Int J Softw Tools Technol Transfer (2008) 10:493-502
DOI 10.1007/s10009-008-0088-8

SPECIAL SECTION WQVV 07

Healing Web applications through automatic workarounds

Antonio Carzaniga - Alessandra Gorla - Mauro Pezze

Published online: 21 October 2008
© Springer-Verlag 2008

Abstract We develop the notion of automatic workaround
in the context of Web applications. A workaround is a
sequence of operations, applied to a failing component, that
is equivalent to the failing sequence in terms of its intended
effect, but that does not result in a failure. We argue that
workarounds exist in modular systems because components
often offer redundant interfaces and implementations, which
in turn admit several equivalent sequences of operations. In
this paper, we focus on Web applications because these are
good and relevant examples of component-based (or service-
oriented) applications. Web applications also have attractive
technical properties that make them particularly amenable
to the deployment of automatic workarounds. We propose
an architecture where a self-healing proxy applies automatic
workarounds to a Web application server. We also propose a
method to generate equivalent sequences and to represent and
select them at run-time as automatic workarounds. We vali-
date the proposed architecture in four case studies in which
we deploy automatic workarounds to handle four known

This work has been supported by the project PerSeoS funded by the
Swiss National Fund.

A. Carzaniga - A. Gorla (X)) - M. Pezze

Faculty of Informatics, University of Lugano, Via Buffil3,
6904 Lugano, Switzerland

e-mail: alessandra.gorla@lu.unisi.ch

A. Carzaniga
e-mail: antonio.carzaniga@unisi.ch

M. Pezze
e-mail: mauro.pezze @unisi.ch

M. Pezze

Dipartimento di Informatica, Sistemistica e Comunicazione,
University of Milano-Bicocca,

Via Bicocca degli Arcimboldi 8, 20126 Milan, Italy

failures in to the popular Flickr and Google Maps Web
applications.

Keywords Self-healing - Autonomic computing -
Equivalent sequences - Automatic workarounds - Fault
recovery

1 Introduction

In a previous preliminary paper [5], we have proposed the
notion of automatic workaround as a basic mechanism to
tolerate faults, and therefore to implement self-healing [17,
18], for component-based systems. The idea of automatic
workaround amounts to exploiting the redundancy of code
in such modularized systems.

In order to define automatic workarounds, we focus on a
single server component that exports a well-defined set of
interface operations and that is used by one or more other
client components. The server component is the one that
may contain a fault, and to which we apply automatic wor-
karounds. (Notice that the server/client categorization is not
specific to networked components, but instead it simply
allows us to identify the target of automatic workarounds.)
We make two important assumptions. First, we assume that,
when the component fails, the failure can be detected and the
component can be brought back to a consistent state. This is
usually done explicitly by the programmer, through a variety
of mechanisms such as assertions and exception handling.
Second, we require a specification of component behavior.
The specification can be given in various forms. We prefer
a formal model, such as a state-based model, but the tech-
nique works with partial models as well, including models
generated by the observation of correct behaviors.

@ Springer

494

A. Carzaniga et al.

Within this context and with the basic assumptions
outlined above, we developed the following operational defi-
nition of automatic workarounds. When the component fails,
we examine the sequence of operations that lead to the failure.
In particular, we consider the initial state of the component,
the failing sequence, the intended final state, and the fall-
back state (possibly but not necessarily the same as the initial
state). Then, we select an alternative sequence of operations
that, according to the specified behavior, would bring the
component from the fall-back to the intended final state. We
call these sequences specification-equivalent sequences. The
ideais to selectamong the specification-equivalent sequences
one that would not incur a failure, and therefore that would
serve as a workaround. We call such alternate sequences auto-
matic workarounds whenever they can be generated on the
basis of the model of the component, and when they can be
selected and applied automatically at run time, effectively
masking faults.

In this paper, we describe a concrete instantiation of the
notion of automatic workarounds in the context of Web appli-
cations that offer an interesting domain for a number of rea-
sons. From a purely technical viewpoint, Web applications
use communication and implementation mechanisms that are
very amenable to the deployment and use of automatic wor-
karounds. In terms of communication, their primary interface
(HTTP) admits an almost completely transparent monito-
ring, interception, and redirection of operation calls. In terms
of implementation, Web applications are typically based on
multi-tier architectures that clearly separate the application
logic from the application state (database) and therefore are
inherently capable of maintaining a consistent state in the
presence of failures.

The second and more specific contribution of this paper
is a method to automatically generate and select equiva-
lent sequences of operations to serve as workarounds. This
method assumes a state-based model of the system. Star-
ting from the intended state transformation of the failing
run, we perform a constrained exploration of the state space
to find alternative sequences of operations that represent
an equivalent state transition, and therefore a potential
workaround.

We applied this method to four case studies in which we
look for automatic workarounds for four faults in the two
popular Web applications Flickr and Google Maps. Our expe-
rience shows that automatic workarounds are indeed possible
with Web applications, and that the generation method we
propose coupled with a simple prioritization rule is effective
in identifying valid ones.

We continue in Sect. 2 with a detailed presentation of the
application of automatic workarounds to Web applications.
Then in Sect. 3 we describe the process by which we gene-
rate alternative sequences and then select good candidates
to use as automatic workarounds. In Sect. 4 we present the

@ Springer

four case studies that illustrate and validate our methods.
In Sect. 5 we position our work within the context of other
self-healing techniques with a particular attention to tech-
niques developed for Web applications. Finally, we conclude
in Sect. 6 with a roadmap for future research in the deve-
lopment and refinement of the idea of automatic worka-
rounds.

2 Automatic workarounds and Web applications

We propose a general architecture for implementing auto-
matic workarounds where a self-healing layer mediates the
interactions between a client component and a server com-
ponent. (Again, here the term “server” refers to the target
of automatic workarounds.) Figure 1 depicts this general
architecture. The self-healing layer observes the interaction
between the components, which consists of a sequence of
method calls from the client (top of the diagram) to the ser-
ver (bottom). With this sequence, and having a model of the
server component, the self-healing layer maintains an abs-
traction of the state of the server, effectively using the model
to simulate the internal behavior of the server. Whenever a
failure is detected, and after the server has been brought back
to an internally consistent state, the self-healing layer inter-
cepts the failure signal and intervenes by selecting and execu-
ting an equivalent sequence. In case the equivalent sequence
fails, the self-healing layer may try to execute other equiva-
lent sequence. If one of the equivalent sequences is success-
ful, then the execution proceeds normally as if the failure
never occurred. If none of the selected equivalent sequences
is effective, then the self-healing layer reports the failure back
to the client.

In order to apply this general architecture to Web applica-
tions, we choose a specific design for the self-healing layer.
We also make specific assumptions about the availability
and nature of the failure detector as well as the recovery
mechanism used by the server. In particular, we assume that
client components are primarily end-user applications that
are controlled directly through an interactive graphical user
interface (typically a Web browser). Furthermore, we
assume that the server component resides outside of the

Caller (client) component

Mok
no workaround 7

automatic
’, workaround
¢ 7 failure

Fig. 1 General architecture for automatic workarounds

monitor

Self-healing layer

v
Called (server) component

Healing Web applications through automatic workarounds

495

¢—‘ proxy
atic
und

autom 5"
/Sf;l; workarol failure
<€ failure signal
HTTP

HTTP
Fig. 2 Architecture for automatic workarounds in Web applications

administrative domain of the user, that it is accessible only
through its HTTP interface, and that it is designed to main-
tain a basic level of internal consistency despite internal or
external failures and repeated or erroneous requests. This
latter assumption is realistic, since most application servers
are implemented using specific frameworks that guarantee a
basic form of error handling, and also because application
servers that implement the main application logic are typi-
cally backed by a database to maintain a stable and consistent
state.

Based on these assumptions, we design the self-healing
layer as shown in Fig. 2. The diagram highlights two impor-
tant architectural choices. The first notable difference with
the general architecture is that the user is now involved in the
failure detection process. Therefore, the self-healing layer no
longer masks failures on behalf of the user. This decision is
dictated by practical considerations regarding the characte-
ristics of Web applications. Although Web application ser-
vers offer some basic form of failure detectors (for instance,
internal server errors are signaled through a “500” HTTP
response), a better failure detection mechanism is necessary
and available. In fact, the interactive and user-driven nature
of Web applications suggests that users themselves can be the
most effective failure detectors, and also that users would be
willing to play that role if that were made accessible to them
through a convenient user-interface mechanism.

The second notable design decision is to locate the
self-healing layer close to the client. Specifically, we pro-
pose to use a self-healing layer implemented as a Web proxy.
This architectural model seems very appropriate given the
nature of Web applications, and especially given the pro-
minent role of proxies as integral components of the HTTP
protocol. Also, implementing the self-healing layer as proxy
is the least invasive solution, since it does not affect the code
of the application server or the client.

Asforits other features, the design of the self-healing layer
does not differ substantially from the general design. A Web
application (on the right of Fig. 2) invokes the methods of a
service (on the left of Fig. 2) while the self-healing proxy (in
the center of Fig. 2) monitors the calls and maintains a partial
history of calls. As we will see later, this history is represented
by a finite model that abstracts the state of the service. In
addition to monitoring calls, the self-healing proxy intercepts
failure signals coming from both the application server and
the user. The server signals failures through the usual error
reporting mechanisms provided by HTTP, while the user may

signal failures through a GUI element (for instance, a button
or alink) inserted by the proxy within the application content.

In response to a failure signal, the proxy selects and exe-
cutes workarounds. As a first step, the proxy uses information
provided by the failure signals, together with its call history
and the corresponding model of the internal state of the appli-
cation server, to establish (1) the intended state of the appli-
cation after the sequence of calls issued by the client, and (2)
the actual state of the application after the failure. Then the
proxy proceeds to identify a workaround. Workarounds are
sequences of service invocations that, starting from the actual
state, have the same intended effect as the failing sequence,
that is, have the same effect according to the specifications,
regardless of the actual (failing) behavior. To avoid ambi-
guity, we call these specification-equivalent sequences. We
propose to generate workarounds by matching the failing
sequence with the specifications, as discussed in detail in the
next section.

Notice that, in the particular case of Web applications,
service interfaces are often redundant, so that clients can
obtain equivalent results through many sequences of method
invocations. Therefore Web applications lend themselves to
the automated generation of workarounds. For example, the
popular Flickr API offers different services for manipulating
tags associated to photos, such as setTags to associate new
sets of tags to photos, and addTags to append additional tags
to photos. We can use different sequences of invocations of
these and other services to attach the same set of tags to a
photo.

3 Automatic generation of equivalent sequences

Our approach towards producing automatic workarounds
relies on the ability to generate equivalent sequences auto-
matically from specifications. This amounts to identifying
sequences of service invocations that produce equivalent
effects according to the specifications, and can thus substitute
the failing invocation sequences. In this section, we show how
to automatically generate specification-equivalent sequences
from finite state machines.

We start with a finite state machine specification and a fai-
ling sequence of service invocations. The finite state machine
specifies the expected behavior of the application, and is pro-
duced during the design. Figure 3 shows an example of a finite
state machine specification of the sale function in a simpli-
fied e-commerce application. Customers can add items that
are initially on sale either to the wish list, to indicate interest
in the items, or to the cart, to buy the items by proceeding
with payment.

A failing sequence is identified by both the failure-
detection (the user) and the recovery mechanisms that we
assume is available for the system. The failure detection

@ Springer

496

A. Carzaniga et al.

addToWishList

removeFromWishLis

Fig. 3 A finite state machine specification of a simple sale function

mechanism signals the failing state, that is the final state
of the failing sequence, while the recovery mechanism back-
tracks to a consistent fall-back state, that is the state of the
system after recovery.

Once identified a failing sequence, we automatically iden-
tify sequences equivalent to a failing one as follows:

1. We produce a new finite state machine from the origi-

nal one by removing all the invocations of the failing
sequence that do not affect the reachability of the inten-
ded final state from the fall-back state. We then generate
sequences that connect the fall-back state to the inten-
ded final state. While generating equivalent sequences,
we traverse cycles at most once. We do that because
the positive effect of methods that can impact on the
final result and fix the problem is usually already visible
after the first invocation of the methods. In other words,
equivalent sequences containing multiple, cyclic invoca-
tions have little or no advantage in leading to an effective
workaround.
For example, if the failing sequence of the sale func-
tion of Fig. 3 consists of the only invocation of function
addToCart from state onSale, we can remove the addTo-
Cart transition from state onSale to state inCart without
affecting the reachability of the intended final state, and
then use the new FSM to identify equivalent sequences.
Examples of such sequences are:

addToWL, addToCart
addToWL, removeFromWL, addToWL, addToCart
addToWL, addToCart, removeFromCart, addToWL, addToCart

2. if none of the invocations that belong to the failing
sequence can be removed from the FSM without discon-
necting the intended final state from the fall-back state,
we interleave invocations of the failing sequence with
indifferent invocation sequences.

Indifferent sequences are sequences that, according to the
specification, do not affect either the application behavior

@ Springer

or the final result, and that, when invoked in presence of
failure, may mask or avoid the problem.

Such invocations include single functions that alter only
the timing or scheduling, and thus have no functional
effect (for example, delay the execution of a function),
or maintenance actions (for example, clean the browser
cache) that have no direct functional effect on the appli-
cation. They can also involve sequences of two or more
services that cancel each other (for example, pairs of add
and remove, or load and unload operations).

Thus, it is possible to generate equivalent sequences by
interleaving the failing sequence with indifferent invo-
cations. As in the previous case, we do not generate
sequences that include cyclic invocation of the same
sub-sequences.

For example, if the failing sequence of the sale func-
tion of Fig. 3 consists of the only invocation of function
pay from state inCart, we cannot remove transition pay
from state inCart to state Sold, without affecting the rea-
chability of the intended final state. Thus, we generate
sequences equivalent to the failing one by adding indif-
ferent invocations, for instance:

removeFromCart, addToCart, pay

removeFromCart, addToWL, removeFromWL, addToCart, pay
sleep, pay

where the function sleep is a function that delays the
execution of the following invocations of some time.

3. In both cases, we produce many sequences. We priori-
tize sequences by length from the shortest to the lon-
gest, without a specific order within sequences of the
same length, and we generate and try sequences in order
of priority. The experience reported in the next section
provides some initial evidence of the validity of this
choice.

4 Experience results

We evaluated the approach proposed in this paper on some
representative Web applications. Here we describe our expe-
rience with Flickr, a popular Web application that manages
photos, and Google Maps, the well known Web application
to access world maps. In the cases reported in this paper, we
proceeded as follows:

— we considered some known and documented failures,

— we produced finite state machine specifications from the
(informal) documentation of the failing services,

— we identified the failing sequences,

— we derived equivalent sequences from the finite state
machine specifications, and we sorted equivalent seque-
nces according to their length, as suggested in Sect. 3,

Healing Web applications through automatic workarounds

497

notOnFlickr

upload(isPubli

setPerms(isPublic_ON)

c_OFF)

setPerms(isFamily_ON)

Method

Method description

upload|()
upload(isPublic .OFF)
upload(isFamily_ON)
setPerms(isPublic .ON)
setPerms(isPublic_OFF)
setPerms(isFamily.ON)

upload a photo as public.
upload a photo as private.

upload a photo as visible to family contacts only.

set the visibility of a photo to allow anybody to see it.
set the visibility of a a photo to allow nobody to see it.
set the visibility of a photo to allow the family contacts to see it

Sequences equivalent to setPerms(isFamily ON) up to length 4

setPerms(isPublic_ON)
setPerms(isFamily_OFF)
setPerms(isPublic_ ON)
setPerms(isPublic_ON)
setPerms(isPublic OFF)
setPerms(isFamily OFF)
setPerms(isFamily OFF)
setPerms(isPublic_ON)
setPerms(isPublic_OFF)
setPerms(isPublic_OFF)
setPerms(isPublic_.ON)
setPerms(isPublic_.ON)
setPerms(isPublic_.ON)

setPerms(isFamily_ON)
setPerms(isPublic_ON)
setPerms(isPublic_ ON)
setPerms(isFamily_ON)
setPerms(isPublic. ON)
setPerms(isPublic_ON)
setPerms(isPublic_ON)
setPerms(isPublic_ON)
setPerms(isPublic.ON)
setPerms(isPublic_ON)
setPerms(isFamily.OFF)
setPerms(isPublic_OFF)
setPerms(isFamily ON)

setPerms(isFamily ON)
setPerms(isFamily_ON)
setPerms(isFamily_ON)
setPerms(isFamily_ ON)
setPerms(isPublic_ON)
setPerms(isFamily ON)
setPerms(isFamily _ON)
setPerms(isPublic_.ON)
setPerms(isFamily _ON)
setPerms(isPublic_.ON)
setPerms(isPublic . ON)
setPerms(isPublic_ ON)

setPerms(isFamily _ON)
setPerms(isFamily _ON)
setPerms(isFamily _ON)
setPerms(isFamily .ON)
setPerms(isFamily _ON)
setPerms(isFamily .ON)
setPerms(isFamily ON)
setPerms(isFamily ON)

Fig. 4 Photo visibility handling in Flickr

— we tried the equivalent sequences in the order of priority,
and verified the presence of an effective workaround in
the first set of equivalent sequences (within the first eight
sequences for the cases presented in this paper).

The experience reported in this paper illustrates both the
case of failing sequences that can be deleted from the FSM
specifications, and the case of failing sequences that cannot
be removed from the FSM specifications without affecting
the reachability of the intended final state.

4.1 Flickr visibility

Flickr allows users to upload and share photos on the Web.
Photos can have a public, family or private visibility, and
according to the description of the Flickr application, users
can change the visibility of their photos through the set-
Perms() function (see Fig. 4).

Here we focus on a problem with function setPerms()
reported in March 2007. In this case, the setPerms()

function failed to change the status of a photo from private
to family.!

In particular, the failure reportedly occurred with a
failing sequence consisting of a single call to the function
setPerms(isFamily_ON), which is supposed to change the
visibility to family, immediately following a successful call
to upload(isPublic_OFF), which uploads a photo with initial
private visibility.

Figure 4 shows the relevant subset of the FSM speci-
fications that we derived from the informal description of
the Flickr visibility manager interface, together with the set
of top-priority equivalent sequences derived following the
approach described in Sect. 3. Given the failing sequence
setPerms(isFamily_ON), from initial state private to inten-
ded final state family, we generated equivalent sequences
by removing the setPerms(isFamily_ON) transition connec-
ting state private to family from the FSM, and by finding
alternative paths from private to family. We generated 412

U http://www.flickr.com/help/forum/36212 and http://www.flickr.com/
help/forum/46985

@ Springer

http://www.flickr.com/help/forum/36212
http://www.flickr.com/help/forum/46985
http://www.flickr.com/help/forum/46985

A. Carzaniga et al.

setPerms(comment_OFF)

cannotBeCommented

deleteComment()

notOnFlickr delete() canBeCommented canBeCommented
hasComment
Method Method description
upload|() upload a photo to Flickr
delete() delete a photo from Flickr

setPerms(comment _ON)
setPerms(comment.OFF)
addComment()
deleteComment()

allow any Flickr user to add a comment to a photo
do not allow users to comment a photo

add a comment to a photo

delete a comment of a photo

Sequences equivalent to addComment() up to length 4

setPerms(comment_ON)
addComment()
addComment()
setPerms(comment_ON)
setPerms(comment_ON)
addComment()

delete()
setPerms(comment_OFF)
setPerms(comment_ON)
addComment()
addComment()
addComment()
setPerms(comment_ON)
setPerms(comment_ON)
delete()

delete()
setPerms(comment_OFF)
setPerms(comment_OFF)
setPerms(comment.OFF)
setPerms(comment.ON)
setPerms(comment.ON)
setPerms(comment.OFF)

addComment()

setPerms(comment_ON)

deleteComment() addComment()

setPerms(comment_ON) addComment()

addComment() setPerms(comment_ON)

setPerms(comment_ON) setPerms(comment_ON)

upload() addComment()

setPerms(comment_ON) addComment()

addComment() deleteComment() addComment()
setPerms(comment_ON) deleteComment() addComment()
deleteComment() setPerms(comment_ON) addComment()
deleteComment() addComment() setPerms(comment_ON)
setPerms(comment_ON) addComment() setPerms(comment_ON)
addComment() setPerms(comment_ON) setPerms(comment_ON)
upload() setPerms(comment_ON) addComment()

upload() addComment() setPerms(comment_ON)
setPerms(comment_ON) setPerms(comment_ON) addComment()
setPerms(comment_OFF) setPerms(comment_ON) addComment()
setPerms(comment.ON) addComment() setPerms(comment.ON)
delete() upload() addComment()
setPerms(comment.OFF) setPerms(comment_ON) addComment()

delete() upload() addComment()

Fig. 5 Comment permission handling of public photos in Flickr

equivalent sequences of increasing length and up to 8 calls.
The sequence highlighted in bold in Fig. 4 represents a valid
workaround, and corresponds to the workaround suggested
on the Flickr forum for this problem. The workaround is the
fifth sequence according to the length-based prioritization
order.

Once the failure is identified and the system is brought
back to a consistent fall-back state, which in this case does not
require any special operation, the time necessary to generate
and try the first five sequences is almost imperceptible from
the user viewpoint.

4.2 Flickr comments
In Flickr, only authorized users may add tags, comments, and

descriptions to private or family photos, while by default all
users can add comments to public photos.

@ Springer

The second problem we consider in our experiments was
reported in December 2005, and has to do with Flickr’s
comment permissions.? According to the report, users could
not add comments to photos uploaded as public. Following
the report, we identified the failing sequence as a single
call to addComment(), issued immediately after a success-
ful upload().

Figure 5 shows the relevant subset of the FSM specifi-
cations that we derived from the informal description of the
Flickr comment manager interface, as well as the top-priority,
automatically derived equivalent sequences.

In this case, we cannot remove the addComment() tran-
sition that goes from state canBeCommented to canBeCom-
mented&hasComment without affecting the reachability of
the intended final state canBeCommented&hasComment.

2 http://www.flickr.com/help/forum/15259

http://www.flickr.com/help/forum/15259

Healing Web applications through automatic workarounds

499

setTimeout() openInfoWindow()
openlnfoWindow() setTimeout()

setTimeout() openInfoWindow()
GMarker.disableDragging() =~ GMarker.enableDragging()
GMap.enableDragging() GMap.disableDragging()
disableInfoWindow() enableInfoWindow()
GMarker.disableDragging() ~ GMarker.enableDragging()
GMap.enableDragging() GMap.disableDragging()
disableInfoWindow() enableInfoWindow()
disableInfoWindow() setTimeout()
GMarker.disableDragging() setTimeout()
GMap.enableDragging() setTimeout()

Fig. 6 Sequences equivalent to openlnfoWindow()

Therefore, we start to generate equivalent sequences
without changing the FSM. Specifically, we obtain them by
inserting indifferent sub-sequences into the failing sequence.
We generated 484 sequences up to length 8, and prioritized
them by length.

The equivalent sequence shown in bold is setPerms
(comment_OFF) setPerms(comment_ON) addComment(),
and is a valid workaround, which also corresponds to the
workaround proposed in the Flickr forum for this problem.
The workaround is the eighth sequence according to chosen
priority ordering. Also in this case the workaround can be
found in negligible time.

4.3 Google Maps draggable markers

Google Maps serves on-line maps that users can explore by
dragging their images on the screen with the pointer. Users
can also annotate maps with markers, to indicate points of
interest, can click on markers to show additional information,
and can drag markers to move them on the map. Both maps
and markers can be either fixed or draggable.

Here we consider a problem reported in November 2007.3
Clicking on draggable markers in non-draggable maps does
not display the information attached to the marker, as expec-
ted.

We reproduced the failure, and we identified the failing
sequence as a single call to openlnfoWindow(). Removing
openlnfoWindow() from the FSM that specifies the applica-
tion behavior changes the reachability of the intended final
state from the fall-back one. So, we generated equivalent
sequences by adding indifferent sub-sequences, as in the case
of the problem with the Flickr comment manager.

In this case, indifferent sequences can be obtained by com-
posing functions that enable and disable the same map attri-
butes, or by setting timeouts. In the experiment we considered
the following functions:

3 http://code.google.com/p/gmaps-api-issues/issues/detail 2id=33

setTimeout()

openInfoWindow()

openlnfoWindow()

openlnfoWindow()

openInfoWindow() setTimeout()
openInfoWindow() setTimeout()
openInfoWindow() setTimeout()
enableInfoWindow() openlnfoWindow()
GMarker.enableDragging() openlnfoWindow()
GMap.disableDragging() openInfoWindow()

enable map dragging

disable map dragging

enable the display of the information
window on the map

disable the display of the information
window on the map

enable marker dragging

disable maker dragging

insert a delay

GMap.enableDragging()
GMap.disableDragging()
GMap.enablelnfoWindow()

GMap.disablelnfoWindow()

GMarker.enableDragging()
GMarker.disableDragging()
setTimeout(time)

By adding combinations of pairs of enable/disable ser-
vices and timeouts, we generated 140 sequences equivalent
to openinfoWindow(). Figure 6 shows the fourteen top prio-
rity equivalent sequences up to length 4.

In this case the highest priority sequence is a valid worka-
round, as confirmed by the Google Maps bug-report website.

4.4 Google Maps dynamic loading

The last problem that we describe in this paper is related to
dynamic loading of Javascript code in Google Maps. The
Javascript code associated with a Web page can be loaded
either together with the Web page, or dynamically just before
the code is executed. This form of “lazy” loading is highly
recommended to reduce the execution overhead for web
pages with a lot of Javascript functions, many of which are
used only rarely.

Dynamic loading of Javascript code in Google Maps can
lead to failures due to the bad initialization of map images
within the Safari web browser, which are themselves loaded
dynamically on-demand. In particular, Safari shows dynami-
cally loaded maps as grey rectangles, and correctly visualizes
the map images only after some user-interface actions such
as zooming or dragging.*

The failure depends on the invocation of method setCen-
ter() that centers the map around a given point on the map.
The method is called right after the creation of the map, while
Safari has not started checking for the effects of method invo-
cations yet. Thus, Safari does not see the results of this invo-
cation and does not display the map as expected.

4 http:/code.google.com/p/gmaps-api-issues/issues/detail 2id=61

@ Springer

http://code.google.com/p/gmaps-api-issues/issues/detail?id=33
http://code.google.com/p/gmaps-api-issues/issues/detail?id=61

500

A. Carzaniga et al.

setTimeout() setCenter()

setCenter() setTimeout()

setTimeout() setCenter() setTimeout()

disableDoubleClickZoom() enableDoubleClickZoom() setCenter()

enableContinuousZoom() disableContinuousZoom() setCenter()

mapDragDIS mapDragEN setCenter()

disableDoubleClickZoom() enableDoubleClickZoom() setCenter() setTimeout()
enableContinuousZoom() disableContinuousZoom() setCenter() setTimeout()
mapDragDIS mapDragEN setCenter() setTimeout()
mapDragDIS setTimeout() mapDragEN setCenter()
disableDoubleClickZoom() setTimeout() enableDoubleClickZoom() setCenter()
enableContinuousZoom() setTimeout() disableContinuousZoom() setCenter()

Fig. 7 Sequences equivalent to setCenter()

We replicated the failure and identified the failing
sequence as a single call to method setCenter(). As in the pre-
vious case, removing the method from the FSM specification
affects the reachability of the final state, and thus we gene-
rated equivalent sequences by adding indifferent sequences
chosen from the following functions:

GMap.enableDragging()
GMap.disableDragging()
GMap.enableContinuousZoom()

enable map dragging
disable map dragging
Enable continuous smooth
zooming

Disable continuous smooth
zooming

Enable double click to
zoom in and out

Disable double click to
zoom in and out

insert a delay

GMap.disableContinuousZoom()
GMap.enableDoubleClickZoom()
GMap.disableDoubleClickZoom()
setTimeout(time)

By adding combinations of pairs of enable/disable ser-
vices and timeouts, we generated 100 sequences equivalent
to setCenter(). Figure 7 shows the twelve top-priority equi-
valent sequences up to length 4.

As in the previous case, the top priority sequence turns
out to be a valid workaround.

5 Related work

Automatic fault recovery mechanisms have been historically
investigated in the context of fault tolerant systems [19,25],

and more recently also in the context of Web applications [26].

Classic fault recovery approaches proposed in the context
of fault tolerant systems rely on redundant components,
wrappers Or rejuvenation.

Redundant components are additional components desi-
gned by developers and exploited at run-time. For example,
Diaconescu et al. [9] address performance problems by adap-
ting the application to the environment evolution: They
assume the presence of several components that offer equiva-
lent services, and automatically select at run-time

@ Springer

components with characteristics suitable to meet the required
quality of service.

These approaches rely on additional components develo-
ped to provide a suitable redundancy to support fault tole-
rance, while our approach does not require the development
of ad-hoc redundant components, but relies on redundancy
implicit in the applications, and thus does not incur in extra
costs.

Wrappers perform run-time sanity checks on the compo-
nents I/O to identify possible mismatches and avoid
consequent failures. For example, Fuad et al. [11,12] add
wrappers to components to ensure consistency among com-
ponents, and thus prevent possible failures. Similarly to the
case of redundant components, the approach is effective, but
requires extra development costs.

Rejuvenation or reboot consists of enabling the periodic
total or partial reboot of the system to clean up the run-time
state. Rejuvenation protects against failures caused by the
corruption of the application state (e.g., failures caused by
memory leaks). For example, Candea et al. [3,4] propose
a technique for enabling micro-reboot, that is the reboot
of selected components to benefit from state reinitializa-
tion without the overhead of rebooting the whole applica-
tion. Rebooting can be very effective for some classes of
faults, but does not apply well to the faults addressed in this
paper.

Much of the recent research on failure-recovery mecha-
nisms for autonomic Web applications exploits techniques
developed for fault tolerant systems. Many researchers pro-
pose techniques that rely on service brokers to find alterna-
tive services equivalent to failing ones. For example, Sadjadi
et al. [26] propose to duplicate the development of web ser-
vices to produce fault-tolerant web applications. Naccache et
al. focus on performance problems, and follow the research
line indicated by Diaconescu et al. They propose a framework
for selecting alternative services to deal with unexpected traf-
fic loads that slow down web services. They rely on multiple
services with equivalent behavior but different response time
depending on the traffic load, and they change services to

Healing Web applications through automatic workarounds

501

satisfy the required performance. They exploit techniques
developed for web based portals [24] and for Ajax-based
web applications [23]. Zhang [27] applies the idea of micro-
reboot in the context of Web services. These approaches have
similar advantages and limitations of classic fault tolerance
approaches.

Other researchers are investigating new ideas. Denaro
et al. [7,8] focus on integration failures, and propose a
self-adaptive approach to automatically detect mismatches
between requested and provided web-services, and execute
suitable adapters to solve the problems. Gurguis and Zeid [15]
define autonomic services, which can be invoked to add self-
healing capabilities to classic web services. Liao et al. [20]
propose a similar solution based on a federated multi-agent
system for autonomically organize and control web services.

Yet other approaches code reactions to failure occurrences
in the form of rules with the following format (failure,
recovery action).

Baresi et al.[1] propose Dynamo, a framework to augment
BPEL specifications with self-healing capabilities. Dynamo
monitors the system and evaluates assertions that code func-
tional and non-functional requirements. When assertions are
violated, Dynamo executes recovery actions defined by the
developers at design time. Recently, Dynamo has been imple-
mented on top of the JBoss rule engine [2].

Fugini et al. [13] propose an architecture for self-healing
web applications. Their architecture contains modules for
detecting, diagnosing and repairing faults. Similarly to
Dynamo, they use a repair rule registry that proposes rules
that match type of faults with recovery actions, such as repla-
cing services with similar ones by comparing their WSDL
interfaces, changing parameters to adapt services, etc. Simi-
larly, Modafferi et al. [22] propose an approach based on a
recovery registry, but augmented with specifications of alter-
native paths to be followed after a failure occurrence.

These approaches rely on registry provided by the deve-
lopers to identify recovery actions, while our approach iden-
tifies recovery actions at run time without relying on special
information provided by the developers.

Equivalent sequences that we exploit as failure worka-
rounds have been proposed in the early nineties by Doong
and Frankl [10] to automatically generate test oracles from
algebraic specifications, and have been identified by Henkel
and Diwan in their approach to reconstruct algebraic speci-
fications from Java code [16].

6 Conclusions and future research directions

We presented an application of the notion of automatic work-
arounds to Web applications. Automatic workarounds exploit
the redundancy of code present in modularized systems to
automatically avoid failures and therefore realize a form of

self-healing. Specifically, in this paper we present an
architecture for automatic workarounds that is particularly
suitable to Web applications, together with a method to gene-
rate and select workarounds. We also present the validation
of these ideas by means of four case studies based on two
very popular Web applications. In all these case studies, we
found that the automatic generation of equivalent sequences
always leads to an alternative sequence that does not incur a
failure, which amounts to a valid workaround. Furthermore,
we found that this valid workaround is always among the first
few sequences selected by our method.

We plan to continue to study and develop the notion of
automatic workaround. In particular, we plan to pursue this
study in the following three general directions: prioritizing
workarounds, using other types of specifications, and expan-
ding the scope of our evaluation and validation in breadth
and depth.

In terms of prioritization, so far we have used a simplistic
scheme based only on the length of the equivalent sequences
(i.e., we prefer shorter sequences). In the future, we plan
to study other prioritization criteria used individually or in
combinations. Examples of such measures include (1) maxi-
mizing the distance between the failed sequence and the wor-
karound, under the assumption that a very different sequence
is more likely to avoid the fault that caused the failure in the
original sequence; (2) using histories of workarounds or exe-
cutions, preferring workarounds that were successful in past
executions; and (3) using heuristics based on fault classifi-
cations, which would select sequences of operations that are
typically more effective with the most common faults for the
application at hand.

The work described in this paper focuses exclusively on
state-based specifications. In addition, we have assumed that
such specifications be written by a developer. However, the
idea of automatic workaround is not limited to these types of
specifications. In the future we plan to develop workarounds
for other types of specifications, including, for example, alge-
braic specifications, which seem to lend themselves to the
generation of equivalent input sequences. Also, we plan to
experiment with models that are not produced by a develo-
per, but that are instead synthesized from the system behavior.
Such automatic-generation techniques exist for various types
of models (e.g., state-based [6,21] and algebraic specifica-
tions [14,16]).

One crucial limitation of our current evaluation is that we
chose the case studies knowing which workarounds would
be effective for which failure. In other words, we found auto-
matically what we could already create by hand. We did that
to prove that automatic workarounds are indeed possible.
In the future, we plan to prove that automatic workarounds
are a viable solution more generally, especially for unknown
faults. In order to do that, we plan to broaden the range
of applications and case studies, and also to develop more

@ Springer

502

A. Carzaniga et al.

comprehensive experiments. In particular, we plan to expe-
riment with automatic workarounds in the presence of seeded
faults, and also in the presence of known (original) faults for
which workaround is known.

References

11.

12.

. Baresi, L., Guinea, S.: Dynamo and self-healing BPEL composi-

tions. In: ICSE COMPANION ’07: Companion to the Proceedings
of the 29th International Conference on Software Engineering,
pp. 69-70. IEEE Computer Society, Washington, DC (2007).
doi:10.1109/ICSECOMPANION.2007.31

Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL processes
with dynamo and the jboss rule engine. In: ESSPE "07: Internatio-
nal Workshop on Engineering of Software Services for Pervasive
Environments, pp. 11-20. ACM, New York (2007). doi:10.1145/
1294904.1294906

Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., Fox, A.:
Microreboot - a technique for cheap recovery. In: OSDI’04:
Proceedings of the Sixth Conference on Symposium on Opera-
ting Systems Design & Implementation. USENIX Association,
Berkeley (2004)

Candea, G., Kiciman, E., Zhang, S., Keyani, P., Fox, A.: JAGR: An
autonomous self-recovering application server. In: Active Middle-
ware Services, pp. 168—178. IEEE Computer Society, Washington,
DC (2003)

. Carzaniga, A., Gorla, A., Pezze, M.: Self-healing by means of

automatic workarounds. In: SEAMS ‘08: Proceedings of the 2008
International Workshop on Software Engineering for Adaptive and
Self-Managing Systems, pp. 17-24. ACM, New York (2008)
Dallmeier, V., Lindig, C., Wasylkowski, A., Zeller, A.: Mining
object behavior with ADABU. In: WODA ’06: Proceedings of the
2006 International Workshop on Dynamic Systems Analysis, pp.
17-24. ACM, New York (2006). doi:10.1145/1138912.1138918
Denaro, G., Pezze, M., Tosi, D.: Adaptive integration of third-
party web services. In: DEAS *05: Proceedings of the 2005 Work-
shop on Design and Evolution of Autonomic Application Software,
pp. 1-6. ACM, New York (2005). doi:10.1145/1083063.1083088
Denaro, G., Pezze, M., Tosi, D.: SHIWS: A self-healing integra-
tor for web services. In: ICSE COMPANION ’07: Companion to
the Proceedings of the 29th International Conference on Software
Engineering, pp. 55-56. IEEE Computer Society, Washington, DC
(2007). doi:10.1109/ICSECOMPANION.2007.66

Diaconescu, A., Murphy, J.: A framework for using component
redundancy for self-optimising and self-healing component based
systems. In: WADS ’03: Proceedings of the Workshop on Software
Architectures for Dependable Systems. Portland, Oregon (2003)
Doong, R.K., Frankl, P.G.: The ASTOOT approach to testing
object-oriented programs. ACM Trans. Softw. Eng. Methodol.
3(2), 101-130 (1994). doi:10.1145/192218.192221

Fuad, M.M., Deb, D., Oudshoorn, M.J.: Adding self-healing capa-
bilities into legacy object oriented application. In: ICAS ‘06:
Proceedings of the International Conference on Autonomic and
Autonomous Systems. [IEEE Computer Society, Washington, DC
(2006). doi:10.1109/ICAS.2006.10

Fuad, M.M., Oudshoorn, M.J.: Transformation of existing pro-
grams into autonomic and self-healing entities. In: ECBS ‘07:
Proceedings of the 14th Annual IEEE International Conference and

@ Springer

13.

14.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Workshops on the Engineering of Computer-Based Systems,
pp. 133-144. IEEE Computer Society, Washington, DC (2007).
doi:10.1109/ECBS.2007.74

Fugini, M.G., Mussi, E.: Recovery of Faulty Web Applications
through Service Discovery. In: SMR ’06: First International Work-
shop on Semantic Matchmaking and Resource Retrieval: Issues and
Perspectives. Seoul, Korea (2006)

Ghezzi, C., Mocci, A., Monga, M.: Efficient recovery of alge-
braic specifications for stateful components. In: IWPSE ’07:
Ninth International Workshop on Principles of Software Evolution,
pp. 98-105. ACM, New York (2007). doi:10.1145/1294948.
1294972

. Gurguis, S.A., Zeid, A.: Towards autonomic web services:

achieving self-healing using web services. In: DEAS *05: Procee-
dings of the 2005 Workshop on Design and Evolution of Auto-
nomic Application Software, pp. 1-5. ACM, New York (2005).
doi:10.1145/1082983.1083069

Henkel, J., Diwan, A.: A tool for writing and debugging algebraic
specifications. In: ICSE ’04: Proceedings of the 26th International
Conference on Software Engineering, pp. 449-458. Edinburgh,
Scotland (2004)

Horn, P.: Autonomic computing: IBM perspective on the state of
information technology. In: AGENDA 01. Scottsdale, AR (2001).
http://www.research.ibm.com/autonomic

Kephart, J.O., Chess, D.M.: The vision of autonomic computing.
Computer 36(1), 41-50 (2003). doi:10.1109/MC.2003.1160055
Koren, I., Krishna, C.M.: Fault Tolerant Systems. Morgan
Kaufmann Publishers Inc., San Francisco (2007)

Liao, B.S., Gao, J., Hu, J., Chen, J.J.: A federated multi-agent
system: autonomic control of web services. In: Proceedings of
the 2004 International Conference on Machine Learning and
Cybernetics (2004)

Lorenzoli, D., Mariani, L., Pezze, M.: Inferring state-based beha-
vior models. In: WODA ’06: Proceedings of the 2006 Internatio-
nal Workshop on Dynamic Systems Analysis, pp. 25-32. ACM,
New York (2006). doi:10.1145/1138912.1138919

Modafferi, S., Mussi, E., Pernici, B.: SH-BPEL: a self-healing
plug-in for ws-bpel engines. In: MW4SOC ’06: Proceedings of
the First Workshop on Middleware for Service Oriented Compu-
ting, pp. 48-53. ACM, New York (2006). doi:10.1145/1169091.
1169099

Naccache, H., Gannod, G.: A self-healing framework for web ser-
vices. In: ICWS ’07: Proceedings of the 2007 IEEE International
Conference on Web Services, pp. 398-345 (2007). doi:10.1109/
ICWS.2007.16

Naccache, H., Gannod, G.C., Gary, K.A.: A self-healing web server
using differentiated services. In: Dan A., Lamersdorf W. (eds.)
ICSOC ’06: Proceedings of the Fourth International Conference on
Service Oriented Computing, Lecture Notes in Computer Science,
vol. 4294, pp. 203-214. Springer, Heidelberg (2006)

Pullum, L.L.: Software Fault Tolerance Techniques and Implemen-
tation. Artech House Inc., Norwood (2001)

Sadjadi, S.M., McKinley, P.K.: Using transparent shaping and web
services to support self-management of composite systems. In:
ICAC °05: Proceedings of the Second International Conference
on Automatic Computing, pp. 76-87. IEEE Computer Society,
Washington, DC (2005). doi:10.1109/ICAC.2005.64

Zhang, R.: Modeling autonomic recovery in web services with
multi-tier reboots. In: ICWS’07: Proceedings of the IEEE Inter-
national Conference on Web Services (2007). doi:10.1109/ICWS.
2007.127

http://dx.doi.org/10.1109/ICSECOMPANION.2007.31
http://dx.doi.org/10.1145/1294904.1294906
http://dx.doi.org/10.1145/1294904.1294906
http://dx.doi.org/10.1145/1138912.1138918
http://dx.doi.org/10.1145/1083063.1083088
http://dx.doi.org/10.1109/ICSECOMPANION.2007.66
http://dx.doi.org/10.1145/192218.192221
http://dx.doi.org/10.1109/ICAS.2006.10
http://dx.doi.org/10.1109/ECBS.2007.74
http://dx.doi.org/10.1145/1294948.1294972
http://dx.doi.org/10.1145/1294948.1294972
http://dx.doi.org/10.1145/1082983.1083069
http://www.research.ibm.com/autonomic
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1145/1138912.1138919
http://dx.doi.org/10.1145/1169091.1169099
http://dx.doi.org/10.1145/1169091.1169099
http://dx.doi.org/10.1109/ICWS.2007.16
http://dx.doi.org/10.1109/ICWS.2007.16
http://dx.doi.org/10.1109/ICAC.2005.64
http://dx.doi.org/10.1109/ICWS.2007.127
http://dx.doi.org/10.1109/ICWS.2007.127

	Healing Web applications through automatic workarounds
	Abstract
	1 Introduction
	2 Automatic workarounds and Web applications
	3 Automatic generation of equivalent sequences
	4 Experience results
	4.1 Flickr visibility
	4.2 Flickr comments
	4.3 Google Maps draggable markers
	4.4 Google Maps dynamic loading

	5 Related work
	6 Conclusions and future research directions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

