
Int J Softw Tools Technol Transfer (2009) 11:153–171
DOI 10.1007/s10009-008-0097-7

REGULAR CONTRIBUTION

Automated implementation of complex distributed algorithms
specified in the IOA language

Chryssis Georgiou · Nancy Lynch ·
Panayiotis Mavrommatis · Joshua A. Tauber

Published online: 8 January 2009
© Springer-Verlag 2008

Abstract IOA is a formal language for describing
Input/Output automata that serves both as a formal speci-
fication language and as a programming language (Garland
et al. in http://theory.lcs.mit.edu/tds/ioa/manual.ps, 2004).
The IOA compiler automatically translates IOA specifica-
tions into Java code that runs on a set of workstations com-
municating via the Message Passing Interface. This paper
describes the process of compiling IOA specifications and
our experiences running several distributed algorithms, rang-
ing from simple ones such as the Le Lann, Chang and Roberts
(LCR) leader election in a ring algorithm to that of Gal-
lager, Humblet and Spira (GHS) for minimum-weight span-
ning tree formation in an arbitrary graph (Humblet et al. in
ACM Trans Program Lang Syst 5(1):66–77, 1983). Our IOA
code for all the algorithms is derived from their Input/Out-
put automaton descriptions that have already been formally
proved correct. The successful implementation of these algo-

This work was supported in part by the USAF, AFRL award
#FA9550-04-1-0121 and MURI AFOSR award #SA2796PO
1-0000243658. A preliminary version of this paper has appeared
in [1].
The work of the author C. Georgiou is supported in part by research
funds at the University of Cyprus.

C. Georgiou (B)
Department of Computer Science, University of Cyprus,
Nicosia, Cyprus
e-mail: chryssis@cs.ucy.ac.cy

N. Lynch · J. A. Tauber
MIT CSAIL, Cambridge, MA, USA
e-mail: lynch@csail.mit.edu

J. A. Tauber
e-mail: josh@csail.mit.edu

P. Mavrommatis
Google Inc., Mountain View, CA, USA
e-mail: mavrommatis@gmail.com

rithms is significant for two reasons: (a) it is an indication of
the capabilities of the IOA compiler and of its advanced state
of development, and (b) to the best of our knowledge, these
are the first complex, distributed algorithms implemented in
an automated way that have been formally and rigorously
proved correct. Thus, this work shows that it is possible to
formally specify, prove correct, and implement complex dis-
tributed algorithms using a common formal methodology.

Keywords Input/Output automata · Automated code
generator · Verifiable distributed code · IOA Toolkit · Formal
methods

1 Introduction

IOA is a formal language for describing distributed compu-
tation that serves both as a formal specification language and
as a programming language [2]. The IOA toolkit supports the
design, development, testing and formal verification of pro-
grams based on the Input/Output automaton model of inter-
acting state machines [3,4]. I/O automata have been used to
verify a wide variety of distributed systems and algorithms
and to express and prove several impossibility results. The
toolkit connects I/O automata with both lightweight (syn-
tax checkers, simulators, model checkers [5–11]) and heavy-
weight (theorem provers [12,13]) formal verification tools.

The IOA compiler has recently been added to the tool-
kit to enable programmers to write a specification in IOA,
validate it using the toolkit and then automatically translate
the design into Java code. As a result, an algorithm spec-
ified in IOA can be implemented on a collection of work-
stations running Java virtual machines and communicating
through the Message Passing Interface [14,15,10]. The code
produced preserves the safety properties of the IOA program

123

http://theory.lcs.mit.edu/tds/ioa/manual.ps

154 C. Georgiou et al.

in the generated Java code. This guarantee is conditioned on
the assumptions that our model of network behavior is accu-
rate, that a hand-coded datatype library correctly implements
its semantic specification, and that programmer annotations
yield specified values. We require a further technical con-
straint that the algorithm must be correct even when console
inputs are delayed.

This paper describes our experiences in compiling and
running algorithms specified in IOA. We begin with an over-
view of the challenges that were addressed in realizing the
code generator and then we provide a general description of
the process of preparing and running any distributed algo-
rithm. We next highlight important aspects of the process
by describing our experiments with algorithms from the lit-
erature. Initially, we implemented LCR leader election in a
ring, computation of a spanning tree in an arbitrary connected
graph and repeated broadcast/convergecast over a computed
spanning tree [16–19]. Our IOA code for these algorithms
was derived from the I/O automaton description given for
these algorithms in [20].

Finally, we successfully implemented the algorithm of
Gallager, Humblet and Spira (GHS) for finding the mini-
mum-weight spanning tree in an arbitrary connected graph
[21]. GHS is a sufficiently complicated algorithm to con-
stitute a “challenge problem” for the application of formal
methods to distributed computing. Welch, Lamport, and
Lynch formulated the algorithm using I/O automata and gave
a formal proof of correctness of that specification [22]. Our
IOA implementation of GHS is derived from the I/O automa-
ton description by Welch et al. by performing some technical
modifications described in Sect. 8. In the process of realiz-
ing this task (implementing these algorithms), several com-
piler implementation difficulties arose and were successfully
addressed.

The successful implementation of such a complicated
algorithm is significant for two reasons: (a) it indicates the
capabilities of the IOA compiler and its advanced state of
development, and (b) to the best of our knowledge, this is
the first complex, distributed algorithm implemented in an
automated way that has been formally and rigorously proved
correct. Thus, this work shows that it is possible to formally
specify, prove correct and implement complex distributed
algorithms using a common formal methodology.

Paper structure In Sect. 2, we overview the challenges faced
in realizing the IOA code generator. In Sect. 3, we provide
necessary background on Input/Output automata and present
related work. In Sect. 4, we present the compilation proce-
dure and necessary technical issues. Sects. 5–8 describe the
implemented algorithms and provide the IOA code used for
their automated implementation. In Sect. 9, we present the
experimental results obtained from the implementation of
our algorithms. We conclude in Sect. 10.

2 Challenges in realizing the IOA compiler

The design and implementation of the IOA compiler required
overcoming a number of key challenges. Many of these chal-
lenges arise from the differences between characteristics of
specifications that are easiest to prove correct and character-
istics of programs that are easiest to run. In this section, we
overview these challenges and the approach taken to address
them. Note that several of the presented implementation dif-
ficulties arose (and were addressed) while attempting to use
the code generator in implementing the presented distrib-
uted algorithms. For a deeper analysis of the challenges and
a thorough presentation of the actions taken in addressing
them, we refer the reader to Tauber’s Thesis [14].

2.1 Program structuring

The first major challenge that needed to be addressed was
how to create a system with the correct externally visible
behavior without using any synchronization between pro-
cesses running on different machines. This goal was achieved
by matching the formal specification of the distributed sys-
tem to the target architecture of running systems. That is, the
form of the IOA programs admissible for compilation had to
be restricted. In particular, the programmer is required (rather
than the compiler) to decide on the distribution of com-
putation; the programs submitted for compilation must be
structured in a node-channel form that reflects the message-
passing architecture of the collection of networked worksta-
tions, which is the target of the compiler. Compilation then
proceeds on a node-by-node basis (see Sect. 4.2 for specific
details). By requiring the programmer to match the system
design to the target language, hardware and system services
before attempting to compile the program, we are able to gen-
erate a verifiably correct code without any synchronization
between the processes running on different machines.

2.2 IOA Programs and external services

IOA programs use external services such as communication
networks and console inputs. The IOA compiler generates
only the specialized code necessary to implement an algo-
rithm at each node in the system. At runtime, each node con-
nects to the external system services it uses. In the current
version, the compilation target is a system in which each
host runs a Java interpreter and communicates via a small
subset of the Message Passing Interface (MPI) [23]. Hence
a second major challenge that needed to be addressed was to
create both correctness proofs about algorithms that connect
to such services and to produce the correct code that uses
such external, preexisting services. The general approach we
take for verifying access to an external service consists of
four phases. First, model the external service as an IOA

123

Automated implementation of complex distributed algorithms specified in the IOA language 155

automaton; for example a subset of MPI was modeled as
an automaton [14, Chapter 4]. Second, identify the desired
abstract service the programmers would like to use and spec-
ify that abstract service as an IOA automaton; for exam-
ple, a specification of an abstract, point-to-point, reliable,
FIFO channel was developed [14]. Third, write mediator
automata such that the composition of the mediator auto-
mata and the external service automaton implements the
abstract service automaton; for example, see the SendMe-
diator and ReceiveMediator automata used in this work (in
Appendix A). Fourth, prove that implementation relation-
ship. (Specific details on the MPI-IOA connectivity are given
in Sect. 4.2.)

2.3 Modeling procedure calls

The above design for connecting to system services raises
new challenges. One particularly tricky aspect of such proofs
is modeling the interfaces to services correctly. IOA itself has
no notion of procedure call per se. The Java interface to an
external service is defined in terms of method invocations
(procedure calls). The approach taken to address this issue,
when modeling these services, was to carefully treat method
invocations and method returns as distinct behaviors of the
external service; when procedure calls may block, handshake
protocols were developed to model such blocking.

2.4 Composing automata

The auxiliary mediator automata created to implement
abstract system services must be combined with the source
automaton prior to compilation. That is, we need to compose
these automata to form a single automaton that describes all
the computation local to a single node in the system (specific
details are given in Sect. 4). A tool, called composer, was
designed and implemented to compose automata automati-
cally [14, Part II].

2.5 Nondeterminism

The IOA language is inherently nondeterministic. Translat-
ing programs written in IOA into an imperative language
like Java requires resolving all nondeterministic choices. This
process of resolving choices is called scheduling an autom-
aton. Developing a method to schedule automata was the
largest conceptual challenge in the initial design of an IOA
compiler. In general, it is computationally infeasible to
schedule IOA programs automatically. Instead, IOA was
augmented with nondeterminism resolution (NDR)
constructs that allow programmers to schedule automata
directly and safely (more details are given in Sect. 4.5).

2.6 Implementing datatypes

Datatypes used in IOA programs are described formally by
axiomatic descriptions in first-order logic. While such speci-
fications provide sound bases for proofs, it is not easy to trans-
late them automatically into an imperative language such
as Java. However, the IOA framework focuses on the cor-
rectness of the concurrent, interactive aspects of programs
rather than of the sequential aspects. Therefore, we were
not especially concerned with establishing the correctness of
datatype implementations. (standard techniques of sequen-
tial program verification may be applied to attempt such cor-
rectness proofs). Hence, each IOA datatype is implemented
by a hand-coded Java class. A library of such classes for
the standard IOA datatypes is included in the compiler. Each
IOA datatype (e.g., Tree[]) and operator (e.g., Tree[]→ Nat)
is matched with its Java implementation class using a data-
type registry [8,10,11], which we extended in this work (by
creating mainly new operators).

3 Background

In this section, we briefly introduce the I/O automaton model
and the IOA language and set the current work in the context
of other research.

3.1 Input/Output automata

An I/O automaton is a labeled state transition system. It
consists of a (possibly infinite) set of states (including a
nonempty subset of start states); a set of actions (classified as
input, output, or internal); and a transition relation, consist-
ing of a set of (state, action, state) triples (transitions speci-
fying the effects of the automaton’s actions).1 An action π is
enabled in state s if there is some triple (s, π, s′) in the transi-
tion relation of the automaton. Input actions are required to be
enabled in all states. I/O automata admit a parallel composi-
tion operator, which allows an output action of one automaton
to be performed together with input actions in other automata.
The I/O automaton model is inherently non-deterministic. In
any given state of an automaton (or collection of automata),
one, none or many (possibly infinitely many) actions may be
enabled. As a result, there may be many valid executions of
an automaton. A succinct explanation of the model appears
in Chapter 8 of [20].

3.2 IOA language

The IOA language [2] is a formal language for describing
I/O automata and their properties. IOA code may be

1 We omit discussion of tasks, which are sets of non-input actions.

123

156 C. Georgiou et al.

considered either as a specification or a program. In either
case, IOA yields precise, direct descriptions. States are rep-
resented by the values of variables rather than just by mem-
bers of an unstructured set. IOA transitions are described in
precondition-effect (or guarded-command) style, rather than
as state–action–state triples. A precondition is a predicate on
the the automaton state and the parameters of a transition
that must hold whenever that transition executes. An effects
clause specifies the result of a transition.

Due to its dual role, the language supports both axiom-
atic and operational descriptions of programming constructs.
Thus state changes can be described through imperative pro-
gramming constructs like variable assignments and simple,
bounded loops or by declarative predicate assertions restrict-
ing the relation of the post-state to the pre-state.

The language directly reflects the non-deterministic nature
of the I/O automaton model. One or many transitions may
be enabled at any time. However, only one is executed at
a time. The selection of which enabled action to execute is
a source of implicit non-determinism. The choose operator
provides explicit non-determinism in selecting values from
(possibly infinite) sets. These two types of non-determin-
ism are derived directly from the underlying model. The first
reflects the fact that many actions may be enabled in any state.
The second reflects the fact that a state-action pair (s, π) may
not uniquely determine the following state s′ in a transition
relation.

3.3 Related work

Goldman’s Spectrum System introduced a formally defined,
purely operational programming language for describing I/O
automata [24]. He was able to execute this language in a sin-
gle machine simulator. He did not connect the language to any
other tools. However, he suggested a strategy for distributed
simulation using expensive global synchronizations. More
recently, Goldman’s Programmers’ Playground also uses a
language with formal semantics expressed in terms of I/O
automata [25].

Cheiner and Shvartsman experimented with methods for
generating code by hand from I/O automaton descriptions
[26]. They demonstrated their method by hand translating the
Eventually Serializable Data Service of Luchangco et al. [27]
into an executable, distributed implementation in C++ com-
municating via MPI. Unfortunately, their general implemen-
tation strategy uses costly reservation-based synchronization
methods to avoid deadlock.

To our knowledge, no system has yet combined a
language with formally specified semantics, automated proof
assistants, simulators and compilers. Several tools have been
based on the CSP model [28]. The semantics of the Occam
parallel computation language is defined in CSP [29]. While
there are Occam compilers, we have found no evidence of

verification tools for Occam programs. Formal Systems, Ltd.,
developed a machine-readable language for CSP.

The CCS process algebra [30] and I/O automata frame-
works share several similarities as well as many differences.
The work in [31] presents a semantic-based comparison of
the two frameworks; the work in [32] evaluates and compares
the applicability and usability of a value-passing version of
CCS with I/O automata on specifying and verifying distrib-
uted algorithms. Cleaveland et al. have developed a series of
tools based on the CCS process algebra. The Concurrency
Workbench [33] and its successor the Concurrency Factory
(CF) [34] are toolkits for the analysis of finite-state concur-
rent systems specified as CCS expressions. They include sup-
port for verification, simulation, and compilation. A model
checking tool supports verifying bisimulations. A compila-
tion tool translates specifications into Facile code. To the best
of our knowledge, no complex distributed algorithm such as
GHS has been specified, verified and implemented (in an
automated way) using the “CCS-CF-Facile” framework.

4 Compiling and running IOA

IOA can describe many systems architectures, including cen-
tralized designs, shared memory implementations or mes-
sage passing arrangements. Not every IOA specification may
be compiled. An IOA program admissible for compilation
must satisfy several constraints on its syntax, structure and
semantics. Programmers must perform two preprocessing
steps before compilation. First, the programmer must com-
bine the original “algorithm automaton” with several
auxiliary automata. Second, the programmer must provide
additional annotations to this combined program to resolve
the non-determinism inherent in the underlying I/O automa-
ton denoted by the IOA program. The program can then be
compiled into Java and thence into an executable program.
At runtime the user must provide information about the pro-
grams environment as well as the actual input to the program.

As proved elsewhere [14,15], the system generated
preserves the safety properties of the original IOA specifica-
tion, provided certain conditions are met. Those conditions
are that the model of the MPI communication service behav-
ior given in [14] is accurate, the hand-coded datatype library
used by the compiler correctly implements its semantic spec-
ification and that programmer annotations correctly initialize
the automaton.

4.1 Imperative IOA syntax

As mentioned in Sect. 3.2, IOA supports both operational and
axiomatic descriptions of programming constructs. The IOA
compiler translates only imperative IOA constructs. There-
fore, IOA programs submitted for compilation cannot

123

Automated implementation of complex distributed algorithms specified in the IOA language 157

Fig. 1 Auxiliary automata
mediate between MPI and
algorithm automata to yield a
reliable FIFO channel

include certain IOA language constructs. Effects clauses
cannot include ensuring clauses that relate pre-states to post-
states declaratively. Throughout the program, predicates must
be quantifier free. Currently, the compiler handles only
restricted forms of loops that explicitly specify the set of
values over which to iterate.

4.2 Node-channel form

The IOA compiler targets only message passing systems. The
goal is to create a running system consisting of the compiled
code and the existing MPI service that faithfully emulates the
original distributed algorithm written in IOA. Each node in
the target system runs a Java interpreter with its own console
interface and communicates with other hosts via (a subset
of) the Message Passing Interface (MPI) [35,23] (by “con-
sole” we mean any local source of input to the automaton. In
particular, we call any input that Java treats as a data stream,
other than the MPI connection, the console). We note that we
use only four of the (myriad) methods provided by MPI:

Isend sends a message to a specified destination and
returns a handle to name the particular send.

test tests a handle to see if the particular send has com-
pleted.

Iprobe polls to see if an incoming message is available.
recv returns a message when available.

As already mentioned in Sect. 2, the IOA compiler is able
to preserve the externally visible behavior of the system with-
out adding any synchronization overhead because we require
the programmer to explicitly model the various sources of
concurrency in the system: the multiple machines in the sys-
tem and the communication channels. Thus, we require that
systems submitted to the IOA compiler be described in node-
channel form. The IOA programs to be compiled are the
nodes. We call these programs algorithm automata.

As discussed before, all communication between nodes
in the system uses asynchronous, reliable, one-way FIFO
channels. These channels are implemented by a combination
of the underlying MPI communication service and media-
tor automata that are composed of the algorithm automata
before compilation. The recvMediator automaton (Appen-
dix A) mediates between the algorithm automaton and an
incoming channel, while the sendMediator automaton
(Appendix A) handles messages to outgoing channels. Each
of the n node programs connects to up to 2n mediator

automata (one for each of its channels). Figure 1 illustrates
how a mediator automaton is composed of MPI to create a
reliable, FIFO channel.

Thus, algorithm automata may assume channels with very
simple semantics and a very simple SEND/RECEIVE interface
even though the underlying network implementation is more
complex. In the distributed graph algorithms we implement,
the network is the graph. That is, usually, nodes map to
machines and edges to networks (the exceptions are experi-
ments in which we run multiple nodes on a single machine).

4.3 Composition

The completed design is called the composite node autom-
aton and is described as the composition of the algorithm
automaton with its associated mediator automata. A com-
poser tool [36] expands this composition into a new, equiv-
alent IOA program in primitive form where each piece of
the automaton is explicitly instantiated. The resulting node
automaton describes all computation to be performed on
one machine. This expanded node automaton (annotated as
described below) is the final input program to the IOA com-
piler. The compiler translates each node automaton into its
own Java program suitable to run on the target host.

The node automaton combining the GHSProcess and stan-
dard mediator automata is shown in the Appendix. In that
automaton, the SEND and RECEIVE actions are hidden so that the
interfaces between algorithm and mediator automata are not
externally visible.

4.4 Input-delay insensitivity

The I/O automaton model requires that input actions are
always enabled. However, our Java implementation is not
input enabled; it receives input only when the program asks
for it by invoking a method. Therefore, each IOA system
submitted for compilation must satisfy a semantic constraint.
The system as a whole must behave correctly (as defined by
the programmer) even if inputs to any node from its local
console are delayed. This is a technical constraint that most
interesting distributed algorithms can be altered to meet. For
this purpose, our code generator deploys input buffers; a pro-
ducer/consumer style is used where the act of consuming
inputs from the buffer falsifies the precondition of the con-
sumer so that the consuming transition never tries to read an
empty buffer. The producer can always safely append new

123

158 C. Georgiou et al.

inputs to the buffer, but there is no guarantee as to when the
input will be consumed.

4.5 Resolving non-determinism

As mentioned in Sect. 2.5, before compiling a node
automaton, a programmer must resolve both the implicit
non-determinism inherent in any IOA program and any
explicit non-determinism introduced by choose statements.

4.5.1 Scheduling

Execution of an automaton proceeds in a loop that selects an
enabled transition to execute and then performs the effects of
that transition. Picking a transition to execute includes pick-
ing a transition definition and the values of its parameters. It
is possible and, in fact, common that the set of enabled actions
in any state is infinite. In general, deciding membership in
the set of enabled actions is undecidable because transition
preconditions may be arbitrary predicates in first-order logic.
Thus, there is no simple and general search method for find-
ing an enabled action. Even when it is possible to find an
enabled action, finding an action that makes actual progress
may be difficult.

Therefore, before compilation, we require the program-
mer to write a schedule. A schedule is a function of the state
of the local node that picks the next action to execute at
that node. In format, a schedule is written at the IOA level
in an auxiliary non-determinism resolution language (NDR)
consisting of imperative programming constructs similar to
those used in IOA effects clauses. The NDR fire statement
causes a transition to run and selects the values of its param-
eters. Schedules may reference, but not modify, automaton
state variables. However, schedules may declare and modify
additional variables local to the schedule [6,8,10].

Conceptually, adding an NDR schedule to an IOA pro-
gram changes it in three ways. The NDR schedule adds new
variables, modifies each transition to use the new variables
and provides a computable next-action function of the aug-
mented state. The new state variables consist of a program
counter and whatever variables the programmer uses in the
NDR schedule program. Each locally controlled action is
modified in two ways. First, the precondition is strength-
ened so that the action is enabled only if the program counter
names the action. Second, at the end of the effects the program
counter is assigned the next action as computed by applying
the next-action function to the automaton state. The schedule
annotation used to run GHS is included in Appendix C.2.

4.5.2 Choosing

The choose statement introduces explicit non-determinism in
IOA. When a choose statement is executed, an IOA program

selects an arbitrary value from a specified set. For example,
the statement

num := c h o o s e n:Int w h e r e 0 ≤ n ∧ n < 3

assigns either 0, 1 or 2 to num. As with finding parametrized
transitions to schedule, finding values to satisfy the where

predicates of choose statements is hard. So, again, we require
the IOA programmer to resolve the non-determinism. In this
case, the programmer annotates the choose statement with an
NDR determinator block. The yield statement specifies the
value to resolve a non-deterministic choice. Determinator
blocks may reference, but not modify, automaton state vari-
ables.

4.5.3 Initialization

The execution of an I/O automaton may start in any of a set
of states. In an IOA program, there are two ways to denote
its start states. First, each state variable may be assigned an
initial value. That initial value may be a simple term or an
explicit choice. In the latter case, the choice must be anno-
tated with a choice determinator block to select the initial
value before code generation. Second, the initial values of
state variables may be collectively constrained by an initially

clause. As with preconditions, an initially clause may be an
arbitrary predicate in first-order logic. Thus, there is no sim-
ple search method for finding an assignment of values to state
variables to satisfy an initially clause. Therefore, we require
the IOA programmer to annotate the initially predicate with
an NDR determinator block. However, unlike NDR programs
for automaton schedules initially determinator blocks may
assign values directly to state variables. The initially det

block for GHS is included in Appendix C.2.

4.6 Runtime preparation

As mentioned above, a system admissible for compila-
tion must be described as a collection of nodes and channels.
While each node in the system may run a distinct code, often
the nodes are symmetric. That is, each node in the system
is identical up to parametrization and input. For example,
the nodes in the GHS algorithm are distinguished only by a
unique integer parameter. Automaton parameters can also be
used to give every node in the system some common informa-
tion that is not known until runtime; for example, the precise
topology of the network on which the system is running. If
a compiled automaton is parametrized, the runtime system
reads that information from a local file during initialization.
In our testbed, certain special automaton parameters are auto-
matically initialized at runtime. The rank of a node is a unique
non-negative integer provided by MPI. Similarly, the size of
the system is the number of nodes connected by MPI. Input

123

Automated implementation of complex distributed algorithms specified in the IOA language 159

Fig. 2 Given an Input/Output automaton specification of a distributed
algorithm: a Write the process automaton in IOA; one automaton per
node, connected by simple send and receive interfaces to channels.
b Compose the process automaton with the mediator automata (stan-
dard IOA library programs that provide simple FIFO-channel seman-
tics to the algorithm) to form the composite node automaton. Using

the composer tool, expand the composite node automaton to obtain the
node automaton. Annotate the node automaton with a non-determinism
resolving schedule block, to produce the scheduled node automaton.
c Compile, using the IOA compiler, the scheduled node automaton to a
Java class. By compiling the Java class we obtain an executable program
in which communication is performed via MPI

action invocations are also read from files (or file descriptors)
at runtime. A description of the format for such invocations
is given in [10].

Figure 2 provides a graphical outline of the compilation
procedure.

5 Implementing LCR leader election

The first algorithm to be automatically compiled with the IOA
compiler was the asynchronous version of the algorithm of
Le Lann, Chang and Roberts (LCR) [16,18] for leader elec-
tion in a ring network. In LCR, each node sends its iden-
tifier around the ring. When a node receives an incoming
identifier, it compares that identifier to its own. It propagates
the identifier to its clockwise neighbor only if the incoming
identifier is greater than its own. The node that receives an
incoming identifier equal to its own is elected as the leader.
Informally, it can be seen that only the largest identifier com-
pletes a full circuit around the ring and the node that sent it
is elected leader. A formal specification of the algorithm as
an I/O automaton and a proof of its correctness can be found
in [20, Sect. 15.1.1].

LCR Leader Election process automaton

t y p e Status = e n u m e r a t i o n o f idle , voting ,
elected , announced

a u t o m a t o n LCRProcess(rank: Int , size: Int)
s i g n a t u r e

i n p u t vote
i n p u t RECEIVE(m: Int , c o n s t mod(rank - 1,

size), c o n s t rank: Int)
o u t p u t SEND(m: Int , c o n s t rank: Int ,

c o n s t mod(rank+1, size))
o u t p u t leader(c o n s t rank)

s t a t e s

pending: Mset[Int] := {rank},
status: Status := idle

t r a n s i t i o n s
i n p u t vote

e f f status := voting
i n p u t RECEIVE(m, j, i) w h e r e m > i

e f f pending := insert(m, pending)
i n p u t RECEIVE(m, j, i) w h e r e m < i
i n p u t RECEIVE(i, j, i)

e f f status := elected
o u t p u t SEND(m, i, j)

p r e status �= idle ∧ m ∈ pending
e f f pending := delete(m, pending)

o u t p u t leader(rank)
p r e status = elected
e f f status := announced

The automaton definition that appears in [20, Sect. 15.1]
was used, with some minor modifications (the const key-
word means that the transition parameter has the same value
every time the transition is fired). For all the algorithms that
follow, the nodes were automatically numbered from 0 to
(size 1). The automata LCRProcess, LCRNode, SendMediator and
ReceiveMediator were written. The mediator automata imple-
ment the channel automata integrated with MPI functionality
and can be found in Appendix A. The LCRNode automaton,
included in Appendix B.1, simply composes the mediator
automata with the process automaton. This automaton was
automatically expanded and a schedule was written for the
composition, which appears in Appendix B.2. The imple-
mentation was tested on a number of different configurations
and ran correctly in all cases.

6 Implementing spanning tree
and broadcast/convergecast

6.1 Asynchronous spanning tree

The next algorithm we implemented was an asynchronous
Spanning Tree algorithm for finding a rooted spanning tree in

123

160 C. Georgiou et al.

an arbitrary connected graph based on the work of Segal [19]
and Chang [17]. This was the first test of the toolkit on arbi-
trary graphs, where each node had more than one incoming
and outgoing communication channels. In this algorithm all
nodes are initially “unmarked” except for a “source node”
(the root of the resulting spanning tree). The source node
sends a search message to its neighbors. When an unmarked
node receives a search message, it marks itself and chooses
the node from which the search message has arrived as its
parent. It then propagates the search message to its neigh-
bors. If the node is already marked, it just propagates the
message to its neighbors (in other words, a parent of a node
i is the node from which i has received a search message
for the first time). The spanning tree is formed by the edges
between the parent nodes with their children. The AsynchS-
panningTree automaton, as defined in [20, Sect. 15.3] was
used. The process automaton is listed below.2 The schedule
for the composition of this automaton with the mediator ones
appears in Appendix B.3.

Asynchronous Spanning Tree process automaton

t y p e Message = e n u m e r a t i o n o f search , null
a u t o m a t o n sTreeProcess(i: Int , nbrs: Set[Int])
s i g n a t u r e

i n p u t RECEIVE(m: Message ,
c o n s t i: Int , j: Int)

o u t p u t SEND(m: Message ,
c o n s t i: Int , j: Int)

o u t p u t PARENT(j: Int)
s t a t e s

parent: Null[Int] := nil ,
reported: Bool := false ,
send: Map[Int , Message] := empty

t r a n s i t i o n s
i n p u t RECEIVE(m, i, j)

e f f
i f i �= 0 ∧ parent = nil t h e n

parent := embed(j);
f o r k: Int i n nbrs - {j} d o

send[k] := search
o d

f i
o u t p u t SEND(m, i, j)

p r e send[j] = search
e f f send[j] := null

o u t p u t PARENT(j)
p r e parent.val = j ∧ ¬reported
e f f reported := true

6.2 Asynchronous broadcast/convergecast

The successful implementation of the Spanning Tree
algorithm led to the implementation of an asynchronous
Broadcast/Convergecast algorithm, which is essentially an
extension of the previous algorithm. Along with the con-
struction of a spanning tree, a broadcast and convergecast
takes place (the root node broadcasts a message down the tree

2 For an explanation of the constructs appearing in the the code (such
as Null[] or embed()) we refer the reader to [2, Appendix A.11].

and acknowledgments are passed up the tree from the leaves
with each parent sending an acknowledgment up the tree
only after receiving one from each of its children).
A formal specification and a proof of correctness is given
in [20, Sect. 15.3]. In our tests, the root was node 0, and the
value v1 (a dummy value) was broadcast on the network.
The process automaton is shown below. The schedule for
the composition of this automaton with the mediator ones
appears in Appendix B.4.

Broadcast-Convergecast process automaton

t y p e Kind = e n u m e r a t i o n o f bcast , ack
t y p e Val = e n u m e r a t i o n o f null , v1
t y p e BCastMsg = t u p l e o f kind: Kind , v: Val
t y p e Message = u n i o n o f msg: BCastMsg ,

kind: Kind

a u t o m a t o n bcastProcess(rank: Int ,
nbrs: Set[Int])

s i g n a t u r e
i n p u t RECEIVE(m: Message , c o n s t rank ,

j: Int)
o u t p u t SEND(m: Message , c o n s t rank ,

j: Int)
i n t e r n a l report(c o n s t rank)

s t a t e s
val: Val := null ,
parent: Null[Int] := nil ,
reported: Bool := false ,
acked: Set[Int] := {},
send: Map[Int , Seq[Message]]

i n i t i a l l y
rank = 0 ⇒

(val = v1 ∧
(∀ j: Int j ∈ nbrs ⇒

send[j] = {msg([bcast , val])}))
t r a n s i t i o n s

o u t p u t SEND(m, rank , j)
p r e m = head(send[j])
e f f send[j] := tail(send[j])

i n p u t RECEIVE(m, rank , j)
e f f

i f m = kind(ack) t h e n
acked := acked ∪ {j}

e l s e
i f val = null t h e n

val := m.msg.v;
parent := embed(j);
f o r k:Int i n nbrs - {j} d o

send[k] := send[k]
 m
o d

e l s e
send[j] := send[j]
 kind(ack)

f i
f i

i n t e r n a l report(rank) w h e r e rank = 0
p r e acked = nbrs;

reported = false
e f f reported := true

i n t e r n a l report(rank) w h e r e rank �= 0
p r e parent �= nil;

acked = nbrs - {parent.val};
reported = false

e f f send[parent.val] :=
send[parent.val]
 kind(ack);

reported := true;

123

Automated implementation of complex distributed algorithms specified in the IOA language 161

7 Implementing general leader election algorithms

We continued with two leader election algorithms on
arbitrary connected graphs. The first one is an extension of
the asynchronous broadcast/convergecast algorithm, where
each node performs its own broadcast to find out whether it is
the leader (each node broadcasts its identifier, and it receives
the identifiers of all other nodes and the one with the largest
identifier is elected as the leader). The second one computes
the leader based on a given spanning tree of the graph. Our
code for each of these algorithms was based on the formal
specification and a proof of correctness given in Chapter 15
of [20]. In each case, we were able, using the IOA compiler,
to automatically produce an implementation of the algorithm
in Java code and run it successfully on a network of work-
stations and run several experiments.

7.1 Leader election using broadcast/convergecast

The main idea of the leader election using broadcast–
convergecast algorithm [20, page 500] is to have every node
act as a source node and create its own spanning tree, broad-
cast its UID using this spanning tree and hear from all the
other nodes via a convergecast. During this convergecast,
along with the acknowledge message, the children also send
what they consider as the maximum UID in the network. The
parents gather the maximum UIDs from the children, com-
pare it to their own UID and send the maximum to their own
parents. Thus, each source node learns the maximum UID in
the network and the node whose UID equals the maximum
one announces itself as a leader. The process automaton is
given below, and the schedule for its composition with the
mediator automata in Appendix B.5. The implementation
was tested on various logical network topologies, terminat-
ing correctly every time.

Leader Election with Broadcast-Convergecast process
automaton

t y p e Kind = e n u m e r a t i o n o f bcast , ack
t y p e Val = e n u m e r a t i o n o f null , v1
t y p e BCastMsg = t u p l e o f kind: Kind , v: Val
t y p e AckMsg = t u p l e o f kind:Kind , mx: Int
t y p e MSG = u n i o n o f bmsg: BCastMsg , amsg:

AckMsg , kind: Kind
t y p e Message = t u p l e o f msg: MSG , source: Int

a u t o m a t o n bcastLeaderProcess(rank: Int , size:
Int)

s i g n a t u r e
i n p u t RECEIVE(m: Message , i: Int , j: Int)
o u t p u t SEND(m: Message , i: Int , j: Int)
i n t e r n a l report(i: Int , source: Int)
i n t e r n a l finished
o u t p u t LEADER

s t a t e s
nbrs: Set[Int],
val: Map[Int , Int],
parent: Map[Int , Null[Int]],

reported: Map[Int , Bool],
acked: Map[Int , Set[Int]],
send: Map[Int , Int , Seq[Message]],
max: Map[Int , Int],
elected: Bool := false ,
announced: Bool := false

i n i t i a l l y
val[j] = rank ∧
(∀ j: Int

((0 ≤ j ∧ j < size) ⇒
rank �= j ⇒ val[j] = nil ∧
parent[j] = -1 ∧
acked[j] = {} ∧
max[j] = rank ∧
(∀ k:Int

((0 ≤ k ∧ k < size) ⇒
send[j,k] = {}) ∧

(k ∈ nbrs ∧ rank = j) ⇒
send[j,k] =

{[bmsg([bcast , v1]), j]}))))
t r a n s i t i o n s

o u t p u t SEND(m, i, j)
p r e m = head(send[m.source , j])
e f f send[m.source , j] :=

tail(send[m.source , j])
i n p u t RECEIVE(m, i, j)

e f f
i f m.msg = kind(ack) t h e n

acked[m.source] := acked[m.source]
∪ {j}

e l s e i f tag(m.msg) = amsg t h e n
i f max[m.source] < m.msg.amsg.mx t h e n

max[m.source] := m.msg.amsg.mx;
f i ;
acked[m.source] := acked[m.source]

∪ {j}
e l s e %BcastMsg

i f val[m.source] = -1 t h e n
val[m.source] := m.msg.bmsg.w;
parent[m.source] := j;
f o r k:Int i n nbrs - {j} d o

send[m.source , k] :=
send[m.source , k]
 m

o d
e l s e

send[m.source ,j] := send[m.source ,j]

 [kind(ack), m.source]

f i
f i

i n t e r n a l finished
p r e acked[rank] = nbrs ∧ ¬reported[rank]
e f f reported[rank] := true;

i f (max[rank] = rank) t h e n
elected := true

f i ;
o u t p u t LEADER

p r e elected ∧ ¬announced
e f f announced := true

i n t e r n a l report(i, source) w h e r e i �= source
p r e parent[source] �= -1 ∧

acked[source] = nbrs - {parent[source]}
∧

¬reported[source]
e f f send[source , parent[source]] :=

send[source , parent[source]]

 [amsg([ack , max[source]]), source];

reported[source] := true;

7.2 Unrooted spanning tree to leader election

The algorithm STtoLeader of [20, page 501] was imple-
mented as the next test for the toolkit. The algorithm takes
as input an unrooted spanning tree and returns a leader. The
automaton listed below was written, according to the descrip-
tion of the algorithm in [20]. The schedule for its composition
with the mediator automata appears in Appendix B.6.

123

162 C. Georgiou et al.

Unrooted Spanning Tree to Leader Election process automa-
ton

t y p e Status = e n u m e r a t i o n o f idle , elected ,
announced

t y p e Message = e n u m e r a t i o n o f elect

a u t o m a t o n sTreeLeaderProcess(rank: Int ,
nbrs:Set[Int])

s i g n a t u r e
i n p u t RECEIVE(m: Message , c o n s t

rank: Int , j: Int)
o u t p u t SEND(m: Message , c o n s t

rank: Int , j: Int)
o u t p u t leader

s t a t e s
receivedElect: Set[Int] := {},
sentElect: Set[Int] := {},
status: Status := idle ,
send: Map[Int , Seq[Message]]

i n i t i a l l y
size(nbrs) = 1 ⇒

send[chooseRandom(nbrs)] = {elect}
t r a n s i t i o n s

i n p u t RECEIVE(m, i, j; l o c a l t: Int)
e f f

receivedElect := receivedElect ∪ {j};
i f size(receivedElect) =

size(nbrs)-1 t h e n
t := chooseRandom(nbrs -

receivedElect);
send[t] := send[t]
 elect;
sentElect := sentElect ∪ {t};

e l s e i f receivedElect = nbrs t h e n
i f j ∈ sentElect t h e n

i f i > j t h e n status := elected f i
e l s e

status := elected
f i

f i
o u t p u t SEND(m, i, j)

p r e m = head(send[j])
e f f send[j] := tail(send[j])

o u t p u t leader
p r e status = elected
e f f status := announced

8 Implementing the GHS algorithm

The successful implementation of the (simple) algorithms
above made us confident that it would be possible, using the
toolkit, to implement more complex distributed algorithms.
Our algorithm of choice to test the toolkit’s capabilities was
the seminal algorithm of Gallager, Humblet and Spira [21]
for finding the minimum-weight spanning tree in an arbitrary
connected graph with unique edge weights.

In the GHS algorithm, the nodes form themselves into
components, which combine to form larger components. Ini-
tially each node forms a singleton component. Each compo-
nent has a leader and a spanning tree that is a subgraph of
the eventually formed minimum spanning tree. The identi-
fier of the leader is used as the identifier of the component.
Within each component, the nodes cooperatively compute
the minimum-weight outgoing edge for the entire compo-
nent. This is done as follows. The leader broadcasts a search
request along tree edges. Each node finds, among its incident

edges, the one of minimum weight that is outgoing from the
component (if any) and it reports it to the leader. The leader
then determines the minimum-weight outgoing edge (which
will be included in the minimum spanning tree) of the entire
component and a message is sent out over that edge to the
component on the other side. The two components combine
into a new larger component and a procedure is carried out
to elect the leader of the newly formed component. After
enough combinations have occurred, all connected nodes in
the given graph are included in a single connected compo-
nent. The spanning tree of the final single component is the
minimum spanning tree of the graph.

Welch et al. [22] described the GHS algorithm using I/O
automata and formally proved its correctness. We derived
our IOA implementation of the algorithm from that descrip-
tion. Our IOA code of the GHS automaton (due its length)
is given in Appendix C.1. Only technical modifications were
necessary to convert the I/O automata description from [22]
into IOA code recognizable by the IOA compiler. First, we
introduced some variables that were not defined in the I/O
automaton description as formal parameters of the automa-
ton in the IOA code. For example, in our implementation,
information about the edges of the graph is encoded in links

and weights automaton parameters. In [22] that information
is assumed to be available in a global variable. Second, the
I/O automaton description uses the notion of a “procedure”
to avoid code repetition. The IOA language does not support
procedure calls with side effects because call stacks and pro-
cedure parameters complicate many proofs. Thus, we had to
write the body of the procedures several times in our code.
Third, statements like “let S = {〈p, r〉 : lstatus(〈p, r〉) =
branch, r �= q}” were converted into for loops that com-
puted S.

The schedule block we used to run GHS can be found
in Appendix C.2. In that block, each variable reference is
qualified by the component automaton (P, SM[*], or RM[*]) in
which the variable appears. We also introduce new variables
to track the progress of the schedule. The schedule block is
structured as a loop that iterates over the neighbors of the
node. For each neighbor, the schedule checks if each action
is enabled and, if so, fires it with appropriate parametrization.
As formulated in [22], individual nodes do not know when the
algorithm completes. Therefore, we terminated the algorithm
manually after all nodes had output their status. The effect of
the schedule is to select a legal execution of the automaton.
When an action is fired at runtime, the precondition of the
action is automatically checked.

Other than the schedule block, the changes necessary to
derive compilable IOA code from the description in [22] can
be described as syntactic. It follows that our IOA specifica-
tion preserves the correctness of the GHS algorithm, as was
formally proved in [22]. It follows from the correctness of the
compiler as proved in [14] that the running implementation

123

Automated implementation of complex distributed algorithms specified in the IOA language 163

also preserves the safety properties proved by Welch et al.
provided certain conditions are met (Sect. 4).

From our IOA specification, the compiler produced the
Java code to implement the algorithm, enabling us to run
the algorithm on a network of workstations. In every exper-
iment, the algorithm terminated and reported the minimum
spanning tree correctly.

9 Performance

We have run our algorithms’ implementations (described in
Sects. 5–8) to demonstrate the functionality of the generated
code, measure some of its basic properties, and make some
observations about the compilation process. Measuring the
performance (runtime and message complexity) of the run-
ning algorithms establishes some quantitative benchmarks
for comparing the current version of the compiler to future
optimizations or any alternative implementations.3

Our experiments exercise many features of the compiler.
First and foremost, we show that distributed message-
passing algorithms run and pass messages as expected. In
doing so, we employ most of the catalog of IOA data-
types, datatype constructors and record types. The basic
datatypes are booleans, integers, natural numbers, char-
acters and strings. The type constructors are arrays, sets,
multisets, sequences and mappings. The record types are
enumerations, tuples and unions. Of these, we use all
but naturals, characters and strings. In addition, we intro-
duce new and enhanced datatypes not in the basic IOA
language. For example, we enhance the Set and Mset

datatype constructors with choice operators and intro-
duce a Null type constructor. We demonstrate the use
of all the supported control structures in the language
including loops that iterate over the elements of finite
sets.

For our experiments we used up to 24 machines from
the MIT CSAIL Theory of Computation local area network.
The machine processors ranged from 900 MHz Pentium IIIs
to 3 GHz Pentium IVs, and all the machines were running
Linux, Redhat 9.0 to Fedora Core 2. We note that the net-
work connectivity was not optimized at all (the machines
were essentially people’s desktops, interconnected via lots
of routers and switches throughout a building). The imple-
mentations were tested on a number of logical network topol-
ogies. All the tests we report here were performed with each
node running on a different machine.

3 Provided that the same platform and network configuration is used.

9.1 Performance of simple algorithm implementations

Figure 3 displays the runtime performance of our automated
implementations for the algorithms LCR, Broadcast/Con-
vergecast, Spanning Tree to Leader Election and Broadcast
to Leader Election. The runtime values are averaged over ten
runs of the algorithm.

LCR Runtime The theoretical message complexity of LCR
depends on the order of the node identifiers in the ring, and
ranges from O(n) to O(n2), where n is the number of nodes
in the network. In all our configurations, the node identifiers
were ordered in the most optimal way (in increasing order),
and thus around 2n messages were exchanged. The first n
messages can be sent simultaneously, while the last n mes-
sages must be linearized. These n linearized messages, where
nodes receive the message of the largest node and forward
it to their clockwise neighbor, result in a linear runtime for
the algorithm overall, because message delay is much larger
than local computation. We therefore expect LCR to perform
linearly with the number of nodes in these optimal configu-
rations. As Fig. 3 indicates, with the exception of a “spike”
at 12 nodes, the experimental runtime tends to be linear.4

Broadcast/Convergecast runtime The theoretical time com-
plexity for the asynchronous broadcast/convergecast algo-
rithm is O(n) [20]. Our experimental results (Fig. 3) once
again agree with the theoretical complexity (not considering
the spikes).

Spanning Tree to Leader Election Runtime The time com-
plexity for the leader election algorithm with a given span-
ning tree is once again O(n) [20]. As Fig. 3 indicates, the
experimental runtime agrees with O(n) (not considering the
spikes).

Broadcast Leader Election Runtime The leader election algo-
rithm that uses simultaneous broadcast/convergecast should
also run within O(n) time; however the message complex-
ity is much larger. The experimental results of Fig. 3 agree
with the time complexity. The absolute values of the running
times, however, were much larger compared to the previous
algorithms. This is expected since a much larger number of
messages are exchanged (in the order of n2).

9.2 Performance of GHS Implementation

Several runtime measurements were made which can be sum-
marized in Fig. 4. The graphs plot the execution time (left
Y axis) and the total number of messages sent by all nodes
(right Y axis) against the number of participating nodes. The

4 The spikes are caused by the very random underlying physical topol-
ogy of the nodes in different cluster sizes, and because the number of
messages exchanged was small, the runtime had high deviation. In the
case of BLE, the huge number of messages reduced the deviation, and
hence no spikes appeared, as observed in Fig. 3.

123

164 C. Georgiou et al.

Fig. 3 Runtime performance of the automated implementations of LCR, Broadcast/Convergecast, Spanning Tree to Leader Election and Broadcast
to Leader Election algorithms

Fig. 4 Performance of the automated GHS implementation. The theoretical complexities are also plotted

theoretical runtime of the algorithm c · n log n [20], is also
shown (for c = 0.25). The actual runtime seems to corre-
spond well with the theoretical one, and an important obser-
vation is that the execution time does not “explode” as the
number of machines used increases, which gives some indi-

cation of the possible scalable nature of the implementation.
The theoretical upper bound on the number of messages is
5n log n + 2|E |, and is also plotted in the right graph. As
expected, the actual number of messages exchanged was on
average lower than this upper bound.

123

Automated implementation of complex distributed algorithms specified in the IOA language 165

We believe that the experimental results imply that the
performance of the implementation (mainly in terms of exe-
cution time) is “reasonable”, considering that the implemen-
tation code was obtained by an automatic translation and not
by an optimized, manual implementation of the original algo-
rithm (and the network connectivity was not optimized; fac-
tors like DNS resolution, for example, add a lot of latency to
the connections). Therefore, we have demonstrated that it is
possible to obtain automated implementations (that perform
reasonably well) of complex distributed algorithms (such as
GHS) using the IOA toolkit.

9.3 Observations

Programming algorithms from the literature with IOA was
generally a smooth process. Writing schedules was both
easier and more difficult than expected: For the algorithms
in our case studies, schedules followed fairly predictable
patterns. The arrival of a message or an input action
triggers the execution of a cascade of transitions. The
schedules for our case studies essentially loop over these
possible sources of input and when an input arrives, the
schedule performs the entire resulting cascade of transitions
before checking for the next input. Thus, the basic struc-
ture of a schedule turned out to be very easy to outline. On
the other hand, our experience was that most programming
time was spent debugging NDR schedules. In this regard,
runtime checks on NDR generated values (e.g., precondition
checks) proved valuable. Unfortunately, livelock was an all
too frequent result of a buggy schedule. Writing the con-
ditional guards for fire statements was particularly tricky
when polling for items from queues. In particular, it was
a frequent bug that a schedule never executed any transi-
tions.

Finally, it is worth mentioning that the time required for
MPI to set up all the connections and enable nodes to initial-
ize was not measured in the runtime results. However, when
the number of nodes was large, the time was also quite sig-
nificant (around 5–10 min). A possible explanation for this
is the following: MPI sets up a connection between all pairs
of nodes, even if these connections are not necessary. For
example, an n-node LCR needs only n connections, while
MPI sets up �(n2) connections. Perhaps another communi-
cation interface, which gives more control over these issues
(e.g., Java RMI or Java sockets with TCP) could be used
instead of MPI. As discussed in the Sect. 10, ongoing work
is heading toward this direction.

10 Conclusions

Direct compilation of formal models can enhance the
application of formal methods to the development of

distributed algorithms. Distributed systems specified as
message-passing IOA programs can be automatically com-
piled when the programmer supplies annotations to resolve
non-deterministic choices. As shown elsewhere, the resulting
implementations are guaranteed to maintain the safety prop-
erties of the original program under reasonable assumptions.
To the best of our knowledge, our implementation of GHS
(using the IOA toolkit) is the first example of a complex, dis-
tributed algorithm that has been formally specified, proved
correct and automatically implemented using a common for-
mal methodology. Hence, this work has demonstrated that
it is feasible to use formal methods, not only to specify and
verify complex distributed algorithms, but also to automat-
ically implement them (with reasonable performance) in a
message passing environment.

There are several future research directions that ema-
nate from the presented work. One direction is to investi-
gate whether the automated translation can be optimized to
improve efficiency. As mentioned in the Sect. 9.3, one can use
our experiments as benchmarks for comparison with future
versions of the code generator. Furthermore, an important
research exercise worth pursuing is to compare the perfor-
mance of our automated algorithm implementations with the
ones obtained using a different methodology; for example,
specify and verify algorithm GHS using the CCS process
algebra and then use the Concurrency Factory approach [34]
together with facile to obtain experimental data for compa-
rison.

Recall that the code produced from the IOA code gener-
ator preserves the safety properties of the IOA specification.
An important topic for future investigation is to enable the
code generator to also provide some kind of liveness guaran-
tees. The preservation of liveness properties depends on the
NDR schedules written to resolve non-determinism. Unfor-
tunately, no formal semantics have been given for NDR.
Therefore, in order to make any claims about the liveness
of the generated code, one would first need a formal model
for NDR and then investigate how NDR would preserve the
liveness properties proved for the IOA specification (before
it is fed into the compiler).

Another future research direction is to enable the auto-
mated implementation of IOA-specified algorithms on
WANs with dynamic node participation. Currently the com-
piler is limited to static participation and use in LANs due to
the use of MPI for communication. As explained in Sect. 2.2,
the compiler design is general enough to enable the use of
other communication paradigms. In [37] an alternative com-
munication paradigm is suggested (Java Sockets with TCP)
that enables the automated implementation of algorithms
that have dynamic participation (nodes may join and leave
the computation at any time). Ongoing work is attempting
to incorporate this alternative paradigm into the IOA com-
piler.

123

166 C. Georgiou et al.

The TIOA language (an extension of the IOA language)
models distributed systems with timing constraints as collec-
tions of interacting state machines, called Timed Input/Out-
put automata (an extension of Input/Output automata) [38].
A TIOA toolkit is underway [39] which (so far) includes a
TIOA syntax and type checker, a TIOA simulator (with lim-
ited functionality), a model checker and a theorem prover.
A very challenging research direction is to develop a TIOA
code generator, as several issues need to be addressed in order
for one to be able to incorporate time into the IOA compiler.

Acknowledgments We thank the anonymous reviewers for their con-
structive comments that helped us to significantly improve the presen-
tation of this paper.

Appendix

A Mediator automata

SendMediator Automaton

t y p e sCall = e n u m e r a t i o n o f idle , Isend , test
a u t o m a t o n SendMediator(Msg , Node:Type , i:Node ,

j:Node)
a s s u m e s Infinite(Handle)
s i g n a t u r e

i n p u t SEND(m: Msg , c o n s t i, c o n s t j)
o u t p u t Isend(m: Msg , c o n s t i, c o n s t j)
i n p u t resp_Isend(handle:Handle , c o n s t i,

c o n s t j)
o u t p u t test(handle:Handle , c o n s t i,

c o n s t j)
i n p u t resp_test(flag:Bool , c o n s t i,

c o n s t j)
s t a t e s

status: sCall := idle ,
toSend: Seq[Msg] := {},
sent: Seq[Msg] := {},
handles: Seq[Handle] := {}

t r a n s i t i o n s
i n p u t SEND(m, i, j)

e f f toSend := toSend
 m
o u t p u t Isend(m,i,j)

p r e head(toSend) = m;
status = idle

e f f toSend := tail(toSend);
sent := sent
 m;
status := Isend

i n p u t resp_Isend(handle , i, j)
e f f handles := handles
 handle;

status := idle
o u t p u t test(handle , i, j)

p r e status = idle;
handle = head(handles)

e f f status := test
i n p u t resp_test(flag , i, j)

e f f i f (flag = true) t h e n
handles := tail(handles);
sent := tail(sent)

f i ;
status := idle

ReceiveMediator Automaton

t y p e rCall = e n u m e r a t i o n o f idle , receive ,
Iprobe

a u t o m a t o n ReceiveMediator(Msg , Node: Type ,
i: Node , j:Node)

a s s u m e s Infinite(Handle)
s i g n a t u r e

o u t p u t RECEIVE(m:Msg , c o n s t i, c o n s t j)
o u t p u t Iprobe(c o n s t i, c o n s t j)
i n p u t resp_Iprobe(flag:Bool , c o n s t i,

c o n s t j)
o u t p u t receive(c o n s t i, c o n s t j)
i n p u t resp_receive(m: Msg , c o n s t i,

c o n s t j)
s t a t e s

status: rCall := idle ,
toRecv: Seq[Msg] := {},
ready: Bool := false

t r a n s i t i o n s
o u t p u t RECEIVE(m, i, j)

p r e m = head(toRecv)
e f f toRecv := tail(toRecv)

o u t p u t Iprobe(i, j)
p r e status = idle;

ready = false
e f f status := Iprobe

i n p u t resp_Iprobe(flag , i, j)
e f f ready := flag;

status := idle
o u t p u t receive(i, j)

p r e ready = true;
status = idle

e f f status := receive
i n p u t resp_receive(m, i, j)

e f f toRecv := toRecv
 m;
ready := false;
status := idle

B Schedule blocks

B.1 Composition automaton for LCR Leader Election

a u t o m a t o n LCRNode(rank: Int , size: Int)
c o m p o n e n t s

P: LCRProcess(rank , size);
RM[j:Int]: ReceiveMediator(Int , Int , j,

rank)
w h e r e j = mod(rank -1, size);

SM[j:Int]: SendMediator(Int , Int , rank , j)
w h e r e j = mod(rank+1, size)

B.2 Schedule block for LCR Leader Election

s c h e d u l e
s t a t e s

left : Int := mod((rank+size) -1,size),
right: Int := mod(rank+1,size)

d o
f i r e i n p u t vote;
w h i l e (true) d o

i f P.pending �= {} t h e n
f i r e o u t p u t SEND(

chooseRandom(P.pending),
rank , right)

f i ;
i f SM[right]. status = idle ∧

SM[right]. toSend �= {} t h e n
f i r e o u t p u t Isend(

head(SM[right]. toSend),rank ,right)
f i ;
i f SM[right]. status = idle ∧

SM[right]. handles �= {} t h e n
f i r e o u t p u t test(

head(SM[right]. handles),rank ,right)
f i ;

123

Automated implementation of complex distributed algorithms specified in the IOA language 167

i f RM[left]. status = idle ∧
¬RM[left].ready t h e n

f i r e o u t p u t Iprobe(rank , left) f i ;
i f RM[left]. status = idle ∧

RM[left].ready t h e n
f i r e o u t p u t receive(rank , left) f i ;

i f RM[left]. toRecv �= {} t h e n
f i r e o u t p u t RECEIVE(

head(RM[left]. toRecv), left , rank)
f i ;
i f P.status = elected t h e n

f i r e o u t p u t leader(rank)
f i

o d
o d

B.3 Schedule block for Spanning Tree formation

s c h e d u l e
s t a t e s

nb: Set[Int],
k: Int

d o
w h i l e (true) d o

nb := nbrs;
w h i l e (¬isEmpty(nb)) d o

k := chooseRandom(nb);
nb := delete(k, nb);
i f P.send[k] = search t h e n

f i r e o u t p u t SEND(search , rank , k)
f i ;
i f SM[k]. status = idle ∧

SM[k]. toSend �= {} t h e n
f i r e o u t p u t Isend(

head(SM[k]. toSend), rank , k)
f i ;
i f SM[k]. status = idle ∧

SM[k]. handles �= {} t h e n
f i r e o u t p u t test(

head(SM[k]. handles), rank , k)
f i ;
i f RM[k]. status = idle ∧

RM[k].ready = false t h e n
f i r e o u t p u t Iprobe(rank , k)

f i ;
i f RM[k]. status = idle ∧

RM[k].ready = true t h e n
f i r e o u t p u t receive(rank , k)

f i ;
i f RM[k]. toRecv �= {} t h e n

f i r e o u t p u t RECEIVE(
head(RM[k]. toRecv), rank , k)

f i ;
i f P.parent = k ∧ ¬P.reported t h e n

f i r e o u t p u t PARENT(k)
f i

o d
o d

o d

B.4 Schedule block for Broadcast/Convergecast

s c h e d u l e
s t a t e s

tempNbrs: Set[Int],
k: Int

d o
w h i l e (true) d o

tempNbrs := nbrs;
w h i l e (¬isEmpty(tempNbrs)) d o

k := chooseRandom(tempNbrs);
tempNbrs := delete(k, tempNbrs);
i f P.send[k] �= {} t h e n

f i r e o u t p u t SEND(

head(P.send[k]), rank , k) f i ;
i f SM[k]. status = idle ∧

SM[k]. toSend �= {} t h e n
f i r e o u t p u t Isend(

head(SM[k]. toSend), rank , k) f i ;
i f SM[k]. status = idle ∧

SM[k]. handles �= {} t h e n
f i r e o u t p u t test(

head(SM[k]. handles), rank , k) f i ;
i f RM[k]. status = idle ∧

¬RM[k].ready t h e n
f i r e o u t p u t Iprobe(rank , k) f i ;

i f RM[k]. status = idle ∧
RM[k].ready t h e n

f i r e o u t p u t receive(rank , k) f i ;
i f RM[k]. toRecv �= {} t h e n

f i r e o u t p u t RECEIVE(
head(RM[k]. toRecv), rank , k) f i

o d ;
i f rank = 0 ∧ P.acked = nbrs ∧

¬P.reported t h e n
f i r e i n t e r n a l report(rank) f i ;

i f rank �= 0 ∧ P.parent �= nil ∧
P.acked = nbrs - {P.parent.val} ∧
¬P.reported t h e n

f i r e i n t e r n a l report(rank) f i
o d

o d

B.5 Schedule block for Leader Election with
Broadcast/Convergecast

s c h e d u l e
s t a t e s

c: Int , % source
tempNbrs: Set[Int],
k: Int

d o
w h i l e (true) d o

c := size;
w h i l e (c > 0) d o

c := c - 1;
tempNbrs := nbrs;
w h i l e (¬isEmpty(tempNbrs)) d o

k := chooseRandom(tempNbrs);
tempNbrs := delete(k, tempNbrs);
i f P.send[c, k] �= {} t h e n

f i r e o u t p u t SEND(
head(P.send[c, k]), rank , k) f i ;

i f SM[k]. status = idle ∧
SM[k]. toSend �= {} t h e n

f i r e o u t p u t Isend(
head(SM[k]. toSend), rank , k) f i ;

i f SM[k]. status = idle ∧
SM[k]. handles �= {} t h e n

f i r e o u t p u t test(
head(SM[k]. handles), rank , k) f i ;

i f RM[k]. status = idle ∧
¬RM[k]. ready t h e n

f i r e o u t p u t Iprobe(rank , k) f i ;
i f RM[k]. status = idle ∧

RM[k]. ready t h e n
f i r e o u t p u t receive(rank , k) f i ;

i f RM[k]. toRecv �= {} t h e n
f i r e o u t p u t RECEIVE(
head(RM[k]. toRecv), rank , k) f i

o d ;
i f c �= rank ∧ P.parent[c] �= -1 ∧

P.acked[c] = nbrs - {P.parent[c]} ∧
¬P.reported[c] t h e n

f i r e i n t e r n a l report(rank , c) f i ;
i f c = rank ∧ P.acked[rank] = nbrs ∧

¬P.reported[rank] t h e n
f i r e i n t e r n a l finished f i ;

i f P.elected ∧ ¬P.announced t h e n
f i r e o u t p u t LEADER

f i

123

168 C. Georgiou et al.

o d
o d

o d

B.6 Schedule block for Spanning Tree to Leader Election

s c h e d u l e
s t a t e s

tempNbrs: Set[Int],
k: Int

d o
w h i l e (true) d o

tempNbrs := nbrs;
w h i l e (¬isEmpty(tempNbrs)) d o

k := chooseRandom(tempNbrs);
tempNbrs := delete(k, tempNbrs);
i f P.send[k] �= {} t h e n

f i r e o u t p u t SEND(
head(P.send[k]), rank , k) f i ;

i f SM[k]. status = idle ∧
SM[k]. toSend �= {} t h e n

f i r e o u t p u t Isend(
head(SM[k]. toSend), rank , k) f i ;

i f SM[k]. status = idle ∧
SM[k]. handles �= {} t h e n

f i r e o u t p u t test(
head(SM[k]. handles), rank , k) f i ;

i f RM[k]. status = idle ∧
¬RM[k].ready t h e n

f i r e o u t p u t Iprobe(rank , k) f i ;
i f RM[k]. status = idle ∧

RM[k].ready t h e n
f i r e o u t p u t receive(rank , k) f i ;

i f RM[k]. toRecv �= {} t h e n
f i r e o u t p u t RECEIVE(

head(RM[k]. toRecv), rank , k) f i
o d ;
i f P.status = elected t h e n

f i r e o u t p u t leader
f i

o d
o d

C GHS IOA Code

C.1 GHS algorithm automaton

t y p e Nstatus = e n u m e r a t i o n o f sleeping , find , found
t y p e Edge = t u p l e o f s: Int , t: Int
t y p e Link = t u p l e o f s: Int , t: Int
t y p e Lstatus = e n u m e r a t i o n o f unknown , branch ,

rejected
t y p e Msg = e n u m e r a t i o n o f CONNECT , INITIATE , TEST ,

REPORT , ACCEPT , REJECT ,
CHANGEROOT

t y p e ConnMsg = t u p l e o f msg: Msg , l: Int
t y p e Status = e n u m e r a t i o n o f find , found
t y p e InitMsg = t u p l e o f msg: Msg , l: Int ,

c: Null[Edge], st: Status
t y p e TestMsg = t u p l e o f msg: Msg , l: Int ,

c: Null[Edge]
t y p e ReportMsg = t u p l e o f msg: Msg , w: Int
t y p e Message = u n i o n o f connMsg: ConnMsg ,

initMsg: InitMsg ,
testMsg: TestMsg ,
reportMsg: ReportMsg ,
msg: Msg

%%
% automaton GHSProcess: Process of GHS Algorithm
% for min. spanning tree
% rank: The UID of the automaton
% size: The number of nodes in the network
% links: Set of Links with source = rank (L_p(G))
% weight: Maps the Links ∈ links to their weight
%%
a u t o m a t o n GHSProcess(rank: Int , size: Int ,

links: Set[Link],
weight: Map[Link , Int])

s i g n a t u r e

i n p u t startP
i n p u t RECEIVE(m: Message , c o n s t rank , i: Int)
o u t p u t InTree(l:Link)
o u t p u t NotInTree(l: Link)
o u t p u t SEND(m: Message , c o n s t rank , j: Int)
i n t e r n a l ReceiveConnect(qp: Link , l:Int)
i n t e r n a l ReceiveInitiate (qp: Link , l:Int ,

c: Null[Edge], st: Status)
i n t e r n a l ReceiveTest(qp: Link , l:Int ,

c: Null[Edge])
i n t e r n a l ReceiveAccept(qp: Link)
i n t e r n a l ReceiveReject(qp: Link)
i n t e r n a l ReceiveReport(qp: Link , w: Int)
i n t e r n a l ReceiveChangeRoot(qp: Link)

s t a t e s
nstatus: Nstatus ,
nfrag: Null[Edge],
nlevel: Int ,
bestlink: Null[Link],
bestwt: Int ,
testlink: Null[Link],
inbranch: Link ,
findcount: Int ,
lstatus: Map[Link , Lstatus],
queueOut: Map[Link , Seq[Message]],
queueIn: Map[Link , Seq[Message]],
answered: Map[Link , Bool]

i n i t i a l l y
nstatus = sleeping
∧ nfrag = nil
∧ nlevel = 0
∧ bestlink.val ∈ links
∧ bestwt = weight[bestlink.val]
∧ testlink = nil
∧ inbranch = bestlink.val
∧ findcount = 0
∧ ∀ l: Link

(l ∈ links ⇒
lstatus[l] = unknown
∧ answered[l] = false
∧ queueOut[l] = {}
∧ queueIn[l] = {})

t r a n s i t i o n s
i n p u t startP(l o c a l minL: Null[Link], min: Int)

e f f i f nstatus = sleeping t h e n
%WakeUp
minL := c h o o s e l w h e r e l.val ∈ links;
min := weight[minL.val];
f o r tempL:Link i n links d o

i f weight[tempL] < min t h e n
minL := embed(tempL);
min := weight[tempL] f i ;

o d ;
lstatus[minL.val] := branch;
nstatus := found;
queueOut[minL.val] := queueOut[minL.val]

 connMsg ([CONNECT , 0]); f i
i n p u t RECEIVE(m: Message , i:Int , j:Int)

e f f queueIn [[i,j]] := queueIn [[i,j]]
 m
o u t p u t InTree(l: Link)

p r e answered[l] = false ∧ lstatus[l] = branch
e f f answered[l] := true

o u t p u t NotInTree(l: Link)
p r e answered[l] = false ∧ lstatus[l] = rejected
e f f answered[l] := true

o u t p u t SEND(m: Message , i: Int , j: Int)
p r e m = head(queueOut [[i,j]])
e f f queueOut [[i,j]] := tail(queueOut [[i,j]])

i n t e r n a l ReceiveConnect(qp: Link , l: Int;
l o c a l minL: Null[Link], min: Int)

p r e head(queueIn[qp]) = connMsg ([CONNECT , l])
e f f queueIn[qp] := tail(queueIn[qp]);

i f nstatus = sleeping t h e n
%WakeUp
minL := c h o o s e l w h e r e l.val ∈ links;
min := weight[minL.val];
f o r tempL:Link i n links d o

i f weight[tempL] < min t h e n
minL := embed(tempL);
min := weight[tempL] f i

o d ;
lstatus[minL.val] := branch;
nstatus := found;
queueOut[minL.val] := queueOut[minL.val]

 connMsg ([CONNECT , 0]); f i
i f l < nlevel t h e n
lstatus [[qp.t,qp.s]] := branch;
i f testlink �= nil t h e n
queueOut [[qp.t,qp.s]] :=
queueOut [[qp.t,qp.s]]

initMsg ([INITIATE ,nlevel , nfrag , find]);
findcount := findcount + 1

e l s e queueOut [[qp.t,qp.s]] := queueOut [[qp.t,qp.s]]

initMsg ([INITIATE ,nlevel , nfrag , found]) f i ;

e l s e i f lstatus [[qp.t,qp.s]] = unknown t h e n
queueIn[qp] := queueIn[qp]
 connMsg ([CONNECT , l]

e l s e queueOut [[qp.t,qp.s]] := queueOut [[qp.t,qp.s]]

initMsg ([INITIATE , nlevel+1,

embed ([qp.t, qp.s]), find]) f i f i
i n t e r n a l ReceiveInitiate (qp: Link , l:Int , c: Null[Edge], st:

Status;
l o c a l minL: Null[Link], min: Int , S : Set[Link])

p r e head(queueIn[qp])=initMsg ([INITIATE ,l,c,st])
e f f queueIn[qp] := tail(queueIn[qp]);

nlevel := l;
nfrag := c;
i f st = find t h e n nstatus := find
e l s e nstatus := found f i ;

123

Automated implementation of complex distributed algorithms specified in the IOA language 169

%Let S = {[p,q]: lstatus [[p,r]]=branch ,r�=q}
S := {};
f o r pr: Link i n links d o

i f pr.t �= qp.s ∧ lstatus[pr] = branch t h e n
S := S ∪ {pr}

f i
o d ;
f o r k: Link i n S d o
queueOut[k] := queueOut[k]

initMsg ([INITIATE , l, c, st])

o d ;
i f st = find t h e n
inbranch := [qp.t, qp.s];
bestlink := nil;
bestwt := 10000000; % Infinity
%Test
minL := nil; min := 10000000; % Infinity
f o r tempL:Link i n links d o

i f weight[tempL] < min ∧
lstatus[tempL] = unknown t h e n
minL := embed(tempL);

min := weight[tempL] f i ;
o d ;
i f minL �= nil t h e n
testlink := minL;
queueOut[minL.val] := queueOut[minL.val]

 testMsg ([TEST , nlevel , nfrag]);
e l s e testlink := nil;

i f findcount = 0 ∧ testlink = nil t h e n
nstatus := found;
queueOut[inbranch] :=

queueOut[inbranch]

reportMsg ([REPORT , bestwt]) f i f i ;

%EndTest
findcount := size(S) f i

i n t e r n a l ReceiveTest(qp: Link , l: Int , c: Null[Edge];
l o c a l minL: Null[Link], min: Int)

p r e head(queueIn[qp]) = testMsg ([TEST , l, c])
e f f queueIn[qp] := tail(queueIn[qp]);

i f nstatus = sleeping t h e n
%WakeUp
minL := c h o o s e l w h e r e l.val ∈ links;
min := weight[minL.val];
f o r tempL:Link i n links d o

i f weight[tempL] < min t h e n
minL := embed(tempL); min:= weight[tempL] f i ;

o d ;
lstatus[minL.val] := branch;
nstatus := found;
queueOut[minL.val] := queueOut[minL.val]

 connMsg ([CONNECT , 0]); f i ;
i f l > nlevel t h e n
queueIn[qp] := queueIn[qp]
 testMsg ([TEST , l, c]);

e l s e i f c �= nfrag t h e n
queueOut [[qp.t, qp.s]] :=

queueOut [[qp.t, qp.s]]
 msg(ACCEPT)
e l s e i f lstatus [[qp.t, qp.s]] = unknown t h e n

lstatus [[qp.t, qp.s]] := rejected f i ;
i f testlink �= embed ([qp.t, qp.s]) t h e n
queueOut [[qp.t, qp.s]] :=

queueOut [[qp.t, qp.s]]
 msg(REJECT)
e l s e %Test
minL := nil;
min := 10000000; % Infinity
f o r tempL:Link i n links d o

i f weight[tempL] < min ∧ lstatus[tempL] = unknown t h e n
minL := embed(tempL);
min := weight[tempL] f i ;

o d ;
i f minL �= nil t h e n
testlink := minL;
queueOut[minL.val] := queueOut[minL.val]

 testMsg ([TEST , nlevel , nfrag]);
e l s e testlink := nil;

i f findcount = 0 ∧ testlink = nil t h e n
nstatus := found;
queueOut[inbranch] := queueOut[inbranch]

 reportMsg ([REPORT , bestwt])
f i f i ; f i ; f i ; f i ;

i n t e r n a l ReceiveAccept(qp: Link)
p r e head(queueIn[qp]) = msg(ACCEPT)
e f f queueIn[qp] := tail(queueIn[qp]);

testlink := nil;
i f weight [[qp.t, qp.s]] < bestwt t h e n
bestlink := embed ([qp.t, qp.s]);
bestwt := weight [[qp.t, qp.s]]; f i ;

i f findcount = 0 ∧ testlink = nil t h e n
nstatus := found;
queueOut[inbranch] := queueOut[inbranch]

 reportMsg ([REPORT , bestwt]) f i
i n t e r n a l ReceiveReject(qp: Link;

l o c a l minL: Null[Link], min: Int)
p r e head(queueIn[qp]) = msg(REJECT)
e f f queueIn[qp] := tail(queueIn[qp]);

i f lstatus [[qp.t, qp.s]] = unknown t h e n
lstatus [[qp.t, qp.s]] := rejected f i ;

%Test
minL := nil; min := 10000000; % Infinity
f o r tempL:Link i n links d o

i f weight[tempL] < min ∧
lstatus[tempL] = unknown t h e n
minL := embed(tempL); min:= weight[tempL] f i ;

o d ;
i f minL �= nil t h e n
testlink := minL;
queueOut[minL.val] := queueOut[minL.val]

 testMsg ([TEST , nlevel , nfrag]);
e l s e testlink := nil;

i f findcount = 0 ∧ testlink = nil t h e n

nstatus := found;
queueOut[inbranch] := queueOut[inbranch]

reportMsg ([REPORT , bestwt]) f i f i
i n t e r n a l ReceiveReport(qp: Link , w: Int)

p r e head(queueIn[qp]) = reportMsg ([REPORT , w])
e f f queueIn[qp] := tail(queueIn[qp]);

i f [qp.t, qp.s] �= inbranch t h e n
findcount := findcount -1;
i f w < bestwt t h e n

bestwt := w;
bestlink := embed ([qp.t, qp.s]) f i ;

i f findcount = 0 ∧ testlink = nil t h e n
nstatus := found;
queueOut[inbranch] := queueOut[inbranch]

 reportMsg ([REPORT , bestwt]) f i
e l s e i f nstatus = find t h e n

queueIn[qp] := queueIn[qp]
 reportMsg ([REPORT , w])
e l s e i f w > bestwt t h e n %ChangeRoot

i f lstatus[bestlink.val] = branch t h e n
queueOut[bestlink.val] := queueOut[bestlink.val]

msg(CHANGEROOT)
e l s e queueOut[bestlink.val] := queueOut[bestlink.val]

connMsg ([CONNECT , nlevel]) ;
lstatus[bestlink.val] := branch f i f i f i

i n t e r n a l ReceiveChangeRoot(qp: Link)
p r e head(queueIn[qp]) = msg(CHANGEROOT)
e f f queueIn[qp] := tail(queueIn[qp]);

%ChangeRoot
i f lstatus[bestlink.val] = branch t h e n
queueOut[bestlink.val] := queueOut[bestlink.val]

msg(CHANGEROOT)
e l s e queueOut[bestlink.val] := queueOut[bestlink.val]

connMsg ([CONNECT , nlevel]) ;
lstatus[bestlink.val] := branch f i

C.2 Schedule and initialization block for GHS

s t a t e s
...
d e t d o

P.nstatus := sleeping;
P.nfrag := nil;
P.nlevel := 0;
P.bestlink := embed(chooseRandom(links));
P.bestwt := weight[chooseRandom(links)];
P.testlink := nil;
P.inbranch := chooseRandom(links);
P.findcount := 0;
tempLinks := links;
w h i l e (¬isEmpty(tempLinks)) d o

tempL := chooseRandom(tempLinks);
tempLinks := delete(tempL , tempLinks);
P.lstatus[tempL] := unknown;
P.answered[tempL] := false;
P.queueOut[tempL] := {};
P.queueIn [[tempL.t, tempL.s]] := {};
RM[tempL.t] := [idle , {}, false];
SM[tempL.t] := [idle , {}, {}, {}]

o d
o d

...
s c h e d u l e
s t a t e s

lnks: Set[Link],
lnk : Link

d o
f i r e i n p u t startP;
w h i l e (true) d o

lnks := links;
w h i l e (¬isEmpty(lnks)) d o

lnk := chooseRandom(lnks);
lnks := delete(lnk , lnks);
i f P.queueOut[lnk] �= {} t h e n

f i r e i n t e r n a l SEND(head(P.queueOut[lnk]),
rank , lnk.t) f i ;

i f SM[lnk.t]. status = idle ∧
SM[lnk.t]. toSend �= {} t h e n

f i r e o u t p u t Isend(head(SM[lnk.t]. toSend),
rank , lnk.t) f i ;

i f SM[lnk.t]. status = idle ∧
SM[lnk.t]. handles �= {} t h e n

f i r e o u t p u t test(head(SM[lnk.t]. handles),
rank , lnk.t) f i ;

i f RM[lnk.t]. status = idle ∧
RM[lnk.t]. ready = false t h e n

f i r e o u t p u t Iprobe(rank , lnk.t) f i ;
i f RM[lnk.t]. status = idle ∧

RM[lnk.t]. ready = true t h e n
f i r e o u t p u t receive(rank , lnk.t) f i ;

i f RM[lnk.t]. toRecv �= {} t h e n
f i r e i n t e r n a l RECEIVE(

head(RM[lnk.t]. toRecv),
rank , lnk.t) f i ;

i f P.queueIn [[lnk.t, lnk.s]] �= {} ∧
tag(head(P.queueIn [[lnk.t, lnk.s]])) =

connMsg t h e n
f i r e i n t e r n a l ReceiveConnect(

[lnk.t, lnk.s],
(head(P.queueIn [[lnk.t, lnk.s]])).

connMsg.l) f i ;
i f P.queueIn [[lnk.t, lnk.s]] �= {} ∧

tag(head(P.queueIn [[lnk.t, lnk.s]])) =
initMsg t h e n

123

170 C. Georgiou et al.

f i r e i n t e r n a l ReceiveInitiate (
[lnk.t, lnk.s],
(head(P.queueIn [[lnk.t, lnk.s]])).

initMsg.l,
(head(P.queueIn [[lnk.t, lnk.s]])).

initMsg.c,
(head(P.queueIn [[lnk.t, lnk.s]])).

initMsg.st) f i ;
i f P.queueIn [[lnk.t, lnk.s]] �= {} ∧

tag(head(P.queueIn [[lnk.t, lnk.s]])) =
testMsg t h e n

f i r e i n t e r n a l ReceiveTest ([lnk.t, lnk.s],
(head(P.queueIn [[lnk.t, lnk.s]])).

testMsg.l,
(head(P.queueIn [[lnk.t, lnk.s]])).

testMsg.c) f i ;
i f P.queueIn [[lnk.t, lnk.s]] �= {} ∧

head(P.queueIn [[lnk.t, lnk.s]]) = msg(ACCEPT) t h e n
f i r e i n t e r n a l ReceiveAccept ([lnk.t, lnk.s]) f i ;

i f P.queueIn [[lnk.t, lnk.s]] �= {} ∧
head(P.queueIn [[lnk.t, lnk.s]]) = msg(REJECT) t h e n

f i r e i n t e r n a l ReceiveReject ([lnk.t, lnk.s]) f i ;
i f P.queueIn [[lnk.t, lnk.s]] �= {} ∧

tag(head(P.queueIn [[lnk.t, lnk.s]])) = reportMsg
t h e n f i r e i n t e r n a l ReceiveReport ([lnk.t, lnk.s],
(head(P.queueIn [[lnk.t, lnk.s]])). reportMsg.w)

f i ;
i f P.queueIn [[lnk.t, lnk.s]] �= {} ∧

head(P.queueIn [[lnk.t, lnk.s]]) = msg(CHANGEROOT)
t h e n f i r e i n t e r n a l ReceiveChangeRoot(

[lnk.t, lnk.s]) f i ;
i f P.answered[lnk] = false ∧ P.lstatus[lnk] = branch

t h e n f i r e o u t p u t InTree(lnk) f i ;
i f P.answered[lnk] = false ∧ P.lstatus[lnk] = rejected

t h e n f i r e o u t p u t NotInTree(lnk) f i
o d

o d
o d

References

1. Georgiou, C., Lynch, N., Mavrommatis, P., Tauber, J.A.:
Automated implementation of complex distributed algorithms
specified in the IOA language. In: Proceedings of 18th Interna-
tional Conference on Parallel and Distributed Computing Systems
(PDCS 2005), pp. 128–134 (2005)

2. Garland, S., Lynch, N., Tauber, J., Vaziri, M.: IOA user guide and
reference manual. Technical Report MIT/LCS/TR-961, Labora-
tory for Computer Science, Massachusetts Institute of Technol-
ogy, Cambridge, MA, July 2004. http://theory.lcs.mit.edu/tds/ioa/
manual.ps.

3. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for dis-
tributed algorithms. In: Proceedings of the Sixth Annual ACM
Symposium on Principles of Distributed Computing, pp. 137–151,
Vancouver, British Columbia, Canada (1987)

4. Lynch N.A., Tuttle, M.R.: An introduction to input/output auto-
mata. CWI-Quarterly. 2(3), 219–246, September 1989. Centrum
voor Wiskunde en Informatica, Amsterdam, The Netherlands.
Technical Memo MIT/LCS/TM-373, Laboratory for Computer
Science, Massachusetts Institute of Technology, Cambridge, MA,
November 1988

5. Chefter, A.E.: A simulator for the IOA language. Master’s the-
sis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA (1998)

6. Dean, L.G.: Improved simulation of Input/Output automata. Mas-
ter’s thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA
(2001)

7. Kırlı Kaynar, D., Chefter, A., Dean, L., Garland, S., Lynch, N.,
Ne Win, T., Ramırez-Robredo, A.: The IOA simulator. Technical
Report MIT-LCS-TR-843, MIT Laboratory for Computer Science,
Cambridge, MA, July 2002

8. Antonio Ramırez-Robredo, J.: Paired simulation of I/O automata.
Master’s thesis, Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology, Cambridge,
MA (2000)

9. Solovey, E.: Simulation of composite I/O automata. Master’s the-
sis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA (2003)

10. Tsai, M.J.: Code generation for the IOA language. Master’s the-
sis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA (2002)

11. Ne Win, T.: Theorem-proving distributed algorithms with dynamic
analysis. Master’s thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology,
Cambridge, MA (2003)

12. Bogdanov, A.: Formal verification of simulations between I/O auto-
mata. Master’s thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Cam-
bridge, MA (2001)

13. Garland, S.J., Lynch, N.A.: The IOA language and toolset: support
for designing, analyzing, and building distributed systems. Techni-
cal Report MIT/LCS/TR-762, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, MA, August
1998. http://theory.lcs.mit.edu/tds/papers/Lynch/IOA-TR-762.ps

14. Tauber, J.A.: Verifiable Compilation of I/O Automata without
Global Synchronization. PhD thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA (2004)

15. Tauber, J.A., Lynch, N.A., Tsai, M.J.: Compiling IOA without
global synchronization. In: Proceedings of the 3rd IEEE Interna-
tional Symposium on Network Computing and Applications (IEEE
NCA04), pp. 121–130. Cambridge, MA (2004)

16. Chang, E., Roberts, R.: An improved algorithm for decentralized
extrema-finding in circular configurations of processes. Commun.
ACM 22(5), 281–283 (1979)

17. Chang, E.J.H.: Echo algorithms: depth parallel operations on gen-
eral graphs. IEEE Trans. Softw. Eng. SE-8(4), 391–401 (1982)

18. Le Lann, G.: Distributed systems—towards a formal approach. In:
Gilchrist, B. (ed.) Information Processing 77 (Toronto, August
1977). Proceedings of IFIP Congress, vol. 7, pp. 155–160.
North-Holland Publishing Co., Amsterdam (1977)

19. Segall, A.: Distributed network protocols. IEEE Trans. Inf. Theory
IT-29(1), 23–35 (1983)

20. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers
Inc., San Mateo, CA (1996)

21. Humblet, P.A., Gallager, R.G., Spira, P.M.: A distributed algorithm
for minimum-weight spanning trees. In: ACM Transactions on Pro-
gramming Languages and Systems, vol. 5(1), pp. 66–77 (1983)

22. Lampoft, L., Welch, J., Lynch, N.: A lattice-structured proof of a
minimum spanning tree algorithm. In: Proceedings of 7th ACM
Symposium on Principles of Distributed Computing, pp. 28–43
(1988)

23. Message Passing Interface Forum. MPI: A message-passing inter-
face standard. Int. J. Supercomput. Appl. 8(3–4), 1994

24. Goldman, K.J.: Highly concurrent logically synchronous multi-
cast. Distrib. Comput. 6(4), 189–207 (1991)

25. Goldman, K.J., Swaminathan, B., Paul McCartney, T., Anderson,
M.D., Sethuraman, R.: The Programmers’ Playground: I/O abstrac-
tion for user-configurable distributed applications. IEEE Trans.
Softw. Eng. 21(9), 735–746 (1995)

26. Cheiner, O., Shvartsman, A.: Implementing an eventually-serializ-
able data service as a distributed system building block. In: Mav-
ronicolas, M., Merritt, M., Shavit, N. (eds.) Networks in Distributed
Computing. DIMACS Series in Discrete Mathematics and Theoret-
ical Computer Science, vol. 45, pp. 43–72. American Mathematical
Society, Providence, RI (1999)

27. Fekete, A., Gupta, D., Luchangco, V., Lynch, N., Shvartsman, A.:
Eventually-serializable data services. In: Proceedings of the Fif-
teenth Annual ACM Symposium on Principles of Distributed Com-
puting, pp. 300–309, Philadelphia, PA (1996)

28. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-
Hall International, UK (1985)

29. INMOS Ltd: occam Programming Manual (1984)
30. Milner, R.: Communication and Concurrency. Prentice-Hall Inter-

national, UK (1989)

123

http://theory.lcs.mit.edu/tds/ioa/manual.ps
http://theory.lcs.mit.edu/tds/ioa/manual.ps
http://theory.lcs.mit.edu/tds/papers/Lynch/IOA-TR-762.ps

Automated implementation of complex distributed algorithms specified in the IOA language 171

31. Vaandrager, F.W.: On the relationship between process algebra and
input/output automata. In: Proceedings of the 6th Annual Sympo-
sium on Logic in Computer Science (LICS 1991), pp. 387–398
(1991)

32. Gelastou, M., Georgiou, C., Philippou, A.: On the application of
formal methods for specifying and verifying distributed proto-
cols. In: Proceedings of the 7th IEEE International Symposium on
Network Computing and Applications (NCA 2008), pp. 195–204
(2008)

33. Cleaveland, R., Parrow, J., Steffen, B.U.: The concurrency work-
bench: a semantics-based tool for the verification of concurrent
systems. ACM TOPLAS 15(1), 1993 (1993)

34. Cleaveland, R., Gada, J.N., Lewis, P.M., Smolka, S.A.,
Sokolsky, O., Zhang, S.: The Concurrency Factory—practical tools
for specification, simulation, verification and implementation of
concurrent systems. In: Specification of Parallel Algorithms. DI-
MACS Workshop, pp. 75–89. American Mathematical Society,
Providence, RI (1994)

35. Baker, M., Carpenter, B., Ko, S.H., Li, X.: mpiJava: A Java inter-
face to MPI. First UK Workshop on Java for High Performance
Network Computing, Europar (1998, presented)

36. Tauber, J.A., Garland, S.J.: Definition and expansion of compos-
ite automata in IOA. Technical Report MIT/LCS/TR-959, Labora-
tory for Computer Science, Massachusetts Institute of Technology,
Cambridge, MA, July 2004. http://theory.lcs.mit.edu/tds/papers/
Tauber/MIT-LCS-TR-959.pdf

37. Georgiou, C., Musial, P.M., Shvartsman, A.A., Sonderegger, E.L.:
An abstract channel specification and an algorithm implementing
it using java sockets. In: Proceedings of the 7th IEEE International
Symposium on Network Computing and Applications (NCA 2008),
pp. 211–219 (2008)

38. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of
Timed I/O Automata. Morgan & Claypool Publishers, San Fran-
cisco (2006)

39. Lynch, N., Michel, L., Shvartsman, A.: Tempo: A toolkit for the
timed input/output automata formalism. In: Proceedings of the 1st
International Conference on Simulation Tools and Techniques for
Communications, Networks, and Systems (SIMUTools 2008)—
Industrial Track: Simulation Works (2008)

123

http://theory.lcs.mit.edu/tds/papers/Tauber/MIT-LCS-TR-959.pdf
http://theory.lcs.mit.edu/tds/papers/Tauber/MIT-LCS-TR-959.pdf

	Automated implementation of complex distributed algorithms specified in the IOA language
	Abstract
	1 Introduction
	2 Challenges in realizing the IOA compiler
	2.1 Program structuring
	2.2 IOA Programs and external services
	2.3 Modeling procedure calls
	2.4 Composing automata
	2.5 Nondeterminism
	2.6 Implementing datatypes

	3 Background
	3.1 Input/Output automata
	3.2 IOA language
	3.3 Related work

	4 Compiling and running IOA
	4.1 Imperative IOA syntax
	4.2 Node-channel form
	4.3 Composition
	4.4 Input-delay insensitivity
	4.5 Resolving non-determinism
	4.6 Runtime preparation

	5 Implementing LCR leader election
	6 Implementing spanning treeand broadcast/convergecast
	6.1 Asynchronous spanning tree
	6.2 Asynchronous broadcast/convergecast

	7 Implementing general leader election algorithms
	7.1 Leader election using broadcast/convergecast
	7.2 Unrooted spanning tree to leader election

	8 Implementing the GHS algorithm
	9 Performance
	9.1 Performance of simple algorithm implementations
	9.2 Performance of GHS Implementation
	9.3 Observations

	10 Conclusions
	Acknowledgments
	A Mediator automata
	B Schedule blocks
	B.1 Composition automaton for LCR Leader Election
	B.2 Schedule block for LCR Leader Election
	B.3 Schedule block for Spanning Tree formation
	B.4 Schedule block for Broadcast/Convergecast
	B.5 Schedule block for Leader Election with Broadcast/Convergecast
	B.6 Schedule block for Spanning Tree to Leader Election

	C GHS IOA Code
	C.1 GHS algorithm automaton
	C.2 Schedule and initialization block for GHS

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

