
Partial-Order Reduction for General State Exploring
Algorithms

Dragan Bošnački1, Stefan Leue2, Alberto Lluch Lafuente3

1 Department of Biomedical Engineering
Eindhoven University of Technology
Den Dolech 2, P.O. Box 513
5612 MB Eindhoven, The Netherlands

2 Department of Computer and Information Science
University of Konstanz
D-78457 Konstanz, Germany

3 Department of Computer Science
University of Pisa
Largo B. Pontecorvo, 3
I-56127 Pisa, Italy

Abstract. Partial-Order Reduction is one of the main
techniques used to tackle the combinatorial state explo-
sion problem occurring in explicit-state model check-
ing of concurrent systems. The reduction is performed
by exploiting the independence of concurrently executed
events which allows portions of the state space to be
pruned. An important condition for the soundness of
partial-order based reduction algorithms is a condition
that prevents indefinite ignoring of actions when prun-
ing the state space. This condition is commonly known
as the cycle proviso. In this paper we present a new ver-
sion of this proviso which is applicable to a general search
algorithm skeleton that we refer to as the General State
Expanding Algorithm (GSEA). GSEA maintains a set of
open states from which states are iteratively selected for
expansion and moved to a closed set of states. Depend-
ing on the data structure used to represent the open set,
GSEA can be instantiated as a depth-first, a breadth-
first, or a directed search algorithm such as Best-First
Search or A*. The proviso is characterized by reference
to the open and closed set of states of the search al-
gorithm. As a result it can be computed in an efficient
manner during the search based on local information. We
implemented partial-order reduction for GSEA based on
our proposed proviso in the tool HSF-SPIN, an exten-
sion of the explicit-state model checker SPIN for directed
model checking. We evaluate the state space reduction
achieved by partial-order reduction using the proposed
proviso by comparing it on a set of benchmark problems
to the use of other provisos. We also compare the use of
breadth-first search (BFS) and A*, two algorithms en-
suring that counterexamples of minimal length will be
found, together with the proviso that we propose.

1 Introduction

Model checking [5] is a formal analysis technique for the
verification of hardware and software systems. Given the
model of the system as well as a property specification,
typically formulated in some temporal logic formalism,
the state space of the model is analyzed to check whether
the property is valid or not. The work that we present
in this paper focuses primarily on explicit-state model
checking, even though we contend that some of the ideas
may also be applicable to symbolic model checking.

The practicability of model checking is challenged
by the size of the state space that needs to be ana-
lyzed, known as the combinatorial state explosion prob-
lem which is mainly due concurrency, i.e., the state space
of a system grows exponentially with the number of
concurrent components. Different approaches have been
proposed to tackle state space explosion as caused by
concurrency, on which we will focus in the sequel. One
of the most successful of those techniques is Partial-
Order Reduction (POR) [5,12,29,30,32,34]. The reduc-
tion is performed by exploiting the independence of con-
currently executed events in order to allow portions of
the state space to be pruned. An important condition
for the soundness of POR based reduction algorithms
is a condition that prevents indefinite ignoring of ac-
tions when pruning the state space. This condition is
commonly known as the cycle proviso. In this paper we
propose a new version of this proviso that is applicable

http://kops.ub.uni-konstanz.de/volltexte/2010/10507/
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-105075
http://www.springerlink.com/content/101563

2

to a general state search algorithm skeleton also known
as the General State Exploring Algorithm (GSEA), c.f.
Figure 1. GSEA maintains a set of visited but not ex-
panded states that we will refer to as the open set, as
well as a set of visited and expanded states that we refer
to as closed set. The algorithm skeleton iteratively se-
lects states from the open set for exploration and moves
them to the closed set when they have been fully ex-
panded and explored. Depending on the data structure
used to represent the open set, GSEA can be instan-
tiated as depth-first search (DFS), breadth-first search
(BFS), or a directed search algorithm such as Best-First
Search (BF) or A*.

Unlike during full state space exploration, a search
using POR expands only a subset of the enabled actions
in a given state, called the ample set. The actions out-
side the ample set are temporarily ignored. However, an
action could be permanently ignored along some cycle
in the reduced state space which may lead to behavioral
differences between the original and the reduced state
space that would render the partial order reduction un-
sound. To illustrate this point consider a state s that
appears in both the full and the reduced state spaces.
An action a is (permanently) ignored if it is executed
in s in the full state space, but it is ignored along all
execution sequences starting at s in the reduced state
space.

To prevent this from happening we propose that at
least one state s which is directly reachable via an ac-
tion from the ample set has not been visited before or
it is in the set of open states. Otherwise the ample set
consists of all enabled transitions which means that for
s no reduction can be performed. We refer to our pro-
posed condition as the open set proviso. For simplicity,
in the remainder of this introductory section we treat
the newly generated unvisited states also as open states
since they will eventually be entered in the open set.

The intuition behind the open set proviso is that the
ignoring problem is postponed until state s is expanded
later. Since additional classical constraints on PORs re-
quire the ignored actions to be independent of the ac-
tions contained in the ample set, the ignored actions re-
main enabled in the open set. As a consequence actions
will be either selected in the ample set of s and executed
immediately, or they will be delayed until another open
state reachable from s is executed. Under the assump-
tion that the GSEA algorithm terminates one can show
that this postponement will eventually stop. This is since
GSEA is guaranteed to terminate with an empty open
set.

The open set proviso is a generalization of the cycle
proviso for partial-order reduction with BFS [3] imple-
mented in the model checker SPIN [15]. The BFS POR
proviso in turn was inspired by the algorithm presented
in [1] for the application of POR in symbolic state space
exploration.

Since it is characterized in terms of the open set
of states in GSEA, the open set proviso can be com-
puted in an efficient manner during the search based on
local information, i.e., information about the currently
expanded state and its successors. As mentioned above,
GSEA can be instantiated as a DFS, a BFS, or a di-
rected search algorithm. As it was shown by many au-
thors (see, for instance, [9] and the references therein)
the use of heuristically guided search algorithms, which
is referred to as directed model checking, can significantly
improve the error-detection capabilities of explicit state
model checking. The fact that GSEA is an on-the-fly
model checking algorithm makes it prima facie an ade-
quate choice for joint use with POR.

We implemented partial-order reduction for GSEA
based on our proposed proviso in the tool HSF-SPIN [9],
an extension of the model checker SPIN for directed
model checking. We evaluate the state space reduction
achieved by POR using the open set proviso by compar-
ing it on a set of benchmark problems to other reduction
approaches.

With the development of a proviso that is applicable
to BFS as well as A*, which is one of the most suc-
cessful algorithms applied in directed model checking,
we can experimentally address a further relevant issue.
When checking safety properties both BFS and A* are
capable of returning counterexamples of minimal length
if an erroneous state is found in the state space. The
usage of BFS without partial order reduction is often
impossible due to the memory needs of this algorithm.
But this obstacle to its application is partially remedied
by the availability of an efficient partial order reduction,
which this paper as well as some previous papers offer. It
is hence interesting to see how both optimal algorithms
perform when used to find errors with the proposed pro-
viso.

Related Work. The work presented in this paper ex-
pands on work first published in [4].

The POR algorithm of [1] is applicable to symbolic
state space exploration. As it is typical for symbolic
model checking the approach is based on BFS. Unlike
the approach proposed in this paper the algorithm pro-
posed in [1] is not dealing with the reopening of states.
Reopening is a technique used by some heuristic algo-
rithms to guarantee counterexamples of optimal length.
Further, the practical side of the theory in [1] hinges on
the concept of history function which assigns to each
state a set of states, which is incompatible with the
explicit state setting in which we operate. The states
in the history can be seen as potentially “dangerous”
because they can lead to a cycle. By requiring that at
least one action leads outside the “dangerous” set, i.e.,
at least one successor state does not belong to the his-
tory, one ensures that at least one action from the ample
set does not close a cycle. Therefore, the temporarily ig-
nored transitions can be safely postponed. In order to

3

be useful in practice, there should be a simple criterion
to define such history sets. For example, in the context
of explicit state model checking, assuming DFS explo-
ration, the history set of the currently expanded state s
consists of the states which are on the DFS stack. If at
least one of the successors is not on the DFS stack we
are sure that at least one transition from the ample set
does not close a cycle. To avoid cycles, the definition of
history requires that for no two states s, s′, s belongs to
the history of s′ and, vice versa, s′ is in the history of s.
Because of the reopening of states that GSEA performs,
a direct application of the history concept is not pos-
sible since the set of open states that GSEA maintains
does not satisfy such a requirement. A similarity with
our approach, however, lies in the fact that we express
our proviso as well in terms of the open set.

A proviso that we will refer to as the visited proviso
is proposed in [9]. It requires that at least one newly
generated state is not one of the already visited states.
As the set of open states is a subset of the visited states,
the open set proviso is weaker than the visited proviso.
As a result reductions which are refuted by the visited
proviso are allowed by the open set proviso. Our ex-
periments show that the open proviso outperforms the
visited proviso.

Note that at first sight POR and directed model
checking are competing techniques, since both aim at
a form of state space pruning. It is conceivable that the
POR decides to prune portions of the state space that
contain the shortest counterexample. However, the ex-
perimental results published in [9] suggest that this is
not a problem for practical verification problems, i.e.,
a loss of solution quality of the directed model check-
ing when using it jointly with POR can often not be
observed, or otherwise it is minor.

In another work [18], the authors exploit the fact that
the concurrent systems we work with are defined by a
parallel composition of sequential processes. This leads
to the formulation of a static version of the cycle pro-
viso, the static proviso. This variant of the proviso does
not depend on the search status but on information re-
garding control flow cycles of component processes that
is gathered at compile-time. The static proviso is in gen-
eral much stronger than the previously discussed provi-
sos. Nonetheless, as our experiments show, in practice it
tends to be less efficient than the open set proviso.

Alternatives for the cycle proviso are presented in [21]
and [20]. Both references assume DFS exploration of the
state space and are therefore not directly applicable to
our setting.

An adaptation for BFS of the algorithm in [21] is
proposed in [27]. The very short description of the POR
algorithm in [27] does not provide sufficient detail to
allow for a meaningful comparison with our approach.
However, reconciling this approach with ours might be
an interesting subject for future research.

Paper Outline. In Section 2 we review the foundations
of labeled transition systems, partial-order reduction and
directed model checking. Our approach towards an effi-
cient partial-order reduction for general state space ex-
ploring algorithms is introduced in Section 3. We de-
scribe our experimental results in Section 4 and conclude
in Section 5.

2 Preliminaries

2.1 Transition Systems

Our approach mainly targets the verification of asyn-
chronous systems where the global state space is con-
structed as an asynchronous product of a set of local
component processes. We assume an interleaving model
of execution. To reason formally about such systems, we
introduce the notion of a labeled transition system.1

Definition 1 (Labeled transition system). A labeled
transition system (LTS), is a 4-tuple (S, ŝ, A, τ), where
S is a finite set of states, ŝ ∈ S is the initial state, A is
a finite set of actions, and τ : S × A → S is a (partial)
transition function.

Let T = (S, ŝ, A, τ) be an LTS. An action a ∈ A is said
to be T -enabled in state s ∈ S, denoted s

a→T iff τ(s, a)
is defined. The set of all actions a ∈ A enabled in state
s ∈ S is denoted enabledT (s); that is, for any s ∈ S,
enabledT (s) = {a ∈ A | s

a→T }. When the LTS is clear
from the context we omit the T subscript. A state s ∈ S
is a deadlock state iff enabled(s) = ∅.

The transition function τ of LTS T induces a set
T ⊆ S ×A× S of transitions defined as T = {(s, a, s′) |
s, s′ ∈ S ∧ a ∈ A ∧ s′ = τ(s, a)}. To improve readability,
we write s

a→ s′ for (s, a, s′) ∈ T . We also say that s′ is
a successor of s.

As in most partial order reduction methods (see [5]
and the references therein) our approach deals with de-
terministic transition systems. However, strictly speak-
ing, for the preservation of deadlocks and local safety
properties (assertions) this is not needed. The proofs
from the literature for those kind of properties can be
easily adapted for the non-deterministic case. However,
non-determinism is not a severe limitation in our case
because we mainly focus on concurrent languages such
as Promela, where non-determinism is due to the inter-
leaving semantics and non-deterministic choices in con-
trol flow, but transitions correspond to deterministic in-
stances of statements. For partial order methods dealing
with non-deterministic transitions we refer the interested
readers to [33].

1 Labeled Transition Systems with state propositions, like the
ones used in this paper, are sometimes named “labeled Kripke
structures” or “doubly labeled transition systems”.

4

An execution sequence of an LTS T is a (finite) se-
quence of consecutive transitions in T . For any natural
number n ∈ IN, states si ∈ S and actions ai ∈ A with
i ∈ IN and 0 ≤ i < n, s0

a0→ s1
a1→ . . . sn−1

an−1→ sn is
called an execution sequence of length n of T iff si

ai→
si+1 for all i ∈ IN with 0 ≤ i < n. State sn is said to be
reachable from state s0. A state is said to be reachable
in T iff it is reachable from ŝ.

2.2 Partial-Order Reduction

The basic idea of state space reduction is to restrict the
part of the state space of a concurrent system that is
explored during verification in such a way that all prop-
erties of interest are preserved. Partial-order reduction
exploits the independence of properties from the many
possible interleavings of the individual actions of a con-
current system. In our experimental context, actions can
be seen to Promela statements.

To be practically useful, a reduction of the state space
must be achieved on-the-fly, during the construction and
traversal of the state space. This means that it must
be decided per state which transitions, and hence which
subsequent states, must be considered. In the following
let T = (S, ŝ, A, τ) be some LTS.

Definition 2 (Reduction). For any reduction func-
tion r : S → 2A, we define the (partial-order) reduc-
tion of T with respect to r as the smallest LTS Tr =
(Sr, ŝr, A, τr) satisfying the following conditions:

– Sr ⊆ S, ŝr = ŝ
– for every s ∈ Sr and a ∈ r(s) such that τ(s, a) is

defined, τr(s, a) = τ(s, a).

Note that the definition implies that, for every s ∈ Sr

and a ∈ A, if τr(s, a) is defined, then also τ(s, a) is de-
fined and τr(s, a) = τ(s, a). Formally, if the function r(s)
is fixed in advance, the reduced LTS Tr is independent
of the particular algorithm with which it is generated.
In practice r(s) is computed on-the-fly during the gener-
ation of Tr, so the latter may depend on the algorithm.

Not all reductions preserve all properties of inter-
est. Depending on the properties that a reduction must
preserve, we have to define additional restrictions on r.
To this end, we need to formally capture the notion of
independence. Actions occurring in different processes
can easily influence each other, for example, when they
access global variables. The following notion of indepen-
dence defines the absence of such mutual influence: two
independent actions neither disable nor enable one an-
other and they are commutative.

Definition 3 (Independence of actions). Actions a,
b ∈ A with a 6= b are independent in a given state s ∈ S
iff the following holds:

– if a ∈ enabled(s) then b ∈ enabled(s) whenever b ∈
enabled(τ(s, a));

– if b ∈ enabled(s) then a ∈ enabled(s) whenever a ∈
enabled(τ(s, b));

– τ(τ(s, a), b) = τ(τ(s, b), a).

Actions that are not independent are called dependent.
The following conditions are sufficient for preservation
of deadlocks [12,13,26,31]:

– C0a: if a ∈ r(s) then a ∈ enabled(s);
– C0b: r(s) = ∅ iff enabled(s) = ∅;
– C1 (persistence): For any s0 ∈ S and execution se-

quence s0
a0→ s1

a1→ . . .
an−1→ sn of length n ∈ IN \ {0}

such that ai 6∈ r(s) for all i ∈ IN with 0 ≤ i < n,
it holds: action an−1 is independent in sn−1 with all
actions in r(s).

In this paper we focus on subclasses of safety prop-
erties that include Promela assertions [15], which can
be considered as code annotations stating the truth of a
state predicate.

The main obstacle in the verification of safety prop-
erties is the action ignoring problem which was identified
for the first time in [32]. Informally, the ignoring prob-
lem occurs when a reduction of a state space ignores the
actions of an entire process. For instance, if there is a
cyclic process in the system which contains only glob-
ally independent actions, i.e., does not interact with the
rest of the system, the reduction algorithm could ignore
the rest of the system by choosing only actions of this
process in r(s). An action a is ignored in a state s ∈ Sr

iff a ∈ enabledT (s) and for all s′ which are reachable
in Tr from s it holds a 6∈ enabledTr (s

′). An action is ig-
nored in Tr iff it is ignored in some state s ∈ Sr. So, the
following condition prevents action ignoring:

– C2ai: For every s0 ∈ Sr and every a ∈ A, if a ∈
enabledT (s), then there exists an execution sequence
s0

a0→ s1
a1→ . . . sn−1

an−1→ sn that is in the reduced
state space Tr (i.e., si ∈ Sr for 1 ≤ i ≤ n and ai ∈
r(si) for 0 ≤ i ≤ n− 1) and a ∈ r(sn).

In other words, each delayed transition in s must be
eventually executed in a state reachable from s.

Condition C2ai implies that each execution sequence
σ derived from the original state space starting in s has
a representative in the reduced state space. A represen-
tative violates the safety property iff the sequence in the
non-reduced state space violates the property (e.g. [1]).
If we see the execution sequence as a sequence of ac-
tions, this representative is a permutation of an action
sequence obtained by extending σ with another (possi-
bly empty) action sequence σ′ from the original state
space. More formally, the claim is given by the following
theorem:

Theorem 1 ([32]). Given an LTS T and a reduction
function r that satisfies C0a, C0b, C1, and C2ai, let
s0

a0→ s1
a1→ . . . sn−1

an−1→ sn be a finite execution se-
quence of T , such that s0 ∈ Sr. Then there exists (in T)

5

an execution sequence sn
an→ sn−1

an+1→ . . . sn+k−1
an+k−1→

sn+k, (k ≥ 0), such that in Tr there exists an execu-
tion sequence s0

aπ(0)→ s′1
aπ(1)→ . . . s′n+k−1

aπ(n+k−1)→ sn+k,
where π is a permutation of {0, 1, . . . , n + k − 1}.

Proof of the above theorem can be found in [32].
Analogous results were proven using different versions
of the condition that prevents action ignoring (e.g. [12]).
Theorem 1 is a meeting point of almost all existing POR-
like techniques. It implies preservation of various classes
of safety properties (for instance, see [34] for an overview).
Among them are also Promela assertions that can be
fitted in a straightforward way in one of the existing
approaches like assertions in the sense of [12,16], fact
transitions of [32], or local properties of [1].

2.3 Directed Model Checking

Explicit-state model checking is primarily state space
search. For memory efficiency reasons, the most com-
monly used algorithms are DFS for safety property ver-
ification and nested DFS for liveness property checking.
The verification of safety properties can be performed
with BFS, which is rather memory inefficient in compar-
ison with DFS. To be able to reconstruct paths to states,
BFS needs to store a predecessor link with each state.
In addition, the search horizon in BFS grows exponen-
tially with the depth while only linearly in DFS. For a
deeper comparison of BFS and DFS for verification pur-
poses we refer to [19]. However, BFS guarantees to find
an error on an optimally short path. Since short paths
into property violating states are helpful in debugging,
various approaches, for instance [9], suggested the use of
heuristically guided search algorithms such as best-first
search (BF) and A* in the state space search, an ap-
proach to which some authors refer to as directed model
checking (DMC). Such algorithms hold the potential of
locating safety property violating states on short or even
optimally short error paths while requiring less states to
be stored than BFS. They accomplish this by functions
that heuristically assign to each state a value represent-
ing the desirability of exploring it. Typical heuristics,
for instance, estimate the distance of a state to the set
of error states. The heuristic function takes structural
properties of the state space as well as properties of the
requirements specification into account.

In this paper we base the construction of a cycle pro-
viso for partial-order reduction performed in the course
of executing a GSEA-type search. The algorithm gen-
eralizes most of the search algorithms used in directed
model checking. GSEA divides the set of system states
S into three mutually disjoint sets: the set Open of vis-
ited but not yet expanded states, the set Closed of vis-
ited and expanded states, and the set of unvisited states.
The algorithm performs the search by extracting states
from Open and moving them into Closed (line 4). States
extracted from Open are expanded, i.e., the respective

successor states are generated (lines 6,7). If a successor of
an expanded state is neither in Open nor in Closed it is
added to Open (line 9). Based on the processing done by
function reopenOK a state can be reopened, i.e., after
it is deleted from Closed (line 8) it is reinserted in Open
(line 9). DFS (respectively, BFS) can be defined as an
instance of the general algorithm presented above, that
does not perform reopening of states and where Open
is implemented as a stack (respectively, queue). Notice
that GSEA is not guaranteed to terminate. The termi-
nation depends on the state reopening policy, i.e., on
the function reopenOK. However, in the sequel we con-
sider only instances for which the termination is guar-
anteed. Of course, whenever a goal is found, which in
model checking means that an error state is found, the
algorithm terminates returning a solution consisting of
an execution path from the initial state into the prop-
erty violating state. We refer to this offending path as a
counterexample.

Heuristic search algorithms successfully used in DMC
include the non-optimal algorithm BF and the optimal
algorithm A* [14]. A* is an extension of Dijkstra’s single-
source shortest path algorithm. It uses estimates of the
goal distance as well as the length of the path from the
initial state to the current state in order to determine
the expansion order among the successor states to some
given state. We present a variant of A* suitable to verify
safety properties in Figure 2. It can also be considered
a variant of GSEA if one interprets Open as a priority
queue in which the priority of a state s is determined
by a value f . The f–value for a state s is computed as
the sum of i) the length s.g of the currently found short-
est path from the start state to s and ii) the estimated
distance h(s) from s to a goal state. A* can perform a
reopening of states. This means that it can move states
from Closed to Open when they are reached along a path
that is shorter than any path that they were reached on
earlier. It is necessary to reopen states in order to guar-
antee that the algorithm is optimal, i.e., that it will find
the shortest path to the goal state when non-monotone
heuristics are used. Monotone heuristics satisfy the prop-
erty that for each state s and each successor s′ of s the
difference between h(s) and h(s′) is less than or equal
to the cost of the transition that goes from s to s′. Note
that we usually consider that each transition has a unit
cost of 1, corresponding to the step distance between ad-
jacent states. If non-monotone heuristics are applied, the
number of reopenings can be exponential in the size of
the state space. However, even if many of the heuristics
that we use cannot be proven to be monotone, experi-
mental experience has shown that in practical protocol
validation examples states are very rarely reopened [10].
An interesting property of A* is that if h is a lower bound
of the distance to a goal state, then A* will always return
the shortest path to a goal state [22].

A key challenge in directed model checking is the
determination of appropriate heuristics. In precursory

6

(1) procedure GSEA(s)
(2) Closed← ∅; Open← {s};
(3) while not Open.empty() do
(4) s← Open.extract(); Closed.insert(s);
(5) if goal(s) then return solution;
(6) for each a ∈ enabledT (s) do
(7) s′ ← τ(s, a); process(s′);
(8) if reopenOK(s′) then Closed .delete(s′);
(9) if s′ 6∈ Closed and s′ 6∈ Open then Open.insert(s′);

Fig. 1. A general state expanding search algorithm.

work, heuristics based on the structure of the property
specification, in particular on the syntactic structure of
LTL formulae, on local state machine distances as well
as property specific heuristics, for instance for deadlock
detection, were developed and experimentally evaluated.
For more information on directed model checking, as well
as the tool HSF-SPIN we refer to [9,10] and the refer-
ences given in those papers.

When applying partial-order reduction in the con-
text of directed model checking one is faced with two
challenges: a) The pruning of a part of the state space
leads to suboptimality of the combined method since
optimal error traces may be cut away by the reduction.
Experimental results [10] show that in practical exam-
ples the sub-optimal solutions are very close to the op-
timal solutions, if a discrepancy can be detected at all.
b) Algorithms such as BF and A* lack a search stack,
hence a stack based action prevention condition, such as
it is used when implementing partial-order reduction for
DFS based state space exploration, cannot be used. The
authors of [10] therefore applied two independent over-
approximations of the cycle proviso that do not rely on
the presence of a search stack (c.f. our discussion in Sec-
tion 3), namely the static and visited provisos.

3 The Open Set Proviso for GSEA

Condition C2ai from Section 2.2 is stated as a global
property of the state space and as such it is expensive to
check. Therefore, for practical purposes it is important to
have a possibly stronger condition (which implies C2ai),
but which can be locally checked in an efficient way. For
particular state expanding strategies such stronger ver-
sions of the ignoring condition exist. For instance, for
DFS there exists a simple locally checkable condition,
the stack proviso. For each expanded state s in the re-
duced state space we require that there exists at least one
action a in the reduced action set r(s) and a state s′ ∈ Sr

such that s
a→ s′ and s′ is not on the DFS stack. In other

words, at least one transition from r(s) must lead to a
transition outside the stack, i.e., must not close a cycle.

Otherwise, r(s) = enabledT (s). An analogous version of
this condition exists also for BFS [3], namely the queue
proviso which requires at least one state reachable from
s through an action of r(s) to be either not visited or to
be in the search queue. Otherwise, r(s) = enabledT (s).
As a matter of fact, the proviso we propose in this paper
is a generalization of the queue proviso.

3.1 The Open Set Proviso

The partial-order reduction version of the general state
expanding algorithm (POR GSEA) differs from the orig-
inal of Figure 1 in line 6 only, where enabledT (s) is sub-
stituted by r(s). We now put the emphasis on the new
version of the action ignoring prevention condition. The
conditions C0a, C0b and C1 do not depend on the search
order, as is argued in [9]. Consequently, they may remain
unchanged. Only the condition for ignoring prevention
should be adjusted to comply with the general search. To
prevent action ignoring we require that for the currently
expanded state s at least one action of r(s) leads to a
state s′ that will be processed later by the algorithm.
This means that s′ is unvisited or it has been visited al-
ready but it is in the Open set. The intuition is that the
solution to the ignoring problem is postponed until state
s′ is expanded later. The actions which are temporarily
ignored in s remain enabled in s′. This is because by the
persistence condition C1 they are independent from the
actions in r(s) and therefore they cannot be disabled.
Under the assumption that the algorithm terminates,
i.e., that the Open set eventually becomes empty, such
a postponement will eventually stop. In other words, we
will eventually arrive at a state for which all transitions
lead to visited states outside Open. For such a state the
open proviso is not satisfied and therefore the set of ex-
plored actions cannot be reduced. Consequently, at that
point we are guaranteed that all possibly postponed ac-
tions will be explored.

More formally, we require that in addition to condi-
tions C0a, C0b and C1 the reduced set r(s) also has to
satisfy the open set proviso for each state s ∈ Sr imme-
diately before its use in the algorithm:

7

(1) procedure A*(s)
(2) begin
(3) Closed← ∅; Open← ∅; s.f ← h(s); s.g ← 0; Open.insert(s);
(4) while not Open.empty() do
(5) s← Open.extractmin(); Closed.insert(s);
(6) if goal(s) then return solution;
(7) for each a ∈ enabledT (s) do
(8) s′ ← τ(s, a); s′.g ← s.g + cost(a); f ′ ← s′.g + h(s′);
(9) if s′ ∈ Open then
(10) if (f ′ < s′.f) then s′.f ← f ′;
(11) else if s′ ∈ Closed then
(12) if (f ′ < s′.f) then s′.f ← f ′; Closed.delete(s′); Open.insert(s′);
(13) else s′.f ← f ′; Open.insert(s′);

Fig. 2. A* search algorithm.

– C2o (open set): There exists at least one action a ∈
r(s) and a state s′ ∈ Sr such that s

a→ s′ and s′ 6∈
Closed . Otherwise, r(s) = enabledT (s).

Note that the proviso is checked before the line in the
POR GSEA algorithm that corresponds to line 6 of the
original GSEA algorithm depicted in Figure 1.

Next we show that C2o implies C2ai to hold for the
reduced state space. This entails via Theorem 1 preser-
vation of safety properties by the POR GSEA algorithm.

Lemma 1. Let T = (S, ŝ, A, τ) be an LTS with a reduc-
tion function r that satisfies conditions C0a, C0b, C1,
and C2o. Further, let us assume that the POR GSEA
algorithm terminates when applied on the initial state ŝ
and produces the reduction Tr. Then r satisfies the ig-
noring prevention condition C2ai.

Proof. The proof is by induction over the decreasing
order in which the states are removed from Open. As
in general each state can be reinserted in Open several
times, we establish the ordering based on the last re-
moval of the state. To this end we assign to each state
a number n ∈ IN, which we call the removal order of
the state. The state which is removed as the very last is
assigned the number |Sr| − 1, where |Sr| is the number
of states in Sr, while the one which is removed first is as-
signed 0. Such an ordering is always possible because of
the assumption that POR GSEA terminates. As a con-
sequence, the set Open eventually becomes empty and
there exists some state s which is removed last from the
Open set.

Base case: Let s be the state with the highest removal
order, i.e., s is removed as the last state from Open.
Consider the very last removal of s from Open. Since
Open is empty, all successors of s must be in Closed . (If
they were new they would be inserted in Open – line 9
in Fig. 1 – and as such removed for the last time after s,
which is a contradiction.) So, by condition C2o, r(s) =
enabledT (s), i.e., all enabled actions will be explored.
The prevention condition C2ai holds trivially.

Inductive step: Let s be the state with removal order
n. We assume that for each state s′′ with removal order
greater than n, i.e., which is removed for the last time
from Open after s is removed for the last time, the fol-
lowing holds: for each a 6∈ r(s′′), there exists a state s′

reachable via an execution sequence in the reduced state
space such that a ∈ r(s′). Consider the very last removal
of s from Open. If r(s) = enabledT (s) C2ai holds triv-
ially. So, let us assume that r(s) is a proper subset of
enabledT (s). By condition C2o there exists at least one
action b ∈ r(s) and a state s′′ ∈ Sr such that s

b→ s′′

and s′′ 6∈ Closed . This implies that s′′ is either a new
unvisited state and it will be inserted in Open or it is al-
ready in Open. Since it follows from the assumption that
s is already removed, before it is expanded, for the last
time from Open (line 4 of the POR GSEA algorithm),
we are sure that s′′ will be removed from Open for the
last time after s. Let a be an action which is not in r(s),
i.e., it is postponed. By the persistence condition C1 ac-
tions a and b are independent and therefore a is enabled
in s′′. By the induction hypothesis there exists a state
s′ reachable from s′′ via a transition sequence in the re-
duced state space. The concatenation of s

b→ s′′ and
the execution sequence from s′′ to s′ gives the desired
execution sequence from s to s′. ut

After proving the termination of the concrete version
of the POR GSEA algorithm, its correctness follows by
Lemma 1 and further by Theorem 1. Evidently, termina-
tion of the concrete version of the POR GSEA algorithm
depends on the reopening strategy. Practical strategies,
however, guarantee termination. Proofs of termination
of A∗ and similar directed search algorithms discussed
in Section 2.3 can be found in Section 3.1.2 of [28]. Since
the POR versions of those algorithms work on a subset
of the original state space it is trivial to adapt the ar-
gument from [28] to the case of the state space reduced
by partial-order reduction. For another, more direct ar-
gument for the termination of the instances of the POR
GSEA skeleton see Appendix 6.1.

8

In analogy with the DFS case [17,29], accompanied
with some additional restrictions on r [11,30], a stronger
version of the open set proviso that preserves LTL−X

and CTL∗
−X(e.g. [5]) can be defined:

– C2ol: (open liveness) For all actions a ∈ r(s) and
states s′ ∈ Sr such that s

a→ s′, s′ 6∈ Closed . Other-
wise, r(s) = enabledT (s).

We refer the reader to Appendix 6.2 for further details.

3.2 Efficiently Computable Cycle Provisos

We now turn to the problem of finding efficiently com-
putable cycle provisos for A*. Using the observation made
in [18] to prevent global cycles one has to break all lo-
cal cycles of the involved concurrent processes, in [10] a
static POR method was adapted to the A* based di-
rected model checking setting. The method relies on
marking one action in every local control cycle as “sticky”.
It is then enforced that no sticky action is allowed in an
ample set of a state if the state is not fully expanded.
The resulting proviso c2s is defined as the following con-
dition (for the details we refer to the literature) on the
reduced set r(s) of a state s being expanded.

– C2s (static): There exists no sticky action a ∈ r(s)
such that s

a→ s′. Otherwise, r(s) = enabledT (s).

A second idea proposed in [10] and inspired by a pro-
viso used in symbolic model checking [1] was to enforce
breaking cycles by requiring that at least one transition
in the ample set does not lead to a previously visited
state, which lead to the following condition:

– C2v (visited): There exists at least one action a ∈
r(s) and a state s′ ∈ Sr such that s

a→ s′ and s′ 6∈
Closed ∪Open. Otherwise, r(s) = enabledT (s).

It is worth noting that C2o implies C2v which points
at a potentially superior performance of C2o. In fact, in
the experimental section we will show that on practical
examples C2o performs significantly better than C2v.
For safety properties it was shown that C2s and C2v en-
tail the cycle proviso defined in [10]. There it was also
shown that while C2s and C2v are strictly stronger than
C2ai, leading to a weaker state space reduction, they
could still ensure significant reductions on practical ex-
amples.

4 Experiments

This section presents experimental results that evalu-
ate the performance of the proposed proviso. We im-
plemented the approach described in our paper in the
tool HSF-SPIN [9] and performed various experiments
in which we compare our proposed proviso with the per-
formance of other, previously proposed provisos for BFS

and A*. We use various models in our experiments: A
leader election algorithm (leader) [8] that solves the
problem of finding a leader in a ring topology, a model
of a concurrent program that solves the stable marriage
problem (marriers(n)) [23] , the CORBA GIOP pro-
tocol (giop(n,m)) [24] which is a key component of the
OMG’s Common Object Request Broker Architecture
(CORBA) specification, the preliminary design of a Plain
Old Telephony System (pots) [25] , the bounded re-
transmission protocol (brp) [6] which is used in Philips
products, a steam generator controller (sgc) [35] , a bus
arbiter (bus(n)) [7] and a database manager protocol
(dbm(n)) [2] . A description of these models can be found
in [9]. Note that some of these models have been used in
benchmarking partial order reductions before, and that
most of them have real-life system complexities. For pa-
rameterized scalable models we indicate the instantiated
parameters using brackets after the name of the proto-
col.

Our first set of experiments is devoted to a specific
case of the GSEA, namely BFS. None of the previous
works on BFS with PO [3,9] presents a comparison with
C2o. The results of [9], which do not consider C2o, show
that none between the visited proviso (C2v) [9] and the
static proviso (C2s) [18] is better than the other. In con-
trast, the results of [3] do not consider C2s but show
that an instance of C2o for BFS is significantly better
than C2v. The main question to investigate is therefore
how C2o performs in comparison to C2s. Table 1 depicts
results obtained by exploring the state space of some
models, where a depth bound is imposed in those cases
where an exhaustive exploration is not feasible within a
memory bound of 512 MB. The exploration is performed
using BFS as search algorithm in combination with vari-
ous reduction methods: no partial-order reduction at all
(no), no action ignoring prevention (C2i), and the pro-
visos C2v, C2s and C2o. Note that C2i leads to an un-
sound reduction. We introduce it only in order to assess
the other provisos in terms of the number of ample sets
that they refuse. For each experiment we present the size
of the state space (s) in Megabytes, the amount of mem-
ory required (m), and the running time (r) expressed in
minutes:seconds.miliseconds.

4.1 C2o with BFS

The first thing we observe is that C2o performs better
than C2v. This, for instance, becomes especially obvi-
ous in the case of the giop model where C2o explores
about three times less states. Regarding the comparison
with the C2s proviso, the C2o based reduction performs
better in all cases. Here, the leader model is the most
significant example since C2o explores almost four times
less states. Finally, by comparing the columns C2o and
C2i we observe that C2o refuses ample sets in the giop,
pots, brp, dbm and sgc models only. In the cases of giop,
pots and dbm the difference is minor, below 1%. For sgc

9

it is around 5%, and for brp it is around 20%. This in-
dicates that in most cases C2o is leading to the greatest
possible reduction in the size of the state space, or is
very close to it. Note that when the exploration with
C2o results in equal state spaces as when ignoring the
proviso, there is a small difference in the running time
that can be traced to the overhead caused by computing
the proviso.

4.2 C2o with Directed Model Checking

We continue the evaluation of the C2o proviso in a dif-
ferent setting, namely where the goal is error detection
and directed model checking algorithms like A* and BF
are used. The results of [9] show no clear winner between
C2v and the C2s. Hence, the first question to answer is
whether C2o outperforms C2s. Second we would like to
find out to what degree C2o is actually superior to C2v.

To answer this last question we extend the results
presented in [9] with C2o and extend all experiments to
those benchmark models that were not used in [9]. Ta-
ble 2 depicts the results. As in the previous set of exper-
iments, in many cases C2o performs significantly better
than C2v. Consider, for instance, the models marriers
and giop, where the number of states explored with C2o
is only about half the number explored with C2v. An
interesting result is that in the dbm model C2v outper-
forms C2o. This seemingly contradicts the assertion that
C2o implies C2v, i.e., that C2v is the weaker reduction
method. Note that this entails that the reduction of the
full state space with C2o is at least as big as the one
achieved with C2v. However, we are searching for exist-
ing errors in the state space and that the search termi-
nates when we find the error. In this situation, partial
order reduction can delay the selection of transitions that
lead to the error states. It is therefore possible, that the
stronger reduction strategy delays the finding of an error
more than the weaker strategy, which leads to the result
that we observe in this case. A similar phenomenon was
first identified in [10].

On the other hand, there is no clear winner between
the C2o and C2s provisos. C2s prevails over C2o in the
marriers and brp models. For the remaining models
both provisos either work equally well, or C2o prevails.

By comparing the two previous sets of experiments
we observe the following phenomenon: in the marriers
model, algorithm BFS with C2o explores as many states
as BFS with C2i (Table 1), while A* with C2o explores
almost twice as many states as A* with C2i (Table 2).
In other words, the C2o proviso is refuting ample sets
when the search algorithm is A* but not when it is BFS.
What happens is that the new proviso, as well as the
rest of the provisos, depends on the order in which states
are explored. This phenomenon can be illustrated by a
simple example. Assume the following state space:

s0
c //

d !!CC
CC

C s1
a //

b
��

s2

b
��

s3
a // s4

Suppose that ŝ = s0, that actions a,b are indepen-
dent and that we use BFS with our proviso to explore
the state space. First, state s0, in which we assume no
reduction to be possible, is extracted from the open set
and its successors s1, s3 are inserted into Open. Assume
further that the order in which these states are inserted
is s1 before s3. During the next iteration of BFS, state s1

is selected for expansion. Now, {b} is selected as ample
set since it satisfies all the conditions. In the last step
state s4 is explored. The algorithm, hence, explores all
states but s2. Consider now that s3 is inserted in Open
first and s1 second. Now, state s3 is extracted from the
Open set and s4 is inserted in it. In the next step, state
s1 is selected for expansion, but this time set {b} is re-
fused by C2o since state s3 is no longer in the open set.
Thus, the search is forced to visit state s2. As a result
the whole state space is visited.

We have performed some experiments in which the
exhaustive exploration is performed randomly. This was
done by using the A* algorithm and a random heuris-
tic function. The result leads to larger state spaces than
with BFS. At this point an interesting question arises.
While previous work presents the benefits of using di-
rected search algorithms over BFS, can BFS when used
with C2o take advantage of the exploration order phe-
nomenon so as to become more memory efficient than A*
with C2o? And more in general, is there a way to (heuris-
tically) identify exploration orders that lead to better
reductions? This is particularly relevant since partial-
order reduction holds the potential of containing the
state space explosion that BFS is particularly vulnera-
ble to. To answer this question we included experiments
with BFS and C2o in Table 2. With the C2o proviso A*
explores less states than BFS with C2o for all of the ex-
periments. In terms of running time, with the exception
of leader and giop A* with C2o offers a clear advantage
over BFS with C2o. In the case of leader a comparison
is not meaningful, due to the small number. In the case
of giop the running time of A* with C2o is higher than
for BFS with C2o. We conjecture that this is due to
the fact that the improvement in the state space size in
this case is not significant enough to offset the running
time that needs to be spent on computing the heuristic
functions during state space exploration.

5 Conclusions

In this paper we presented a partial-order reduction for
general state exploring algorithms. The main novelty in
the algorithm lies in the condition for avoiding action ig-
noring, which we call open set proviso. During the state

10

Table 1. Completely exploring state spaces with BFS and several reduction methods.

marriers(3)

BFS+no BFS+C2i BFS+C2v BFS+C2s BFS+C2o

s 96,295 29,501 56,345 57,067 29,501
m 12 MB 6 MB 8 MB 8 MB 6 MB
r 1.13 s 0.21 s 0.58 s 0.54 s 0.23 s

leader(6)

BFS+no BFS+C2i BFS+C2v BFS+C2s BFS+C2o

s 445,776 3,160 5,209 11,921 3,160
m 147 MB 3 MB 4 MB 6 MB 3 MB
r 34.48 s 0.07 s 0.18 s 0.19 0.08 s

giop(2,1)

BFS+no BFS+C2i BFS+C2v BFS+C2s BFS+C2o

s 664,376 65,964 209,382 231,102 66,160
m 384 MB 39 MB 122 MB 134 MB 39 MB
r 16.42 s 1.12 s 4.76 s 4.44 s 1.23 s

pots

BFS+no BFS+C2i BFS+C2v BFS+C2s BFS+C2o

s 450,765 448,629 448,730 448,629 448,629
m 226 MB 225 MB 225 MB 225 MB 225MB
r 1:16.45 1:19.79 1:20.28 1:20.05 1:19.92

brp

BFS+no BFS+C2i BFS+C2v BFS+C2s BFS+C2o

s 848,662 425,736 589,877 432,648 518,473
m 190 MB 98 MB 134 MB 100 MB 118 MB
r 2:36.88 1:11:550 1:54.79 1:13.62 1:39.28

bus(4)

BFS+no BFS+C2i BFS+C2v BFS+C2s BFS+C2o

s 32,920 27,919 31,206 27,919 27,919
m 9 MB 8 MB 8 MB 8 MB 8 MB
r 8.06 5.25 7.07 5.19 5.57

dbm(2)

BFS+no BFS+C2i BFS+C2v BFS+C2s BFS+C2o

s 277,206 241,355 257,345 265,924 242,391
m 44 MB 38 MB 41 MB 42 MB 38 MB
r 6,01 5,35 5.94 5.93 4.54

sgc

BFS+no BFS+C2i BFS+C2v BFS+C2s BFS+C2o

s 295,070 230,039 292,265 262,065 242,030
m 91 MB 71 MB 90 MB 81 MB 75 MB
r 2:47.17 1:23.18 3:03.25 1:54.7 2:00.91

space exploration the open set proviso can be checked
locally and in an efficient way which ensures its practi-
cal usability in on-the-fly state space exploration algo-
rithms. We implemented the open set proviso for some
directed model checking algorithms which are special in-
stances of the general state exploring algorithm skele-
ton. The experimental results show that the open set
proviso leads to a significant performance improvement
when used in the context of directed model checking al-
gorithms in comparison to previously known provisos.
The experiments also showed that A* together with the
open set proviso is performing superior in terms of ex-
plored states and memory consumption over BFS with
partial-order reduction and the open set proviso.

We notice that the efficiency of the open proviso can
depend on the order in which the actions in the reduced
state set are selected. Further experiments that we have
performed indicate that when there are various valid am-
ple sets, the choice amongst them influences size of the
reduced state space. It is the subject of future research
to investigate whether this can be exploited to further
improve POR algorithms. In particular, we propose to
investigate whether heuristics, possibly exploiting the
property being verified, can be defined to select amongst
different possible ample sets in order to improve the ef-
ficiency of the reduction. Another interesting topic for
future work will be to apply the ideas of this paper in
the realm of symbolic model checking, for instance for
the verification of liveness properties.

11

Table 2. Finding a safety violation with A* and BFS with several reduction methods.

marriers(4)

A*+no A*+C2i A*+C2v A*+C2s A*+C2o BFS+C2o

s 225,404 37,220 100,278 37,220 58,500 155,894
m 31 MB 7 MB 15 MB 7 MB 6 MB 22 MB
r 5.15 s 0.31 s 2.99s 0.36 s 0.73 s 7.17 s

pots

A*+no A*+C2i A*+C2v A*+C2s A*+C2o BFS+C2o

s 6,654 5,429 5,574 5,429 5,429 22,786
m 5 MB 4 MB 4 MB 4 MB 4 MB 12 MB
r 0.18 s 0.15 s 0.15 s 0.15 s 0.15 s 0.78 s

leader(8)

A*+no A*+C2i A*+C2v A*+C2s A*+C2o BFS+C2o

s 558,214 104 104 104 104 128
m 265 MB 2 MB 2 MB 2 MB 2 MB 2 MB
r 30.54 s 0.01 s 0.01 s 0.01 s 0.01 s 0.01 s

giop(3,1)

A*+no A*+C2i A*+C2v A*+C2s A*+C2o BFS+C2o

s 485,907 90,412 314,964 191,805 117,846 120,132
m 291 MB 55 MB 189 MB 116 MB 72 MB 73 MB
r 20.09 s 2.82 s 12.41 s 6.60 s 3.98 s 2,52

brp

A*+no A*+C2i A*+C2v A*+C2s A*+C2o BFS+C2o

s 16,577 11,021 11,669 11,021 11,830 24,881
m 6 MB 5 MB 5 MB 5 MB 5 MB 8 MB
r 0.86 s 0.54 0.68 0.54 0.62 1.29

bus(4)

A*+no A*+C2i A*+C2v A*+C2s A*+C2o BFS+C2o

s 2,825 723 878 723 723 2,242
m 3 MB 2 MB 2 MB 2 MB 2 MB 2 MB
r 0.24 0.06 0.07 0.04 0.06 0.16

dbm(5)

A*+no A*+C2i A*+C2v A*+C2s A*+C2o BFS+C2o

s 50,577 135,694 96,063 315,006 135,694 179,026
m 11 MB 2 6MB 19 MB 60 MB 26 MB 34 MB
r 2.11 5.14 4.01 17.91 5.43 6.51

sgc

A*+no A*+C2i A*+C2v A*+C2s A*+C2o BFS+C2o

s 14,310 9,395 12,540 11,470 10,175 88,504
m 7MB 6 MB 6 MB 6 MB 5 MB 28 MB
r 1.44 1.19 1.37 1.27 1.25 21.63

Acknowledgments. The work of the first author was par-
tially done within the Sixth Framework Programme project
Evolving Signalling Networks in Silico (ESIGNET). The
third author has been partially supported by the EU
FP6-IST IP 16004 SEnSOria (Software Engineering for
Service-Oriented Overlay Computers).

References

1. R. Alur, R.K. Brayton, T.A. Henzinger, S. Qadeer,
and S.K. Rajamani, Partial-order reduction in sym-
bolic state-space exploration, Formal Methods in Sys-
tem Design 18, (2001) pp. 97-116. A preliminary version
appeared in Proc. of the 9th International Conference
on Computer-aided Verification, CAV ’97, LNCS 1254,
Springer, (1997) pp. 340–351.

2. D. Bošnački, Dennis Dams, Leszek Holenderski: Sym-
metric Spin. International Journal on Software Tools for
Technology Transfer 4(1), (2002) pp. 92–106.

3. D. Bošnački, G.J. Holzmann, Improving Spin’s Partial-
Order Reduction for Breadth-First Search, Model Check-
ing Software: 12th International SPIN Workshop, SPIN
2005, LNCS 3639, Springer, (2005), pp.91–105.

4. D. Bošnački, S. Leue, A. Lluch Lafuente, Partial-
Order Reduction for General State Exploring Algorithms,
Model Checking Software: 13th International SPIN
Workshop, SPIN 2006, LNCS 3925, Springer, (2006).

5. E. Clarke, O. Grumberg, D.A. Peled, Model Checking
MIT Press, (2000).

6. P.R. D’Argenio, J-P. Katoen, T.C. Ruys, and J. Tret-
mans, The Bounded Retransmission Protocol must be
on time!, 3rd International Workshop on Tools and Al-
gorithms for the Construction and Analysis of Systems,

12

TACAS’97, Enschede, The Netherlands, LNCS 1217,
(1997) pp. 416–431.

7. S. Devulder, A comparison of lpv with other valida-
tion methods, In Proceedings of ASE-99: The 14th IEEE
Conference on Automated Software Engineering, Cocoa
Beach, (1999).

8. D. Dolev, M. M. Klawe, M. Rodeh: An O(n log n) Uni-
directional Distributed Algorithm for Extrema Finding
in a Circle. J. Algorithms 3(3), (1982) pp. 245-260.

9. S. Edelkamp, S. Leue, A. Lluch Lafuente, Directed
explicit-state model checking in the validation of com-
munication protocols, International Journal on Software
Tools for Technology Transfer 5, (2004), pp. 247–267.

10. S. Edelkamp, S. Leue, A. Lluch Lafuente, Partial-order
reduction and trail improvement in directed model check-
ing, International Journal on Software Tools for Technol-
ogy Transfer, 6(4), (2004), pp. 277–301.

11. R. Gerth, R. Kuiper, D. Peled, W. Penczek, A Partial-
Order Approach to Branching Time Logic Model Check-
ing, Information and Computation 150(2), (1999) pp.
132–152.

12. P. Godefroid, Partial-Order Methods for the Verification
of Concurrent Systems: An Approach to the State Space
Explosion, LNCS 1032, Springer, (1996).

13. P. Godefroid, P. Wolper, Using Partial-Orders for the
Efficient Verification of Deadlock Freedom and Safety
Properties, Computer Aided Verification, CAV ’91,
LNCS 575, Springer, (1991), pp. 332–342.

14. P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for
heuristic determination of minimum path costs, IEEE
Transactions on Systems Science and Cybernetics 4,
(1968), pp. 100–107.

15. G.J. Holzmann, The SPIN Model Checker: Primer and
Reference Manual, Addison Wesley, (2003).

16. G.J. Holzmann, P. Godefroid, D. Pirottin, Coverage
Preserving Reduction Strategies for Reachability Anal-
ysis, Proc. 12th IFIP WG 6.1. International Sympo-
sium on Protocol Specification, Testing, and Validation,
FORTE/PSTV ’92, North-Holland, (1992), pp. 349–363.

17. G.J. Holzmann, D. Peled, An Improvement in Formal
Verification, FORTE 1994, Bern, Switzerland, (1994).

18. R.P. Kurshan, V. Levin, M. Minea, D. Peled, H. Yenigün,
Static Partial-Order Reduction, Tools and Algorithms
for Construction and Analysis of Systems TACAS ’98,
LNCS 1384, (1998), pp. 345–357.

19. A. Lluch Lafuente, Directed Search for the Verification
of Communication Protocols, PhD Thesis, Freiburger
Dokument Server, Institute of Computer Science, Uni-
versity of Freiburg, (2003).

20. V. Levin, R. Palmer, S. Qadeer, S.K. Rajamani, Sound
Transaction-Based Reduction Without Cycle Detec-
tion, Model Checking Software: 12th International SPIN
Workshop, SPIN 2005, LNCS 3639, Springer, (2005),
pp.106–121.

21. R. Nalumasu, G. Gopalakrishnan, An Efficient Partial-
Order Reduction Algorithm with an Alternative Pro-
viso Implementation, Formal Methods in System Design
20(3), (2002), pp. 231–247.

22. N.J. Nilsson, Principles of Artificial Intelligence, Tioga
Publishing Co. Palo Alto, California, (1980).

23. D. G. McVitie, L. B. Wilson: The Stable Marriage Prob-
lem, Communications of the ACM 14(7), (1971) pp. 486–
490.

24. M. Kamel, S. Leue: Formalization and Validation of the
General Inter-ORB Protocol (GIOP) using PROMELA
and SPIN. International Journal on Software Tools for
Technology Transfer 2(4), (2000). pp. 394–409.

25. M. Kamel, S. Leue: VIP: A Visual Editor and Compiler
for v-Promela, TACAS’00, (2000) pp. 471–486.

26. W.T. Overman, Verification of Concurrent Systems:
Function and Timing, Ph.D. Thesis, UCLA, Los Angeles,
California, (1981).

27. R. Palmer, G. Gopalakrishnan, A Distributed Partial Or-
der Reduction Algorithm, Formal Techniques for Net-
worked and Distributed Systems FORTE 2002, LNCS
2529, (2002), p.370.

28. J. Pearl, Heuristics, Addison-Wesley, (1985).
29. D.A. Peled, Combining Partial-Order Reductions with

On-the-Fly Model Checking, Formal Methods on Sys-
tems Design 8, (1996), pp. 39–64. A previous version ap-
peared in Computer Aided Verification 1994, LCNS 818,
(1994), pp. 377–390.

30. B. Willems, P. Wolper, Partial-Order Models for Model
Checking: From Linear to Branching Time, Proc. of 11
Symposium of Logics in Computer Science, LICS 96,
New Brunswick, (1996), pp. 294–303.

31. A. Valmari, Eliminating Redundant Interleavings dur-
ing Concurrent Program Verification, Proc. of Parallel
Architectures and Languages Europe ’89, vol. 2, LNCS
366, Springer, (1989), pp. 89–103.

32. A. Valmari, A Stubborn Attack on State Explosion, Ad-
vances in Petri Nets, LNCS 531, Springer, (1991), pp.
156–165.

33. A. Valmari, Stubborn set methods for process algebras,
Proceedings of the DIMACS workshop on Partial order
methods in verification (POMIV’96), AMS Press, Inc.,
1997, pp. 213–231.

34. A. Valmari, The State Explosion Problem, Lectures on
Petri Nets I: Basic Models, LNCS Tutorials, LNCS 1491,
Springer, (1998), pp. 429–528,.

35. W. Zhang: Model Checking Operator Procedures, 5th
International SPIN Workshop, SPIN 1999, (1999), LNCS
1680, pp. 200–215.

6 Appendix

6.1 Termination of Instances of POR GSEA

To prove the correctness of concrete instances of the
POR GSEA algorithm one has to prove that they termi-
nate. For those instances of the GSEA skeleton such as
DFS or BFS which do not perform state reopening, i.e.,
moving back states from Closed to Open, this is triv-
ial. For these algorithms open will eventually terminate
since during each iteration one state is removed from
open, which can contain at most finitely many states.

We prove termination of instances of the algorithm
that perform reopening by showing that each state is en-
tered in the set Open only finitely many times. Reason-
ing in an analogous way as above, since in each iteration
a state is removed from the Open set, it will eventually
become empty and the algorithm will hence terminate.

13

The finite number of reopenings is a consequence of the
properties of the weight and heuristic functions used in
those algorithms. In practice, the heuristic functions are
estimates of the distance from state to a set of goal sets.
As such they take non-negative real values. This implies
that they are bounded from below by 0. Since in each
iteration the estimate for at least one state of the state
space is decreased, which corresponds to an improve-
ment of the estimate of this state, the algorithm will
eventually terminate. For instance, consider the A∗ al-
gorithm given in Fig. 2 (in Section 2.3). Let us assume
that the edge weight function cost and the heuristic h
range over non-negative values. It is easy to see that as
a consequence the function f , which is computed on line
14, can only acquire non-negative values. Further, we
observe that whenever a state is reopened it is removed
from Closed (line 21) and reinserted in Open (line 22).
This happens only if the new f -value is strictly smaller
than the previous one (line 19) and the f -value is accord-
ingly recorded (line 20). Since the number of transitions
in the state space is finite, this kind of improvement of
function f can happen only finitely many times. Conse-
quently, each state can be reopened only finitely many
times.

Termination of the other directed search algorithms
from Section 2.3 can be shown using analogous argu-
ments.

6.2 Action Ignoring Prevention for Liveness Properties

The proviso C2o can be adapted for preservation of live-
ness properties. It is well known (e.g. [5]) that to preserve
LTL−X (and with some additional restrictions on r(s)
also CTL∗

−X [11,30]) the following condition is suffi-
cient:

– C2l (liveness cycle proviso): For any cycle s0
a0→ s1

a1→
. . .

an−1→ sn = s0 of length n ∈ IN+ in Tr, there is an
i ∈ IN with 0 ≤ i < n such that r(si) = enabled(si).

Unlike the safety cycle proviso C2ai (which required
that an action a is not ignored by at least one cycle along
which it is constantly enabled in the original LTS), the
liveness cycle proviso ensures that along each cycle of
the reduced LTS no action is ignored. This is because
at least in one state of each cycle all enabled actions
are included in r(s). Thus, using similar arguments as
in the case of safety properties one can conclude that all
actions that might have been ignored along the cycle are
executed in the reduced state space. One can ensure the
validity of C2l with the following strengthened version
of C2o

– C2ol: (open set liveness) For all actions a ∈ r(s) and
states s′ ∈ Sr such that s

a→ s′, s′ 6∈ Closed . Other-
wise, r(s) = enabledT (s).

The intuition behind the open liveness proviso C2ol
is more or less the same as for C2o - we do not have to
worry about “losing” an ignored transition as long as the
problem is delegated to the states in Open that will be
explored later. Only, unlike in the safety case, there is a
stronger requirement that the ignoring is avoided along
every cycle.

Lemma 2. Proviso C2ol implies the liveness cycle pro-
viso C2l.

Proof. Let Tr be obtained using r(s) which satisfies
C2ol. As in the proof of Lemma 1, let us assume that we
have assigned to each state s a removal order W (s) which
enumerates the states of Sr in the reverse order they are
removed (for good) from Open. Before being expanded
by the POR GSEA algorithm, the state sj is removed
from Open. As in line 6 of the POR GSEA algorithm the
duplicates of each state are removed from Closed , one
can conclude that the state space obtained by the algo-
rithm contains only the last copy of each state, i.e., the
one which is removed the last from Open. Since all the
states are uniquely mapped by W to a number between
|Sr|−1 and 0, for each cycle s0

a0→ s1
a1→ . . .

an−1→ sn = s0

(n > 0) in Tr there exists some 0 ≤ j < n such that
the W (sj) < W (sj+1). On the other hand, when the
last copy of sj is expanded, for any state s which is
newly generated or it is in Open it holds W (sj) > W (s).
Therefore, sj+1 must be in Closed and by C2ol r(sj) =
enabled(sj), which proves our claim. ut

	Text1: First publ. in: International Journal on Software Tools for Technology Transfer (STTT) 11 (2009), 1, pp. 39-51The original publication is available at www.springerlink.com
	Text2: Konstanzer Online-Publikations-System (KOPS)URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-105075URL: http://kops.ub.uni-konstanz.de/volltexte/2010/10507/

