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Abstract. Managing access control policies in modern com-
puter systems can be challenging and error-prone. Combining
multiple disparate access policies can introduce unintended
consequences. In this paper we present a formal model for
specifying access to resources, a model that encompasses the
semantics of the XACML access control language. From this
model we define several ordering relations on access control
policies that can be used to automatically verify properties
of the policies. We present a tool for automatically verify-
ing these properties by translating these ordering relations
to Boolean satisfiability problems and then applying a SAT
solver. Our experimental results demonstrate that automated
verification of XACML policies is feasible using this approach.

Key words: access control, automated verification

1 Introduction

A major problem in modern software systems is keeping track
of which users are permitted access to shared resources. Nowa-
days, Web-based applications are used to access all types of
sensitive information such as bank accounts, employee records
and even health records. Given the ease of access provided by
the Web, it is crucial to provide access control mechanisms for
such applications that deal with sensitive information. More-
over, due to the increasing use of service oriented architectures,
it is necessary to develop techniques for keeping the access
control policies consistent across heterogeneous systems and
applications spanning multiple organizations. Although ef-
fectively enforcing the access control rules within a single
application is already challenging, keeping the access con-
trol policies consistent across multiple heterogeneous systems,
each with their own specific access control language, is even
more difficult. Several unified access policy languages attempt

* This work is supported by NSF grants CCF-0614002 and CCF-0716095.

to guarantee consistency in such situations. In this paper we
focus on one particular such language, the OASIS standard
XACML [34].

OASIS (the Organization for the Advancement of Struc-
tured Information Standards) is an international standards
consortium that publishes, among others, standards based on
the popular markup language XML [35]. The standard that
we are concerned with in this work is the “eXtensible Ac-
cess Control Markup Language” (abbreviated XACML), an
XML-based language for expressing access rights to arbitrary
objects that are identified in XML, with a particular focus
on the composition of many individual policies into a single
disparate “super-policy”. Having such a combined policy is
useful for eliminating inconsistencies among separate policies
and for achieving a uniform access control mechanism, but
such a policy will inevitably become increasingly large and
complex as it incorporates all the varied access rules different
applications and organizations may have. It is possible, even
likely, that the act of creating a unified super-policy out of
several smaller policies could have unintended consequences.

In this paper we investigate static verification of access
control policies, with the goal of preventing such errors. We
first translate XACML policies into a simplified mathematical
model, which we reduce to a normal form separating the con-
ditions that give rise to three different classes of results: access
permitted, access denied, and internal error. We define several
partial orderings between access control policies, which we
can use to automatically check whether a policy is over- or
under-constrained with respect to another one. We show that
these ordering relations can be translated to Boolean formulas
which are satisfiable if and only if the corresponding relation
is violated. We use a SAT solver to check the satisfiability
of these Boolean logic formulas. Using our translator and a
SAT solver we can check if a combination of XACML policies
does or does not faithfully reproduce the properties of its sub-
policies, and thus discover unintended consequences before
they appear in practice.
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Although we accommodate more of the XACML language
than previous efforts do, which we discuss in Sections 5.1
and 5.2, our approach also has some limitations. The first lim-
itation is due to the fact that we perform bounded analysis.
Since XACML includes several unbounded domains including
strings of characters and integers, this can introduce impre-
cision. For example our approach may miss errors that only
occur with a larger domain size than the bound used in our
analysis, which can lead to false negatives.

A second cause of imprecision is due to abstraction. The
XACML language includes several functions that are extremely
complex or in some cases cannot be encoded as a Boolean
logic formula. In these cases we use unconstrained Boolean
predicates to abstract these functions. When such abstractions
are used, our analysis may produce false positives, i.e. report
errors that may not exist in the specification. In these cases the
user may need to validate the reported errors manually. We dis-
cuss these two limitations in detail in Section 4.2. Note that for
finite state specifications our approach is sound and complete
as long as the user chooses a sufficiently large bound and the
complex XACML functions are not used in the specification.

Finally, for ease of analysis we use slightly simplified ver-
sions of some of the XACML policy combining algorithms. The
differences between the combining algorithms that we use and
the XACML semantics are discussed in Section 2.2. Despite
these limitations we have successfully performed analysis on
several XACML policies, which we detail in Section 5.

We have organized our paper as follows: in Section 2,
after giving an overview of XACML, we develop a formal
model for access policies. In Section 2.3 we discuss how to
transform these models into a normal form that distinguishes
access permitted, access denied, and internal error conditions.
In Section 3 we define several partial order relations among
access policies, which we use to specify their properties. We
show how to check these properties automatically in Section 4.
Finally, we report the results of experiments using our tool
in Section 5. We also compare our tool with two other ap-
proaches: first, Fisler et al’s Margrave tool [12]; and second
an approach based on translation to Alloy [17]. We discuss the
related work in Section 6 and conclude the paper in Section 7.

2 Policy Specifications

XACML is an OASIS standard for specifying access policies.
XACML policies are written in XML, and typically authored
using a dedicated policy editor. The language describes three
classes of objects—individual rules, collections of rules called
policies, and collections of policies called policy sets. An
XACML Policy Enforcement Point, the gateway that deter-
mines whether an action is permitted or not, takes access
requests, which are specially formatted XML documents that
define a set of data that we call the environment. Policy En-
forcement Points yield one of four results: Permit, meaning
that the access request is permitted; Deny, meaning that the
access request will not be permitted; Not Applicable, meaning
that this particular policy says nothing about the request; and
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<?xml version="1.0" encoding="UTF-8"?>

<Policy
xmlns="urn:..."
xmlns:xsi="...-instance"
xmlns:md="http://www.medico.com/schemas/record.xsd"
PolicySetId="urn:example:policyid:1"

<Target>
<Subjects><AnySubject/></Subjects>

10 <Resources><AnyResource/></Resources>

<Actions>
<Action>

<AttributeValue DataType="...#string">
vote

</Attributevalue>

<ActionAttributeDesignator
AttributeId="urn:example:action"
DataType="...#string"/>

20 </ActionMatch>

</Action>
</Actions>
</Target>
<Rule RuleId="urn:example:ruleid:1" Effect="Deny">

<SubjectAttributeDesignator
AttributeId="urn:example:age"
DataType="...#integer"/>

30 </Apply>

<AttributeValue DataType="...#integer">
18
</AttributeValue>
</Condition>
</Rule>
<Rule RuleId="urn:example:ruleid:2" Effect="Deny">

<SubjectAttributeDesignator

40 AttributeId="urn:example:voted-yet"

DataType="...#boolean"/>
</Apply>
<AttributeValue DataType="...#boolean">
True
</Attributevalue>
</Condition>
</Rule>
<Rule RuleId="urn:example:ruleid:3" Effect="Permit"/>
</Policy>

Fig. 1. A simple XACML policy

Indeterminate, which means that something unexpected has
occurred and the execution of the policy has failed. Which
result occurs depends on what result the policy dictates, given
the environment defined in the access request.

XACML rules, the most basic component of a policy, have
a goal effect (either Permit or Deny), a domain of applicabil-
ity, and conditions under which they can yield Indeterminate
and fail. The domain of applicability is realized in a series of
predicates about the environmental data that must all be satis-
fied for the rule to yield its goal effect. The error conditions
are embedded in the domain predicates, but can be separated
out into a set of predicates all their own. Policy sets combine
individual policies with a domain of applicability.

XACML predicates comprise one of a number of primitive
functions, with mechanisms for extension (we do not con-
sider extensions in this work). These functions include simple
equality, set inclusion, ordering within numeric types, and also
more complex functions such as XPath matching and X500
name matching.
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Let us consider a simple example policy. The policy states
that to be able to vote a person must be at least 18 years old and
a person who has voted already cannot vote. Our environment,
the set of information we are interested in, consists of the age
of the person in question and whether they have voted already.
We can represent this as a Cartesian product of the power sets
of XML Schema [36] basic types, as follows:

E= 'P(xsd: int)
X P(xsd:boolean) X P(xsd:string) (1)

The first component of the environment E is the age of the
person, the second component is whether or not they have
voted already, and the third component is the action they are
attempting—perhaps voting, but perhaps something else. The
use of power sets is due to XACML semantics. In XACML an
attribute always describes a set of values, never a scalar value.
A scalar value, for example the age of a person, is represented
as a singleton set.

The XACML policy for this example is shown in Figure 1.
The full XACML syntax is cumbersome for discussing our
techniques; accordingly we will explain the semantics of this
policy using a simple mathematical notation below. Our tool
accepts the policies in the XML input format defined by the
XACML specification.

We illustrate our notation using our example policy. The
goal for our example policy is that if a person is doing some-
thing other than voting, we do not really care what happens,
and we require that there be only one age and one voting
record presented. To do this we can divide E into four sets,
E,, E,, E, and E; as follows, using the notation 3!z P to
assert that there is a unique x that satisfies a condition P:

E, ={{(a,v,0) € E:3lag:ag € aNIg: vy € v}
E, ={{a,v,0) € E,:3x € 0:x = vote}

E, = {{ao},{vo},0) € B, :ap > 18 A g}
Eq=FE,\ E, ={{ao},{vo},0) € E, : ap <18V vy}

Here, E, is the set of all environments whose inputs are not
erroneous, F, is the set of all environments where voting is
attempted, I, is the set of all environments where the person
can vote (their attempt to vote is permitted), and F is the
set of all environments where the person cannot vote (their
attempt to vote is denied). In the following section we will
define a concise formal model for XACML policies and express
our example policy in this formal model.

2.1 Formal Model

Let R = {Permit, Deny, NotApp, Indet} be the set of valid
results. Now, we can define the set of valid policies P as
follows (with the semantics defined later):

Permit € P
Deny € P
Vp e P:VS C E: Scope(p,S) € P

Vpe P:VYSCE:Err(p,S) €P
Vp,qe P:p®qeP
Vp,ge P:poqge P
Vp,qe P:p®qe P
Vp,ge P:poqge P

Informally, we regard Permit and Deny as symbols whose
semantics ignore the environment, always yielding Permit or
Deny, respectively. Along these same lines, Scope and Err
attach conditions to policies:

— Scope(p, S) modifies policy p to yield p’s answer if the
current environment is in S, or NotApp otherwise.

— Err(p, S) yields Indet if the current environment is in .S
or p’s answer otherwise.

The other four symbols (6, &, ®,®) are combinators, that
combine two policies in various ways:

— Permit-overrides: p & q always yields Permit if either p
or q yield Permit.

— Deny-overrides: p © g always yields Deny if either p or
q yield Deny.

— Only-one-applicable: p ® ¢ requires that one of p or ¢
yield NotApp and then yields the other half’s answer.

— First-applicable: p © q yields p’s answer unless that an-
swer is NotApp, in which case it yields ¢’s answer.

To formalize the semantics of policies, we define a func-
tion eff : £ x P — R that, given an environment and a policy
produces a result. We will use this function to define the result
indicated by a policy for any given environment, but also to
define semantics-preserving transformations later. We define
this function in Figure 2 so that it corresponds to the intuitive
semantics we described for the policies above. To ease pre-
sentation of this function, we define two ordering relations
on results >¢ and >g. We define these ordering relations as
follows:

Permit >g, Indet >g Deny >g, NotApp
Deny > Indet >¢ Permit >g NotApp

Using these ordering relations we use sup., . .S to mean the
supremum of the set S using the >, ordering, and similarly
for sup., . For example, sup  {Deny, NotApp} = Deny
and sup, {Permit, Deny} = Deny.

Using this notation, we can now model our example as
follows:

So = {{a,v,0) € E:Vx €a:x < 18} )
S1 ={(a,v,0) e E:Vrx cv:x} 3)
Sy = {{a,v,0) € E:3x € 0:x =vote} 4)
S3 = {{a,v,0) € E: =3lag : ap € a} 5)
Sy = {{a,v,0) € E: =3y : vy € v} (6)
r1 = Err(Scope(Deny, Sy), S3) 7
ro = Err(Scope(Deny, S1), S4) 8)
p = Scope(r1 © 19 © Permit, Ss) 9)
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Permit >gq, Indet >g Deny >q, NotApp
Deny > Indet >¢ Permit >g NotApp

eff : ExP—R
eff (e, Permit) = Permit
eff (e, Deny) = Deny

[ eff(e,p) ife€ S
eff (e, Scope(p, S)) = { NotApp otherwise

Indet ifee S

eff(e, Err(p, S)) = {eﬁf(e’p) otherwise

eff(e,p®q) = s>up {eff (e, p), eff (e, q) }
eff(e,p© q) = sup {eff(e, p), eff(e, q)}

eff (e, p) if eff (e, ) = NotApp

eff(e,p ® q) = < eff(e, q) if eff(e, p) = NotApp
Indet  otherwise

_ [eft(e,p) if eff(e,p) # NotApp
off(c,p@q) = {eff(e,q) otherwise

Fig. 2. Semantics of policies

Here, S is the set of environments that fail the age require-
ment (corresponding to lines 25-34 of Fig. 1), S; is the set
of environments that fail the voting requirement (correspond-
ing to lines 37-46 of Fig. 1), S, is the set of environments
where someone’s trying to vote (corresponding to lines 9-22
of Fig. 1), S5 represents the uniqueness constraint on ages
(corresponding to lines 26-30 of Fig. 1), Sy represents the
uniqueness constraint on whether or not the user has voted
(corresponding to lines 38—42 of Fig. 1), r; represents the
rule “urn:example:ruleid:1” (corresponding to lines 24-35 of
Fig. 1), ro represents the rule “urn:example:ruleid:2” (corre-
sponding to lines 36—47 of Fig. 1) and p represents the whole
policy (with the scoping information defined on lines 8-23 of
Fig. 1, and the rule combining algorithm defined on line 7 of
Fig. 1).

2.2 XACML Combinators

Although our definition of ® and @ are identical to the corre-
sponding policy combinators from the XACML language, our
definition of @ and © differ slightly from the XACML speci-
fication. In the case that there are no errors, that is there are
no Indet results, then the operators ¢ and © are identical to
the combinator algorithms given in the XACML specification.
If Indet results are considered, then the permit-overrides and
deny-overrides algorithms in the XACML specification differ
depending on whether they are applied to rules or applied to
policies. As well, the policy combining algorithms for deny-
overrides and permit-overrides are not symmetric. We denote
the XACML versions of these combinators by using & and

@ p for permit-overrides and S and ©p for deny-overrides
where subscript 12 denotes the combinators on rules and P
denotes the combinators on policies. In Figure 3 we show how
these operators can be expressed using the formalism we in-
troduced above. We will discuss this translation in more detail
below; however, note that, the semantics of the operators G,
®p, ©r and ©p are considerably more complex than ¢ and
6. After presenting these operators, we will discuss how they
differ from & and &.

To simplify our presentation of Gr, &p, Or and Sp
in Figure 3, we use one auxiliary result Indet®, two sets
Pg, P C P, and four auxiliary collation functions cg, cg,
¢y and cg . Indet® is not normally a legal result, and can
only arise through the auxiliary function cg and cg,, and is
stripped out with cg. We must amend the ordering relations to
accommodate this result, and we do so as follows:

Permit >g Indet >g, Deny >g, Indet® >g NotApp
Deny >g Indet > Permit >g Indet® >g NotApp

We use the subsets of P Pg and Pg to encode the XACML
concept of a rule with an associated outcome. We have con-
flated rules with policies for simplicity but they are distinct in
XACML language specification. Pg, is just the set of policies
that are Permit wrapped in Scope and Err declarations, and
P is similarly the set of policies that are Deny wrapped in
Scope and Err declarations.

The auxiliary collation functions cg and cg , handle an
unusual feature of &r and Sg. During the calculation of
the result of @R, if the result of a rule is Indet but the rule
itself would otherwise yield Deny, the result is defined to be
Indet® instead. Otherwise processing continues normally. The
auxiliary collation function ¢, is used for the definition of
©p, wherein an Indet intermediate result will yield a Deny
for the whole policy; accordingly we map Indet to Deny.

Finally with these preliminary operators defined we may
begin defining G and the like. The definition for @y is in
essence “if the first policy yields Permit, then permit; other-
wise if the second policy yields Permit, then permit; otherwise
if either policy yields Indet and said policy is a rule with ef-
fect Permit then yield indeterminate; otherwise if either policy
yields Deny then deny; otherwise if either policy yields Indet
and said policy is not a rule with effect Permit then yield inde-
terminate; otherwise both policies must yield NotApp so yield
not applicable”. The definition for &g is symmetrical; “if the
first policy yields Deny, then deny; otherwise if the second
policy yields Deny, then deny; otherwise if either policy yields
Indet and said policy is a rule with effect Deny then yield inde-
terminate; otherwise if either policy yields Permit then permit;
otherwise if either policy yields Indet and said policy is not a
rule with effect Deny then yield indeterminate; otherwise both
policies must yield NotApp so yield not applicable”.

The definition for policy combining rules is slightly sim-
pler. The definition for & p is in essence “if either policy yields
Permit, then permit; if either policy yields Indet, then yield
indeterminate; if either policy yields Deny, then deny; other-
wise yield not applicable”. The definition for ©p is in essence
“if either policy yields Deny, then deny; if either policy yields
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Permit >g Indet >g Deny >g Indet® >g NotApp
Deny >g Indet > Permit >g Indet® >g NotApp

Permit € Pg

Vp € Py : VS C E : Scope(p, S) € Py
Vp € Py : VS C E:Err(p,S) € Pg
Deny € Pg

Vp € Py : VS C E : Scope(p, S) € Pg
Vp € Py :VS CE:Err(p,S) € Ps

co(r) = {indet
co(pyr) = {indet'
con(p,7) = {indeto
o[

eff (e, ®r(po, - -

eff(e, Sr(po, - --

eff (e, ®p(po, - - -
>

eff(e, ©p(po, - - -

if r = Indet®,
otherwise.

if r = Indet and p ¢ Py,
otherwise.

if r = Indet and p ¢ Pg,
otherwise.

if r = Indet,
otherwise.

.yPn)) = Cs <S>up {0<i<n: C@(pi,eff(e,pi))}>

) = s (s>up 0<i<n: c@R@i,eff(e,pi))})
;Pn)) =sup{0 <i <n:eff(e,p;)}

apn)) = s>up {0 <i<n: Cop (eﬂ(e7pi))}
S}

Fig. 3. XACML semantics for permit-overrides and deny-overrides combinators

Indet, then deny; if either policy yields Permit, then permit;
otherwise yield not applicable”. These definitions are not sym-
metric; in particular combining policies that yield Indet using
a deny-overrides policy combinator yields Deny, but combin-
ing policies that yield Indet using a permit-overrides policy
combinator yields Indet. This asymmetry appears to arise from
a domain requirement; if at any time the result of an XACML
policy cannot be proven to be Permit, the enforcement ma-
chinery should reject the request.

The complex semantics of XACML policy combinators
does not make analysis impossible but it does make it more
cumbersome. We have defined our combinators differently
to simplify the implementation of our analysis. In the case
that the policies being combined do not yield Indet—which is
hopefully an exceptional occurrence—our combinators give
precisely the same result. This can be shown by noting the fol-
lowing: cg, cg, cop, and co,, are all equivalent to the identity

if no result is ever Indet. Therefore in the absence of Indet

eff(e7 69R(p()v e 7p’n)) = eﬁ(ea @P(p(% e 7pn))
=sup{0 <i<n:eff(e,p;)}
>a
and
eff(e,Sr(po,--.,pn)) = eff(e,Sp(po,--.,pn))

=sup{0 <i<mn:eff(e,p;)}
>9

Because we are dealing with finite sets, sup{p1,...,pn} =

sup{p1, sup{pa, . . . sup{p, }} }. Therefore

eff(e, ®r(po,-..,pn)) =
silp{eff(e,po), s>up{eff(6,p1), e s>up{eff(6,pn)}}}

and similarly for ©r, ®p and Sp. But these precisely the
form of & and ©: therefore

eﬁ(ea@R(pO, .. apn)) = Po SPREE @pn
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f: P—P
f(Scope(X, RN S))
f(Err(Scope(X,R\ S), SN R))
ope(f(X),S) ® Scope(f(Y),
ope(f(X),S) & Scope(f(Y),
pe(f(X),S) @ Scope(f(Y),
pe(f(X),S) @ Scope(f(Y),
cope(f(P),S)
if no other rules apply
fEr(X,RUYS))
= f(Err(Scope(X,S\ R), R))

f(Scope(Scope(X, S), R))
f(Scope(Err(X, S), R))
f(Scope(X @Y, S))
f(Scope(X ©Y,S))
)

)

)

(
f(Scope(X ® Y, S
f(Scope(X @Y, S

Sc
Sc
Sco
Sco
f(Scope(P, S Sc

f(Err(Err(X,S), R))
f(Err(Scope(X, S), R))

ifSNR#D
fEr(XaY,S)) =Er(f(X),S)®Err(f(Y),S)
fErr(X ©Y,5)) = Err(f(X),S) © Err(f(Y),5)
fEr(X ®Y,8)) = Err(f(X),5) ® Err(f(Y),5)
[Em(X @Y,8)) = Err(f(X),S) @ Err(f(Y),5)
f(Err(P,S)) = Err(f(P),S)

if no other rules apply
f (Permit) = Permit

f(Deny) = Deny

Fig. 4. eff-preserving transformations for reduction to normal form

and similarly for ©r and the others. Therefore our policy
combinators are the same as the official ones in the absence
of Indet. If a policy does yield Indet our combinators will
tend to propagate that to the root of a policy, whereas the offi-
cial combinators will perform more complicated processing,
apparently with the intent of recovering from an error. We
would like to note that the verification techniques we use are
not dependent on our combinators. We could use the official
versions by extending our implementation. For the policies we
investigated in our experiments, there is no difference between
the three versions of the permit-overrides operators &g, ®p
and @, and the three versions of the deny-overrides operators
ORr, ©Op and O.

2.3 Policy Transformations

Now that we have defined a formal model for policies, we
would like to analyze them, and it would be easier to do the
analysis if we could bring the model into a normal form. To
do this, first we define an equivalence relation:

P, =P, iff Ve € E :eff(e, P1) = eff(e, P2)

We call a function f that takes a policy and returns another
policy an eff-preserving transformation if Vp € P : f(p) = p.

For any given policy, we want to regard the subset of
that will give a Permit result, the subset of E that will give a
Deny result, and the subset of E that will give an Indet result

independently. We define a shorthand (S, R, T), where S, R
and T are pairwise disjoint, as follows:

(S, R,T) = Err(Scope(Permit, S) @ Scope(Deny, R),T')

Hence, (S, R, T is simply a policy that yields Permit for any
environment in S, Deny for any environment in R, Indet for
any environment in 7', and NotApp for any remaining environ-
ment. We call this triple notation and refer to individual nodes
(S, R, T) as triples.

Now that we have a framework for transforming policies,
we would like to transform an entire policy with Scope, Err
and combinators alike into a single triple. We know that for
any policy p a triple pp that is equivalent to it exists: the triple
is just

pr = ({e € E : eff(e, p) = Permit},
{e € E : eff(e,p) = Deny},
{e € E : eff(e,p) = Indet}).

However, this is not a constructive definition. To transform the
policies to the triple form, we define two functions f : P — P
and g : P — (S, R, T), both eff-preserving transformations,
such that g( f(p)) is a triple representation for the policy p. The
f function transforms the policy into an equivalent one that
is composed of triples joined by combinators. The g function
combines triples joined by combinators into a single triple.
The two together generate the triple representation. We define
f in Figure 4, and g in Figure 5.

As an example, applying f to the policy p defined in
Equation (9) leads to the following:

p = Scope(Err(Scope(Deny, Sy), Ss)
© Err(Scope(Deny, S1),S4)
© Permit, Ss)
f(p) = Err(Scope(Deny, (S N Sp) \ S3),53 N Sa)
© Err(Scope(Deny, (So N S1) \ S4), 54N Ss)
© Scope(Permit, S3)

Note that the function f pushes all Scope forms down to the
leaves of the policy tree, and all Err forms down to just above
the leaves.

The f function transforms a policy to a collection of
expressions of the form Err(Scope(A, B),T) (where A €
{Permit,Deny}, B C E,T C E,and BNT = {)) com-
bined using ®,0,® and @. Since Ve € E : eff(e, X ®
Scope(Y,0)) = eff(e, X), we can rewrite these expressions
further into the form

Err(Scope(Permit, S) ® Scope(Deny, R),T)

combined with &, 8, ® and @ where S = B and R = {) if
A = Permitand S = () and R = B if A = Deny. Since S, R
and T are all pairwise disjoint this is exactly the required form
for our triple notation. Hence, after applying the function f
we have a set of subpolicies in our triple notation combined
with @, 6, ® and @. We define the function g in Figure 5. The
transformations for function g all preserve the disjointness



Graham Hughes, Tevfik Bultan: Automated Verification of Access Control Policies Using a SAT Solver 7

g: P—{(S,RT)
9((S1, R1, T1) @ (S2, Ra, T»))
g({S1, R1,T1) © (Sa2, Ry, T3))
9((S1,R1,T1) ® (Sa, Ra, T>))

= (S1U S, (R \ (S2UT)) U (R \ (S1UTY)), (Th UTs) \ (S1US2))
<(S1 \ (RQ U Tg)) U (SQ \ (Rl U Tl)),Rl U Ry, (Tl UTQ) \ (Rl U R2)>
= ((S1US2)\ ((S1NS2)UT1 UTy), (R UR2)\ (RiNRy)UTy UTy),

Ty UTs U (Sy N Ss) U (RN Ry))

)
9({S1, R1, 1)) = (S1, R1, Th)
9(P1 ® P) = g(g(P1) © g(P2))
9(P1© P2) = g(g(P1) © g(P2))
9(P1® P) = g(g(P1) ® g(F%))
9(Pr o P2) = g(g(P1) © g(F2))

if no other rules apply
if no other rules apply
if no other rules apply
if no other rules apply

Fig. 5. eff-preserving transformations for (S, R, T') reduction

property, and using the function g we can transform the policy
generated by function f to a single triple (S, R, T') for some
S,R,T CE.
When we apply the function g to our example we get the
following:
f(p) = Err(Scope(Deny, (S2 N Sp) \ S3),S3 N Ss)
© Err(Scope(Deny, (S2 N S1)\ S4), 54N S3)
© Scope(Permit, Ss)
(0, (52N So) \ S5, 83 N S2)
S (0,(S2 N S1) \ Sy, 84N Sa)
S (S2,0,0)
9(f(p)) = (S2\ (SoUS1US3U Sy),
((So\ S3) U (S1\ S4)) N Sz,
((S3 U S4) \ ((So \ S3) U (S1\ 54))) N S2)

Now that we have our policy in a form that is convenient
for analysis, we would like to check it.

3 Properties of Policies

In order to check policies, we first need to figure out what
sort of properties we wish to check. For this purpose, we have
chosen to define several partial ordering relations that can
be used to relate policies. We can specify policies using a
normal XACML policy editor, and then automatically deter-
mine whether they are related in the desired manner using
our analysis tool. For example, we might have a large policy
composed of numerous sub-policies that we have difficulty
comprehending all at once. We might want to prove that this
comprehensive policy protects some resource at least as much
as some simpler policy does. Similarly we might want to guar-
antee that the act of combining several sub-policies does not
lead this new, larger policy to have a scope greater than any
of its components. We can express properties like these using
the ordering relations defined below.

Let P, = <Sl, Ry, T1> and let P, = <SQ, Rs, T2> be two

policies. We define the following partial orders:

PLCp P,=5C5;

PCp B=R CRy

P CpPB=T1CT

PiCpprPP=P Cp PLAPLCp AP Cg P

Note that, we can define a partial order for any combination
OfP, D and E. We define Pl C P2 = P1 EP,D,E PQ. We
can regard P; C P, as stating that for any e € E where
eff (Py, e) # NotApp, eff (Pa,e) = eff (P, e).

To demonstrate the use of these ordering relations, let us
create a new policy; people are permitted to check the current
results of the election, for exit polls. We encode this with the
following policy

S5 = {{a,v,0) € E:3x € 0:x =getresult} (10)

rg = Scope(Err(Permit, Sy), S5)
where S, is defined in Equation (6). Now, we can create a
composite policy as follows p. = p & r3, where p is defined
in Equation (9). This policy has a bug—specifically, it permits
people under 18 to vote in certain circumstances—and we will
demonstrate the usefulness of our technique by showing this.
First, we perform our translations on this new policy as above,
getting:

9(f(rs)) = (S5 \ S4,0,54 N S5)
9(f(pe)) = (((S2\ (S0 US1U S5 US))U (S5 \ S),
(((50\ 85) U 81\ 80)) 1) \ (8411 55),
((54 MS5) U ((S5 U Sa) \
((So\ S3) U (S1\ S4)))
N 52) \
((52\ (S0 U S1U S5 US1)) U (S5 \ S)) )
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where Sy, S1, 53 and S, are from Equations (3) to (6). Using
set algebra we can simplify the expression for policy p. to

9(f(pe)) = (((S2\ (S0 U S1 U S5)) U S5) \ S,

(
(((So\ S3) U (S1\84)) N S2) \ (SaN S5),
((S4NSs5)\ (S2\ (SoUS;US3)))U
(((S3U82)\ ((So \ S3) U (S1\ S4)))

052)>

Now, we insist that this combined policy deny anyone trying
to vote who is under 18. This is itself a policy, which we call

y2'8
Pv = <(Z), (So n 52) \ (Sg U 54), (Sg U 54) n SQ>

The interesting thing here is whether or not p, Cp p,, i.e.,
does the policy p. deny every input that is denied by p,. That
would mean that everyone trying to vote who is under 18
is denied, and that our policy combination has not done any
harm. However, the environmental tuple

e = ({17}, {true}, {vote, getresult})

demonstrates that that is not the case. Input e passes the sec-
ond part of the Permit requirement and so is permitted by
p. (which means that it is not denied by p.) but denied by
Dy, 1.€., e demonstrates that p, [Zp p.. The error is that this
policy does not enforce that only one action be given in the
third component of the input, and because of this we have the
surprising result that someone who is under eighteen and has
already voted, but asks for the voting results at the same time
as trying to vote will be permitted, and so can cast any number
of ballots. To fix this, we could insist upon a new condition,
that 3!z : 2 € o; or we could use ® instead of &, which would
ensure that only one of the sub-policies could be definitive
on any given point (and so turn eff (e, p,) into an Indet result
instead of a Permit); or we could decide that only people who
have voted already can check the results.

4 Automatically Proving Properties of Policies

Given the formal model defined in Section 2.1 and properties
defined in Section 3 we would like to check properties of
access policies automatically. To do this we first formalize
the syntax of formulas we use to specify subsets of F. Then
we discuss how policies constructed using these formulas
and policy combinators can be translated to Boolean logic
formulas. After this translation we show that we can check
properties of access policies using a SAT solver.

4.1 Characterizing Subsets of the Environment

In Section 2.1, we defined our formal model using subsets
of the set of possible environments E. We showed that each
policy can be expressed in triple form P = (S, R, T') where

S, R, and T are subsets of E. We will assume that all subsets
of E are specified in the form {e € E : C} where C is a
constraint that evaluates to true or false for each environment.
That is, the only free variables in C' are the components of
the environment tuple e. Note that the sets Sy, S1,...,S4 in
Equation (2) are expressed this way.

Given a set in the form S = {e € E : C'} our goal is to
generate a Boolean logic formula B which encodes the set
S. The encoding will map each e € E to a valuation of the
Boolean variables in B, and B will evaluate to true if and only
if e € S. Based on such an encoding we can convert questions
about different policies (such as if one subsumes the other
one) to SAT problems and then use a SAT solver to check them.
For example, we can generate a Boolean formula which is
satisfiable if and only if an access policy is not subsumed (i.e.,
IZ) by another one. If the SAT solver returns a satisfying assign-
ment to the formula, then we can conclude that the property is
false, and generate a counterexample based on the satisfying
assignment. If the SAT solver declares that the formula is not
satisfiable then we can conclude that the property holds. We
will discuss the details of such a translation below.

To present our translation we use the following notational
conveniences: for elements e € I/, we name the components

of e e[0], e[1], ..., e[n]. We use s, sg, $1, ..., S, to denote
set variables, a, ag, a1, . .., a, to denote scalar variables, and
A, Ay, A1, ..., A, to denote constants. We use the function

n(A) to define a unique non-negative integer for each constant
A. Finally, BP is a set of basic predicates which we define as
follows:

SCAL — A | a
BSET — s | e]i]
BP — true | false | SCAL = SCAL
| SCAL € SET | SET C SET
SET — BSET | {SCAL} | SET U SET
| SET N SET | SET \ SET

The above grammar is sufficient for specifying policies using
only enumerated types (which obviously have finite domains)
and the simple operations —, =, €, C. This is sufficient for
Boolean types, and also XML Schema enumerated types. We
will discuss extension to other domains later in this section.
This grammar is sufficient to model statements such as x € a
from Equation (5), or = vote from Equation (4) (provided
we consider this string to be an enumerated type). However we
cannot yet model the bounding conditions with this grammar.

We can define them using the nonterminal C'; assuming
that all subsets of F are specified in the form {e¢ € E : C'},
where there are no free variables save e in C, C'is defined as
follows:

C—BP|CANC|CVC|-C
| Va € BSET : C' | 3a € BSET : C
| 3la € BSET : C

We use 3! to mean there exists exactly one instance that holds.
We can express all set definitions on unordered and enumer-
ated types that are permitted in XACML using the expressions
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k
SCAL — A SCAL.f : =SCAL.v[n(A)] A /\ (=SCAL.v[i]) (11)
i=1,i#n(A)
k
SCAL — a SCAL.f := /\(SCAL.U[Z'] < ali]) A (12)
i=1
k k k
( \/ SCAL.[i ) /\ SCALw[i) — [\ ~SCAL.v[j]
i=1 i=1 j=1,7#1
k
BSET — s BSET.f:= |\ (BSET.v[i] < s[i]) (13)
i=1
BSET — eli] BSET.f:= /\ (BSET.v[j] < eli[j]) (14)
k
SET — {SCAL} SET.f:=SCAL.f A /\(SET.v[i] — SCAL.v[i]) (15)
i=1
k
SET — BSET SET.f :=BSET.f A J\ (SET.v[i] < BSET.u[i]) (16)
i=1
k
SET — SET, U SET SET.f :=SETy.f ASETs.f A J\ (SET.vli] < (SETy.v[i] V SET».v[i])) (17)
i=1
k
SET — SET, N SET; SET.f :=SETy.f ASETs.f A J\ (SET.vli] < (SET1.v[i] A SET5.v[i])) (18)
i=1
k
SET — SET1 \ SET» SET.f:=SET:1.f NSET3.f A /\(SET.v[i] — (SET;.v[i] A =SET5.v[i])) (19)
i=1
BP — true BP.f:=BP.b < true (20)
BP — false BP.f:=BP.b — false 2D

BP — SCAL, = SCAL,

k
BP.f:=SCAL,.f A SCALy.f A (BP.b o /\ (SCALy.v[i] < SCALg.U[i])) (22)

i=1

k
BP — SCAL € SET BP.f:=SCAL.f ASET.f A <BP.b — /\ (SCAL.v[i] — SET.v[z'])> (23)
i=1
k
BP — SET, C SET, BP.f:=SET,.f ASETs.f A <BP.b o \ (SETy.v[i] — SETg.U[i])) (24)
1=1

Fig. 6. Translation of the basic predicates to Boolean logic formulas.

above. This is sufficient to model expressions like Vx € v : x
from Equation (3).

We will explain our translation from a constraint C' defined
by the above grammar to a Boolean logic formula by using
attribute grammars. We will first discuss the translation of the
basic predicates BP. In order to simplify our presentation we

will assume that domains of all the scalars have the same size,

call it k. We will encode a set of values from any domain using
a Boolean vector of size k. Given a Boolean vector v, we will
denote its components as v[1], v[2], ..., v[k] where v[i] <
true means that element 7 is a member of the set represented

by v whereas v[i] <> false means that it is not. We encode
a set variable s and each component of the environment tuple
e using the same encoding, i.e., as a vector of Boolean values.
To simplify our presentation we also encode a scalar variable
a as a set using a vector of Boolean values but restrict it to
be a singleton set by making sure that at any time only one
of the Boolean values in the vector can be true. In our actual
implementation scalar variables are represented using log, k
Boolean variables where k is the size of the domain.

The attribute grammar for basic predicates is shown in
Figure 6. We have numbered the production rules. Each pro-
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duction rule has a corresponding semantic rule next to it. Se-
mantic rules describe how to compute the attributes of the
nonterminal on the left hand side of the production rule using
the attributes of the terminals and nonterminals on the right
hand side of the production rule. In the attribute grammar
shown in Figure 6 the nonterminals SCAL, BSET and SET
have two attributes. One of them is a Boolean vector v de-
noting a set of values, and the other one is a Boolean logic
formula f which accumulates the frame constraints. Again to
simplify our presentation we represent scalar constants and
scalar variables (i.e., the non-terminal SCAL) as singleton sets
whereas in our actual implementation they are represented
using log, k£ Boolean variables.

Equation (11) in Figure 6 states that a scalar constant A is
encoded as a singleton set that contains only A. We represent
this singleton set as a Boolean vector v, such that v[n(A)] is
set to true and all the rest of the elements of the vector are
set to false. This condition is stored in the frame constraint f.
Equation (12) states that a scalar variable is also encoded as
a Boolean vector v. The frame constraint f makes sure that
the elements of the Boolean vector v are same as the elements
of the Boolean vector representing the scalar variable a and
exactly one of the elements in a or v is set to true in any
given time. Equations (13) and (14) show that the set variables
(s) and components of the environment tuple (e[¢]) are also
encoded as Boolean vectors.

Equation (15) creates a singleton set from a scalar con-
stant SCAL. However, since we encode scalar constants as
singleton sets, this simply means that the Boolean vectors
encoding the scalar constant SCAL.v and the set SET.v are
equivalent and the frame constraint SET'. f expresses this con-
straint. Note that in the attribute grammar shown in Figure 6
the frame constraint of a nonterminal on the left hand side
of a production is a conjunction of the frame constraints of
the nonterminals on the right hand side of the production plus
some other constraints that are added based on the production
rule.

Equations (17), (18), and (19) encode the set operations:
union, intersection and set difference. Each set operation on
two set expressions SETy and SET, results in the creation of
new Boolean vector SET.v. The value of an element in SET.v
is defined based on the corresponding elements in SET;.v
and SET5.v. For example for the union operation SET.v[i] is
true if and only if SET;.v[] is true or SET5.v[i] is true. The
intersection and set difference are defined similarly.

The nonterminal BP corresponds to the basic predicates
and it has two attributes. One of them is a Boolean variable
b representing the truth value of the predicate and the other
one is a Boolean logic formula f that accumulates the frame
constraints.

Equations (20) and (21) create two basic predicates which
have the truth value true and false, respectively.

Equation (22) is a basic predicate that corresponds to an
equality expression comparing two scalars. Since scalars are
expressed as Boolean vectors, the Boolean variable encoding
the truth value of the predicate is true if and only if all elements
of the Boolean vectors encoding the two scalar values are the

same. This constraint is added to the frame constraint of the
basic predicate.

Equation (23) creates a basic predicate that corresponds
to a membership expression testing membership of a scalar
to a set expression. Equation (24) creates a basic predicate
that corresponds to a subset expression testing if a set expres-
sion is subsumed by another set expression. Since we encode
scalars a singleton sets, the frame constraints generated for
Equations (23) and (24) are very similar. They state that if
a value is a member of the set on the left hand side, then it
should also be member of the set on the right hand side.

The attribute grammar for the constraints is shown in Fig-
ure 7. The nonterminal C' has two attributes. One of them is
a Boolean variable b representing the truth value of the con-
straint, and the other one is a Boolean logic formula f that
accumulates the frame constraints. Again, the frame constraint
of a nonterminal on the left hand side of a production is a con-
junction of the frame constraints of the nonterminals on the
right hand side of the production plus some other constraints
that are added based on the production rule.

Equation (25) is just a syntactic rule expressing that a
constraint can be a basic predicate. Equation (26) defines the
negation operation. As expected the frame constraint states
that the value of the constraint on the left hand side of the
production rule is the negation of the value of the constraint
on the right hand side of the production rule. Equations (27)
and (28) define the disjunction and conjunction operations.
The frame constraints generated in Equations (27) and (28)
state that the value of the constraint on the left hand side of
the production rule is the disjunction or the conjunction of
the values of the constraints on the right hand side of the
production rule, respectively.

Equations (29), (30), and (31) deal with quantified con-
straints. In these equations, a denotes a scalar variable which
is quantified over a basic set expression BSET which is either
a set variable s or a component of the environment tuple el].
The quantified variable a can appear as a free variable in the
constraint expression on the right hand side (C7). The expres-
sion that follows fixes the value of a. First, we must establish
as a frame condition that a is a singleton set; accordingly one
value of the a[i]s must be true and the rest must all be false.
Next, for universal quantification we want to constrain that for
every value ¢ where BSET.v[i] is true, the condition C; must
hold for a scalar a representing that element. Accordingly, for
each BSET .v[i] that is true, if a[¢] is true Cy must hold.

Existential qualification is very similar. We use the same
frame condition guaranteeing that a is a singleton set. We
must find some 4 such that BSET.v[i] is true, a is the scalar
representing that element and C; holds for that a. This can be
derived from Equation (29) using the identity Ja : b = —Va :
—b.

Equation (31) models existentially quantified constraints
which evaluate to true if and only if the constraint C'y evaluates
to true for exactly one member of the set s or e[i]. We use
the same frame condition guaranteeing that a is a singleton
set. First, we must find some 7 for which the condition holds;
this is the same as the existential quantification case. Then,
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C — BP C.f:=BP.f AN(C.b < BP.b) (25)
C—-C C.f:=Ci.f AN(Ch— —=Ch.b) (26)
C— C1V(Cy C.f:=C1.f NCo.f AN(C.b— (C1.bV Ca.b)) (27)
C— CiANCy Cf:=Ci.f ANCo.f AN(Ch— (Cr.bACaD)) (28)

C — Ya € BSET : C;

C.f::BSET.f/\Cl.f/\<

k k k
\/a[i])/\/\ alil = /\ —alj] (29)

i=1 i=1 G=1,j#i

k
A (C.b o /\ BSET.v[i] — (ali] — Cl.b)>

C — Ja € BSET :

C.f::BSET.f/\Cl.f/\<

i=1

k k k
Veld) n A (ot A - &)
=1 =1 J=1,5#i

k

A (C.b < \/ BSET.v[i] A ali] A Cy.b

C — 3la € BSET : C4

)
o) Ao

i=1

O.f::BSET.fAC’l.fA(

i=1

—alj] (31)
i=1 j=1,j#i
k

A (C.b Y (BSET.v[i] Aali] A Cr.b

=1

k
AN BSET.v[n]—>(a[n]—mC1-b))>

n=1,n#1

Fig. 7. Translation of the constraints to Boolean logic formulas.

we must ensure that for every other index, C; is false; this is
very similar to the universal quantification case with a negated
condition. If we follow formal logical conventions and regard
C' in the construction Jla : C as a predicate with argument
a, then we can express 3la € BSET : Cy as Ja € BSET :
Ci(a) AN¥a' € BSET : d' # a — —=C4(a’).

4.2 Bounded Domains, Unbounded Domains, and Domain
Specific Predicates

The translation we described above can handle XACML poli-
cies that only use bounded unordered and enumerated types.
In fact, during our analysis we limit the size of every domain
to a given fixed size and then analyze the policies as though
they were specified using finite enumerated sets of that size.
The problem is that if our automated analysis does not yield a
counterexample to a given property, then that does not neces-
sarily mean that no counterexample exists—perhaps if we had
increased the scope just a little more we would have found
one. As an example, in Equation (4) we state the condition
x = vote. We can set a domain size so that = can take on the
value of any string with less than, say, six characters. This is
more than sufficient for our initial needs, but will not discover
the flaw in Equation (10) because it will not be capable of
generating the string getresult. The small scope hypoth-

esis (discussed by Jackson and Damon [18], and tested and
confirmed for some data structure algorithms by Marinov et
al [24]) suggests that small scopes could be sufficient in prac-
tice. Note that if a counterexample is found using bounded
domains, that counterexample is definite and can be translated
into an error in the original policy.

Another limitation of the translation we described above is
the fact that it does not handle domain specific predicates, e.g.,
ordering relations on domains such as integers. An example
here is in Equation (2), where we state x < 18 in a constraint.
When we translate sets described using such predicates to
Boolean logic formulas we represent them as uninterpreted
Boolean functions. We create a Boolean variable for encod-
ing the value of the uninterpreted Boolean function and we
generate constraints which guarantee that the value of the
function is the same if its arguments are the same. Other than
this restriction, the variables encoding the functions can get
arbitrary values. To encode Equation (2), we would introduce
a Boolean variable vy which represents the expression z < 18
and then encode the formula Va € a vg. If we had additional
expressions of this sort, perhaps a constraint z < 21, then we
would encode that with an additional variable v;. However,
the relationship between these two predicates, i.e., vg — v
also needs to be added as a frame constraint to achieve pre-
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cise analysis. Since our encoding does not generate all such
constraints, our analysis can sometimes report spurious errors.

As discussed above, due to the scope restriction our analy-
sis cannot guarantee absence of errors for unbounded domains.
Due to our conservative approximation of domain specific
predicates, it is also possible that some counterexamples may
be spurious, and will need to be validated against the original
policy. However, we believe that this type of automated analy-
sis can still be useful in uncovering errors in access policies.
First, our analysis is both sound and complete for bounded
unordered and enumerated domains as long as the size used
during analysis is not smaller than the actual size of the do-
main. Second, for unbounded domains, our analysis can be
used to prove the absence of errors within a certain bound.
Third, for bounded and ordered domains, our analysis is sound
and can be used to prove the absence of errors. However, the
counter-example scenarios generated for such policies need to
be validated to make sure that they are not spurious.

For unbounded and ordered domains, our analysis would
be neither sound nor complete unless we represent the domain
specific predicates on ordered domains precisely within a cer-
tain bound. Note that it is possible to fully interpret ordering
relations as long as the domain is bounded. We can encode a
type with a domain of n ordered elements using n? Boolean
variables, one for each pair of values in the domain, repre-
senting the ordering relations. However, XACML uses many
complex functions such as XPath matching and X500 name
matching. Attempting to fully realize these in Boolean logic is
possible, but would lead to extremely complex formulas due to
the need to, for example, parse the XPath expression. Hence,
we believe that using uninterpreted functions for abstracting
such complex functionality is a justified approach and enables
us to handle a significant portion of the XACML language. This
means that for unbounded and ordered domains, our analysis
can be used to prove the absence of errors within a certain
bound, however, the counter-example scenarios need to be
validated to make sure that they are not spurious due to the
conservative approximation of some of the predicates using
uninterpreted functions. We would like to note that the impre-
cision caused by abstraction of such complex functions has not
led to any spurious results in the experiments we performed
so far.

4.3 Verification of Policies

As discussed in Section 3, we specify properties of policies
using a set of partial ordering relations. These partial ordering
relations can be used to state that a certain type of outcome
for one policy subsumes the same type of outcome for another
policy. In this section we will only focus on the C relation.
Translation of properties specified using other relations are
handled similarly.

Given a query like P, T P», our goal is to generate a
Boolean logic formula which is satisfiable if and only if P; [Z
P5. As we discussed earlier our tool first translates policies Py
and P, to triple form, such that P, = (Sy, Ry, T1) and P, =

(Sa, R2,T») where each element of each triple is specified
with a constraint expression as follows:

51={GEEZCSI}
Ry={ec€ E:Cpg}
Ty ={ec E:Crp}
So={ee E:Cs,}
Ry ={e€ E:Cp,}
Ty ={ec E:Cp}

After translating policies P; and P, in to the triple form
our translator generates a Boolean logic formulas for the con-
straints C's,, Cr,, Cr,, Cs,, Cr, and Cr, based on the at-
tribute grammar rules described in Figures 6 and 7. For exam-
ple, after this translation the truth value of the constraint C's,
is represented with the Boolean variable C'g, .b and the frame
constraint C's, . f states all the constraints on the Boolean vari-
able Cg, .b.

Recall that for P, = <Sl, Ry, T1> and P, = <SQ, Ry, T2>,
P; C P, holds if and only if

S1 CS AR CRoNTy CTh

Based on this, we can generate a formula F' such that F' =
true iff P C P; as follows:

F = (Cs,.f NCry-f NCry.f NCs,.f ACp,y.f ACr,.f)
— ((Ogl.b — Cg,.b) N (Cgr,.b — Cgr,.b)
A (Cr.b— CT2.b))

Finally, we send the property — F' to the SAT solver. If the
SAT solver returns a satisfying assignment for the Boolean
variables encoding the environment tuple e (which are the only
free variables in the formula — F'), the satisfying assignment
corresponds to a counter-example environment demonstrating
how the property is violated. If the SAT solver states that = F'
is not satisfiable, then we conclude that the property holds,
i.e., P, 1 E PQ.

Since the majority of the SAT solvers expect their input
to be expressed in Conjunctive Normal Form (CNF), the last
step in our translation before we send the formula — F' to
the SAT solver is to convert — F' to CNF. For conversion to
CNF we have implemented the structure preserving technique
from [27]. The structure preserving technique, in essence,
creates an auxiliary variable for each subexpression, and then
combines the auxiliary variables. For example, the formula
(a — b) V (b A c) might get translated to (vp < (a —
b)) A (v1 < (bAc)) A (vg V v1). Following this step, the
subexpressions are expanded using DeMorgan’s Rule. This
technique is simple to implement but introduces large numbers
of auxiliary variables, which may negatively impact run time.
We discuss the performance impact of this choice in more
detail in Section 5.

5 Experiments

Using the algorithms given above, we are able to convert a
policy property to a Boolean formula in CNF. We then apply a
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SAT solver to this formula to determine if the property holds.
In particular, we use the Zchaff [25] SAT solver. We conducted
experiments in order to investigate if our tool runs in a reason-
able amount of time on XACML policies. We also compared
the performance of our tool to other XACML verification ef-
forts. In our experiments we use the CONTINUE example [23],
encoded into XACML by Fisler et al. [12]. CONTINUE is a
Web-based conference management tool, aiding paper submis-
sion, review, discussion and notification. In addition, we also
use the Medico example from the XACML [34] specification,
which models a simple medical database meant to be accessed
by physicians. Finally, we have encoded our example from
Section 3 into XACML and applied our tool to the discovery of
the error which we know to exist. In these examples, C1-C11
have been encoded by Fisler et al., and M1, M2 and V1 have
been encoded by us.

Given that our experiments consist of two realistic XACML
policies and one toy example it is difficult to generalize our
experimental results. All we can say is that our approach
performs efficiently on these examples, and can successfully
verify nontrivial properties on these policies. Assessing the
effectiveness of our verification approach in practice would
require a comprehensive empirical study, which is beyond the
scope of this work.

We tested 11 properties (labeled C1, C2, and so on) for
subsumption on CONTINUE and two (labeled M1 and M2) on
the Medico example; our voting example is property V1. Run
times for verification are given in Table 1. The properties we
checked can be described informally as follows:

1. Property Cl1 tests that the conference manager correctly
denies program committee chairs the ability to review
papers he/she has a conflict with.

2. Property C2 and C7 test that the conference manager per-
mits program committee members to edit reviews they
own.

3. Property C3 and C8 test that the conference manager de-
nies access to users without a defined role.

4. Property C4 and CS5 test that the conference manager will
permit a program committee member who has called a
meeting to read documents concerning the meeting, but
not other arbitrary documents.

5. Property C6 tests whether the conference manager permits
program committee members to read all parts of a review.

6. Property CO tests whether the conference manager permits
unauthorized user roles to set meetings.

7. Property C10 and C11 test that the conference manager
permits program committee members who have filed their
review to read the reviews of others, and denies program
committee members that have not yet filed their review
from reading other reviews.

8. Property M1 and M2 test whether the unified Medico
policy permits a physician to edit the medical records of
their patients.

9. Property V1 is just the voting property we demonstrated
in Section 3.

Some of these properties are expected to be subsumed by the
CONTINUE policy, and some are expected to subsume the pol-
icy. In general, if one wishes to verify that a property is upheld
for any potential outcome, one should write a policy that is
expected to subsume the target policy. Existence properties
are most readily demonstrated with policies that are expected
to be subsumed by the target policy.

We performed our analysis on a 2.8 GHz Intel Pentium 4,
with 2 GB of memory, running the Linux 2.6.26 kernel. The
listed values for each property are the median of five runs.
The performance results shown in Table 1 indicate that anal-
ysis time is dominated by the initial parsing of the policies
and by the conversion from triple form to a Boolean formula;
sometimes the Boolean conversion is strongly dominant, as
in the Medico examples. The resulting formulas are unex-
pectedly small and analysis time is so small the startup and
I/O overhead of the Zchaff tool is probably dominating. This
was unexpected; our tool goes to some length to simplify
the Boolean formula on the assumption that run times would
be dominated by the SAT solver. The results show that our
assumption was wrong. However, these results are very en-
couraging in terms of the scalability of the proposed approach.
Among the different components of our analysis, SAT solving
is the one with worst case complexity. Since the examples we
tested so far were easily handled by the SAT solver we believe
that our approach will be feasible for analysis of large XACML
policies.

The number of variables in our Boolean formulas is quite
large, approximately half the number of clauses. We have
made a deliberate tradeoff to get this. Our translation ma-
chinery from Section 4 introduces large numbers of tightly
constrained variables, and our CNF conversion uses the struc-
ture preserving technique [27] which generates even more
variables, but in exchange we get a relatively small formula,
and the search space is not so large as might be presumed
because of the constraints. A different CNF conversion might
embody a different tradeoff between the CNF conversion and
SAT solving that might be worth exploring.

Our experimental results show that the subsumption prop-
erties can be analyzed quickly for these policies. Although
our experiments demonstrate the feasibility of our approach,
determining its scalability would require more experiments
with a larger set of policies. Inasmuch as total runtime is
dominated by the Boolean formula generation and CNF trans-
formation steps, steps which we did not initially think would
be as significant a contributor to run time as the SAT computa-
tion, we believe that we could improve the performance of our
tool by optimizing Boolean formula generation and the CNF
transformation.

5.1 Comparison with Margrave

We have also compared our analysis with the Margrave tool
written by Fisler et al. [12]. Margrave is a change impact anal-
ysis tool for the XACML language, similar in many respects to
our own work. Therefore where possible we have compared
the performance of our tool with Margrave’s performance on
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Property I/O (ms) Transform (ms) Boolean (ms) SAT (ms) Variables Clauses Result
C1 429 45 617 13 56 114 No
C2 421 44 504 11 42 83 No
C3 426 45 581 11 51 108 No
C4 427 45 582 10 52 106 No
C5 425 428 854 10 79 166 No
Co6 428 44 1110 15 89 190 Yes
C7 126 7 1620 12 95 218 Yes
C8 433 44 486 11 42 83 Yes
c9 430 46 578 11 51 106 Yes
C10 416 44 1464 12 108 250 Yes
Cl1 412 45 2462 13 129 297 Yes
M1 137 7 5144 14 109 280 No
M2 138 7 5168 13 108 279 No
Vi 115 10 1765 11 52 123 Yes

Table 1. Verification performance for the properties of the CONTINUE conference manager (C1-11), Medico (M1-2) and voting (V1) examples. We divided the
execution time to I/O, transformation to triple form, Boolean formula generation and CNF transformation and SAT solving. The times are in milliseconds. We also
listed the size of the generated SAT problem instance (in terms of the number of Boolean variables and clauses) for verification of each property. If the result is
“Yes” the generated SAT instance is satisfiable and the property is violated. If the result is “No” the generated SAT instance is not satisfiable and the property holds.

Parse/conversion Property verification
Property CPU time (ms) Real time (ms) GC time (ms) CPU time (ms) Real time (ms) GC time (ms)
C1 1084 1102 244 4 0 0
c2 1084 1102 244 0 1 0
C3 1084 1102 244 0 0 0
C4 1084 1102 244 0 1 0
C5 1084 1102 244 4 2 0
C6 1084 1102 244 0 0 0
C7 1084 1102 244 0 0 0
C8 1084 1102 244 0 2 0
9 1084 1102 244 0 0 0
C10 1084 1102 244 0 1 0
Cl11 1084 1102 244 0 0 0

Table 2. Verification performance for the properties of the CONTINUE conference manager under Margrave. Due to differences in tool architecture, only one
parse/conversion step is necessary to verify any number of properties; accordingly only one such time is given.

our examples. Table 2 shows the results of running Margrave
on the CONTINUE properties. As with Table 1, these figures
represent a median of five runs on the same 2.8 GHz machine.

The current version of Margrave is 2—1, which has been
updated for XACML 2.0. The CONTINUE example which we
both use has not been updated to XACML 2.0 and only runs
under Margrave 1-1. The differences between XACML 2.0 and
XACML 1.0 have minimal impact upon change analysis but
the syntax is very different. Margrave 1-1 only runs under PLT
Scheme 209, which may not be as optimized as more recent
versions.

Margrave’s architecture is very different from our own,
which makes a direct comparison of the time taken to analyze
properties difficult. Margrave parses the XACML and converts
it into a form suitable for analysis only once, and then can
check as many properties as is desired. Margrave manages this
by using a binary decision diagram (BDD) [6] for analysis. The

conversion process can be time consuming and can also con-
sume large amounts of memory. However, once the BDD has
been created, checking properties is very quick—effectively
linear in the number of variables used. This is why the figures
for property verification are so small; while clearly it does
not actually take O milliseconds to perform property verifica-
tion the actual time taken is so small it is difficult to measure.
Adding together the parse/conversion time and the property
verification time gives a result more comparable to our own.
However, this is not a fair comparison since it ignores Mar-
grave’s ability to do several checks on a given policy with only
one conversion step.

Margrave itself has several important limitations which
prevent us from comparing our tools using all our examples.
Among the limitations, Margrave 1-1 is not capable of han-
dling Condition elements in Rules or generally any restric-
tion that cannot be expressed using <Target> elements. The
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number of predicates admissible in <Target> elements is
a fraction of those available in the language as a whole. In
particular none of the predicates and functions that compli-
cate conversion to a Boolean formula, like ordering or XPath
comparison that we discuss in Section 4.2, can be used in
<Target> elements. Margrave 2—1 adds minimal support for
Condition elements, supporting only Boolean functions and
string equality. Neither version of Margrave can handle the
only-one-applicable policy or rule combining algorithms, nor
does it understand the Indet result.

Because of these limitations, we cannot run the M1, M2
and V1 examples in Margrave. In particular the x < 18 prop-
erty in Sy which is part of V1, the XPath node matching in
M1 and M2, the uniqueness declarations (for example, the
string-one-and-only function) used extensively in M1
and M2, and the date calculations present in M1 and M2
prevent those examples from being used with Margrave.

The only examples we have been able to find that are
supported both by our tool and by Margrave is the CONTINUE
conference manager examples, which were in fact written for
Margrave; these correspond to our C1 through C11 properties.
For these examples, Margrave is able to parse the XACML,
convert it to a Boolean formula and build the corresponding
decision diagram in 1.1 seconds. After the decision diagram
is built, the time it takes to check properties is negligible;
in many cases our test harness reports 0 seconds required for
completion. Our system is more sensitive to the structure of the
property but for the CONTINUE examples is quite competitive.
The majority of the time for our tool is spent performing I/O or
generating a Boolean formula in CNF form. As well, we must
regenerate the Boolean formula for each property whereas a
decision diagram approach does not. However, note that, the
median time for checking the SAT instances generated by our
tool never exceeds 0.015 seconds; since we run the SAT solver
as a separate process it is very possible that most of this time is
spent in process creation overhead. Since this is the only part
in our analysis that has exponential worst-case complexity, it
is very encouraging to see that it is an insignificant part of the
computation time of our tool for these examples. In contrast,
for the decision diagram based approach used by Margrave,
the time consuming step is the construction of the decision
diagram and, hence, the verification time for Margrave is
dominated by the time it takes to build the decision diagram.

It should be noted that while Margrave’s total run time is
swifter than our own, Margrave is only capable of examining
policies specifically written for it, due its inability to handle
any condition not expressible as a scoping restriction. It would
be interesting to run our other examples against Margrave, but
this is not possible due to its limitations.

5.2 Comparison with Alloy Translation

Before we built a direct XACML to SAT translator, we exper-
imented with using the Alloy [17] analyzer as a back-end
verification tool for XACML policy analysis [14]. We devel-
oped a tool that automatically translates XACML policies into
the Alloy [17] declarative modeling language. Alloy is based

on first order relational logic and is intended to model complex
structures. It does so through extensive set manipulation, and
this makes it an attractive target for translation from our math-
ematical model. We briefly discuss here our translation from
our formal model to Alloy and the results from attempting
analysis using that translation.

Alloy models consist of sets of concrete objects, called
signatures, facts about these sets, and relations between the
sets. Distinguished subsets of these signatures are possible,
and these new sub-signatures are said to extend the original
signature. Unlike some other modeling languages, Alloy does
not require that relations be completely specified. Alloy cannot
in general prove assertions about all possible models, but it
can prove assertions about models with a fixed scope.

5.2.1 Translation to Alloy

The general structure we use for translation is as follows: to
prove that P, C P, we define each of P, and P, and then
check that each set of P; is contained in the corresponding set
of P»; this is structured as follows.

static sig Pl extends Triple {} {

}

static sig P2 extends Triple {} {

}

assert Subset {
Pl.permit in P2.permit
Pl.deny in P2.deny
Pl.error in P2.error

}

We translate from our mathematical model for P; and P,
to Alloy code for the same as follows. We first define a signa-
ture corresponding to our environment F; each component of
F is encoded as a field. So for our example we might encode
the environment E in Alloy as

sig E {
age : set Integer,
voted : set Bool,
actions : set String

}

We also need to encode constants; while Alloy already defines
the Boolean constants True and False we must manually
define any others. So for our running example we would have
a signature of constants defined as follows:

static sig CONSTANTS {
eighteen : scalar Integer,
vote : scalar String,

For each set S C E we define an auxiliary set as we did
the sets Sg, S1,...,S54 in (2) through (6) in Section 2. For
example, if we wanted to encode S5 as an Alloy set, we might
encode it as
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sig S_2 extends E {} {
CONSTANTS.vote in actions

}

We can encode relations like < using an auxiliary Alloy func-
tion LessThan and enforcing transitivity as follows:

fact {
all a,b,c:Type {

LessThan (a, b) = True &&
LessThan (b, c) = True =>
LessThan (a, c¢) = True

}
}

In fact Alloy has a library for this specific operation, but the
technique is useful for converting other relations. Using this
definition we can encode Sy as

sig S_0 extends E {} {
all x : age |
LessThan (x, CONSTANTS.eighteen)
= True

Once all the various S;s have been encoded, we can define the
triples directly using Alloy’s set operations.

5.2.2 Effectiveness of the Alloy Translation

Armed with the translation detailed above, we can apply our
analysis of XACML policies much as we did with our direct
SAT translation. Unfortunately due to limitations in the Alloy
Analyzer it is not possible to analyze the same policies we
did with our SAT based tool. We observed that as the policies
get larger the Alloy Analyzer either runs out of memory or
crashes, and that we encountered these difficulties surprisingly
quickly.

We were able to analyze a simpler portion of the Medico
example used by our M1 and M2 examples described in Sec-
tion 5. Specifically, we took a subset of the Medico policy
and checked that this subset was subsumed by the full policy
(which should be true) and also checked that the full policy is
not subsumed by the subset. Note that these tests are not the
same as the M1 and M2 examples given above; M1 and M2
test more semantically meaningful properties. On the same
hardware that we used to run the earlier examples, we found
that checking that a subset is subsumed by the full policy took
21.7 seconds, and checking that the full policy is not subsumed
by the subset took 42.0 seconds.

We experienced severe difficulties finding properties that
the Alloy Analyzer could analyze successfully. When we at-
tempted to check the M1 and M2 properties themselves, the
Alloy Analyzer alternately crashed or ran out of memory.
Sometimes restructuring the Alloy encoding of the policy
ameliorated the difficulties, suggesting some inefficiency in
the Boolean encoding process. Ultimately the manner in which

the Analyzer failed—that is, abruptly and with no indication
of what went wrong—made it extremely difficult to determine
where the error lay.

To deal with these issues, we developed the direct-to-SAT
translation we have detailed in Section 4.3. We use the same
SAT solver (that is, Zchaff) that the Alloy Analyzer uses, but
our direct-to-SAT translation handles the largest XACML poli-
cies we can find gracefully, and considerably more quickly as
well.

6 Related Work

This paper is an extended version of our earlier work [15].
We extended the results reported in [15] by adding a detailed
discussion of the differences between the simplified policy
combinator operators we use in our tool and the correspond-
ing policy combinator operators from the XACML language
specification. We show that our operators are equivalent to
their XACML counterparts under certain conditions, and, fur-
thermore, XACML operators can be translated to our operators
using a translation algorithm we describe in this paper. In
this paper, we also extend the experimental results from that
work [15] in two significant ways: first, we compare the per-
formance of our tool with that of Margrave [12] using one of
the policy examples from our experiments, and discuss the
benefits and the limitations of Margrave compared to our tool;
second, we discuss the use of Alloy [17] as the back end ver-
ification tool for XACML policy analysis (instead of a direct
translation to a SAT solver), and provide experimental results
in this direction.

Access control has been the subject of extensive research:
Sandhu, Samarati and de Capitani de Vimercati [28, 29, 32]
introduce the process; Bonatti, Bertino, et al., [3, 4, 30, 31]
describe various models for access control; Damiani et al. [7—
10] describe a particular fine grained access control for XML
documents; Bonatti et al. [5] define an algebra for composing
different parts of a model into a unified whole; and Abadi,
Heckman, di Vimercati et al. [2, 11, 13] describe ways to
distribute the control so that it is consistent across a distributed
system.

Access policy languages, too, are not new: Abad-Piero
et al. [1] describes a general purpose policy language for
authorization systems, Jajodia et al. [20-22] define a model
and language for access control and then present a framework
for enforcing multiple access policies by expressing how to
combine them in a new language. We chose XACML because
it is a standardized language with tool support, and so our
results are more likely to be immediately useful.

The problem with access policies becoming large and
difficult to reason about has also been studied, but not in
the general case: Heckman and Levitt [13] present a way of
verifying a hierarchy of security servers to ensure that they
are enforcing the whole access policy, and Naumovich [26]
presents an algorithm for computing the flow of permissions
through the Java security model, to aid static analysis. Neither
of these are exactly what we want: Heckman and Levitt’s work
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can prove that the programs you have collectively implement
the policy you specified, but their technique cannot tell you
whether you have made a subtle error in creating your policy
in the first place; Naumovich’s work is more comprehensive
but is specific to Java’s security model.

Automated analysis of access control policies has also
been researched; Schaad and Moffet [33] and Zao et al. [37]
analyze role based access control schemas using the Alloy
analyzer. Schaad and Moffet use Alloy to verify that the com-
position of specifications is well formed and is silent about
their content, whereas we introduce a formal model of and
a partial ordering on XACML specifications specifically de-
signed for analyzing the semantics. Zao et al. model RBAC
schemas in Alloy and then checks these models against pred-
icates, also written in Alloy. We introduce a formal model
for XACML with a partial ordering on policies that we then
automatically check using a SAT solver as a back end; we do
not insist that the user write predicates in another language
and operate solely on XACML.

Jackson’s Alloy Analyzer also uses a SAT solver as a back-
end to solve verification queries [16, 19]. Hence, translating
XACML policies to Alloy in order to verify them is in effect
an indirect way of using a SAT solver for verification. We
attempted to use the Alloy Analyzer for verification of XACML
policies previously [14]; we detail our technique in Section 5.2.
Our experiments have shown that a direct translation to SAT is
much more effective then translating the verification queries to
Alloy. Using a direct translation we can generate a customized
encoding of the problem. The Alloy Analyzer is optimized
for a more general class of models and hence, not necessarily
efficient for types of verification queries we are interested in.

Recently, Fisler et al. [12] used multi-terminal decision
diagrams to verify properties of XACML policies with the Mar-
grave tool. We compare Margrave with our tool in Section 5.1.
Briefly; verification queries in Margrave are expressed in the
Scheme language. We use relationships between policies in-
stead, and we believe this makes our tool easier to use. Also,
a verification approach that uses decision diagrams is more
likely to be successful for incremental analysis techniques; we
agree that the multi-terminal decision diagrams are the appro-
priate representation to use the change-impact analysis Fisler
et al. describe. However, for the type of verification queries
we discuss in this paper we expect a verification approach
based on SAT solvers to perform better on large policies than a
verification approach based on decision diagrams. A final dif-
ference is that our tool handles more of XACML than Margrave
does, including complex conditionals and more datatypes.

7 Conclusion

We have presented a formal model for access control poli-
cies, and shown how to verify interesting properties about
such models in an automated way. In particular we translate
queries about access control policies to Boolean satisfiabil-
ity problems and use a SAT solver to obtain an answer. We

express properties about access control policies as subsump-
tion queries between two policies. We have implemented a
tool that translates XACML policies into to our formal model
and also translates subsumption queries between two XACML
policies to a Boolean satisfiability problem. Our experimental
results indicate that automated verification of nontrivial access
policies is feasible using our approach.

Our approach is not without its limitations; we perform a
bounded analysis which can lead to false negatives, and we
abstract certain functions which can lead to false positives.
However for finite state specifications our approach is sound
and complete as long as the user chooses a sufficiently large
bound and the complex XACML functions are not used in the
specification. We successfully accommodate far more of the
XACML specification in our analysis than previous efforts have
managed.

In the future, we would like to investigate different ab-
straction techniques to generate more precise models for the
functions that we cannot directly simulate. We would also like
to experiment on more and larger policies. One issue worth
investigating is the relationship between the characteristics of
a policy (such as its textual size) and the time taken to perform
analysis upon it. The CONTINUE examples from Section 5
are textually larger than the Medico examples we used, but
the latter have more variables and clauses in the generated
Boolean formula.
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