(will be inserted by the editor)

Software Tools for Technology Transfer manuscript No.

PrROB: An Automated Analysis Toolset for the B Method*

Michael Leuschel!'? and Michael Butler!

1 School of Electronics and Computer Science

University of Southampton
Highfield, Southampton, SO17 1BJ, UK

e-mail: {mal,mjb}@ecs.soton.ac.uk

Universitatsstr. 1, D-40225 Diisseldorf
e-mail: leuschel@cs.uni-duesseldorf.de

November 22, 2007

Abstract. We present PROB, a validation toolset for
the B method. PROB’s automated animation facilities
allow users to gain confidence in their specifications.
PrROB also contains a model checker and a refinement
checker, both of which can be used to detect various
errors in B specifications. We describe the underlying
methodology of PROB, and present the important as-
pects of the implementation. We also present empirical
evaluations as well as several case studies, highlighting
that PROB enables users to uncover errors that are not
easily discovered by existing tools.

1 Introduction

The B-method, originally devised by J.-R. Abrial [2],
is a theory and methodology for formal development of
computer systems. It is used by industries in a range
of critical domains, most notably railway control. The
B Method is intended to support a verification by con-
struction approach to system development. This involves
a formal framework in which models are constructed at
multiple levels of abstraction and related by refinement.
The highest levels of abstraction are used to express the
required behaviour in terms of the problem domain. The
closer it is to the problem domain, the easier it is to val-
idate against the informal requirements, i.e., ensure that
it is the right specification. The lowest level of abstrac-
tion corresponds to an implementation.

Models at any abstraction level are represented in B
as machines. A machine essentially consists of state vari-
ables, a state invariant and operations on the variables.
The variables of a machine are typed using set theoretic

* This research was carried out as part of the EU research
project IST 511599 RODIN (Rigorous Open Development Envi-
ronment for Complex Systems).

Institut fiir Informatik, Heinrich-Heine Universitat Diisseldorf

constructs such as sets, relations and functions. Typi-
cally these are constructed from basic types such as in-
tegers and given types from the problem domain (e.g.,
Name, User, Session, etc). The invariant of a machine is
specified using predicate logic. Operations of a machine
are specified as generalised substitutions, which allow de-
terministic and nondeterministic state transitions to be
specified. There are two main proof activities in B: con-
sistency checking, which is used to show that the ope-
rations of a machine preserve the invariant, and refine-
ment checking, which is used to show that one machine
is a valid refinement of another. These activities are sup-
ported by industrial strength tools, such as Atelier-B [21]
and the B-toolkit [8]. Significant recent developments are
Event-B [1], an evolution of B to support reactive system
development, and the Rodin platform [4], an open tool
platform to support Event-B. In this paper, we focus on
classical B, though PROB is being extended and ported
to the Rodin platform to support Event-B.

In this paper we give an overview of the PROB tool
which we developed to complement the existing tools
for the B Method. PROB is an animation and model
checking tool for the B method. PROB’s animation fa-
cilities allow users to gain confidence in their specifica-
tions. PROB supports automated consistency checking
which can be used to detect various errors in B specifica-
tions. PROB also supports automated refinement check-
ing between B specifications. We describe the function-
ality provided to users of the tool through some simple
examples. We then describe key elements of the imple-
mentation of PROB. We also outline results from apply-
ing the tool to a range of industry-based case studies.

Some of the functionality of ProB was previously in-
troduced in [42,43]. Here we provide a more comprehen-
sive and up-to-date presentation of the tool. All of the
functionality of ProB is presented in a more coherent way
and the algorithms and implementation are described in
more detail. We also present more experimental results

and outline some of the case studies in which the tool
has been used.

1.1 Animation and Ezhaustive Exploration

Based on Prolog, the PROB tool supports automated
consistency checking of B machines via model checking
[20]. For exhaustive model checking, the given sets of a
machine must be restricted to small finite sets, and inte-
ger variables must be restricted to small numeric ranges.
This makes it possible to determine the enabled opera-
tions and allows the checking to traverse all the reach-
able states of the machine with finite types. PROB will
generate and graphically display counter-examples when
it discovers a violation of the invariant. PROB can also
be used as an animator of a B specification. Due to a
mixed depth-first/breadth-first strategy, PROB’s model
checking facilities are also useful for infinite state ma-
chines, not as a verification tool, but as a sophisticated
debugging and testing tool.

The interactive proof process with Atelier-B or the
B-Toolkit can be quite time consuming. A development
can involve going through several levels of refinement to
code generation before attempting any interactive proof
[39]. This is to avoid the expense of reproving POs as
the specification and refinements change in order to ar-
rive at a satisfactory implementation. We see one of the
main uses of PROB as a complement to interactive proof
in that errors that result in counterexamples should be
eliminated before attempting interactive proof. For fi-
nite state B machines it may be possible to use PrROB
for proving consistency without user intervention. We
also believe that PROB can be very useful in teaching
B, making it accessible to new users. Finally, even for
experienced B users PROB will often unveil problems in
a specification that are not easily discovered by existing
tools.

1.2 Refinement Checking

Refinement is a key concept in the B-Method. It al-
lows one to start from a high-level specification and
then gradually refine it into an implementation, which
can then be automatically translated into executable
code. While there is tool support for proving refinement
via semi-automatic proof (within Atelier-B [21], the B-
Toolkit [8], and now also Click'n’Prove [5]), there has
been up to now no automatic refinement checker in the
style of FDR [27] for CSP (Communicating Sequential
Processes) [32,55]. The proof-based approach to refine-
ment checking requires that a gluing invariant be pro-
vided. In contrast, with our automatic approach no glu-
ing invariant needs to be provided. The proof based ap-
proach to refinement is a labour intensive activity. In-
deed, when a refinement does not hold it may take a
while for a B user to realise that the proof obligations

cannot be proven, resulting in a lot of wasted effort. In
this paper we wish to speed up B development time by
providing an automatic refinement checker that can be
used to locate errors before any formal refinement proof
is attempted. In some cases the refinement checker can
actually be used as an alternative to the prover,! but in
general the method presented in this paper is comple-
mentary to the traditional B tools.

1.8 Distinctive Features and Aspects of PROB

Below we summarise some of the distinctive features and
aspects of PROB:

1. B is a high-level modelling language, making strong
use of set theory. Compared to mainstream model
checkers such as Spin [33] or SMV [15,49] the the
difficulty lies in computing the individual states and
possible outgoing transitions as well as finding suit-
able values for the constants and initial values for the
variables.

2. A large part of the rich B language is covered by
PROB including set comprehensions, lambda abstrac-
tions, record types and multiple machines. This is
important in order to be able to deal with existing
real-life specifications from industry.?2 The Event-B
syntax, as introduced by AtelierB and B4Free, is also
supported.

3. PROB provides support for integration of B with
other formalisms. So far the integration with CSP
has been implemented (described later in Section 8);
but in principle one can link B-machines with StAC
(Structured Activity Compensation) [26] (a version
of CSP with a compensation mechanism to model
business processes and transactions) or Object Petri
nets [25]. (The PROB toolset can already be used to
animate and model check StAC and Object Petri net
models in isolation.)

4. PROB has been applied to industrial specifications,
e.g., Volvo Vehicle Function, Mechanical Press, USB
Controller, Mobile Internet Framework.

5. PROB provides both automated consistency check-
ing and refinement checking. The consistency model
checker uses a mixed depth-first /breadth-first heuris-
tic providing good usability, whereas the refinement
checker obtains good performance by employing on-
the-fly normalisation. Recently symmetry reduction
has been added, which can considerably speed up the
consistency checking [44,61].

6. PROB can be used in conjunction with the existing
proof-based tools for B.

1 Namely when all sets and integer ranges are already finite and
do not have to be reduced to make animation by PROB feasible.

2 A faster version of PROB that would only support a subset
of B and thus require major rewriting of industrial specifications,
would in our view not be that useful.

MACHINE Scheduler0

SETS
PROC; ready(p : PROC) =
STATE = {idle,ready, active} =~ WHEN
VARIABLES proc, pst pst(p) = idle
DEFINITIONS THEN
scope_PROC == {p1, p2, p3} pst(p) := ready
INVARIANT END;

proc € P(PROC) A
pSt c proc — STATE A
card(pst™'[{active}]) < 1

enter(p: PROC) =
WHEN
pst(p) = ready A

INITIALISATION pst” ' [{active}] = {}
proc,pst == {},{} THEN
pst(p) := active
OPERATIONS END;
new(p : PROC) =
WHEN leave(p : PROC) =
p € PROC \ proc WHEN
THEN pst(p) = active
pst(p) = idle || THEN
proc := proc U {p} pst(p) := idle
END:; END

Fig. 1. Scheduler specification

2 Using ProB

In this section we introduce the functionality of PROB
though some example specifications and refinements.

2.1 Automatic Consistency Checking

Figure 1 presents a B specification (Scheduler0) of a sys-
tem for scheduling processes on a single shared resource.
In this model, each process has a state which is either
idle, ready to become active or active whereby it controls
the resource. The current set of processes is modelled by
the variable proc and the pst variable maps each cur-
rent process to a state. There is a further invariant stat-
ing that there should be no more than one active pro-
cess (pst™1[{active}], the image of {active} under the
inverse of pst, represents the set of active processes).
Scheduler0 contains events for creating new processes,
making a process ready, allowing a process to take con-
trol of the resource (enter) and allowing a process to
relinquish control (leave). Each of these events is appro-
priately guarded by a WHEN clause®. In particular, the
enter event is enabled for a process p when p is ready
and no other process is active.

The definitions in the DEFINITIONS clause of the
scheduler are used to limit the size of the given set
PROC. Normally, definitions are used to provide macros
that can be included at several places within a machine.

3 WHEN is the the Event-B syntax for the SELECT clause of
classical B.

Kﬁaise_machi ne({}.{}.pPLFALSE{})
proc={} readyq={} activep=p1,
idleset={}

proc={p1} readyq={} ,activep=pl,
idleset={p1}

proc={ p1,p2} readyq={} activep=p1
idleset={ p1,p2}

ready(pl)
proc={ p1,p2} ,activep=pl,idieset={ p2},
readyq(1,p1)
ready(p2)
proc={ p1,p2} ,activep=pl,idieset={},
readyq(1,p1),readyc(2,p2)
enter(pl)

proc={ p1,p2} ,activep=pl,activef,
idleset={} ,readyq(1,p2)

proc={ p1,p2} readyq={} activep=p2,
activef idleset={}

Fig. 2. Consistency counter examples for modified Scheduler0

Since the definition of scope_PROC' is not used else-
where in the machine, it does not affect the meaning
of the specification as far as Atelier-B or the B-Toolkit
are concerned. However, the definition acts as a pragma
for the PROB tool. In this case PROB will automatically
enumerate the given set PROC with the symbolic val-
ues {pl,p2,p3}. This has the effect of making the state
space finite for the purposes of model checking.

Figure 2 presents a counterexample resulting from
performing an automatic consistency check on a modi-
fied version of the scheduler specification using PROB.
The modification involves removing pst~![{active}] =
{} from the guard of the enter operation. This trace
of operations shown in the counterexample leads to a
state in which both pl and p2 are active. This state
clearly violates the invariant card(pst=![{active}]) < 1.
Although not shown in Figure 2, PROB can pinpoint for
the user the invariant clauses which are violated by a
reachable state. Re-instating the condition in the guard
of the enter operation results in a successful consistency
check, i.e., an exhaustive search of the reachable states
for a system of three processes finds no states that vio-
late the invariants.

REFINEMENT Schedulerl
REFINES Scheduler0
VARIABLES
proc, idleset, readyq,
activep, activef
INVARIANT
idleset € P(PROC) A
readyq € seq(PROC) A
activep € PROC' N
activef € BOOL

INITTALISATION
proci={} |
readyq =[] ||
activep :€ PROC ||
activef := FALSE ||
idleset := {}

OPERATIONS

new(p : PROC) =
WHEN
p € PROC \ proc
THEN

idleset := idleset U {p} ||

proc := proc U {p}
END;

ready(p : PROC) =
WHEN
p € idleset
THEN
readyq := readyq < p ||
idleset := idleset \ {p}
END;

enter(p: PROC) =

WHEN
readyq # [] A
p = first(readyq) A
activef = FALSE

THEN
activep :==p ||
readyq = tail(readyq) ||
activef :=TRUFE

END;

leave(p : PROC) =
WHEN
activef = TRUE A
p = activep
THEN
idleset := idleset U {p} ||
activef := FALSFE
END

Fig. 3. Refinement of the scheduler

2.2 Refinement checking

Figure 3 presents a B refinement called Scheduler!. The
refines clause indicates that Scheduler? is intended to be
a refinement of Scheduler(. In this refinement, instead
of mapping each current process to a state, we have a
pool of idle processes, idleset, and a queue of ready pro-
cesses, readyq. We also have a flag indicating whether or
not there is a process currently active (activef). When
activef is true, the identity of the currently active pro-
cess is stored in activep. The queue of ready processes
means that processes will become active in the order in
which they became ready?. Now the enter event is en-
abled for process p when p is the first element in the
queue and there is no active process.

We expect that Schedulerl is a valid refinement of
the machine Scheduler(since any sequence of opera-
tions in Scheduler! should also be possible in Scheduler(.
Refinement checking of Scheduler! against Scheduler0
with our tool for a maximum of three processes (PROC =
{pl,p2,p3}) finds no counterexamples. If we were to
weaken the guard of the refined enter event, remov-
ing the clause activef = FALSE, this weaker refinement
would allow more than one process to take control of the
single resource. In terms of operation sequences, it would
allow sequences in the refinement in which, for example,

4 In the ready event, readyq « p represents the appending of p
to the end of readyq.

enter(pl) is followed by enter(p2) without leave(pl) oc-
curring in between. Such sequences are not possible in
Scheduler0 and Scheduler! would thus be an incorrect
refinement. The following counterexample is generated
by PROB for the incorrect refinement: new(pl), new(p2),
ready(pl), ready(p2), enter(pl), enter(p2). This coun-
terexample discovered by PROB is a trace allowed by
the incorrect refinement that is not a trace of the speci-
fication Scheduler0. This counterexample is the same as
the counterexample shown in Figure 2 generated when
performing the automatic consistency checking on the
incorrect version of Scheduler0. It is important to re-
member though that refinement checking is a different
form of analysis to consistency checking. A consistency
checking counterexample is a sequence of operation calls
that leads to a violation of an invariant in a single ma-
chine. A refinement counterexample is a sequence of ope-
ration calls that is allowed in a refined machine but is
not allowed in its intended abstraction.

3 The Challenges of Animating B

Let us first clarify some of the issues that an animator
for B has to address:

1. It has to be able to find values for the constants of
the machine that satisfy the PROPERTIES clause.
The machines in Figure 1 and 3 do not have con-
stants, so this issue does not arise there. But many
machines have constants, often with complicated prop-
erties. An interesting use of the animator is thus to
check whether there actually exist values for the con-
stants that satisfy the properties of the machine.

2. The animator has to find values for the variables that

satisfy the INITTALISATION clause.
Sometimes this is relatively straightforward—Ilike the
initialisation in Figure 1—but in many cases the ini-
tialisation is more complicated. For example, a com-
mon initialisation clause consists of vy, ..., v, : (INV)
where v1, ..., v, are the variables of the machine and
INYV is the invariant. This is a nondeterministic as-
signment with the constraint that the resulting vari-
able values must satisfy the invariant.

3. Given a state of a machine, the animator has to de-
termine whether the INVARIANT clause is violated.
Furthermore, in case the invariant is violated, it is of
interest to indicate which part of the invariant was
violated.

4. Given a state and parameter values, the animator
should be able to decide whether a given operation
is applicable or not, and, if it is, compute the effect
of the operation as well as the return values.
Usually, it will also be of interest to let the animator
determine the possible parameter values automati-
cally.

Unfortunately, in the general case, all of the above
problems are undecidable. Indeed, integer arithmetic can

be used and the set of possible states of a B machine is
generally infinite, as types can be infinite (or have no
fixed cardinality bound). Furthermore, the set of possi-
ble values for an individual operation parameter can be
infinite. The same is true for existentially or universally
quantified variables, as well as various local variables
introduced in nondeterministic substitutions. In partic-
ular, it is thus undecidable whether an operation can
be applied or not, even if the initial state as well as all
arguments are completely specified. Preconditions and
guards can be arbitrarily complex with existential or uni-
versal quantification over infinite sets. Let us examine a
simple example to illustrate this point:

gold = WHEN !n.(n:NAT & n>2 =>
#(x,y). (x<2*n & y<2*n & 2*n=x+y &
card({z|z:NAT1 & z<x & x mod z = 0})=1 &
card({z|z:NAT1 & z<y & y mod z = 0})=1))

THEN skip END

This is a perfectly legal B operation which can be
executed if and only if Goldbach’s conjecture (i.e., that
every even number greater than 2 can be expressed as
the sum of two primes) is true.® Similarly, given that
deferred sets can be infinite we get undecidability via
this route, even in the absence of arithmetic.

8.1 Making things decidable via finite types

Every variable, constant and parameter in B can be
given a type. Below, we formally define the set of types
that are allowed in B. The full details about type infer-
ence can be found in [2].

Recall, that in B there are two ways to introduce sets
into a B machine: either as a parameter of the machine
(by convention parameters consisting only of upper case
letters are sets; the other parameters are integers) or via
the SETS clause. Sets introduced in the SETS clause
are called given sets. Given sets which are explicitly enu-
merated in the SETS clause are called enumerated sets,
the other given sets are called deferred sets. Other types
may be constructed using the Cartesian product (x) and
powerset (P) constructors.

Definition 1. Let M be a B machine with given sets
Sy and parameter sets Py;. The basic types BasicType
of the machine M are inductively defined as the least set
satisfying:

1. BOOL € BasicType

2. Z € BasicType

3. S € BasicType if S € Sy U Py

4. 11 XT19 € BasicType if 11 € BasicType/NTo € BasicType
5. P(7) € BasicType if T € BasicType

5 While the conjecture may eventually be decided by mathe-
maticians (see, however, [38] where Knuth argues that it may be
unprovable), it is clearly outside the range of current automated
theorem proving methods to do so.

One way to make animation decidable is to ensure
that via typing, any variable, parameter or constant can
only take on finitely many possible values. This can be
accomplished by requiring that, at least for the purposes
of the animation, all sets in Sj;UP); of a B machine be fi-
nite. Note that enumerated sets are already finite; hence
we just need to fix some finite cardinality for the deferred
sets and parameter sets. We also only consider B’s im-
plementable integers, ranging from MININT..MAXINT
(see, e.g., [21]).5 Furthermore, for the purposes of ani-
mation, we will usually set MININT and MAXINT to
small absolute values, but allow larger values if they are
explicitly used or constructed by the machine. (We re-
turn to this issue later, as it has some implications for
soundness.)

These restrictions turn animation of B into a decid-
able problem. A naive solution to the animation problem
is thus simply to enumerate all possibilities for the val-
ues under consideration; e.g., to find possible values of
the constants that satisfy the PROPERTIES clause, we
“simply” need to enumerate all possible values for the
constants and check whether all PROPERTIES evalu-
ate to true (this in turn can be decided as existential
and universal variables also only have finitely many pos-
sible values).

3.2 Efficiency

Above we have seen how to make animation decidable
by ensuring that every variable, parameter and constant
has only finitely many possible values. But obviously the
number of possible values will often be of such consider-
able size so as to make the sketched decision procedure
impractical. Take for example the following predicate:
myrels: POW(A<->A) where A is a deferred set. The ba-
sic type of the variable myrels is POW(POW(A*A)). As-
suming that we set the cardinality of A to 4, the variable
myrels has 92""* = 265536 possible values, and even with
a cardinality of 3 we still have 2°!2 &~ 1.34x10®* possible
values.

This shows that we should avoid or at least delay
enumeration as much as possible. In case enumeration
is unavoidable, we may have to set the cardinality of
the basic sets to small or very small values (e.g., with
a cardinality of 2 we only get 65536 possible values for
myrels).

The former is implemented within PROB, which works
in multiple phases as illustrated in Fig. 4. In the first
phase, only deterministic propagations are performed

6 Machines using the mathematical set of integers are allowed,
but they are treated as implementable integers.

7 Notice that type inference is not shown in the figure; it is run
once when a new machine is loaded for animation. Also, the figure
just illustrates the problem of determining the enabled operations.
The procedure for finding valid constants and initialisations is sim-
ilar.

(e.g., the predicate x=1 will be evaluated but the pred-
icates x:INT and y:z will suspend until they either be-
comes deterministic or until the second phase starts). In
the second phase, a restricted class of non-deterministic
enumerations will be performed. For example, the predi-
cate x:{a,b} will suspend during the first phase but will
lead to two solutions x = a and x = b during the sec-
ond phase. In the final phase, all variables, parameters
and constants that are still undetermined (or partially
determined) are enumerated.
In summary, a predicate of the form x: NAT & x<10
& x=5 will thus result in no enumeration at all: phase
1 will determine that the only possible value for x is
5. Similarly, for f:A-->A & !'x.(x:A => f(x) = x) no
enumeration for f will be required (and the PROB kernel
can quite easily handle cardinalities of above 100 for A).
Some of the further challenges of animating B are
detailed below:

1. B provides sophisticated data structures, including
sets, Cartesian products, relations, sequences, etc.
This also means that deciding whether two variables
have the same value is a non-trivial task (e.g., {a, b} =
{b,a} or {{a,b},{a},{c.a}} = {{a},{c.a}. {b,a}}).
It is thus also non-trivial to decide whether a given
state of the machine has already been encountered
or not.

2. B provides a large range of operations over the data-
types, ranging from basic set operations such as union
or intersection, up to more involved operations such
as inverting or computing the transitive closure of a
relation. The use of lambda abstractions or set com-
prehensions are also especially tricky, due to the need
to convert arbitrarily complex predicates into sets of
values (e.g., a simple example would be:
r={yly:ran(f) & card(f~[{y}]) = 1}, wherer are
all the elements in the range of f which are the image
of a single element in the domain of f).

In PROB these issues are dealt with by the PROB-
kernel, which treats the basic datatypes of B and their
operations. The PROB-kernel is implemented in Prolog
with co-routines. This kernel is tailored for extensibility
and deals with almost all B operators. It is also capable
of dealing with large data values. In order to represent
B’s data structures we have employed classical Prolog
terms, notably representing sets as lists without repeti-
tion. In order to avoid multiple representations of the
same state, these Prolog representations are normalised.

In the following section we go into more detail about
the architecture and implementation of the PROB toolset.

4 The Implementation of ProB

4.1 Overview

The overall architecture of PROB is shown in Fig. 5. To
read in the AMN (Abstract Machine Notation) syntax

we employ the jbtools [60] parser by Bruno Tatibouet; a
parser written using javacc, which we slightly extended
to support the application of functions with multiple
arguments (allowing f (a,b) rather than f(al|->b), for
example), as well as various other syntactic extensions
employed by AtelierB and B4Free. This parser produces
the abstract syntax tree in XML format, which is con-
verted into a Prolog encoding suitable for the PROB
interpreter. The PROB interpreter evaluates the B Ma-
chine’s constructs and calls the PROB kernel to treat the
core B datatypes and operators. The PROB interpreter
itself is driven by various other components of PROB,
one being the PROB animator.

4.2 The PROB Interpreter

The PrROB interpreter is written in a structured opera-
tional semantics [51] (SOS) style. More precisely, given
a description o7 of the state of a B machine, we describe
which operations (with parameter values) can be applied
in o7 and which new states can be reached by perform-
ing those operations. For this, the constructs of B were
divided into three main classes:

1. B substitutions, which modify the variables of a B
machine,

2. B expressions, which do not modify the variables but
denote values, and

3. B predicates, which are either true or false.

To manipulate these constructs, the PROB interpreter
contains Prolog predicates® to execute statements, com-
pute expressions, and test Boolean expressions. Each of
these Prolog predicates has access to the global state of
the machine (the state of the variables of a machine) and
a local state that contains the values for local variables
and parameters of operations. In order to manipulate
B’s basic data structures and operators, the PROB in-
terpreter calls the PROB kernel, which we discuss later.

Here is a very small part of the interpreter that tests
Boolean expressions, responsible for handling the logical
connectives “and” and “or”:

b_test_boolean_expression(’And’ (LHS,RHS) ,LocalSt,State) :-
b_test_boolean_expression(LHS,LocalSt,State),
b_test_boolean_expression(RHS,LocalSt,State).
b_test_boolean_expression(’0r’ (LHS,RHS) ,LocalSt,State) :-
b_test_boolean_expression(LHS,LocalSt,State)
3 /* or x/
(b_not_test_boolean_expression(LHS,LocalSt,State),
b_test_boolean_expression(RHS,LocalSt,State)).

The first argument of the Prolog predicate is the
encoding of the Boolean expression to be tested. The
second argument (LocalSt) contains the values of all
variables local to an operation, i.e., the choice variables
from Any statements and the operation’s arguments.
The third argument (State) contains the values of all

8 Note that there is a potential confusion concerning the use of
the word “predicate” in B and in Prolog.

S—
State of
Machine

S—
New
State 1

Fig. 4. Basic Phases of ProB Animation

Enumeration of
Operation: Variables,
Parameters over S —
Op(xy) = Interpretation L —"| Base Types
PRE ... and Non-Deterministic State 2
Simple Propagation
Propagation \

B_Machine jbtools > ZL%?,;“&
(in AMN) / (in Java) g (in Java)
Included

Machine(s)

m— Prolog
Encoding
ProB
/ Animator
GUI ProB ProB
: i o——>] Temporal Interpreter
| | Model Checker
\ ProB i
Refinement
Checker ProB
B-Kernel

Fig. 5. The Main Components of ProB

“global” variables and constants of the B machine under
consideration. The b_test_boolean_expression predicate
also has a counterpart, b_not_test_boolean_expression,
which is used to check whether a Boolean expression
evaluates to false. This is required, as Prolog’s built-in
negation is not sound in general.

For expressions, the corresponding Prolog predicate
has an extra argument to return the value of the expres-
sion, while for substitutions the corresponding Prolog
predicate has an extra argument where it returns the
updates (i.e., changed variables with their new values).

While it is non-trivial to cover the vast syntax of B,
the code of the PROB interpreter is for the most part
relatively simple. The reason is that the PROB kernel
is very flexible and “hides” much of the complexity of
B from the PROB interpreter. In fact, while the PROB
interpreter is written in classical Prolog, the PROB ker-
nel uses the co-routining features of Prolog to provide
a robust foundation, which allows the interpreter to be
written in a straightforward way. The kernel also pro-
vides the various propagation phases shown in Fig 4.
In the next section, we present more details about the

PRrOB kernel. Some complicated aspects inside the inter-
preter are the treatment of set comprehensions, lambda
abstractions, as well as universal and existential quan-
tification. Here, co-routining is used to defer the eval-
uation of such constructs until sufficient information is
available. More precisely:

— Jx.(z € XType A P) will suspend until all open
variables in P (i.e., free variables of P excluding x)
have received a value, at which point the interpreter
will try to find a (single) solution for P.

— Va.(r € XType = P) will be expanded out into a
large conjunction if possible; otherwise it will sus-
pend in a similar way to the existential quantifica-
tion. E.g., in the context of the machine from Fig. 1,
the formula Vp.(p € PROC = pst(p) = s) would
be expanded out into pst(pl) = s A pst(p2) = s A
pst(p3) = s.

—{ x|z € XType N P } will suspend until all open
variables in P have received a value, at which point
the set is computed. Lambda abstractions are treated

by converting them into a set comprehension with an
additional parameter (the return value).?

4.8 The PROB Kernel

First, let us see how some of B’s data structures are
actually encoded by the PROB Kernel:

B Type B value Prolog encoding
number 5 int (5)
boolean true term(bool(1))
element of set S C £d(3,’8’)
pair 45 (int(4),int(5))
set {4,5} [int(4), int(5)]
relation {4— 5} [(int(4),int(5))]
sequence [4, 5] [(int(1),int(4)), (int(2),int(5))]

As can be seen, sets are represented by Prolog lists;
the PROB kernel ensures that the same element is not
repeated twice within a list. The Prolog term £4(3,’S?)
represents the third element of the given or deferred
set S. So if S is defined within the B machine by S
= {A,B,C, D} then £d(3,’8’) denotes the constant C.
Sequences are encoded in the standard B style, i.e., as a
function from 1..size(s) to the elements of the sequence.

The kernel then contains Prolog predicates for all of
B’s operators and mainly uses SICStus Prolog’s when
co-routining predicate to control the enumeration of B
values. More precisely, the binary when predicate [59]
suspends until its first argument becomes true, at which
point it will call its second argument. From a logical
point of view, the when declarations can be ignored, as
they are just annotations guiding the Prolog execution
engine: they do not change the logical meaning of a Pro-
log program. We employ the coroutining to ensure that
enumeration will be deferred until either only a single or
no possible value remains, or until the PROB kernel has
been instructed to move to a more aggressive enumera-
tion phase.

In working with finite base types and enumeration,
the PROB kernel has some similarities with the classical
finite domain constraint solver CLP(FD) [19]. However,
there are also considerable differences:

— Our solver provides multiple phases, but does not
yet provide a way to control the enumeration order
within a single phase.

— We provide multiple datatypes building upon the fi-
nite domain base types.

— We provide many sophisticated operations over the
basic finite domains.

4.4 The PROB Animator

The first graphical user interface of the PROB animator
was developed using the Tcl/Tk library of SICStus Pro-
log. The user interface was inspired by the ARC tool [31]

9 In recent work [45] we have developed a method to keep cer-
tain set comprehensions and lambda abstractions symbolic, only
evaluating them on demand.

for system level architecture modelling and builds upon
our earlier animator for CSP [40].

Our animator supports (backtrackable) step-by-step
animation of the B-machines. As can be seen in Figure 6
it presents the user with a description of the current state
of the machine, the history that has led the user to reach
the current state, and a list of all the enabled operations,
along with proper argument instantiations. Thus, unlike
the animator provided by the B-Toolkit, the user does
not have to guess the right values for the operation ar-
guments. The same holds for choice variables in nonde-
terministic assignments where the user does not have to
find values that satisfy the constraint. If the number of
enabled operations becomes larger, one could envisage a
more refined interface where not all options are imme-
diately displayed to the user. This is being developed in
the Rodin platform within Eclipse [4]. The current ver-
sion already allows the user to set an upper limit on the
number of ways the same operation can be executed.

The PROB animator also provides visualisation of
the state space that has been explored so far, and pro-
vides visual feedback on which states have been fully
explored and which ones are still “open.” For the visual-
isation we make use of the dot tool of the graphviz pack-
age [7], and various ways to visualise larger state spaces
compactly have been developed and implemented [47].

5 Exhaustive Consistency Checking in PrROB

In this section we outline the method of exhaustive con-
sistency checking implemented in PROB.

5.1 OQwerview of the Algorithm

By manually exploring a B-machine using the PROB ani-
mator, it is possible to discover problems with a machine,
such as invariant violations, deadlocks (states where no
operation is applicable) or other unexpected behaviour
not encoded in the invariant. We have implemented a
model checker [20], which will do such an exploration
systematically and automatically. It will alert the user as
soon as a problem has been found, and will then present
the shortest trace (within currently explored states) that
leads from an initial state to the error. The model checker
will also detect when all states have been explored, and
can thus also be used to formally guarantee the absence
of errors. This will obviously only happen if the state
space is finite (and small enough to fit into memory),
but the automatic consistency checker can also be ap-
plied to B machines with large or infinite state spaces
and will then explore the state space until it finds an
error or runs out of memory.

The model checker drives the PROB interpreter in
the same way that the PROB animator does. In addition,
the model checker needs to keep track of which states

8686

ProB 1.2.7: [CarlaTravelAgency_correctedl.mch] : (€) Michael Leuschel

DEFINITIONS
rooms_available(h) == (d
cars_available(r) == (d

{global_room bookings)
{global car bookings)

INVARIANT
session: SESSION +-> USER
session_response: SESSION +-- RESP
session_card: SESSION +-- CARD
session_state: SESSION +-- SESSION_STATE
session_request: SESSION +-> SESSION_REQUEST
user_hotel bookings: USER +- HOTEL
user_rental bookings: USER +-- CAR_RENT
rooms_hotel: ROOM --- HOTEL
cars_rental: CAR =-> CAR_RENT
global room bookings: ROOM +=> USER
global_car_bookings: CAR +-> USER

lom{session)=don(session_response) (session)=d

iom{session)=don{session_state)

om{user_hotel bookings)=dom{user_rental bookings)
(session) <: dom(user_hotel_bookings)

{ userl:dom(user_hotel bookings)

rooms_hotel-[{h}])
cars_rental-[{r}]}

(session_card)
(session)=dom(session_request)

user_hotel bookings(userl})

rooms_hotel-[(h}];
cars_rental-[{r}]

noHotel &

EnabledOperations

History

e 1. | — State Properties

Invariant_ok ,,Iugin(userz)--:v(sessZ)
IAGENCY _USER={user1,userz} | [login(user1)-->(sessz)
session(sess1,user2) | [lbookRoom(sess1)
session(sess3,user2) : pookCar(sess1)
session_response(sess1,undef) | unbookRoom(sess1)
session_response(sess3,done) | unbookCar(sess1)
session_card(sess 1, unknown) | [pgain(sess3)
session_card(sess3,valid) | logout(sess3)
session_state(sess1,s1) oY BACKTRACK
session_state(sess3,s7)

session_request(sess1,none)

session_request(sess3.br)

user_hotel_bookings(userz,h1)

user_rental_bookings(userz,c1)

rooms_hotel(hla,h1) A

|again(sess1)
response(sess3)
enterCard{sess3)
bookRoom(sess3)
response(sess1)
enterCardisess1)
bookCar(sess1)
login{userz)-->(sess3)
login(userz)-->(sess1)
initialise_machine({}, {515 LI I(h2D)
setup_constants({user1,user2})

— 4k

Fig. 6. Animation of the E-Travel Agency Case Study (c.f., Section 7.3.2)

have already been explored, and needs to decide which
unexplored state to investigate next.

To avoid the same state (e.g., s; = ({a,b}) and
s2 = ({b,a})) being treated multiple times, the PROB
interpreter contains a normalisation procedure. Further-
more, to quickly determine whether a particular state of
a B machine has already been encountered, state hashing
is used.

The exploration is derived from the A* algorithm,
and can be tuned to perform in the extreme cases as
either a depth-first or breadth-first exploration. The de-
fault behaviour uses a mized depth-first breadth-first strat-
egy, where a random factor is used to decide whether any
given node will be treated in depth-first or breadth-first
order. This heuristic has proven itself to be very good in
practice. Indeed, in our case studies, at least for the ini-
tial machines being developed, errors were easy to find
and often fell into one of the following two categories:

1. Systematic errors inside an operation that occur in
most states; here it is not important to locate a par-
ticular state just to systematically try out all opera-
tions for all arguments.

2. Errors that arise when the machine is animated long
enough (e.g., deadlock errors); here it is often not
important which particular path is taken, just that
the machine is animated long enough.

Breadth-first is good at picking out errors of type 1 but
may fail to find errors of type 2 (if the state space is too
big to be explored exhaustively). Depth-first is good at
picking out errors of type 2 but may fail to find errors of

type 1. Our heuristic mixed strategy will pick out both
types of errors quickly.

The visited states are stored in Prolog’s clause data-
base. While this is not as efficient as for example tabling!®,
it allows the model checking state to be easily queried
(e.g., for visualisation) and saved to file. For a formalism
as rich as B, most of the model checking time is spent
evaluating the invariant and computing the enabled ope-
rations and the resulting new states. The time needed to
look up whether a given state has already been encoun-
tered is typically not the bottleneck.

Currently the consistency checker detects the follow-
ing conditions:

1. Invariant violation errors;

2. Assertion violation errors (assertions are properties
of a B machine that should follow from the invariant);

3. Deadlock errors (a deadlocked state is one in which
no operation is enabled);

4. When a user-specified goal predicate becomes true.

Full temporal logic model checking was not supported in
the early releases of PROB, but it could be achieved by
other means (namely by refinement checking with CSP
processes, see Section 8). In the latest release, a full-
blown LTL model checker has been integrated in PROB.

Below we present a formal description PROB’s model
checking algorithm; experimental Results are presented
later in Section 7.

10" A tabled logic programming system such as XSB [56] provides
very efficient data structures and algorithms to tabulate calls, i.e.,
it remembers which calls it has already encountered. This can be
used to write very efficient model checkers [46,52].

5.2 Formalisation

In [2], the semantics of B operations is defined in terms of
weakest precondition rules. For the purposes of making
the link between B and model-checking we find it conve-
nient to treat B operations as relations on a state space.
The state space of a machine is defined as the Cartesian
product of the types of each of the machine variables. We
represent the machine variables by a vector v. Classical B
distinguishes between an enabling condition (guard) and
a precondition in operations. The difference between a
guard and a precondition is that an operation can never
be executed outside its guard while it can be executed
outside its precondition but in that case its behaviour is
aborting [2].

The B syntax supported by PROB allows precondi-
tions, but they are treated as guards!!. If we ignore pre-
conditions but allow for guards, then all B operations
have a normal form defined by a characteristic predicate
P relating before state v, after state v/, inputs x and
outputs y as follows [2, Chapter 6]:

ANY o'y’ WHERE P(x,v,v,y")
THEN v,y :=v',y" END

This statement nondeterministically assigns values v’, 3/’
to v and y such that P(z,v,v’,y’) holds. Characterising
a B operation by a predicate in this way gives rise to a
labelled transition relation on states: state s is related
to state s by event op.a.b, denoted by s —2! s, when
P(a,s,s’,b) holds.

The syntactic constraints on initialisation operations
in B are such that the outcome of an initialisation will
be independent of the initial values of the variables. This
means an initialisation has a normal form

ANY o' WHERE P(v') THEN v :=v" END

In this case, P is used to define a set of initial states
for a machine. For convenience we add a special state
root, where we define root —. . - s if s satisfies the
initialisation predicate.

Below we describe PROB’s consistency checking al-
gorithm. The algorithm employs a standard queue data
structure to store the unexplored nodes. The function
error determines whether a given state gives rise to an
error, e.g., error(state) will check whether state & I (in-
variant violation) and whether no operations can be ap-
plied (deadlock).

The key operations are computing “state H% succ”
and “state ¢ I” (both of which are achieved by the
PRrOB interpreter, in turn calling the kernel) and de-
termining whether “succ € States” (which is performed
by normalising succ, computing the hash value of succ

11 Tt is possible to set a PROB preference so that preconditions
are treated differently from guards. However, we are focussing our
efforts on migrating PROB towards supporting Event-B [1] which
supports guards but not preconditions.

10

and then checking all nodes in States with the same hash
value for equality with the normal form of succ). The al-
gorithm terminates when there are no further queued
states to explore or when an error state is discovered.

Algorithm 5.1 [Consistency Checking]

Input: An abstract machine M with invariant I
Queue := {root} ; States := {root} ; Graph := {}
while Queue is not empty do
if random(1) < a then
state := pop-_from_front(Queue); /* depth-first */
else
state := pop-from_end(Queue); /* breadth-first */
end if
if error(state) then
return counter-example trace in Graph
from root to state
else
for all succ,op such that state —>% succ do
Graph = Graph U {state —op succ}
if succ ¢ States then
add succ to front of Queue
States := States U {succ}
end if
end if
end for
od
return ok

5.8 Relationship with the Classical B Proof Method

In this section we outline how exhaustive consistency
checking of a (finite) B machine relates to the standard
proof-based approach to consistency in B. For a machine
to be consistent, its initialisation must establish the in-
variant, and each operation must preserve the invariant.
Expressed in terms of the relational formulation of B
machines outlined above, the consistency obligations for
a B machine with invariant I, initialisation Init and ope-
rations OP; are as follows!?:

Init C 1

sel A s —>% s’ = s’ €1, for each operation op

When PROB finds a counterexample, the final transi-
tion of the counterexample is from a state satisfying the
invariant to a state falsifying the invariant. It is easy
to see that such a transition falsifies these consistency
conditions.

In the case where PROB finds no counterexamples in
an exhaustive check and the machine contains only finite
types (i.e., no deferred sets or integers), then consistency
can be proven. Let us consider this further. When taking
a proof approach to consistency checking in B, it is often

12 This is easy to demonstrate by using the normal form for ope-
rations characterised by a before-after predicate and the weakest
precondition rules for B.

the case that the desired invariant is not strong enough
to be provable and a stronger invariant I’ is required (by
adding conjuncts to I). A successful exhaustive consis-
tency check computes the set of reachable states R and
will have checked that all of those states satisfy the in-
variant I. This set of reachable states R corresponds to
a stronger invariant since after successful termination of
the algorithm we have:

RCI
Init C R

M .
s€R A s—,, 8 = s €R, for each operation op

Thus the set of reachable states R is a sufficient invariant
to prove consistency w.r.t. the original invariant [in the
standard way.

In the case where PROB finds no counterexamples
in an exhaustive check and the machine contains de-
ferred sets or integers, then we cannot conclude that
the machine with infinite types is consistent. As usual
with model checking, we may find a counterexample with
larger scopes for types that do not appear with smaller
scopes. But lack of counterexamples will at least give us
more confidence that the proof will go through.

6 Refinement Checking for B

In this section we outline the B notion of refinement.
We outline the trace behaviour of B machines and trace
refinement for B machines and relate it to standard B
refinement. We then explain the automatic refinement
checking algorithm implemented in PROB.

B refinement is defined in terms of a gluing invari-
ant which links concrete states to abstract states. In [2],
refinement checking checking rules are defined in terms
of weakest precondition rules for B operations. As in the
previous section, we express the refinement proof obli-
gations in terms of the relational model for B machines.
These proof obligations correspond to the standard re-
lational definition of forward simulation. Let R be the
gluing relation, AT and CI be the abstract and concrete
initial states respectively and aop and cop stand for cor-
responding abstract and concrete operations. The usual
relational definition of forward simulation is as follows
[30]:

— Every initial concrete state must be related to some
initial abstract state: c€ CI = Ja€ Al - cRa
— If states are linked and the concrete one enables an
operation, then the abstract state should enable the
corresponding abstract operation and both opera-
tions should result in states that are linked:
cRa ANe—=M ¢ = 3 - a—=),d NI R

The proof obligations for refinement are automati-
cally generated from the gluing invariant and the defi-
nitions of the abstract and concrete operations by, e.g.,
AtelierB or the BToolkit. The user can then try to prove

11

these using the semi-automatic provers of those systems.
If the proof obligations are all proven, every execution
sequence performed by the refinement machine can be
matched by the abstract machine [17]. Automatic refine-
ment checkers work directly on the execution sequences
and try to disprove refinement by finding traces that can
be performed by the refinement machine but not by the
specification. For this we need to formalise the notions
of execution sequences (traces) for B.

6.1 Traces

The use of event traces to model system behaviour is
well-known from process algebra, especially CSP [32].
Although event traces are not part of the standard se-
mantic definitions in B, many authors have made the
link between B machines and event traces including [17,
24,57]. The PROB animator can also be viewed as a way
of computing sample traces of a B machine.

We regard execution of a B operation op with in-
put value a resulting in output value b as corresponding
to the occurrence of event op.a.b. An event trace is a
sequence of such events and the behaviour of a system
may be defined by a set of event traces. For example, the
following is a possible trace of the scheduler specification
of Figure 1:

(new.pl, new.p2, ready.pl, ready.p2, enter.pl, leave.pl)

In Section 5.2, we have already defined the labelled
transition relation s —>10V£_a_b ', linking two states s and
s’ via the event op.a.b, when the operation op can be
executed in the state s with parameters a, giving rise to
outputs b and the new state s’. This transition relation

—M s lifted to traces using relational composition:

ID

eyt e t

Note that ID is the identity relation over states. Now
t is a possible trace of machine M if —M relates some
initial state to some state reachable through trace t: ¢t €
traces(M) Je,d - ce CI A c—M .

6.2 Trace Refinement Checking

A machine M is a trace refinement of a machine N if
any trace of N is a trace of M, that is, any trace that is
possible in the concrete system is also possible in the ab-
stract system. It is straightforward to show by induction
over traces that if we can exhibit a forward simulation
between M and N with some gluing relation, then M is
trace refined by N. It is known that forward simulation
is not complete, i.e., there are systems related by trace
refinement for which it not possible to find a forward
simulation. The related technique of backward simula-
tion together with forward simulation make simulation

complete [30]. A backward simulation is defined as fol-
lows:

ceClI NcRa = ac Al
M /

My / /
C—=ppC NC Ra = Ja-cRa N a—,,a

The B tools produce proof obligations for forward sim-
ulation only. There are cases of refinement where, al-
though the trace behaviour of the concrete system is
more deterministic, an individual concrete operation is
less deterministic than its corresponding abstract ope-
ration. Backwards refinement is required in such cases.
Typical developments B involve the reduction of non-
determinism in operations so that forward simulation is
sufficient in most cases.

A single complete form of simulation can be defined
by enriching the gluing structure. Gardiner and Mor-
gan [28] have developed a single complete simulation rule
by using a predicate transformer for the gluing structure.
Such a predicate transformer characterises a function
from sets of abstract states to sets of concrete states. Re-
finement checking in PROB works by constructing a glu-
ing structure between the concrete and abstract states
as it traverses the state spaces of both systems. So that
we have a complete method of refinement checking, the
PRrROB checking algorithm constructs a gluing structure
that relates concrete states with sets of abstract states:
R € C < P(A). On successful completion of an ex-
haustive refinement checking run the constructed gluing
structure R will relate each individual concrete initial
state to the set of abstract initial states and for each
pair of corresponding concrete and abstract states, the
following simulation condition will be satisfied:

My ! M / / /
cRas N c—g,d = das’ - as —g, a8 A ¢ Ras

Here as and as’ represent sets of abstract states and
as —}! as’ holds when as’ is the largest set of states
to which to states of as are mapped by —>%p. It can be
shown by induction over traces that this entails trace
refinement, i.e., a successful outcome of the algorithm
guarantees trace refinement. Because PROB works on fi-
nite state systems, the algorithm always terminates suc-
cessfully or by detecting a failure. Completeness of the
algorithm is proven by demonstrating that whenever the
outcome is failure, then there is a violation of trace re-
finement.

6.3 The Refinement Checking Algorithm

We now present an algorithm to perform refinement check-
ing. The gluing structure discussed in Section 6.2. is
stored in Table, and for every entry (c, as) the algorithm
checks whether all operations of the concrete state ¢ can
be matched by some abstract state in the set of state as;
if not, a counter example has been found, otherwise all
concrete successor states are computed and put into rela-
tion with the corresponding abstract successor states. To

12

ensure termination of the algorithm it is crucial to recog-
nise when the same configuration is re-examined. This
is done by the check “(c,as) ¢ Table”. If that check fails
we know that we can safely stop looking for a counter
example. Indeed, if one counter example exists we know
that we can find a shorter version starting from the con-
figuration that is already in the table.

Algorithm 6.1 [Refinement Checking]

Input: An abstract machine M4 and
a refinement machine Mg
Table := {} ; Res := refineCheck(root, {root}, ());
if Res = () then println 'Refinement OK’
else println(’Counter Example:’,Res)
end if

function refineCheck(ConcNode, AbsNodes, Trace)
if (ConcNode, AbsNodes) ¢ Table then
Table := Table U {(ConcNode, AbsNodes)};
for all CSucc, Op such that
ConcNode —%/If CSucc do
TraceS := concat(Trace, ((Op, CSucc)));
ASucss := {a' | Ja € AbsNodes A a —%;A a'l;
if ASucss = @ then
return TraceS
else
Res := refineCheck(CSucc, ASucss, Trace);
if Res # () then return Res end if
end if
end for
end if
return ()
end function

6.4 Implementation

We have developed two implementations of the refine-
ment checking algorithm. The first one is implemented
inside the PROB toolset, i.e., using SICStus Prolog. The
tabling is done by maintaining a Prolog fact database,
which is updated using assert/1. For refinement check-
ing, the abstract state space currently has to be com-
puted beforehand (using PROB). To ensure complete-
ness of the refinement checking, it should be fully com-
puted. However, our refinement checker also allows the
abstract state space to be only partially computed. In
that case, the refinement checker will detect whether
enough of the state space has been computed to decide
the refinement (and warn the user if not). In the SICStus
Prolog implementation the state space of the implemen-
tation can be computed beforehand, but does not have
to be. In other words, the implementation state space
will be expanded on-the-fly, depending on how the re-
finement checking algorithm proceeds. This is of course
most useful when counter examples are found quickly, as
in those cases only a fraction of the state space will have

to be computed. In future work, we plan to enable this
on-the-fly expansion also for the abstract state space.

The second implementation has been done in XSB
Prolog. The code of the XSB refinement checker is al-
most identical, but instead of using a Prolog fact data-
base it uses XSB’s efficient tabling mechanism [56]. As
we will see later, this implementation is faster than the
SICStus Prolog one. However XSB Prolog does not sup-
port constraint solvers in the same way as SICStus. This
means that the abstract and concrete state spaces need
to be computed beforehand using the SICStus ProB
and then loaded into the XSB version of the refinement
checker. The overhead of starting up a new XSB Prolog
process and loading the states space is only worth the
effort for larger state spaces (and even then only if there
are no or difficult-to-find counter examples).

7 Experimental Results for Consistency and
Refinement Checking

To test the performance of our consistency and refine-
ment checker, we have conducted a series of experiments
with various models. As well as using the scheduler ex-
ample from Sections 2.1 and 2.2, we have experimented
with a much larger development of a mechanical by press
by Abrial [3]. The development of the mechanical press
started from a very abstract model and went through
several refinements. The final model contained “about
20 sensors, 3 actuators, 5 clocks, 7 buttons, 3 operat-
ing devices, 5 operating modes, 7 emergency situations,
etc.” [3]. We were able to apply our model checker and
refinement checker to successfully validate consistency as
well as various refinement relations. Furthermore, as no
finitisation was required for the mechanical press (i.e.,
all types were already finite from the start), the con-
sistency and refinement checker can actually be used in
place of the traditional B provers. In other words, we are
thus able to automatically prove consistency and refine-
ment using our tool. To check the ability of our tool to
find errors we have also applied it to an erroneous re-
finement (m2_err.ref), and PROB was able to locate the
problem in a few seconds. We have also experimented
with a simple example of a server allowing clients to log
in (Server.mch and Server.ref). Precise timings and re-
sults for these and other experiments are presented in
the next subsections.

7.1 Consistency checking

In a first phase we have performed classical consistency
and deadlock checking on our examples using PROB’s
model checker. The results can be found in Table 1, and
give an indication of the size of the state space and how
expensive it is to compute the reachable state space. The
experiments were all run on a PowerPC G5 Dual 2.5

13

GHz, running Mac OS X 10.3.9, SICStus Prolog 3.12.1
and ProB version 1.1.5. Note, while the machine had 4.5
Gigabytes of RAM, only 256 Megabytes are available in
SICStus Prolog 3.12 for dynamic data (such as the state
space of B machines). scheduler0.mch and scheduler!.ref
are the machines presented above in Sections 2.1 and
2.2 for 3 processes, while scheduler0_6.mch and sched-
ulerl_6.ref are the same machines but for 6 processes.
The machines m0.mch, m1.ref, m2.ref, m2_err.ref, and
md3.ref are from the mechanical press example discussed
above. Server.mch is a simple B machine describing the
server example, while ServerR.ref is a refinement thereof.

7.2 Refinement checking

Table 2 are the results of performing various refinement
checks on these machines. Entries marked with an as-
terisk mean that no previous consistency checking was
performed, i.e., the reachable state space of the imple-
mentation machine was computed on-the-fly, as driven
by the refinement checker. For entries without an aster-
isk, the experiment was run straight after the consistency
checking of Table 1; i.e., the reachable state space was
already computed and the time is thus of the refinement
checking proper. The figures show that our checker was
very effective, especially if counter examples existed.

In Table 3 we have conducted some of the experi-
ments where the refinement checker is run as a sepa-
rate process using XSB Prolog [56], rather than inside
PrOB under SICStus Prolog. Our experiments confirm
that XSB’s tabling mechanism leads to a more efficient
refinement checking (cf. the third column). However the
time to start up XSB and load the state space is not
negligible, meaning that the XSB approach does not al-
ways pay off. This can be seen in the fourth column,
which contains the total time for loading and checking:
e.g., the approach pays off for the m2.ref check against
m1.ref (overall gain of 30 seconds) but not for the smaller
examples or when a counter example is found quickly.

We have also compared our new refinement checker
against a widely known refinement checker, namely FDR
[27]. FDR is a commercial tool for the validation of CSP
specifications. The results of the experiments can be
found in [43]. The conclusion was that our algorithm
compares favourably with FDR, and that the on-the-fly
normalisation was an important aspect for the examples
under consideration.

7.8 Other case studies

7.3.1 Volvo Vehicle Function

We have tried our tool on a case study performed at
Volvo on a typical vehicle function. The B specification
machine had 15 variables, 550 lines of B specification,
and 26 operations. The invariant consisted of 40 con-
juncts. This B specification was developed by Volvo as

Refinement Specification Time | Table

(in sec) Size

Successful refinements:
ServerR.ref Server.mch* 0.05 14
” Server.mch 0.00 ”
schedulerl.ref scheduler0.mch* 0.73 145
” scheduler0.mch 0.00 ”
schedulerl_6.ref scheduler0_6.mch 3.80 | 37,009
ml.ref mO0.mch* 25.4 585
” mO0.mch 6.28 ”
m2.ref mO0.mch 8.10 785
m2_err.ref mO0.mch 8.13 809
m2.ref ml.ref 70.57 3,804
m3.ref m0.mch 51.96 5,345
m3.ref ml.ref 429.37 | 24,039
m3.ref m2.ref 333.85 | 21,205
Counter examples found:

schedulerl_err.ref scheduler0.mch* 0.12 19
schedulerl_6_err.ref | scheduler0_6.mch* 1.80 121
ml.ref m2.ref 0.01 13
m2_err.ref m1l.ref* 4.22 92
? ml.ref 0.03 ”

Table 2. PROB refinement checking and size of refinement relation

Machine Time | States | Transitions
Server.mch 0.013 s 5 9
ServerR.ref 0.05 s 14 39
scheduler0.mch 46 s 55 190
schedulerl.ref 0.93 s 145 447
scheduler0_6.mch 41.37 s 2,188 14,581
schedulerl_6.ref 501.61 s | 37,009 145,926
m0.mch 3.19 s 65 9,924
m1.ref 20.38 s 293 47,574
m2.ref 44.29 s 393 59,588
m2_err.ref 31.51 s 405 61,360
m3.ref 364.90 s 2,693 385,496

Table 1. PROB consistency checking and size of state space

Table 3. PROB refinement checking using XSB Prolog

part of the European Commission IST Project PUSSEE
(IST-2000-30103).

We first used PROB to animate the B machine, which
worked very well. The machine was already finite state

14

(apart from an auxiliary natural number variable which
was used to make proofs possible). We then used PROB
to verify the B-machine using the automatic consistency
checker. PROB managed to explore the entire state space
of the B-machine in a few minutes, covering 1,360 states
and 25,696 transitions, thereby proving the absence of
invariant violations and deadlocks. This was achieved in
34.3 seconds (on a PowerMac G5 Dual 2.7 GHz). How-
ever, PROB managed to identify a slight anomaly in the
B machine’s behaviour: a crucial operation was only en-
abled in 8 of the 1360 states. This shows that PROB
might be used to identify problems that would other-
wise only emerge at implementation time.

To better test the model checkers, we also injected a
subtle fault into the specification, which the automatic
consistency checker managed to unveil fully automati-
cally within a couple of seconds (on a PowerMac G5

Within our ABCD' project we developed various B
models for a distributed online travel agency, through
which users can make hotel and car rental bookings. The
models were developed jointly with a Java/JSP imple-
mentation. The B model contains about 6 pages of B
and, as can be seen in Fig. 6 earlier, has 11 variables of
complicated type.

PROB was very useful in the development of the spec-
ification, and was able to animate all of our models prop-

Refinement Specification Checking Total
Time Time
Successful refinements:
ServerR.ref Server.mch 0.00 s 0.06 s Dual 2.7 GHZ)~
schedulerl.ref | scheduler0.mch 0.00 s 0.11 s
ml.ref mO0.mch 2.85 s 13.76 s 7.3.2 E-TravelAgency
m2.ref ml.ref 26.66 s 40.24 s
m3.ref m2.ref 136.12 s | 219.03 s
Counter examples found:
ml.ref m2.ref 0.00 s 22.68 s
m2_err.ref ml.ref 0.01s 12.79 s

13 “Automated validation of Business Critical systems using
Component-based Design,” EPSRC grant GR/M91013.

erly (see Fig. 6) and discover several problems with var-
ious versions of our system. For example, it was able to
discover an invariant violation, meaning that two cars
could be booked in a single transaction, which was not
allowed by the invariant of that machine.

7.3.3 Nokia NoTA Case Study

Within the RODIN Project'# the PROB tool has been
used in conjunction with the AtelierB theorem prover
for the validation and verification of Nokia’s NoTA hard-
ware platform. This platform is a WebServices/Corba-
like interconnect network that allows hardware and soft-
ware based services to communicate. This case study was
highly successful. To quote from a personal communica-
tion by Ian Oliver of Nokia:

“ProB also provides a simple way of explaining
and demonstrating the mathematical specifica-
tion to persons who would normally not be able to
read such a specification (particularly managers).
The ability for the customer of a system to in-
teract with the specification is of enormous value
in that the customer can obtain a much clearer
understanding of what work is being done, how it
is progressing and equally importantly, what the
customer really wants.”

8 Combining B and CSP in ProOB

In the Event-B approach [1], a B machine is viewed as
a reactive system that continually executes enabled ope-
rations in an interleaved fashion. This allows parallel ac-
tivity to be easily modelled as an interleaving of opera-
tion executions. However, while B machines are good at
modelling parallel activity, they can be less convenient
for modelling sequential activity. Typically one has to
introduce an abstract ‘program counter’ to order the ex-
ecution of actions. This can be much less transparent
than the way in which one orders action execution in
process algebras such as CSP [32]. CSP provides opera-
tors such as sequential composition, choice and parallel
composition of processes, as well as synchronous com-
munication between parallel processes.

The motivation is to use CSP and B together in a
complementary way. B can be used to specify abstract
state and can be used to specify operations of a system
in terms of their enabling conditions and effect on the
abstract state. CSP can be used to give an overall spec-
ification of the coordination of operations. To marry the
two approaches, we take the view that the execution of
an operation in a B machine corresponds to an event
in CSP terms. Semantically we view a B machine as a
process that can engage in events in the same way that
a CSP process can. The meaning of a combined CSP

14 http://rodin.cs.ncl.ac.uk/

15

and B specification is the parallel composition of both
specifications. The B machine and the CSP process must
synchronise on common events, that is, an operation can
only happen in the combined system when it is allowed
both by the B and the CSP. There is much existing work
on combining state based approaches such as B with pro-
cess algebras such as CSP and we review some of that
in a later section.

In [40] we presented the CIA (CSP Interpreter and
Animator) tool, a Prolog implementation of CSP. As
both ProB and CIA are implemented in Prolog, we were
provided with a unique opportunity to combine these
two to form a tool that supports animation and model
checking of specifications written in a combination of
CSP and B. The combination of the B and CSP in-
terpreters means we can apply animation, consistency
checking and refinement checking to specifications which
are a combination of B and CSP. For example, the mu-
tual exclusion property of the scheduler of Section 2.1
can be specified as the following CSP process:

LOCK = enter?p — leave.p — LOCK.

We can check that both B schedulers (Figures 1 and 3)
are trace refinements of the LOCK CSP process. We can
also check whether a combined B/CSP specification is a
refinement of another combined specification.

A further use of the CSP interpreter is to analyse
trace properties of a B machine. In this case the be-
haviour is fully specified in B, but we use CSP to specify
some desirable or undesirable behaviours and use PROB
to find traces of the B machine that exhibit those be-
haviours. More details may be found in [16].

9 Related Work

We are not the first to realise the potential of logic pro-
gramming for animation and/or verification of specifica-
tions. See for example [14], where an animator for VER-
ILOG is developed in Prolog, or [12] where Petri nets are
mapped to CLP. Also, the model checking system XMC
contains an interpreter for value-passing CCS [22,52]. A
logic programming approach to encode denotational se-
mantics specifications was applied in [37] to verify an
Ada implementation of the “Bay Area Rapid Transit”
controller.

The most strongly related work is [6,13], which uses
a special purpose constraint solver over sets (CLPS) to
animate B and Z specifications using the so-called BZ-
Testing-Tools. Unfortunately, it is not possible to obtain
CLPS hence we cannot perform a detailed comparison
of the constraint solving facilities of the PROB kernel
with CLPS. Indeed, our own B-Kernel, can be viewed
as a constraint solver over finite sets and sequences (it
seems that sequences are not yet supported by [6]). At a
higher level, [6,13] put a lot of stress on animation and

test-case generation, but do not cater for model check-
ing. There are also many features of B that we support
(such as set comprehensions, lambda abstractions, mul-
tiple machines, refinement) which are not supported by
[6,13]. Finally, [6,13] can handle Z as well as B specifi-
cations, and PROB has also recently been extended for
Z in [50]. In addition, we have interpreters for process
languages such as CSP [40,41] and StAC [26]. These can
now be easily coupled with PROB to achieve an integra-
tion like [18], where B describes the state and operations
of a system and where the process language describes the
sequencing of the individual operations.

Another constraint solver over sets is CLP(SET) [23].1°

While it does not cater for sequences or relations, we
plan to investigate whether CLP(SET) can be used to
simplify the implementation of PROB. Still, it is far from
certain whether CLP(SET) will be flexible enough for
constraint-based checking.

Bellegarde et al. [10] describes the use of SPIN to ver-
ify that finite B machines satisfy LTL properties (though
the translation from B to SPIN does not appear to be au-
tomatic). This differs from the PROB approach in that it
does not check for standard B invariant violation, rather
it checks for satisfaction of LTL properties, which are
not part of standard B.

A very recent animator for B is the commercial Brama
tool [58] by ClearSy. It provides a very sophisticated
interface, along with support for custom Flash anima-
tions.'® However, Brama cannot be used for model check-
ing and it can only animate a restricted subset of B. E.g.,
a substitution of the form ANY x where x:NATURAL &
x<10 THEN y:=x END cannot be animated using Brama.

Other related work is [63], which presents an anima-
tor for Z implemented in Mercury. Mercury lacks the
(dynamic) co-routining facilities of SICStus Prolog, and
[63] uses a preliminary mode inference analysis to fig-
ure out the proper order in which B-Kernel predicates
should be put. It is unclear to us whether such an ap-
proach will work for more involved B machines. Another
animator for Z is ZANS [35]. It has been developed in
C++ and unlike PROB only supports deterministic ope-
rations (called explicit in [35]), and has not been updated
since 1996 [62].

The Possum [29] tool provides an animator for SUM,
an extension of Z. Possum distinguishes between predi-
cates which are “checks” and “chests,” where chests can
provide values for variables whereas checks can only be
true or false. Possum works by simplification of predi-
cates, and attempts to simplify chests with smaller pro-
jected sizes. Possum has also been used in [54] to ani-
mate refinements. However, the details provided in [29]
do not allow for a precise comparison with our approach.
It seems that Possum does not yet support set compre-

15 There are many more constraint solvers over sets; but most of
them require sets to be fully instantiated or at least have fixed,
pre-determined sizes, c.f., [23].

16 Flash animations have also been added to PROB in [11].

16

hensions and existential variables [62]. Staying with Z,
one has to see how the recent Jaza animator [62] and the
CZT Z community tools [48] will develop.

The Alloy language and analyzer developed by Jack-
son [34] provides a powerful framework for system mod-
elling and analysis. Like B, the Alloy language is founded
on set theory and logic. Alloy models contain signatures
representing state space as well as operations and asser-
tions. Typically assertions state invariant preservation
properties. Rather than exploring the reachable states of
a model as in PROB, the Alloy analyser uses SAT solvers
to find counter-examples to assertions. The analyser uses
symmetry breaking techniques to reduce the search re-
quired in SAT solving. In the meantime, symmetry re-
duction techniques have also been added to PROB [44,
61], and have turned out to provide big speed improve-
ments.

The idea of using (tabled) logic programming for ver-
ification is not new (see, e.g., [53]). The inspiration for
the current refinement checker came from the earlier de-
veloped CTL model checker presented in [46]. Another
related work is [9], which presents a bisimulation checker
written in XSB Prolog. Compared to mainstream model
checkers such as Spin [33] or SMV [15,49] the difficulty
in model checking B actually lies more in checking the
invariant and computing the individual enabled opera-
tions along with their parameters, results, and effects.

10 Conclusion

We have presented the PROB toolset for animation, con-
sistency checking and refinement for the B method. Our
experience is that PROB is a valuable complement to the
usual theorem prover based development in B. Wherever
possible there is value in applying model checking to a
size-restricted version of a B model before attempting
semi-automatic deductive proof. While it still remains
to be seen how PROB will scale for very large B ma-
chines, we have demonstrated its usefulness on medium
sized specifications. PROB is being used by our industrial
collaborators and we have had positive feedback from
them on its value. We also believe that PROB could be a
valuable tool to teach beginners the B method, allowing
them to play and debug their first specifications. PROB
has and is being used at various universities to teach B
(e.g., the University of Franche-Comté, Heinrich-Heine
Universitdt Diisseldorf, the University of Southampton,
the University of Surrey). PROB’s animation facilities
have allowed our users to gain confidence in their spec-
ifications, and has allowed them to uncover errors that
were not easily discovered by Atelier-B. PROB’s model
checking capabilities have been even more useful, finding
non-trivial counter examples and allowing one to quickly
converge on a consistent specification.

References

1.

10.

11.

12.

13.

14.

15.

J.-R. Abrial and L. Mussat. Introducing dynamic con-
straints in B. In Didier Bert, editor, B’98: Recent Ad-
vances in the Development and Use of the B Method,
Second International B Conference, Montpellier, France,
April 22-24, 1998, Proceedings, volume 1393 of LNCS.
Springer, April 1998.

Jean-Raymond Abrial. The B-Book. Cambridge Univer-
sity Press, 1996.

Jean-Raymond Abrial. Case study of a complete reactive
system in Event-B: A mechanical press controller. In
Tutorial at ZB’2005, 2005. Available at http://www.
zb2005.0rg/.

Jean-Raymond Abrial, Michael Butler, and Stefan
Hallerstede. An open extensible tool environment for
Event-B. In ICFEMO06, volume 4260 of LNCS. Springer,
2006.

Jean-Raymond Abrial and Dominique Cansell. Click’'n
prove: Interactive proofs within set theory. In David A.
Basin and Burkhart Wolff, editors, TPHOLs, volume
2758 of LNCS, pages 1-24. Springer, 2003.

F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Leg-
eard, F. Peureux, M. Utting, and N. Vacelet. BZ-testing-
tools: A tool-set for test generation from Z and B us-
ing constraint logic programming. In Proceedings of
FATES’02, Formal Approaches to Testing of Software,
pages 105120, August 2002. Technical Report, INRIA.
AT&T Labs-Research. Graphviz — open source graph
drawing software. Obtainable at \tthttp://www.
research.att.com/sw/tools/graphviz/.

UK B-Core (UK) Limited, Oxon. B-Toolkit, On-line
manual, 1999. Available at http://www.b-core.com/
ONLINEDOC/Contents.html.

Samik Basu, Madhavan Mukund, C. R. Ramakrishnan,
I. V. Ramakrishnan, and Rakesh M. Verma. Local and
symbolic bisimulation using tabled constraint logic pro-
gramming. In International Conference on Logic Pro-
gramming (ICLP), volume 2237 of LNCS, pages 166180,
Paphos, Cyprus, November 2001. Springer.

F. Bellegarde, J. Julliand, and H. Mountassir. Model-
based verification through refinement of finite B event
systems. In K. Robinson and D. Bert, editors, Formal
Methods’99 B User Group Meeting, Toulouse, France,
September 1999. Springer Verlag.

Jens Bendisposto and Michael Leuschel.
Flash-Based Animation Engine for ProB.
and Kouchnarenko [36], pages 266—269.

B. Bérard and L. Fribourg. Reachability analysis of
(timed) petri nets using real arithmetic. In Proceed-
ings of Concur’99, volume 1664 of LNCS, pages 178-193.
Springer, 1999.

F. Bouquet, B. Legeard, and F. Peureux. CLPS-B - a
constraint solver for B. In J.-P. Katoen and P. Stevens,
editors, Tools and Algorithms for the Construction and
Analysis of Systems, volume 2280 of LNCS, pages 188
204. Springer, 2002.

Jonathan Bowen. Animating the semantics of VERILOG
using Prolog. Technical Report UNU/IIST Technical Re-
port no. 176, United Nations University, Macau, 1999.
J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and L. J. Hwang. Symbolic model checking: 10?° states

A Generic
In Julliand

17

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

and beyond. Information and Computation, 98(2):142—
170, Jun 1992.

Michael Butler and Michael Leuschel. Combining CSP
and B for specification and property verification. In Pro-
ceedings of Formal Methods 2005, volume 3582 of LNCS,
pages 221-236, Newcastle upon Tyne, 2005. Springer.
Michael J. Butler. An approach to the design of dis-
tributed systems with B AMN. In Jonathan P. Bowen,
Michael G. Hinchey, and David Till, editors, ZUM ’97:
The Z Formal Specification Notation, 10th International
Conference of Z Users, Reading, UK, April, 1997, Pro-
ceedings, volume 1212 of LNCS, pages 223-241. Springer,
1997.

Michael J. Butler. csp2B: A Practical Approach to Com-
bining CSP and B. Formal Asp. Comput., 12(3):182-198,
2000.

M. Carlsson and G. Ottosson. An open-ended finite do-
main constraint solver. In Hugh Glaser Glaser, Pieter H.
Hartel, and Herbert Kuchen, editors, Proc. Programming
Languages: Implementations, Logics, and Programs, vol-
ume 1292 of LNCS, pages 191-206. Springer, 1997.
Edmund M. Clarke, Orna Grumberg, and Doron Peled.
Model Checking. MIT Press, 1999.

ClearSy. Atelier B, User and Reference Manuals,
1996. Available at http://www.atelierb.societe.com/
index_uk.html.

Baoqiu Cui, Yifei Dong, Xiaoqun Du, Narayan Ku-
mar, C. R. Ramakrishnan, I. V. Ramakrishnan, Abhik
Roychoudhury, Scott A. Smolka, and David S. Warren.
Logic programming and model checking. In Catuscia
Palamidessi, Hugh Glaser, and Karl Meinke, editors,
Proceedings of ALP/PLILP’98, volume 1490 of LNCS,
pages 1-20. Springer, 1998.

Agostino Dovier, Carla Piazza, Enrico Pontelli, and Gi-
anfranco Rossi. Sets and constraint logic programming.
ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), 22(5):861-931, 2000.

Steve Dunne and Stacey Conroy. Process refinement in
B. In Helen Treharne, Steve King, Martin C. Henson,
and Steve Schneider, editors, ZB 2005: Formal Specifi-
cation and Development in Z and B, 4th International
Conference of B and Z Users, Guildford, UK,, volume
3455 of LNCS, pages 45-64. Springer, 2005.

Berndt Farwer and Michael Leuschel. Model checking ob-
ject Petri nets in Prolog. In PPDP ’0/: Proceedings of the
6th ACM SIGPLAN international conference on Princi-
ples and practice of declarative programming, pages 20—
31, New York, NY, USA, 2004. ACM Press.

Carla Ferreira and Michael Butler. A process compen-
sation language. In T. Santen and B. Stoddart, editors,
Proceedings Integrated Formal Methods (IFM 2000), vol-
ume 1945 of LNCS, pages 424-435. Springer, November
2000.

Formal Systems (Europe) Ltd. Failures-Divergence Re-
finement — FDR2 User Manual. Available at http:
//wuw.fsel.com/.

Paul H. B. Gardiner and Carroll Morgan. A single com-
plete rule for data refinement. Formal Asp. Comput.,
5(4):367-382, 1993.

Daniel Hazel, Paul Strooper, and O. Traynor. Possum:
An animator for the SUM specification language. In Pro-
ceedings Asia-Pacific Software Engineering Conference

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

and International Computer Science Conference, pages
42-51. IEEE Computer Society, 1997.

Jifeng He, C. A. R. Hoare, and Jeff W. Sanders. Data re-
finement refined. In Bernard Robinet and Reinhard Wil-
helm, editors, ESOP 86, European Symposium on Pro-
gramming, Saarbriicken, Federal Republic of Germany,
March, 1986, Proceedings, volume 213 of LNCS, pages
187-196. Springer, 1986.

Peter Henderson. Modelling architectures for dynamic
systems. In Annabelle Mclver and Carroll Morgan, edi-
tors, Programming Methodology. Springer-Verlag, 2003.

C. A. R. Hoare. Communicating Sequential Processes.
Prentice—Hall, 1985.

Gerard J. Holzmann. The Spin Model Checker: Primer
and Reference Manual. Addison-Wesley, 2001.

Daniel Jackson. Software Abstractions: Logic, Language,
And Analysis. MIT Press, 2006.

Xijaoping Jia. An approach to animating Z specifica-
tions. Available at http://venus.cs.depaul.edu/fm/
zans.html.

Jacques Julliand and Olga Kouchnarenko, editors. B
2007: Formal Specification and Development in B, Tth
International Conference of B Users, Besangon, France,
January 17-19, 2007, Proceedings, volume 4355 of Lec-
ture Notes in Computer Science. Springer, 2006.

L. King, G. Gupta, and E. Pontelli. Verification of a con-
troller for BART. In Victor L. Winter and Sourav Bhat-
tacharya, editors, High Integrity Software, pages 265—
299. Kluwer Academic Publishers, 2001.

Donald Knuth. All questions answered. Notices of the
ACM, 49(3):318-324, 2003.

J-L Lanet. The use of B for Smart Card. In Forum on
Design Languages (FDL02), September 2002.

Michael Leuschel. Design and implementation of the
high-level specification language CSP(LP) in Prolog. In
I. V. Ramakrishnan, editor, Proceedings of PADL 01, vol-
ume 1990 of LNCS, pages 14-28. Springer, March 2001.
Michael Leuschel, Laksono Adhianto, Michael Butler,
Carla Ferreira, and Leonid Mikhailov. Animation and
model checking of CSP and B using Prolog technology. In
Proceedings of VCL 2001, pages 97-109, Florence, Italy,
September 2001.

Michael Leuschel and Michael Butler. ProB: A Model
Checker for B. In Keijiro Araki, Stefania Gnesi, and
Dino Mandrioli, editors, Proceedings FME 2003, Pisa,
Italy, volume 2805 of LNCS, pages 855-874. Springer,
2003.

Michael Leuschel and Michael Butler. Automatic refine-
ment checking for B. In Kung-Kiu Lau and Richard
Banach, editors, Proceedings ICFEM’05, volume 3785 of
LNCS, pages 345-359. Springer, 2005.

Michael Leuschel, Michael Butler, Corinna Spermann,
and Edd Turner. Symmetry reduction for B by per-
mutation flooding. In Jacques Julliand and Olga
Kouchnarenko, editors, B 2007: Formal Specification and
Development in B, 7th International Conference of B
Users, Besangon, France, January 17-19, 2007, Proceed-
ings, volume 4355 of Lecture Notes in Computer Science,
pages 79-93. Springer, 2006.

Michael Leuschel, Dominique Cansell, and Michael But-
ler. Validating and animating higher-order recursive
functions in B. In Jean-Raymond Abrial and Uwe
Glasser, editors, Festschrift for Egon Bérger, May 2006.

18

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Michael Leuschel and Thierry Massart. Infinite state
model checking by abstract interpretation and program
specialisation. In Annalisa Bossi, editor, Logic-Based
Program Synthesis and Transformation. Proceedings of
LOPSTR’99, volume 1817 of LNCS, pages 63-82, Venice,
Italy, 2000. Springer.

Michael Leuschel and Edward Turner. Visualizing larger
states spaces in ProB. In Helen Treharne, Steve King,
Martin Henson, and Steve Schneider, editors, Proceedings
ZB’2005, volume 3455 of LNCS, pages 6-23. Springer,
April 2005.

Petra Malik and Mark Utting. CZT: A framework for
Z tools. In Helen Treharne, Steve King, Martin C. Hen-
son, and Steve A. Schneider, editors, ZB, volume 3455 of
LNCS, pages 65—84. Springer, 2005.

K. L. McMillan. Symbolic Model Checking. PhD thesis,
CMU, 1993.

Daniel Plagge and Michael Leuschel. Validating Z spec-
ifications using the ProB animator and model checker.
In Jim Davies and Jeremy Gibbons, editors, IFM, vol-
ume 4591 of Lecture Notes in Computer Science, pages
480-500. Springer, 2007.

Gordon D. Plotkin. A structural approach to operational
semantics. Technical Report DAIMI FN-19, Aarhus Uni-
versity, 1981.

Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakr-
ishnan, Scott A. Smolka, Terrance Swift, and David S.
Warren. Efficient model checking using tabled resolution.
In O. Grumberg, editor, Proceedings of the International
Conference on Computer-Aided Verification (CAV’97),
volume 1254 of LNCS, pages 143-154. Springer, 1997.
C. R. Ramakrishnan, I. V. Ramakrishnan, Scott A.
Smolka, Yifei Dong, Xiaoqun Du, Abhik Roychoud-
hury, and V. N. Venkatakrishnan. XMC: A logic-
programming-based verification toolset. In Proceedings
of CAV 2000, pages 576—580, 2000.

Neil J. Robinson and Colin J. Fidge. Animation of data
refinements. In Asia-Pacific Software Engineering Con-
ference, APSEC 2002, pages 137-146. IEEE Computer
Society, 2002.

A.W. Roscoe. The Theory and Practice of Concurrency.
Prentice—Hall, 1998.

K. Sagonas, T. Swift, and D. S. Warren. XSB as
an efficient deductive database engine. In Proceedings
of the ACM SIGMOD International Conference on the
Management of Data, pages 442-453, Minneapolis, Min-
nesota, May 1994. ACM.

Steve Schneider and Helen Treharne. Communicating B
machines. In Didier Bert, Jonathan P. Bowen, Martin C.
Henson, and Ken Robinson, editors, ZB 2002: Formal
Specification and Development in Z and B, 2nd Interna-
tional Conference of B and Z Users, Grenoble,, volume
2272 of LNCS, pages 416-435. Springer, 2002.

Thierry Servat. BRAMA: A New Graphic Animation
Tool for B Models. In Julliand and Kouchnarenko [36],
pages 274-276.

Sweden SICS, Kista. SICStus Prolog User’s Manual.
Available at http://wuw.sics.se/sicstus.

Bruno Tatibouet. The jbtools package. Available
at http://lifc.univ-fcomte.fr/PEOPLE/tatibouet/
JBTOOLS/BParser_en.html, 2001.

Edd Turner, Michael Leuschel, Corinna Spermann, and
Michael Butler. Symmetry reduced model checking for

62.

63.

B. In First Joint IEEE/IFIP Symposium on Theoretical
Aspects of Software Engineering, TASE 2007, June 5-8,
2007, Shanghai, China. IEEE Computer Society, 2007.
Mark Utting. Data structures for Z testing tools. In
FM-TOOLS 2000 conference, July 2000. in TR 2000-07,
Information Faculty, University of Ulm.

Michael Winikoff, Philip Dart, and Ed Kazmierczak.
Rapid prototyping using formal specifications. In Pro-
ceedings of the 21st Australasian Computer Science Con-
ference, pages 279-294, Perth, Australia, February 1998.

19

