary constructs
necessary for the application of rule DistRank can be
automatically generated. Recall that we have to con-
struct a symbolic version of each construct so that the
rule can be applied to a generic N . We consider each
auxiliary construct, provide a method for its generation,
and illustrate it on the case of program token-ring.

In token-ring, the progress property we wish to
check is:

π[z] = 1 =⇒ � π[z] = 2

For simplicity, as all processes are symmetric we choose
z = 1, thus, we check

π[1] = 1 =⇒ � π[1] = 2

This property claims that every state in which process
P [1] is at location 1 is eventually followed by a state in
which process P [1] is at location 2.

The construction uses the instantiation S(N0) for the
cutoff value N0 required in Theorem 2.1. For token-

ring, as explained in Subsection 3.3, N0 = 6. We de-
note by Θ

C
and ρ

C
the initial condition and transition

relation for S(N0). The construction begins by comput-
ing the concrete auxiliary constructs for S(N0), denoted
by ϕ

C
, pend

C
. We then compute the concrete hC

k [j]’s
and δC

k [j]’s. Next, we apply project&generalize to derive
the symbolic (abstract) versions of these constructs: ϕ

A
,

pend
A
, hA

k [j]’s, and δA

k [j]’s.
Since we focus on process 1, we would expect the

constructs to have the symbolic forms ϕ : ∀i.ϕ
A
(i) and

pend : pendA

=1 ∧ ∀i6=1.pendA

6=1
(i). For each k ∈ [0..m], we

need to compute hA

k [1], δA

k [1], and the generic hA

k [i], δA

k [i],
that should be symbolic in i and apply for all i, 1 <

i ≤ N . All generic constructs are allowed to refer to the
global variables and to the variables local to P [1] and
P [i].

3.2.1 Computing Concrete and Abstract ϕ:

All concrete assertions are computed on S(N0). We set
ϕ

C
to be reach

C
= Θ

C
◦ ρ∗

C
, the assertion characteriz-

ing all states reachable within S(N0). Compute ϕ
A
(i) =

reach
C
[3 7→ i], by projecting reach

C
on index 3 , and

then generalizing 3 to i. That is, maintaining only vari-
ables pertaining to process 3 and then replacing every
reference to index 3 by a reference to index i.
For example, in token-ring(6),

ϕ
C

=
6∧

j=1

(at−`0,1[j] ∨ tloc = j)

where at−`0,1[j] is an abbreviation for π[j] ∈ {0, 1}.
The projection of ϕ

C
on j = 3 yields

(at−`0,1[3] ∨ tloc = 3)

The generalization of 3 to i yields

ϕ
A
(i) : at−`0,1[i] ∨ tloc = i

The assertion ϕ
A

is ∀i : ϕ
A
(i).

Note that when we generalize, we should generalize
not only the values of the variables local to P [3] but also
the case that the global variable, such as tloc, has the
value 3. The choice of 3 as the generic value is arbitrary.
Any other value would do as well, but we prefer indices
different from 1, N .

In this part we computed ϕ
A
(i) as the generalization

of 3 into i in ϕ
C
, which is denoted by ϕ

A
(i) = ϕ

C
[3 7→ i].

In later parts we may need to generalize two indices,
such as α

A
= α

C
[2 7→ i, 4 7→ j], where α

C
and α

A
are

a concrete and abstract versions of some assertion α.
The way we compute such abstractions over the state
variables tloc and π of system token-ring is given by

α
A
(tloc, π) = i < j ∧ ∃tloc′, π′ :

(
α

C
(tloc′, π′) ∧

map(2, i, 4, j)

)

where

map(2, i, 4, j) =




π[i] = π′[2] ∧ π[j] = π′[4] ∧
tloc = i ⇐⇒ tloc′ = 2 ∧
tloc = j ⇐⇒ tloc′ = 4 ∧
tloc < i ⇐⇒ tloc′ < 2 ∧
tloc < j ⇐⇒ tloc′ < 4




Note that this computation is very similar to the sym-
bolic computation of the predecessor of an assertion,
where map(2, i, 4, j) serves as a transition relation. In-
deed, we use the same module used by a symbolic model
checker for carrying out this computation.
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3.2.2 Computing Concrete and Abstract pend :

Compute the assertion

pend
C

= (ϕ
C
∧ q ∧ ¬r) ◦(ρ

C
∧ ¬r′)∗

characterizing all the states that can be reached from a
reachable (q∧¬r)-state by an r-free path. Then we take
pendA

=1 = pend
C
[1 7→ 1], and pendA

6=1
(i) = pend

C
[1 7→

1, 3 7→ i].
Thus, for token-ring(6),

pend
C

= ϕ
C

∧ at−`1[1]

We therefore take

pendA

=1 : at−`1[1]

and

pendA

6=1
(i) : at−`1[1] ∧ (at−`0,1[i] ∨ tloc = i)

Finally, pend
A

= pendA

=1 ∧ ∀i6=1 : pendA

6=1
(i), yielding

pend
A

= at−`1[1] ∧ ∀i6=1 : (at−`0,1[i] ∨ tloc = i).

3.2.3 Computing Concrete and Abstract hk[i]’s:

We compute the concrete helpful assertions hC

k [i]. This
is based on the following analysis: Assume that set is
an assertion characterizing a set of states, and let τ be
some just transition. We wish to identify the subset of
states φ within set for which the transition τ is an escape
transition. That is, any application of this transition to
a φ-state takes us out of set. Consider the fix-point equa-
tion:

φ = set ∧ En(τ) ∧ AX(φ ∨ ¬set) ∧ AXτ (¬set) (3.1)

The equation states that every φ-state must satisfy set ∧
En(τ), every ρ-successor of a φ-state is either a φ-state
or lies outside of set, and every τ -successor of a φ-state
lies outside of set. Note that the expressions AXψ and
AXτψ can be computed by ¬(ρ ◦(¬ψ)) and ¬(τ ◦(¬ψ)),
respectively.

By taking the maximal solution of the fix-point equa-
tion (3.1), denoted νφ(set ∧ En(τ) ∧ AX(φ ∨ ¬set) ∧
AXτ (¬set)), we compute the subset of states within set
for which τ is helpful.

Following is an algorithm that computes the concrete
helpful assertions {hC

k [i]} corresponding to the just tran-
sitions {τk[i]} of system S(N0). For simplicity, we will
use τ ∈ T (N0) as a single parameter. Let

maxfix(set, τ) : νφ




set ∧ En(τ) ∧
AX(φ ∨ ¬set) ∧
AXτ (¬set)




.

for each τ ∈ T (N0) do hτ := 0
set := pend

C

for all τ ∈ T (N0) s.t. maxfix(set, τ) 6= 0 do[
hτ := hτ ∨ maxfix(set, τ)
set := set ∧ ¬hτ

]

The “for all τ ∈ T (N0)” iteration terminates when it
is no longer possible to find a τ ∈ T (N0) that satis-
fies the non-emptiness requirement. The iteration may
choose the same τ more than once. When the iteration
terminates, set is 0, i.e., for each of the states covered
under pend

C
there exists a helpful justice requirement

that causes it to progress.
Having found the concrete hC

k [i], we compute the ab-
stract hA

k [i] by using project&generalize as follows: for
each k ∈ [0..m], we let hA

k [1] = hC

k [1][1 7→ 1] and hA

k [i] =
hC

k [3][1 7→ 1, 3 7→ i].
Applying this procedure to token-ring(6), we ob-

tain the symbolic helpful assertions described in Appen-
dix A.2.

3.2.4 Computing Concrete and Abstract δk[i]’s:

As before, we begin by computing the concrete rank-
ing functions δC

k [i]. We observe that δC

k [i] should equal
1 on every state for which τk[i] is helpful and should de-
crease from 1 to 0 on any transition that causes a helpful
τk[i] to become unhelpful. Furthermore, δC

k [i] can never
increase. It follows that δC

k [i] should equal 1 on every
pending state from which there exists a pending path
to a pending state satisfying hC

k [i]. Thus, we compute
δC

k [i] = pend
C

∧ ((¬r)E U hC

k [i]), where E U is the
“existential-until” ctl operator. This formula identifies
all states from which there exists an r-free path to an
(hC

k [i])-state.
Having found the concrete δC

k [i], we obtain the ab-
stract δA

k [i] by using project&generalize as follows: for
each k ∈ [0..m], we let δA

k [1] = δC

k [1][1 7→ 1] and δA

k [i] =
δC

k [3][1 7→ 1, 3 7→ i].
The abstract ranking function obtained by applying

this procedure to token-ring(6)are described in Ap-
pendix A.2.

3.3 Validating the Premises

Having computed internally the necessary auxiliary con-
structs, and checking the invariance of ϕ, it only remains
to check that the six premises of rule DistRank are all
valid for any value of N . Here we use the small model
theorem stated in Theorem 2.1 which allows us to check
their validity for all values of N ≤ N0 for the cutoff
value of N0 which is specified in the theorem. First, we
have to ascertain that all premises have the required ∀∃
form. For auxiliary constructs of the form we have stip-
ulated in this Section, this is straightforward. Next, we
consider the value of N0 required in each of the premises,
and take the maximum. Note that once ϕ is known to
be inductive, we can freely add it to the left-hand-side
of each premise, which we do for the case of Premises
D5, D6, and D7 that, unlike others, do not include any
inductive component.

Usually, the most complicated premise is D2 and this
is the one which determines the value of N0. For pro-
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gram token-ring, this premise has the form (where we
renamed the quantified variables to remove any naming
conflicts):


 (∀a.pend(a)) ∧

(∃i, i1∀j, j1.ψ(i, i1, j, j1))


 → r′ ∨ (∀c.pend (c)),

which is logically equivalent to

∀i, i1, c ∃a, j, j1.

((
pend(a) ∧
ψ(i, i1, j, j1)

)
→ r′ ∨ pend(c)

)

The index variables which are universally quantified or
appear free in the formula above, are {i, i1, c, tloc, 1, N}
whose count is 6. It is therefore sufficient to take N0 = 6.
Having determined the size of N0, it is straightforward
to compute the premises of S(N) for all N ≤ N0 and
check that they are valid, using bdd symbolic methods.

We cannot use the same form of auxiliary constructs
to automatically verify algorithm bakery(N), for every
N . Indeed, it is straightforward to see that in order to
conclude that τ2[2] is helpful, one has to consider help-
ful assertions of the form ∀j.ψ(i, j). In Section 7 we
show how to obtain helpful assertions that relate to all
processes and how to change the proof rule for such a
case. We can still use the simple proof rule in order to au-
tomatically verify algorithm bakery(N). However, this
requires the introduction of an auxiliary variable minid
into the system, which is the index of the process which
holds the ticket with minimal value. This is explained in
detail in Section 5.

We emphasize that the generation of all assertions is
completely invisible; so is the checking of the premises
on the instantiated model. While the user may see the
assertions, there is no need for the user to comprehend
them. In fact, being generated using bdd techniques,
they are often incomprehensible.

4 Cases Requiring an Existential Invariant

In some cases, ∀-assertions, i.e., assertions of the form
∀i.u(i), are insufficient for capturing all the relevant fea-
tures of the constructs ϕ

A
and pend

A
, and we need to

consider assertions of the form ∀i.u(i) ∧ ∃j.e(j). In
this section we describe how to obtain constructs that
are boolean combinations of ∀-assertions, illustrating the
procedure and its applications on program channel-

ring, presented in Fig. 4.1.

In this program the location of the token is identified
by the index i such that chan[i] = 1. Computing the
universal invariant according to the previous methods
we obtain ϕ

A
: ∀i.(at−`0,1 ∨ chan[i]), which is inductive

but insufficient in order to establish the existence of a
helpful transition for every pending state.

in N : natural where N > 1
chan : array[1..N ] of boolean

where chan[i] = (i = 2)

N

i=1

P [i] ::




loop forever do


0 : if chan[i] then

(chan[i], chan[i ⊕
N

1]) := (0, 1)
go to {0, 1}

1 : await chan[i]
2 : Critical







Fig. 4.1. Program channel-ring

4.1 Generalizing project&generalize

We provide a sketch of the extension that enables com-
putation of a (∀ ∧ ∃) construct by obtaining a ∀i.u(i) ∧
∃j.e(j) invisible invariant. As before, we pick a value N0,
instantiate S(N0) and use the project&generalize proce-
dure to derive an inductive ∀-assertion ϕ : ∀i.u(i). As
a byproduct of project&generalize, we compute reach

C

– the set of states reachable in S(N0). Being inductive
and implied by the initial condition, the assertion ϕ is
an over-approximation of reach

C
. In order to isolate the

(anticipated) assertion e(j), we first compute the differ-
ence between the concrete reachable set and ϕ, denoted
here by α1. Obviously, we proceed only if α1 is non-
empty. Then, we project&generalize α1 by replacing in-
dex 1 by k (α2 below). Finally, we negate the result to
get the proposed existential invariant (α3 below).

Algorithm

α1 :=
∧N0

i=1
u(i) ∧ ¬reach

C

α2 := α1[1 7→ k]
α3 := ¬α2

We use ∃k.α3(k) as the candidate for an existential in-
variant. In the table below, we list the results of these
computations for the case that reach

C
equals precisely

the conjunction
∧N0

i=1
w(i) ∧

∨N0

j=1
e(j) and the appli-

cation of project&generalize to reach
C

yields precisely
u(i) = reach

C
[1 7→ i] = w(i).

Results when reach
C

=
∧

i w(i) ∧
∨

j e(j)

α1 =
∧

i w(i) ∧
∧

j ¬e(j)
α2 = w(k) ∧ ¬e(k)
α3 = w(k) → e(k)

Note that, while we did not succeeded in precisely isolat-
ing e(k), we computed instead the implication w(k) →
e(k). However, the conjunction ∀i.w(i) ∧ ∃k.(w(k) →
e(k)) is logically equivalent to the conjunction ∀i.w(i) ∧
∃k.e(k).

This technique of obtaining an existential conjunct
to an auxiliary assertion can be used for other auxiliary
constructs.
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in N : natural where N > 1
local y : array [1..N ] of [0..N ]

where y = 0
minid : natural

where minid = 1

N

i=1

P [i] ::




loop forever do


0 : NonCritical

1 : y := maximal value to y[i]
while preserving order

2 : await ∀j :


 y[j] = 0 ∨

y[j] > y[i]




3 : Critical

4 : y[i] := 0




maintain ∀j :


 y[j] = 0 ∨

0 < y[minid] ≤ y[j]







Fig. 5.1. Program bakery with auxiliary variable minid

4.2 Verifying Progress of channel-ring

Applying the extended project&generalize to channel-

ring we obtain, for the set of reachable states, the aux-
iliary construct:

ϕ
A

:




∀i6=k.


 (at−`0,1 ∨ chan[i]) ∧

¬(chan[i] ∧ chan[k])


∧

∃j.chan[j]




Using this extended form of an invariant for both ϕ
A

and
pend

A
, we can complete the proof of program channel-

ring using the methods of Section 3.
Applying the method of invisible ranking, with the

new addition, to program channel-ring and the re-
sponse property at−`1[1]=� � at−`2[1], we obtain, for
example, pend

A
: at−`1[1] ∧ ϕ

A
, and for i > 1, hA

m[i] :
at−`1[1] ∧ at−`m[i] ∧ chan[j]. Thus, Premise D3 be-
comes:



at−`1[1]
∧

∀i6=k.(at−`0,1 ∨ chan[i]) ∧ ¬(chan[i] ∧ chan[k])
∧

∃j.chan[j]




→

at−`1[1] ∧ ∃j.chan[j]

which is obviously valid and has the ∀∃ form.

5 The Bakery Algorithm

As another example of the application of the invisible-
ranking method we consider the modified version of pro-
gram bakery, presented in Fig. 5.1.

As previously explained, in order to be able to use the
rule in its current form we introduce the variable minid.
The variable minid is expected to hold the index of a

process whose y value is minimal among all the posi-
tive y-values. The maintain construct implies that this
variable is updated, if necessary, whenever some y vari-
ables change their values. Already in [PRZ01] we pointed
out that in some cases, it is necessary to add auxiliary
variables in order to find inductive assertions with fewer
indices. This version of bakery illustrates the case that
such auxiliary variables may also be needed in the case
of the invisible ranking method.

The property we wish to verify for this parameter-
ized system is at−`1[z] =⇒ � at−`3[z] which implies
accessibility for an arbitrary process P [z].

Having the auxiliary variable minid as part of the
system variables, we can proceed with the computation
of the auxiliary constructs as explained in Section 3: Af-
ter some simplifications, we can present the automat-
ically derived constructs as detailed in Appendix A.1.
Using these derived auxiliary constructs, we can verify
the validity of the premises of rule DistRank over S(5)
and conclude that for every value of N the property of
accessibility holds.

6 Protocols with p(i, i + 1) Assertions

In algorithms for ring architectures, the auxiliary as-
sertions for a process often depend, in addition to the
process itself, on its immediate neighbors. Assume a ring
of of size N . For every j = 1, .., N , denote j ⊕ 1 =
(j mod N) + 1 and j 	 1 = ((j − 2) mod N) + 1. As-
sertions of the type p(i, i ⊕ 1) and p(i, i 	 1) can be
replaced by equivalent ±-less ∀∃-assertions2. Unfortu-
nately, this often results in formulae not covered by our
small model theorem. We bypass the problem by estab-
lishing a new small model theorem that allows proving
validity of ∀∃p(i, i± 1) assertions. The size of the model
in the new theorem is larger than the one indicated by
the small model theorem, which is why we refer to it
as “modest.” We state the modest model theorem and
prove it in Subsection 6.1, describe how to fine-tune the
bounds in Subsection 6.2, and demonstrate its applica-
tion in Subsection 6.3.

6.1 Modest Model Theorem

Consider a parameterized bfts S(N) with no data vari-
ables or arrays3. Let the formula ϕ: ∀i∃j.R(i, j) be an
∀∃-formula, where R(i, j) is a restricted assertion (aug-
mented by operators ⊕1 and 	1) which refers to quanti-
fied index variables i and j. We show that if there exists
some model that does not satisfy this assertion, then
there exists a model smaller than a certain bound that

2 This is, in fact, the way that assertions containing +1 and ⊕1
are handled in [APR+01]. A simple conversion of this type is given
in Example 2.1.

3 This assumption is here for simplicity’s sake and can be re-
moved at the cost of increasing the bound.
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does not satisfy it. The proof follows by contracting a
model that does not satisfy ϕ to a smaller model that
does not satisfy ϕ. In order to decrease the size of the
model, again, we count the number of existentially quan-
tified variables in the negation of ϕ. This time, as R may
contain ⊕1 and 	1, we ensure that in the smaller model
each of these variables refers to a different process and,
in addition, also pay attention to the way we handle the
chain of processes between every two ‘existentially quan-
tified processes’.

Let K be the number of universally quantified index
variables, index constants (including 1 and N), and free
index variables appearing in R. Assume there are `

index 7→ bool arrays in S and let L = 2`, i.e., L is
the number of different values that can be assigned to
all variables indexed by a single process. Define N0 =
(K − 1)(L2+1)+K.

Theorem 6.1 (Modest Model Theorem). Let ϕ be
an ∀∃-formula as above. Then ϕ is valid over S(N) for
every N ≥ 2 iff ϕ is valid over S(N) for every N ≤ N0.

Proof. We denote by ψ the formula ∃i∀j.¬R(i, j), which
is the negation of ϕ. Assume ψ is satisfiable in state
s of system S(N1) for N1 > N0. We show that ψ is
also satisfiable in a state s′ of a system S(N) for some
N ≤ N0.

Let V∃ be the set of index variables that appear exis-
tentially quantified in ψ. Let F be the set of index con-
stants (including 1 and N) and variables which appear
free in ψ. Note that state s provides an interpretation for
all the variables in F . Observe that |V∃ ∪ F | = K. Sim-
ilarly, let V∀ be the set of index variables that appear
universally quantified in ψ, i.e., the j variables.

The fact that ψ : ∃i∀j.¬R(i, j) is satisfiable in s

means that there exists an assignment α which inter-
prets all variables of V∃ by values in the domain [1..N1]
such that (s, α) |= χ, where χ : ∀j.¬R(i, j), and (s, α) is
the joint interpretation which interprets all system vari-
ables according to state s and all V∃-variables according
to the assignment α.

Let U = {1 = u1 < u2 < · · · < uk = N1} be a sorted
list of values assigned to the F ∪V∃-variables by the joint
interpretation (s, α).

Since N1 > N0 there exist some i < k such that
ui+1−ui > L2+1. We construct a state s′, in an instan-
tiation S(N ′), N ′ < N1, such that s′ |= ψ. The process
is repeated until we obtain an instantiation that satis-
fies ψ where the u’s are at most L2+1 apart from one
another.

Since ui+1−ui > L2+1, there exist two pairs of adja-
cent indices between ui and ui+1 that agree on their lo-
cal array values, i.e., there exist some m and n such that
ui<m<n < n + 1 < ui+1 and, for every boolean array
a: index 7→ bool, we have a[m] = a[n] and a[m+1] =
a[n+1]. Intuitively, removing all processes m+1, . . . , n
does not impact any of the other processes whose indices

are in U , since the array values of their immediate neigh-
bors remain the same. In particular, since m+1 and n+1
are identical, processes m and n+1 maintain the same
neighbors after the removal. Once the processes are re-
moved, the remaining processes are renumbered.

Formally, let N ′ = N1−(n−m), and define the func-
tion g: [1..N1] → [1..N ′] such that g(i) = i for i ≤ m,
and g(i) = i−(n−m) for i ≥ n+1. It is easy to see that g
is injective and onto, hence g−1 is well defined. Consider
the state s′ of system S(N ′) such that for every array
a : index 7→ bool we have s′[a[i]] = s[a[g−1(i)]], i.e.,
the value of a in state s′ at index i is the value of a in
state s at index g−1(i).

We proceed to show that (s′, α′) |= χ. To do so, con-
sider an arbitrary assignment β′ assigning to each vari-
able v ∈ j a value β′[v] ∈ [1..N ′]. We will show that
(s′, α′, β′) |= ¬R(i, j). If this can be shown for every arbi-
trary assignment β′, it follows that (s′, α′) |= ∀j.¬R(i, j).
That is, (s′, α′) |= χ.

Consider the assignment β interpreting each v ∈ j
as r, r ∈ [1..N1] iff β′[v] = g(r). Since (s, α) |= χ, it
follows that (s, α, β) |= ¬R(i, j). By induction on the
structure of the formula ¬R(i, j), we can show that every
sub-formula γ ∈ ¬R(i, j) evaluates to t under the joint
interpretation (s, α, β) iff γ evaluates to t under the in-
terpretation (s′, α′, β′).

We conclude that (s′, α′) |= χ, which leads to the
result that ψ is satisfied in the state s′ of system S(N ′).

Thus, s′ is obtained from s by leaving the values of
the index variables in the range 1..m intact, reducing
the index variables larger than n by n−m, while main-
taining the assignments of their index 7→ bool vari-
ables. Obviously, s′ is a state of S(N1−(n−m)) that sat-
isfies ψ. ut

6.2 Calibrating N0

The bound computed in Theorem 6.1 may be quite large.
In some cases it can be reduced significantly as we ex-
plain below.

General bool’s: If there are index 7→ bool arrays
for arbitrary (finite) bool, L in the bound should be
replaced by the product of the sizes of ranges of all
index 7→ bool variables.

Primed Occurrences: When a variable appears both
unprimed and primed in R(.), both occurrences add to
the count (unless equal). This is in general the case with
the transition relation ρ (that appears on the l-h-s of
several implicants in our proof rules). While it may seem
that each additional variable that can be modified dou-
bles the count, only a single step is to be considered at
a time, which is further restricted by reach (reach ap-
pears explicitly in all the implicants; moreover, it can
always be added since it is shown to be an invariant).
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Hence, in practice, the bound can often be reduced as to
be manageable.

Restricted Use of ±: Assume that for each V∀ variable
under a ± operator, all occurrences of the operator are
of the same kind (only ⊕ or 	 for each variable). Then,
when reducing a large model into a smaller one, instead
of finding two processes at the endpoint of a chain that
agree on values of both their neighbors, it suffices to find
a pair that agrees on one neighbor, which implies a chain
of length L. Consequently, in this case the cut-off value is
N0 = (K− 1)L+K. Further analysis reveals that if only
one operator (⊕ or 	) is applied to V∃ variables, then the
bound can be further reduced toN0 = (K−1)(L−1)+K.

Restricting to “Observable” States: Suppose that a
process only has a “partial” view of its neighbor, i.e.,
can access some, but not all, of its neighbor index 7→
bool array entries. Then, it suffices to find processes
that agree on the part of the state observable by their
neighbors, and not the complete state.

Chains of Consecutive Free Variables: If, in addition
to N, 1 there are longer, or other, chains of consecutive
values the bound is reduced accordingly, since there are
less “gaps” to collapse. E.g., when there is a N − 1, N, 1
combination, the (K − 1) in the bound can be replaced
by (K − 2).

6.3 Example: Dining Philosophers

We demonstrate the use of the modest model theorem
by validating accessibility for a classical solution to the
dining philosophers problem, using rule DistRank.

Consider program Dine that offers a solution to the
dining philosophers problem for anyN philosophers. The
program uses semaphores for forks. In this program,
N−1 philosophers (processes P [1], . . . , P [N−1]) reach
first for their left forks and then for their right forks,
while P [N ] reaches first for its right fork and only then
for its left fork. Program Dine is presented in Fig. 6.1.

The semaphore instructions “request x” and “re-
lease x” appearing in the program stand, respectively,
for “〈when x = 1 do x := 0〉” and “x := 1”. Conse-
quently, the transition associated with “request x” is
compassionate, indicating that if a process is requesting
a semaphore that is available infinitely often, it obtains
it infinitely many times.

As outlined in Section 2.4, we transform the bfts

into a compassion-free bfts by adding two new boolean
arrays, nvr1 and nvr2, each nvr `[i] corresponding to the
request of process i at location `. Appendix A.3 describes
the bfts we associate with Program Dine.

The progress property of the original system is

(π[z] = 1)=� � (π[z] = 3)

which is proved in two steps, the first establishing that
(π[z] = 1)=� � (π[z] = 2) and the second establishing
that (π[z] = 2)=� � (π[z] = 3). For simplicity of pre-
sentation, we restrict discussion to the latter progress
property.

Since P [N ] differs from P [1], . . . , P [N−1], and since
it accesses y[1], which is also accessed by P [1], and y[N ],
which is also accessed by P [N−1], we choose some z in
the range 2, . . . , N − 2 and prove progress of P [z]. The
progress property of the other three processes can be
established separately (and similarly.) Taking into ac-
count the translation into a compassion-free system, the
property we attempt to prove is

(π[z] = 2) =� � (π[z] = 3 ∨ Err) (2 ≤ z ≤ N − 2)

where

Err =




∨N−1

i=1
(π[i] = 1 ∧ y[i] ∧ nvr1[i]) ∨∨N

i=2
(π[i−1] = 2 ∧ y[i] ∧ nvr2[i−1]) ∨

(π[N ] = 1 ∧ y[1] ∧ nvr1[N ]) ∨
(π[N ] = 2 ∧ y[N ] ∧ nvr2[N ])




6.4 Automatic Generation of Symbolic Assertions

Following the guidelines in Section 3, we instantiate the
program Dine according to the small model theorem,
compute the auxiliary concrete constructs for the instan-
tiation, and abstract them. Here, we chose an instanti-
ation of N0 = 6 (obviously, we need N0 ≥ 4; it seems
safer to allow at least a chain of three that does not de-
pend on the “special” three, hence we obtained 6.) For
the progress property, we chose z = 3, and attempt to
prove (π[3] = 2)=� � (π[3] = 3). Due to the structure of
Program Dine, process P [i] depends only on its neigh-
bors, thus, we expect the auxiliary constructs to include
only assertions that refer to two neighboring process at
the same time. We chose to focus on pairs of the form
(i, i	 1).

We first compute ϕ
A
(i, i 	 1), which is the abstrac-

tion of the set of reachable states. We distinguish be-
tween three cases, i = 1, i = N , and i = 2, . . . , N−1.
For the first, we take ϕA

=1
= reach

C
[1 7→ 1, 6 7→ N ] (i.e.,

project the concrete reach
C

on 1 and 6 and generalize
to 1 and N), for the second, we take ϕA

=N
= reach

C
[6 7→

N, 5 7→ N−1] (i.e., project the concrete reach
C

on 6
and 5 and generalize to N and N−1), and for the third
we take ϕA

6=1,N
= reach

C
[3 7→ i, 2 7→ i − 1] (i.e., project

the concrete reach
C

on 3 and 2 and generalize to i and
i−1). The abstract pending sets we obtain are in Ap-
pendix A.3. We then define:

ϕ
A

= ϕA

=1
∧ ϕA

=N
∧ ∀i 6∈ {1, N} : ϕA

6=1,N
(i, i−1)

and define pend
A

= ϕ
A

∧ ¬Err ∧ π[3] = 2.
For the helpful sets, and the δ’s, we obtain, as ex-

pected, assertions of the type p(i, i	 1). The assertions
are described in Appendix A.3.
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in N : natural where N > 1
local y : array [1..N ] of bool where y = 1

N−1

i=1

P [i] ::




loop forever do


0 : NonCritical

1 : request y[i]
2 : request y[i+1]
3 : Critical

4 : release y[i], y[i+1]







‖ P [N ] ::




loop forever do


0 : NonCritical

1 : request y[1]
2 : request y[N ]
3 : Critical

4 : release y[1], y[N ]







Fig. 6.1. Program Dine: Solution to the Dining Philosophers Problem

Thus, the proof of inductiveness of ϕ, as well as all
premises of DistRank, are now of the form covered by
the modest model theorem.

We now compute the size of the instantiation needed.
Premises D1, D3, and D7 relate only to unprimed copies
of the variables. Other premises relate to both unprimed
and primed copies of the variables. When we use the
modest model theorem “as is” the resulting figures are
L = 402 = 1600 (5 possible locations, one fork, two
nvr variables, all counted as current and next), L2+1 ∼
2.5 ·106 which results in a bound of about 107 processes.
In order to get a reasonable figure we use the following
reductions.

• We syntactically analyze all the resulting assertions
and find that only variables in V∃ are referenced by
both ⊕1 and 	1. Variables in V∀ are referenced only
by 	1. Thus, we have to search only for two identical
processes and not for two pairs of adjacent processes.

• The transition ρ is on the left-hand-side of the impli-
cation in all the premises that include primed vari-
ables (D2,D4,D5, and D6). This implies that all pos-
sible counter-examples to these premises satisfy ρ.
According to ρ all primed variables for every j 6∈
{i, i⊕1} equal to their unprimed versions. Thus, if
we treat i, i⊕1 as another 2-element long chain of
universally quantified variables, we do not have to
consider different values of the primed variables. It
follows that we can use L = 40 for our search for
duplicate entries.

As a result, the value L above (the maximal length
of chain with no “equivalent” processes) is 40. There
are three free variables in the system, 1, N , and N−1.
(The reason we include N−1 is, e.g., its explicit men-
tion in ϕ

A
). Following the remarks on the modest model

theorem, since the three variables are consecutive, and
since with all universally quantified variables we use only
i 	 1, the size of the (modest) model we need to take
is 40(u+1)+u+4, where u is the number of universally
quantified variables. Since u ≤ 2 for each of D1–D7 (it
is 0 for D4, 1 for D1, and 2 for D2, D3, and D5), it is
sufficient to choose an instantiation of 128.4

In Table 6.1, we present the number of bdd nodes
computed for each auxiliary construct, and the time it

4 By modifying project&generalize to include only part of the
variables of a process and not all variables this can be further
reduced to 83 processes.

Construct bdd nodes

ϕ 1,779
pend 3,024
ρ 10,778
h`’s < 10
δ`’s ≤ 10

Premise Time to Validate

ϕ (inductiveness) 0.39 seconds
D1 < 0.01 seconds
D2 0.42 seconds
D3 0.01 seconds
D4 163.74 seconds
D5+D6 138.59 seconds
D7 0.02 seconds

Table 6.1. Run time and space results for Dine

took to validate each of the inductiveness of ϕ and all
the premises (D1–D7) on the largest instantiation (128
philosophers). Checking all instantiations (2-128) took
less than 8 hours.

7 Imposing Ordering on Transitions

Sections 3–4 dealt with helpful transitions hk[i] (and
ranking functions) which depended only on the single in-
dex i. In the previous section we showed how to extend
this approach to the case in which hk[i] may also depend
on indices i	1 and i⊕1. In this section we study helpful
assertions that depend on all j 6= i. Such multiple-index
helpful assertions appear quite frequently. As a matter
of fact, most helpful assertions seem to be of the type
h(i) : ∀j.p(i, j) where i is the index of the process which
can take a helpful step, and all other processes (j) satisfy
some supporting conditions. However, such a helpful as-
sertion presents a problem when trying to verify premise
D4 of rule DistRank, since we obtain an ∃∀-disjunct in
the premise. In this section we show a new proof rule for
progress, that allows us to order the helpful assertions in
terms of the precedence of their helpfulness. “The help-
ful” assertion is then the minimal in the ordering, so that
we can avoid the disjunction in the r-h-s of Premise D4.
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7.1 Pre-Ordering Transitions

A binary relation � is a pre-order over domain D if it is
reflexive, transitive, and total.

Consider a bfts S with set of transitions T (N) =
[0..m]×N (as in Subsection 3.1). For every state in S(N),
define a pre-order� over T . From the totality of �, every
S(N)-state has some τ`[i] ∈ T which is minimal accord-
ing to �. We replace premise D4 in DistRank with a
premise stating that for every pending state s, the tran-
sition that is minimal in s is also helpful at s. We call
the new rule PreRank and, to avoid confusion, name
its premises R1–R7. Thus, PreRank is exactly like Dis-

tRank, with the addition of a pre-order �:Σ → 2T ×T ,
premises ascertaining that the relation � is a pre-order
(R8–R10), and replacement of D4 by R4. In order to au-
tomate the application of PreRank, we need to be able
to automatically generate the pre-order relation �. As
usual, we first instantiate S(N0), compute concrete �

C
,

and then use the method project&generalize to compute
an abstract �

A
. The main problem is the computation of

the concrete �
C
. We define s |= τ1 � τ2 if s |= Φ(τ1, τ2)

for the following ctl formula:

Φ(τ1, τ2) :


 A((¬hτ2 ∧ pend ) W hτ1) ∨
¬A((¬hτ1 ∧ pend) W hτ2)


 (7.1)

where W is the weak-until or unless operator.
The intuition behind the first disjunct is that for a

state s, transition τ1 is “helpful earlier” than τ2 if every
path departing from s doesn’t reach hτ2 before it reaches
hτ1 . The role of the second disjunct is to guarantee the
totality of �, so that when τ1 becomes helpful earlier
than τ2 in some computations, and τ2 precedes τ1 in oth-
ers, we obtain both τ1 � τ2 and τ2 � τ1. To abstract a
formula A(ϕ(hC

k [i]) W ψ(hC
m[j])), we compute the asser-

tion A(ϕ(hC

k [2]) W ψ(hC
m[3])) over S(N0) (2 and 3 being

chosen arbitrarily to represent two generic indices), and
then generalize 2 to i and 3 to j. To abstract the nega-
tion of such a formula, we first abstract the formula,
and then negate the result. Therefore, to abstract For-
mula (7.1), we abstract each AW -formula separately,
and then take the disjunction of the first abstract asser-
tion with the negation of the second abstract assertion.

7.2 Case Study: Bakery

Consider program bakery of Example 2.2 (Fig. 2.3).
Suppose we want to verify (π[z] = 1) =� � (π[z] = 3).
We instantiate the system to N0 = 3, and obtain the
auxiliary assertions ϕ, pend , the h’s and δ’s. After ap-
plying project&generalize, we obtain for h`[i], two types
of assertions. One is for the case that i = z, and then,
as expected, h2[z] is the most interesting one, having
an ∀-construct claiming that z’s ticket is the minimal
among ticket holders. The other case is for j 6= z, and
there we have a similar ∀-construct (for j’s ticket min-
imality) for ` = 2, 3, 4. For the pre-order, one must

in N : natural where N > 1

N

i=1

P [i] ::




loop forever do


0 : NonCritical

1 : await ∀j.at−`0,1,2,4[j]
2 : skip

3 : If ∃j : at−`1,2[j]
then go-to l4
else go-to l5

4 : await ∃j : at−`5,6,7[j]
5 : await ∀j : ¬at−`3,4[j]
6 : await ∀j : j < i : at−`0,1,2[j]
7 : Critical







Fig. 8.1. Program Szymanski

consider τ`1 [i] � τ`2 [j] for every `1, `2 = 1, ..., 4 and
i = z 6= j, i = j 6= z, i, j 6= z for (`1, i) 6= (`2, j). The
results for τ`1 [i] � τ`2 [j] for i 6= z that are not trivially
t are described in Appendix A.1

Using the above pre-order, we succeeded in validat-
ing Premises R1–R9 of PreRank, thus establishing the
liveness property of program bakery.

8 Multiple Pre-Order Relations

In the previous section we described how to compute
the pre-order relation. Formula (7.1) is one alternative
of computing the pre-order. We can view rule DistRank

as a special case of rule PreRank, with a trivial pre-
order defined by s |= τ1 � τ2 if s |= Ψ(τ1, τ2), where

Ψ(τ1, τ2) : hτ1 ∨ ¬hτ2 (8.1)

Obviously, other definitions are also possible. In fact,
by allowing different schemes of computing pre-order on
different states, the rule PreRank can be applied to a
wider range of protocols. In this section we demonstrate
this idea on a version of Szymanski’s mutual exclusion
protocol described in Fig. 8.1.

The progress property we would ideally like to ver-
ify is (π[z] = 1=� � (π[z] = 7). This property, however,
is beyond the scope of the methods and rules described
here since it requires some just transition to be helpful
twice. It is not difficult, but rather tedious, to extend our
technique for generating ranking so to deal with cases
where transitions may be helpful up to k times, for any
bounded k. We bypass this difficulty here by restrict-
ing to a “smaller” progress property to which the proof
applies, namely, to the progress property

(π[z] = 1 ∧ ∀i : π[i] ≤ 4) =� � (π[z] = 7) (8.2)

An inspection of the protocol reveals that τ6[i] is
the only transition whose enabling condition is of the
form ∀j.p(i, j) which is an obvious candidate for pre-
ordering of the type we used in Section 7. The other
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For a parameterized system with a transition T = T (N)
set of states Σ(N), just transitions J ⊆ T (N),
invariant assertion ϕ,
assertions q, r, pend and {hτ | τ ∈ J },
ranking functions {δτ : Σ → {0, 1} | τ ∈ J },
and a pre-order �: Σ 7→ 2T ×T

R1. q ∧ ϕ → r ∨ pend
R2. pend ∧ ρ → r′ ∨ pend ′

R3. pend ∧ ρ → r′ ∨
∧

τ∈J
δτ ≥ δ′τ

For every τ ∈ J

R4. pend ∧

(
∧

τ1∈J

τ � τ1

)
→ hτ

R5. hτ ∧ ρ → r′ ∨ h′
τ ∨ δτ > δ′τ

R6. hτ ∧ τ → r′ ∨ δτ > δ′τ
R7. hτ → En(τ )
R8. pend → τ � τ
For every τ1, τ2 ∈ J
R9. pend ∧ τ � τ1 ∧ τ1 � τ2 → τ � τ2

R10. pend → τ � τ1 ∨ τ1 � τ

q =� � r

Fig. 7.1. The liveness rule PreRank

transitions all have enabling conditions of the form p(i) ∧
∀j : q(j) (or simpler) that can be easily handled by the
trivial pre-order which we implicitly use when apply-
ing DistRank. Consequently, we partition the concrete
pending states into pend1 = ∃i :

∨
`6∈{0,6} En(τ`[i]) and

pend2 = pend ∧ ¬pend1. The (concrete) pre-order is
now defined for pend1-states by

τ`[i] � τ`′ [i
′] =





Ψ(τ`[i], τ`′ [i
′]) `, `′ 6= 6

t `′ = 6
f otherwise

and for pend 2-states by:

τ`[i] � τ`′ [i
′] =





Φ(τ`[i], τ`′ [i
′]) ` = `′ = 6

t `′ 6= 6
f otherwise

where Ψ is defined in Formula (8.1) and Φ is defined
Formula (7.1).

These definitions allow us to use project&generalize
on the concrete pre-order (as described in Section 7) and
successfully prove Formula (8.2) for program Szymanski.

9 Discussion

We have presented a method for automatically verify-
ing liveness properties of parameterized systems. The
method is based on automatic computation of the as-
sertions needed by a deductive rule according to the
analysis of a small instance of the problem. Then, us-
ing a small model theorem, the verification conditions of
the deductive rule are discharged using bdd techniques
on a (sometimes not so) small instance of the parame-
terized system. Being able to discharge the verification

conditions on a finite model has the additional advan-
tage that the user never gets to see the assertions, which
is why we termed the method ‘invisible constructs’.

Deductive proofs for liveness require the identifica-
tion of helpful transitions and, in addition, a ranking
function that measures the progress towards the goal.
The deductive proof rule we are using is similar. In order
to facilitate the generation of the ranking function, we
partition it and include one ranking function per helpful
transition. The range of these ranking functions is usu-
ally {0, 1}. There are cases where a single transition must
be helpful more than once before other helpful transi-
tions can be taken. In such cases the restricted range of
{0, 1} (i.e., the helpful transition was or was not taken)
is not sufficient. We would have to consider ranking func-
tions with a larger range set. In general, we believe that
it is best to use the smallest range possible for the rank-
ing functions. The main burden in using our method is
in devising the method in which we compute the explicit
ranking functions and in deciding how to generalize these
explicit assertions. Thus, having a larger range for the
ranking functions would make the method harder to use
and is inadvisable.

A key feature of our method is generalizing a concrete
set of states into a universal assertion. In the paper, we
explain briefly how to obtain existential auxiliary asser-
tions in the case that our approximation of the concrete
set is too abstract. This process can be iterated as fol-
lows: When the assertion we have is too abstract, we can
add an existential conjunct that tightens the abstraction.
When the assertion does not capture the entire concrete
set, we can generalize the difference and add a univer-
sal disjunct. Thus, we can get assertions of the general
form ((· · · (∀ ∧ ∃) ∨ ∀) ∧ ∃) · · ·). Note that the quanti-
fiers are not nested, hence using these assertions we can
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still employ the small-model theorem. We have studied
examples where this iterative computation of the gener-
alization is necessary in order to get assertions that fulfill
the requirements of the deductive rule. This, however, is
beyond the scope of this paper.

Finally, we recall that the problem of uniform verifi-
cation of parameterized systems is undecidable, thus we
cannot hope that our method, or other methods, always
succeed. When the method does not work immediately,
it may help to obtain tighter abstractions. It may help
to increase the size of the small model on which we com-
pute the concrete assertions. The corner stone of our
method is a deductive rule, so manual intervention of
the user may help push a proof forward. Sometimes, un-
fortunately, it would be best to try something completely
different.
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V :

{
y : array[1..N ] of [0..N ]
π : array[1..N ] of [0..4]

Θ : ∀i : π[i] = 0 ∧ y[i] = 0

T :






τ0(i) : ∀j 6= i : π[i] = 0 ∧ π′[i] ∈ {0, 1}∧
pres(π[j], y[i], y[j])

τ1(i) : ∀j, k 6= i : π[i] = 1 ∧ π′[i] = 2 ∧ y′[j] < y′[i]

∧

(
y[j] = 0 ↔ y′[j] = 0∧

y[j] < y[k] ↔ y′[j] < y′[k]

)

∧pres(π[j])
τ2(i) : ∀j 6= i : π[i] = 2 ∧ (y[j] = 0 ∨ y[j] > y[i])

∧π′[i] = 3 ∧ pres(π[j], y[i], y[j])
τ3(i) : ∀j 6= i : π[i] = 3 ∧ π′[i] = 4∧

pres(π[j], y[i], y[j])
τ4(i) : ∀j 6= i : π[i] = 4 ∧ π′[i] = 0 ∧ y′[i] = 0∧

pres(π[j], y[j])
τid : ∀j : pres(π[j], y[j])

J : {τ1(i), τ2(i), τ3(i), τ4(i), τid | i ∈ [1..N ]}

C : ∅

Fig. A.1. bfts for Program bakery
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A bfts’s and Auxiliary Constructs

A.1 Program bakery

bfts: See Fig. A.1.

Auxiliary Constructs The auxiliary constructs for Pro-
gram bakery with minid are:

ϕ
A

: ∀i :


(at−`0,1[i] ↔ y[i] = 0) ∧

(at−`3,4[i] → minid = i)


 ∧

∀i6=j :


(minid 6= i ∨ y[j] > y[i] ∧ y[i] 6= 0 ∨
y[j] = 0) ∧ (y[i] = y[j] → y[i] = 0)




pend
A

: ϕ
A

∧ at−`1,2[z]

(h`[j])A
:




` For j = z For j 6= z

1 at−`1[z] 0
2 at−`2[z] ∧ at−`2[z] ∧ at−`2[j]

minid = z ∧ minid = j

3 0 at−`2[z] ∧ at−`3[j]
4 0 at−`2[z] ∧ at−`4[j]




(δ`[j])A
:




` For j = z For j 6= z

1 at−`1[z] 0
2 at−`1,2[z] ζ(z, j, {2})
3 0 ζ(z, j, {2, 3})
4 0 ζ(z, j, {2, 3, 4})




where ζ(z, j, A) = at−`1[z] ∨ at−`2[z] ∧ y[z] > y[j] ∧
at−`A[j].

Pre-order relation for non-minid-version Let α:π[j] =
2 → y[z] < y[j], β:π[i] = 2∧ y[i] < y[j], and γ(L):π[j] ∈
L→ y[z] < y[j]. The pre-order is described in Fig. A.3.

A.2 Program token-ring

Symbolic Assertions

k = 0 k = 1 k = 2

hA

k [1] 0 at−`1[1] ∧ tloc = 1 0

hA

k [i], i > 1 at−`1[1] ∧ at−`k[i] ∧ tloc = i

Symbolic Ranking

δA

0 [1] : 0
δA

1 [1] : at−`1[1]
δA

2 [1] : 0
δA

0 [i] : at−`1[1] ∧
(1 < tloc < i ∧ at−`0,1[i] ∨ tloc = i)

δA

1 [i] : at−`1[1] ∧
1 < tloc < i ∧ at−`0,1[i] ∨

tloc = i ∧ at−`1[i])




δA

2 [i] : at−`1[1] ∧
1 < tloc < i ∧ at−`0,1[i] ∨

tloc = i ∧ at−`1,2[i]








for
i > 1

A.3 Program Dine

bfts: See Fig. A.2

Abstract Pending Sets

ϕA

=1
=




(y[N ] → π[N ] < 2)
∧ (π[1] > 1 → π[N ] < 2)

∧

(
y[1] ↔

(
π[N ] < 2 ∧
π[1] < 2

))



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V :

{
y,nvr 1, nvr 2 : array [1..N ] of bool

π : array [1..N ] of [0..4]

}

Θ : ∀i. (π[i] = 0 ∧ y[i]

T :





τ0(i) : ∀j 6= i :


π[i] = 0 ∧ π′[i] ∈ {0, 1} ∧
pres(y[i],nvr 1[i], nvr 2[i]) ∧
pres(π[j], y[j], nvr1[j], nvr 2[j])




τ1(i) : ∀j 6∈ {i, i ⊕ 1} :


π[i] = 1 ∧ π′[i] = 2 ∧ pres(nvr1[i], nvr2[i]) ∧
(i < N → (y[i] ∧ ¬y′[i] ∧ pres(y[i + 1]))) ∧
(i = N → (y[1] ∧ ¬y′[1] ∧ pres(y[N ]))) ∧
pres(π[i ⊕ 1], nvr 1[i ⊕ 1], nvr 2[i ⊕ 1]) ∧
pres(π[j], y[j], nvr1[j], nvr 2[j]))




∨

¬nvr 1[i] ∧ nvr′1[i] ∧ pres(π[i], y[i], nvr 2[i]) ∧
pres(π[i ⊕ 1], y[i ⊕ 1], nvr 1[i ⊕ 1], nvr 2[i ⊕ 1]) ∧
pres(π[j], y[j], nvr1[j], nvr 2[j])




τ2(i) : ∀j 6∈ {i, i ⊕ 1} :


π[i] = 2 ∧ π′[i] = 3 ∧ pres(nvr1[i], nvr2[i]) ∧
(i < N → (y[i + 1] ∧ ¬y′[i + 1] ∧ pres(y[i]))) ∧
(i = N → (y[N ] ∧ ¬y′[N ] ∧ pres(y[1])) ∧
pres(π[i ⊕ 1], nvr 1[i ⊕ 1], nvr 2[i ⊕ 1]) ∧
pres(π[j], y[j], nvr1[j], nvr 2[j]))




∨

¬nvr 2[i] ∧ nvr′2[i] ∧ pres(π[i], y[i], nvr 1[i]) ∧
pres(π[i ⊕ 1], y[i ⊕ 1], nvr 1[i ⊕ 1], nvr 2[i ⊕ 1]) ∧
pres(π[j], y[j], nvr1[j], nvr 2[j])




τ3(i) : ∀j 6= i :


π[i] = 3 ∧ π′[i] = 4 ∧
pres(y[i],nvr 1[i], nvr 2[i]) ∧
pres(π[j], y[j], nvr1[j], nvr 2[j])




τ4(i) : ∀j 6∈ {i, i ⊕ 1} :


π[i] = 4 ∧ π′[i] = 0 ∧ pres(nvr1[i], nvr2[i]) ∧
y′[i] ∧ y′[i ⊕ 1] ∧
pres(π[i ⊕ 1], y[i ⊕ 1], nvr 1[i ⊕ 1], nvr 2[i ⊕ 1]) ∧
pres(π[j], y[j], nvr1[j], nvr 2[j])




τid : ∀j : pres(π[j], y[j], nvr 1[j], nvr 2[j])

J : {τ1(i), τ2(i), τ3(i), τ4(i), τid | i ∈ [1..N ]}

Fig. A.2. bfts for Program Dine

ϕA

6=1,N
(i, i−1) =




(y[i−1] → π[i−1] < 2)
∧ (π[i−1] > 2 → π[i] < 2)

∧

(
y[i] ↔

(
π[i−1] < 3 ∧
π[i] < 2

))




ϕA

=N
=




y[N − 1] → π[N − 1] < 2
∧ π[N − 1] > 2 → π[N ] < 3

∧

(
y[N ] ↔

(
π[N − 1] < 3 ∧
π[N ] < 3

))




Symbolic Ranking and Helpful Sets For every j = z +
1, . . . , N−1:

hA

1 [j] : f

hA

2 [j] : π[j−1] = 2 ∧ nvr2[j−1] ∧
π[j] = 2 ∧ ¬nvr2[j]

hA

3 [j] : π[j−1] = 2 ∧ nvr2[j−1] ∧
π[j] = 3 ∧ ¬y[i]

hA

4 [j] : π[j−1] = 2 ∧ nvr2[j−1] ∧
π[j] = 4 ∧ ¬y[i]

δA

1 [j] : t

δA

2 [j] : ¬nvr2[j] ∧
(π[j−1] = 2 ∧ nvr2[j−1] → π[j] < 3)

δA

3 [j] : ¬nvr2[j] ∧
(π[j−1] = 2 ∧ nvr2[j−1] → π[j] < 4)

δA

4 [j] : t
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τ1[j] τ2[j] τ3[j] τ4[j]

τ1[i]
i = j

∨ j 6= z
∨ π[z] = 2

j 6= z ∧ π[z] = 2 ∧ α
∨

i = j = z ∧ π[z] = 1

j = z
∨ (π[z] = 2 ∧ α

∧π[j] 6= 3)

j = z
∨ π[z] = 2 ∧ α

∧π[j] < 3

τ2[i]
j 6= z

∨ π[z] = 2

i = j
∨ β
∨ π[j] 6= 2
∨ j 6= z ∧ y[z] < y[j]

j = z ∨ π[z] = 1
∨ i = j ∧ π[j] 6= 3
∨ i 6= j ∧ (π[j] /∈ {2, 3}∨

β ∨ y[z] < y[j])

j = z ∨ π[z] = 1
∨ i = j ∧ π[j] < 3
∨ i 6= j ∧ (π[j] < 2
∨ β ∨ y[z] < y[j])

τ3[i]
j 6= z

∨ π[z] = 2

¬(i = j = z)∧
(π[z] = 1 ∨ β
∨π[i] = 3 ∨ α)

i = j ∨ j = z
∨ β ∨ π[i] = 3
∨ γ(2, 3)

(i = j ∧ π[i] = 2)
∨ β ∨ π[i] = 3
∨ γ(2..4)
∨ π[z] = 1 ∨ j = z

τ4[i]
j 6= z

∨ π[z] = 2

¬(i = j = z)∧
(π[z] = 1 ∨ β
∨π[i] > 2 ∨ α)

j = z ∨ β
∨ i 6= j ∧ π[i] > 2
∨ γ(2, 3)

i = j ∨ j = z
∨ β ∨ π[i] > 2
∨ γ(2..4)

Fig. A.3. Pre-order for Program bakery


