Centrum voor Wiskunde en Informatica

REPORTRAPPORT

SIEIN]

Software Engineering

Software ENgineering

SEN Solving scheduling problems by untimed model checking

A.J. Wijs, J.C. van de Pol, E. Bortnik

ReporT SEN-RO608 MaY 2006

Centrum voor Wiskunde en Informatica (CWI) is the national research institute for Mathematics and
Computer Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-orienfed structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA|
Software Engineering (SEN)

Modelling, Analysis and Simulation [MAS]

Information Systems (INS)

Copyright © 20006, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 S Amsterdam (NL)

Telephone +31 20 592 9333

Telefax +31 20 592 4199

ISSN 1386-369X

Solving scheduling problems by untimed model
checking

ABSTRACT

In this paper, we show how scheduling problems can be modelled in untimed process algebra,
by using special tick actions. A minimal-time trace leading to a particular action, is one that
minimizes the number of tick steps. As a result, we can use any (timed or untimed) model
checking tool to find shortest schedules. Instantiating this scheme to uCRL, we profit from a
richer specification language than timed model checkers usually offer. Also, we can profit from
efficient distributed state space generators. We propose a variant of breadth-first search that
visits all states between consecutive tick steps, before moving to the next time slice. We
experimented with a sequential and a distributed implementation of this algorithm. We also
experimented with beam search, which visits only parts of the search space, to find near-
optimal solutions. Our approach is applied to find optimal schedules for test batches of a
realistic clinical chemical analyser, which performs several kinds of tests on patient samples.

1998 ACM Computing Classification System: D.2.4 [Formal methods, Model checking], F.2.2 [Sequencing and
scheduling]

Keywords and Phrases: Process algebra;scheduling;search algorithms;untimed model checking

Note: This work was carried out under the project SEN2 - TIPSy

Solving Scheduling Problems by Untimed Model Checking
The Clinical Chemical Analyser Case Study

Anton Wijs!, Jaco van de Pol', Elena Bortnik?
lc WI, Department of Software Engineering, P.O. Box 94079, 1090 GB Amsterdam
2 Eindhoven University of Technology, Department of Mechanical Engineering, P.O. Box 513, 5600 MB Eindhoven

ABSTRACT

In this paper, we show how scheduling problems can be modelled in untimed process algebra, by using special
tick actions. A minimal-time trace leading to a particular action, is one that minimizes the number of ticK steps.
As a result, we can use any (timed or untimed) model checking tool to find shortest schedules. Instantiating this
scheme to UCRL, we profit from a richer specification language than timed model checkers usually offer. Also,
we can profit from efficient distributed state space generators. We propose a variant of breadth-first search that
visits all states between consecutive tick steps, before moving to the next time slice. We experimented with a
sequential and a distributed implementation of this algorithm. We also experimented with beam search, which
visits only parts of the search space, to find near-optimal solutions. Our approach is applied to find optimal
schedules for test batches of a realistic clinical chemical analyser, which performs several kinds of tests on
patient samples.

1998 ACM Computing Classification System: D.2.4 [Formal methods, Model checking], F.2.2 [Sequencing and
scheduling]

Keywords and Phrases: Process algebra, scheduling, search algorithms, untimed model checking.

Note: This work was carried out under the project SEN2 - TIPSy.

1. INTRODUCTION

The Clinical Chemical Analyser (CCA) is used to automatically analyse patient samples (blood, plasma or
urine). TNO Industry, in cooperation with the Eindhoven University of Technology (TU/e), has been involved
in the redesign of the CCA. The project charter was originally drawn up by Vital Scientific, a customer of TNO,
to examine the possibility of a 100% throughput increase.

At TU/e several projects have been devoted to the CCA. First, the basic outline for the hardware was ex-
plored [32] while, in a parallel project, the scheduler was developed [29]. Then, the hardware for a CCA
mock-up was designed [16]. Currently, a new scheduler is being designed [33]. The fact that a schedule pro-
viding optimal performance of the CCA still has not been found raised the idea to look at this problem using a
modelling language.

Quite some research has been done in the field of timed automata to solve scheduling problems, translated
to reachability problems (problems where the goal is to arrive at a certain transition or location). In a paper by
Niebert, et al. [22], the problem of minimum-time reachability (i.e. arriving at a certain transition or location
in the smallest amount of time possible) for timed automata is considered. It is shown that this problem can be
solved by examining acyclic paths in a forward reachability graph generated on-the-fly from a timed automaton.
Three algorithms are proposed to find a minimal-time path, all of which have a worst-case complexity which
is worse than polynomial in the size of the simulation graph. (This result cannot be fairly compared to our
algorithms presented in this paper, which are linear in the size of the state space, because their simulation
graphs are symbolic in the representation of clock regions). In several papers by Behrmann, et al. [2, 3],
linearly priced timed automata are introduced as an extension of timed automata with prices on both transitions
and locations. Next they consider the minimum-cost reachability problem. An algorithmic solution is offered,
based on a combination of branch-and-bound techniques, which can be used for limiting the search space and

for quickly finding near-optimal solutions, and a new notion of priced regions. It is shown that using these
techniques reduced the explored state space by 90% when compared to a straight-forward breadth-first search.

Timed model checkers like UPPAAL [17], a tool using timed automata to model systems, prove to be well
suited for handling scheduling problems. We considered, though, the possibility to solve scheduling problems
in a simpler, untimed setting. In other words, work with less theory and more brute force. In [27], the model
checker SPIN is used for modelling and solving scheduling problems. The depth-first search algorithm of SPIN
is enhanced with a branch-and-bound mechanism. The idea is that the LTL formula to be checked is modified
during verification, to reflect the best solution found so far. The algorithm is implemented by linking C-code
to the Promela model and therefore very specific to the architecture of the SPIN tool.

We wanted a more general approach. With this in mind, we decided to use an untimed setting, and adding a
notion of time to it using tick actions, as described in [8, 30]. With this approach, we were able to reuse existing
tools for untimed process algebra. For instance, the modelling language 4CRL [15] has a powerful toolset [7],
which seemed very usable for our approach. One can work with complex data structures, which was required
for the CCA system. Besides that, recently the uCRL toolset was expanded with a distributed state space
generator [5] and a distributed state space reduction tool [6], allowing very large state spaces to be generated
within reasonable time. Not a lot of work has been done yet with gCRL in the field of scheduling, so our goal
was to develop a general scheduling methodology for uCRL. In this paper we present this methodology.

The paper is set up as follows: First we give an introduction to the CCA. Then we provide a short introduc-
tion to uCRL, followed by a description how to deal with scheduling problems in general using uCRL, and
two methods to find a minimal-time trace in a state space. Next, we discuss beam search, which is a method to
focus the search on promising parts of the state space, and to prune other parts. Then we give a small example
of a scheduling problem and the uCRL model to solve it. After that we discuss the CCA models we used for the
CCA case study, followed by the results obtained by applying the sequential and distributed implementation of
our (modified) breadth-first search on these models. We conducted more experiments, applying the implemen-
tations of some (modified) beam search variants on the CCA models. Finally, we compare the experimental
results and draw conclusions.

To the preliminary version, which appeared in [35], we have now added experiments with a new distributed
implementation of the proposed on-the-fly search algorithm. Also, we report on our recent findings to use
several variants of beam search, for quickly finding near-optimal solutions.

Comparing the results obtained using these different techniques is done in more detail, for instance we have
now included information on the time it took to find solutions, when using sequential state space generation.

2. THE CHEMICAL ANALYSER

What follows is a description of the scaled-down CCA as we used it for the research described in this paper.
Note that this is based on the design as given to us by mechanical engineers. Improving the design is regarded
outside the scope of this paper.

Figure 1 shows the setup of the CCA,; There is a cuvette rotor containing 11 cuvettes, which are indexed
from 0 to 10 counter-clockwise (this in contrast with both the CCA mock-up, which has 45 cuvettes, and the
real CCA, which has 120 cuvettes). There are three cranks, which are able to perform actions on these cuvettes:
The reagent crank can add a reagent from the reagent rotor to a cuvette, the sample crank can add a patient
sample from the sample rotor to a cuvette, and the emptying crank can empty a cuvette. Besides that there is a
mixing crank, but it is unimportant for the scheduling problem, which will become clear later on.

The use of the machine is to process test recipes. Each available patient sample should be processed accord-
ing to one of three possible test recipes.

In Table 1 the three recipes are depicted. In recipe 1 first a reagent (R1) and later a sample (S) is added to
a cuvette. After that the cuvette is emptied (E). Recipe 2 is an extension of recipe 1 in the sense that after
having added a sample to the cuvette a second reagent (R2) must be added. Finally, recipe 3 requires even a
third reagent (R3) to be added to the cuvette. This adding of fluids cannot be done at any time however. The A
occurrences in Table 1 represent delays of certain lengths (measured in time units). The values of ty,...,t7 are
limited to the following possibilities: t; > 15ty < 105,3 <t3 < 27,t4 < 105—13,6 <t5 < 21,9 <tg <42,

2. The Chemical Analyser 3

Reagent Rotor (RR)
@ Reagent Crak (R) & vette Rotor (CR)
)/ 52D
Sample Crank (SC)

® O

O O
Cuvette

O O
O O_~"sampleRotor (SR)

Emptying Crank (EC)\0

Figure 1: The scaled-down CCA

Table 1: Recipes for the CCA

| Description | Recipe |
1-reagent Ri >At = S— At - E
2-reagent Ri At -=S— A3 R, - Aty - E
3-reagent | R1 > Aty S — Ats >R, —» Atg >Rz — Aty — E

t7 < 105 —t5 —tg.t

The CCA consists of a number of independently working parts (cranks and rotors) which have to be con-
trolled using a set of low-level actions. In order to avoid problems, these actions are used as the building blocks
for higher level instructions, so-called operations. Careful design of the operations has led to the property, that
no errors occur within them. These are the operations available:

e Ri(]j): Reagent i of atest is added to cuvette j;
e S(i): The sample for cuvette i is added;
e E(i): Cuvette i is emptied.

Finally, a number of operations together form a cycle, which is the basic building block for a schedule. There
are three types of cycles, the 12, 16 and 24-cycles, differing in the number of time units they require for
execution. In the 12-cycles round 1 of operations occurs, in the 16-cycles rounds 1 and 2 occur, and in the
24-cycles all three rounds occur. The rounds being (in this order):

1. Given an empty cuvette i, the first reagent of a test can be added to this cuvette. At the same time, if
possible, the sample for the test in cuvette i — 5 can be added. Finally, also at the same time, if cuvette
i + 3 contains a finished test, the cuvette can be emptied.

2. If acuvette j (i # j) is ready to receive a second or a third reagent, this reagent can be added.
3. Ifacuvette k (i £k, j #K) is ready to receive a third reagent, this reagent can be added.

In Figure 2 the three types of cycles are visualised. All of them start with round 1, where the available
operations (listed using hyphens) can be performed in parallel. After that, in the case of 16 and 24-cycles, a

1A time unit in the scaled-down CCA model corresponds with a duration of 4 seconds in the actual CCA.

-add S R, Rs

addRy - add - add
-add S 2, Ra Rs
- empty

AN
L | | | | | J

0 4 8 12 16 20 24

addRy -add}

Figure 2: The 12, 16 and 24-cycles

second round is entered. In 24-cycles even a third round appears. This mandatory ordering in rounds means
that even in a cycle, in which only a second and/or a third reagent is added, round 1 appears, even though no
operation (or only an empty operation) is performed in this round.

The cycles can be named by listing the operations that occur in each round. We do not list the E operations
though, since emptying is done whenever possible. For instance, in the 12-cycle Ry (i) round 1 from the list
above is carried out without adding a sample. When rounds 2 and 3 occur in a cycle, it will always be after
having done round 1. Also for these rounds the necessary cuvette indexes are given. For instance, cycle
R1SR2(i, j) first performs round 1, with a first reagent being added to cuvette i and a sample being added at the
same time to cuvette i — 5, after which a second reagent is added to cuvette j in round 2. In the real machine
it happens to be the case that there is no cycle which only empties a cuvette. This is important to know when
looking at the results of the case study presented in section 8.5.

It was previously mentioned that there is a mixing crank. Mixing should happen every time an extra fluid
is added to a cuvette. This, however, is not part of the scheduling problem, because mixing is done within the
operations.

The scheduling problem is now the following: given a batch of tests to be processed, provide a sequence of
cycles that enables the CCA to process the tests in the minimum time possible.

3. PRELIMINARIES

3.1 The language uCRL

Basically, uCRL is based on the process algebra ACP [4], extended with equational abstract data types [18].
In order to intertwine processes with data, actions and recursion variables can be parametrised with data types.
Moreover, a conditional construct (if-then-else) can be used to have data elements influence the course of a
process, and alternative quantification (also called choice quantification) is added to sum over possibly infinite
data domains.

The language comes with a toolset [7] that can build a state space from a specification and store it in the
.aut format, one of the input formats of the model checker CADP[13]. A large number of distributed systems
have been verified in HCRL, for instance [10].

We will give a short overview of the language necessary for understanding this paper. For a complete
reference, see [15].

A specification starts by defining the necessary data. These are specified as algebraic data types, consisting
of sorts, function declarations, and equations. In fact, the Boolean sort is mandatory, since the conditional
construct works with Boolean expressions. Algebraic data types yield flexibility, while keeping the language
simple. In uCRL one can declare actions, which may have zero, one or several data parameters (the set of
actions of a specification is referred to as the set Act). Finally the process deadlock (J), which cannot terminate
successfully, and the internal action t are predefined. There are eight operators in gCRL. We omit the parallel

4. Tackling a scheduling problem with 1CRL 5

composition operator, the encapsulation operator, the renaming operator and the abstraction operator since we
do not use them in this paper. We present the other four with an informal semantics.

1. The alternative composition operator (+). A process p + q proceeds (non-deterministically) as p or q (if
they can proceed).

2. The sum operator (3 4.pX(d)), with X(d) a mapping from the data type D to processes, behaves as
X(d1) +X(d2) +..., i.e., as the possibly infinite choice between X (d) for any data term d taken from D.
This operator is used to describe a process that is reading some input over a data type [20].

3. The sequential composition operator (.). A process p.q proceeds as p followed by g.

4. The process expression p<brq where p and g are processes, and b is a data term of sort Bool, behaves as
pifbisequalto T (true) and behaves as q if b is equal to F (false). This operator is called the conditional
operator.

The heart of a uCRL specification is the proc section, where the behaviour of the system is declared. This
section consists of recursion equations of the following form, for n > 0:

proc X(X1:S1,...,Xn:Sn) =t

Here X is the process name, the x; are variables and the s; are sorts. Moreover, t is a process term possibly
containing occurrences of expressions Y (dy,...,dm), where Y is a process name and the d; are data terms that
may contain occurrences of the variables x1,...,Xn. In this rule, X(xs,...,Xn) is declared to have the same
behaviour as the process expression t [11].

The initial state of the specification is declared in a separate initial declaration init section, which is of the
form

init X (dy,...,dn)

Here dy,...,d, represent the initial values of the parameters X1, ...,Xn. In HCRL specifications the init section
is used to instantiate the parameters of a process declaration, meaning that the d; are data terms that do not
contain variables.

3.2 Labelled transition systems

Labelled transition systems (LTSs) capture the operational behaviour of concurrent systems. An LTS consists
of transitions s —25s', meaning that being in a state s, an action a can be executed, after which a state s’ is
reached. Each uCRL specification has a corresponding LTS, defined by the structural operational semantics
for uCRL.

Definition 1 (Labelled transition system) A labelled transition system is a tuple (S, Lab, —, sp), where S is
a set of states, Lab a set of transition labels, — C S x Lab x S a transition relation, and sg the initial state. A

transition (s,1,5') is denoted by s — '.

In our case, S consists of uCRL specifications, and Lab consists of actions from Act U{7} parameterized by
data.

4. TACKLING A SCHEDULING PROBLEM WITH uCRL

4.1 Modelling scheduling problems

Scheduling problems are about time; given a machine (or combination of machines), which are able to perform
tasks, the question in general is in which order these tasks should be performed (and on what machines) in
order to achieve the highest possible efficiency. Therefore, if we want to create a model of a system in order to
solve a scheduling problem, at least we should be able to work with time.

The original process algebra uCRL has no built-in notion of time. A later addition, timed uCRL [14], adds
absolute time stamps to all actions. However, these time stamps usually make state spaces infinite. Also, there
are currently no tools for generating a state space for timed uCRL.

Instead, based on the work from [8, 30], we use a special tick action, which models time progression. This
is comparable to relative discrete time [1]: A tick action indicates that the system moves to the next time slice.
Using this technique, the duration of an execution equals the number of tick actions occurring in this trace.
Now we can define the notion of a minimal-time trace:

Definition 2 (minimal-time trace) Given an LTS and a transition label a, we say that there is a trace with
execution time t (t € IN) to a transition with label a iff there is a trace in the LTS starting from the starting state
Sp and reaching a transition with label a, such that the number of tick transitions occurring in this trace equals
t. We define a trace from sg to a transition with label a to be minimal-time if there is no other trace in the LTS
from sg to a with less tick transitions.

Using this definition, we can formulate a scheduling problem as a reachability problem: finding an optimal
schedule to perform a batch of tasks successfully can also be seen as finding a minimal-time trace to a transition
indicating successful termination in a state space containing all possible schedules as traces.

The question now is how to model scheduling problems in general using uCRL, and how to find a minimal-
time trace in a state space generated from such a model. This can be done by creating an abstract model
containing one process, which allows all valid executions.? By valid executions we mean all executions sat-
isfying the available constraints within the system. So the abstract model can execute all available actions as
long as the constraints are satisfied. The choices which valid actions to execute and when are non-deterministic;
there are no built-in priorities.

It is possible though to create a process with a built-in strategy. By strategy we mean a plan saying when and
how to execute the valid actions. This limits the number of possible executions (for more on strategy models,
see section 4.4).

Besides that, we introduce a special action called finished. We use this action in such a way that it can be
executed if and only if the process reaches the successful termination of an execution.

Having created a tCRL model, it is possible, using the uCRL toolset, to generate a state space from it. This
state space incorporates all possible behaviour of the system described by the model. Somewhere in this state
space there is at least one minimal-time trace to a successful finish. Given Definition 2, we use the finished
action as transition a, in order to formulate a minimal-time trace to a successful termination. Next we describe
two methods to find such a trace. In the first method we use the tools as they originally exist. In the second the
UCRL toolset is equipped with an optimised search algorithm.

4.2 Finding a minimal-time trace by full state space generation
One way is to build a counter in the model, which is used to keep track of the time spent since the start
of the execution. If we also incorporate it in the finished action, we get finished(t), where t is the current
value of the counter. Now we can quickly find a minimal-time trace.® Using CADP it is possible to display
all the action labels of a state space. Then we get an overview of all the occurrences of finished(t) with their
different parameter values. We find the smallest parameter value and search for a trace leading to this finished(t)
occurrence using a p-calculus formula [21]. Note that in this case there is no real need anymore for tick actions
when using only one process in the model; after each performed action the counter is raised appropriately to
keep track of the execution time (should there be multiple processes in the model, these tick actions may be
necessary anyhow, for synchronisation purposes).

Using the method described above, we need a complete state space before we can check anything. In a lot of
cases though, the state space tends to be very big, in some cases even of infinite size. This possibility is even

20ne can decide to use multiple processes in parallel. In that case it must be enforced that all tick actions are synchronised; if all
processes can do atick action, they perform atick action together. If at least one of them cannot, no tick action occurs. How to enforce this
behaviour can be found in [8, 34].

SNote that in the case of the fi nished(t) actions we use absolute timing [1].

4. Tackling a scheduling problem with 1CRL 7

bigger when using this time counter, which never assumes the same value twice within an execution (there is no
possibility for loops within the state space). It is therefore important that, when using the technique described
here, the modeller enforces that no infinite traces can occur. Another approach is to limit the state space to
the size necessary to find a minimal-time trace. To do this we can develop a strategy model; this technique is
explained in section 4.4.

4.3 Finding a minimal-time trace using an on-the-fly optimised algorithm

There is an option in the UCRL toolset to search for a specific action while generating a state space. As soon as
the action has been discovered, the toolset provides the trace to this occurrence of the action and can then stop
generating. Because of the fact, that the generation is done breadth-first, as soon as an action has been found
for the first time, the trace leading to this action will be the shortest one leading to it.

However, the shortest trace to an action is not always a minimal-time trace. For instance, let us say we have

two traces leading to action finished, the first being po -2+ p1 %5 pp —2s p3 1%, py S pg K, p f0IsEd,

and the second being qo i>q1 tick, g2 tick, gs tick, Ja tick, Js fi nished, ges. Even though trace qo to gg is the
shortest trace, trace po to py is the fastest. What we need in order to find a minimal-time trace, is another search
algorithm during generation, which deals with tick actions in a special way. Algorithm 1 is such an algorithm
written in pseudo-code, where sq is the starting state of the state space and finished is the action we are looking
for. Furthermore p and p’ indicate states and a is an action. The algorithm processes a list of states, each time
looking at the outgoing transitions of the chosen state. If a transition is a tick transition, the destination state
is only checked once all states in the current time unit have been processed. In this way the generator checks
states from time slice to time slice. The claim is that the algorithm searches in such a way, that when action
finished is found for the first time, a minimal-time trace is found. Each time a new state is reached a pointer is
kept to the parent state. This allows back-tracking to state s once a finished transition is found.

Algorithm 1 Pseudo-code algorithm for finding a minimal-time trace on-the-fly
TimeSlice := 0
Waiting := {so}
Processed := 0
while Waiting # 0 do
TimeSlice := Waiting
Waiting := 0
while TimeSlice #£ 0 do
select p from TimeSlice
for all p—2» p’ do
if a = finished then
return The path from sg to p’
else if p’ not in Processed then
if a = tick then
add p’ to Waiting
else
add p’ to TimeSlice
end if
end if
end for
add p to Processed
end while
end while
return No successful termination

Notice that we do not search traces with cycles. As pointed out in [22], we are allowed to do this. By using the
set Processed we keep track of all the states already visited. If we visit a state for a second time, it will be at
the same execution time or later than the first time we visited it. The time it took to go through the loop did not
gain us anything, since we have arrived back at the same state.

It is clear that using this method it is not necessary in most cases to generate the complete state space. Worst-
case the whole state space needs to be generated (when a finished action can only be found at the end of the
state space). Therefore this method is more efficient than the one described in section 4.2.

4.4 The use of a strategy model

As described earlier, scheduling problems can be modelled as a single process allowing all possible (valid)
executions. This way we can be sure that a minimal-time trace in the resulting state space is really the fastest
one possible. It can be useful however to create a model with a built-in strategy as well.

Basically, a strategy model limits the amount of non-determinism, resulting in a smaller state space. For
instance, we can assign different priorities to different actions, therefore eliminating non-deterministic choices
between them. Using such a model has several advantages at the price of losing accuracy, since the answers
obtained by using strategy models are near-optimal.

First of all, larger problems can be solved by adding strategies. The found solutions may be suboptimal,
because all minimal-time traces may have been pruned away.

Second of all, using a strategy model can make the minimal-time trace detection method from section 4.2
more practical. Note that the solution found by a strategy model is an upperbound for the minimal time. Having
such a solution we know how many time units this solution costs, say t. Next, by expanding the guards within
the general model, we can force all executions of this model to stop after t time units have passed. The only
expression that needs to be added to each guard is that the time counter has a value of at most t. Whether or
not the strategy used is a good one, a minimal-time trace of the general model (with execution time t’) can be
found in the limited state space, since t’ <t.

Of course it is also possible to pick a reasonable value for t, without using a strategy model. Keep in mind
though, that if the value chosen is too small, the time needed to generate the state space is probably still long
and the final result will not contain a minimal-time trace. If the value is chosen too big, the generation will take
too much time.

Finally, it can be checked, for small instances, whether or not strategy models provide optimal solutions: if
a strategy model yields schedules of the same length as the fully non-deterministic model, this is an indication
that the strategy is good. Note this is only an indication, because we can only check the strategy for problem
instances. We cannot, at least using our methods, check a strategy in general.

4.5 Distributed implementations

As mentioned earlier, recently the uCRL toolset was expanded with a distributed state space generator [5] and
a distributed state space reduction tool [6]. This allows the generation of very big state spaces. In order to be
able to deal with bigger cases of the CCA scheduling problem, we implemented a distributed version of the
on-the-fly search algorithm from section 4.3.

When compared to distributed full state space generation, using the distributed search algorithm allows us
to deal with bigger scheduling problems. This is due not only to the fact that we do not need the complete
state space anymore, but mainly because the method of section 4.2 has one big practical disadvantage, hamely
that in order to be able to search for a minimal-time trace, CADP needs one single state space, as opposed to
the chunks of a state space obtained from a distributed state space generation. The merging of these chunks
into one state space can become very impractical if these chunks together are several Gigabytes big. In other
words, even when it is possible to generate a big state space for a given scheduling problem, it may turn out to
be unfeasible to obtain a minimal-time trace from it.

We will not display the distributed algorithm here, but it suffices at the moment to mention that it is based
on an algorithm which was already present in the distributed state space generator to find the smallest trace to
a specific action.

5. Pruning techniques 9

5. PRUNING TECHNIQUES

5.1 Classic beam search

As can be seen later in section 8, the state space grows very rapidly relative to the number of tests. Of course
we can deal with bigger state spaces if we move the state space generation from a standalone computer to a
cluster of computers, but at some point we are again confronted with the limits of the setup.

Because of this problem, it was interesting to see if we could in some way prune traces which are not really
promising from the state space while generating. In that way, we could limit the state space generation to
the most interesting part, heavily increasing the speed of finding short solutions, at the expense of finding
near-optimal (instead of minimal-time) solutions.

Looking for techniques which could be adapted to our setting, the beam search approach [28, 31] was found.
Beam search is a heuristic method for solving combinatorial optimisation problems, which was originally used
in the artificial intelligence community for speech recognition [19] and image understanding [26]. Later this
technique has been applied to scheduling problems, for example in systems designed for complex job shop
environments [12, 25] and for the job shop problem with both makespan and mean tardiness as performance
measures [28]. Since then new variants of beam search have been introduced, such as filtered beam search [23,
24] and recovery beam search [9].

The beam search technique is an adaptation of branch-and-bound. Beam search is like breadth-first search,
as it progresses level by level, but it does not process all the encountered nodes. At each level of a given search
tree all the nodes are evaluated and at most a fixed number of them is selected for further examination. Because
of the aggressive pruning the generation time is heavily decreased.

The classic beam search approach is a branch-and-bound technique where only the 3 most promising nodes
at each level of the search tree are selected for further branching. This 3 is the so-called beam width, which
is fixed to a value before searching. Other nodes are discarded, so searching can be done relatively quickly.
Because of this, using the beam search technique does not guarantee finding an optimal solution, since wrong
decisions can be made while pruning. To limit the possibility of wrong decisions one can increase the beam
width, at the cost of an increase in computational effort.

Clearly the evaluation function used to select nodes is very important. In the past, two types of evaluation
functions have been used: priority evaluation functions and total cost evaluation functions. A priority eval-
uation function calculates a priority for each action and selects based on those priorities, while a total cost
evaluation function calculates an estimate of the total cost of the best schedule that can be found continuing
from the partial schedule represented by the node. In cases where there are more than 3 actions or nodes, which
receive the best evaluation value, a selection is made based on other criteria (depending on the implementation,
for instance the order of encountering the actions or nodes). Priority evaluation functions have a local view of
the problem, since they only consider the next job to be scheduled, while total cost evaluation functions have
a more global view, taking the complete schedule into account. These two types of evaluation functions have
led to two classic beam search variants, namely priority and detailed beam search, using a priority evaluation
function and a total cost evaluation function, respectively.

Figure 3 shows the application of a beam search on a search tree. The grey nodes are selected using the
evaluation function, while the obscured ones are nodes that would have been encountered, had their parents
been selected. Typically, this is a detailed beam search as opposed to a priority beam search. In a priority
beam search up to 8 transitions from the root of the tree are followed, after which in each subsequent level
of the tree one outgoing transition with the highest priority is selected per examined node. In a detailed beam
search however, at each level up to 3 nodes are selected to continue, regardless of what their parent nodes
are, therefore it could be the case, as in level 4 of Figure 3, that some nodes have multiple selected children,
while others have none. The reason for this is that one cannot simply compare priorities of actions which are
connected to different executions, due to the fact that selection of an action depends on what came before in the
execution. A total cost evaluation function does allow comparison of nodes from different executions though,
since using such a function allows us to see the progress each execution is making.

The classic beam search approach proved to be very usable within our setting. The state spaces generated by
our tool are search trees where the states are the nodes. We were able to incorporate both priority and total cost
evaluation functions in the state space generator after having applied some minor changes to the original ideas

10

2 /.\
s O @Q
/ I N
/ | N
/ I AN
. o o
¢+ S @@ O
Figure 3: Example of applying a beam search with 3 = 2 to a search tree

as presented by, for instance, Valente and Alves [31], among others.

First of all, a user is allowed to supply a list of actions and their priorities. By default, when performing a
priority beam search, all actions have priority zero. One can assign higher and lower priorities, which allows
setting any order of actions without necessarily giving a complete list of actions. Instead of 3, the user supplies
the system with (a, 1), where, effectively, a' = B. Then, when generating, in the first | levels of the state space,
per state up to o transitions are selected for further exploration. In the following levels, only one outgoing
transition with the highest priority at each state is selected, thereby limiting the total number of transitions at
each subsequent level to 8. Note the difference with the original notion of priority beam search, where the
number of actions per level is fixed much sooner, namely after the evaluation of the actions originating from
the root. The decision to change this in our setting is that with our scheduling models we get state spaces which
typically have only a few outgoing transitions at the first level, but that number grows rapidly as one progresses
into the state space. For this reason it does not make sense to limit the number of selected transitions in
the beginning, as that number would be too small. One of the reasons for this rapid growth is that we build
the system constraints into the model, allowing only valid traces to appear. This results in only a few outgoing
transitions per state early in the state space, but, as we move further, more and more outgoing transitions appear
per state. This in contrast with other settings in which beam search has been used, for instance by Valente and
Alves [31]. They do not exclude traces, which violate timing constraints, from the search space. The decision
to have the user supply (a,l) instead of 3 was made, to make it possible to postpone fixing the number of
selected transitions per level, without the risk of exceeding the given width at some level.

Second of all, a user can perform a detailed beam search, i.e. a beam search using a total cost evaluation
function. The user can specify a function at the command line, using constants and variables taken from the
parameter list of the model, combining them with addition, subtraction and multiplication. Each encountered
state will be evaluated using this function and at each level up to 3 states, the ones where the evaluation value
is the smallest, will be selected for further generation.

5.2 Flexible beam search

While adapting the classic beam search techniques we found that our setting called for slight adaptations of the
original notions. In section 5.1 we already mentioned a deviation from the original priority beam search. This
deviation was mainly necessary because of the structure of the state spaces.

Another difference between our setting and the settings in which beam search is usually applied, is that our
scheduling actions have several parameters. This means that the same action can appear multiple times as
an outgoing transition of a given state, each time having different parameter values. This potentially leads to
situations where, during selection, a large number of transitions or states have equal evaluations. A selection

6. Example: 5 tasks scheduling problem 11

then has to be made amongst these equally competent candidates if one of them happens to be the most promis-
ing transition or amongst the (3-best states. Such cases require making decisions beyond the influence of the
evaluation function, which is patently undesired.

Since this is unwanted, we developed a variant of priority beam search called flexible priority beam search,
the word ’flexible’ meaning that the beam width can change while generating, should that be necessary. In
flexible priority beam search, in the first | levels (see section 5.1), at each state, up to a most promising
outgoing transitions are selected plus any transition which has the same priority as the least competent member
of these a transitions has. At level | +1 and onwards, at each state, all the transitions which have the same
priority as the most promising transition of that particular state are selected (i.e. thinking a = 1). In a similar
fashion we developed flexible detailed beam search, in which, at each level, up to 3 most promising states are
selected plus any other state which is as competent as the worst member of these 3 states. This achieves closure
on the worst (i.e. highest) total-cost value being selected. Note that in flexible priority beam search, if the beam
width is increased, it never returns to the intended 8, while the beam width is readjusted to 3 in each level of
flexible detailed beam search.

6. EXAMPLE: 5 TASKS SCHEDULING PROBLEM

In order to facilitate comparison, we will look at the small static scheduling problem originally presented in [22]
and adapted in [3]. A number of tasks (a1, az, ¢, by and b,) need to be performed in a specific order. All tasks
need to be performed precisely once, except task ¢, which can be performed zero or more times. The order is
as follows: After task a; one should perform a, followed by (zero or more times) ¢. Then task b1 needs to be
executed, finishing with task b,. The system is free to decide for itself how long it wants to delay after having
performed a task. There are three timing constraints however:

1. The time between execution of a; and execution of b4 should be at least 2 time units;

2. The time between execution of a, or the last execution of ¢ and execution of b1 should be no more than
1 time unit;

3. The time between execution of as and execution of b, should be at least 3 time units.

What follows is the uCRL model of the system described above. We use three counters, X, y and z, to ensure
timing constraints 1, 2 and 3 respectively. Standard sections defining the data types needed are omitted. The
parameter n is used to encode which actions can be scheduled next. As can be seen, all parameters initially
have the value 0.

act a1, ap, ¢, by, by, tick, fi nished

S(x:Nat, y:Nat, z Nat, n:Nat) =
a1.9(%,Y,zNn+1)<an=0-0 +
tick. S(x+1,y,z,n)<an= 15+
a.S(x,y,zn+1)an=1p0+
tick. S(x+1,y+1,z+1,n)an=20+
c.S9(x,0,z,n)<an= 2>+
b1.S(x,y,zn+1)an=2AXx>2Ay <10+
tick. S(x,y,z+1,n)<an =30+
bp.S(x,y,z,n+1)an=3Az>3>5+
tick S(x,y,zn)<n= 40 +
fi nishedan=14r9

init §(0,0,0,0)

Using the HCRL toolset we can search for a minimal-time trace using the search method from section 4.3.

This delivers the following trace, which takes three time units to execute: so—2%s s, —225 s 1%, g5 S5 5, UK,

12

b i b fi nished,
S5 —> Sg _tick, S7 —25Sg L snea, Sg. It took the state space generator less than three seconds to generate the

necessary part of the state space and present a minimal-time trace.

The result is a different one from the one given in [3], but the execution times of the traces are the same. The
only difference is due to the freedom to delay after a task is done. Because of this there are several minimal-time
traces present in the state space.

7. CREATING THE MODEL FOR THE CCA

For the scheduling problem of the CCA it was not necessary to model all the parts of the machine in a very
detailed level. It sufficed to concentrate on a process which allowed every valid sequence of cycle commands
to happen. Invalid sequences would consist of cycles applied to inappropriate cuvettes or cycles applied too
soon or too late. It has to be stressed that we therefore incorporated explicitly the timing constraints as seen in
section 2 in the model.

When designing it was important to choose the parameters in a smart way. The more information you
store, the bigger the resulting state space will be, therefore any unnecessary information must be avoided.
We decided to not use test IDs; to solve the problem we do not need to link an individual sample with some
particular reagents. We can assume that the reagent and sample rotors provide the right reagents and samples
when required. Furthermore the number of samples and second and third reagents that still need to be added
is not needed; it is clear what must be added when looking at the rotor and the number of unprocessed first
reagents. That leaves us with the following:

e The cuvette list, consisting of 11 tuples. Each tuple stores which fluids are currently in the corresponding
cuvette, which type of test is in the cuvette, and how much time is left before a new fluid may be added.

e How many 1-reagent tests should still be started.
e How many 2-reagent tests should still be started.
e How many 3-reagent tests should still be started.

When modelling it became clear how convenient the use of abstract data types was. The rotor could be modelled
using a specially taylored list data type, and we could define functions to quickly check the status of the rotor
(e.g. Are there any tests ready to receive a sample, is a certain test finished). This made working with complex
data structures very easy.

We decided to build the model in an incremental way; first we built a model dealing only with 1-reagent tests
and 12-cycles. It consists of a single process which has the 12-cycles as actions, together with the necessary
guards and recursive calls, placed in alternative composition. The guards are there to check whether a chosen
cuvette is indeed ready to receive a certain fluid and whether the timing constraints are met. Note that it was
not necessary to keep track of the overall execution time in this model, as each action requires a delay of three
time units; In such a case a minimal-time trace in a state space is also the shortest trace. Therefore we could do
a normal breadth-first search for the finished action.

Using the model in practice though on a number of test batches we found that the freedom to place new tests
anywhere on the rotor led to a state space explosion. We decided to build a second model allowing new tests to
be placed only in the next empty cuvette, looking counter-clockwise. Since the cranks are placed in such a way
that, rotating one cuvette at a time, a sample can be added to a cuvette the moment it reaches the sample crank,
this restriction will not lead to a suboptimal solution. In fact, section 8 shows that this is indeed the case, for a
test batch of five products.

Next we built a third model with a process using all possible cycles together with the necessary guards,
placed in alternative composition. We also used this model to find schedules for different test batches. The
results can be found in section 8. After that we created a fourth model, which was much more restricted in
its possibilities; we put a strategy in it to cope with a batch of tests. We attached priorities to cycles, so that
the model would always execute the enabled cycle with the highest priority. In short the strategy is to always
perform as many operations in parallel as possible and to get the first reagents of the tests as quickly as possible
on the rotor. Using the same batches of tests as input for this model we got the same results as we got using the

8. Experiments and results 13

strategy-free model (in cases where the complete state space of the latter model could be generated at least).
This tells us that the strategy used in the strategy model is a good one for the test batches used.

Recently, the uCRL toolset was expanded with a distributed version of the state space generator. This makes
it possible to generate state spaces using a cluster of computers. In this case study it became clear quite soon
that an increase of the size of the test batch results in a big growth of the state spaces of most of the models.
For some of the test batches a minimal-time trace could not have been found without distributed state space
generation.

8. EXPERIMENTS AND RESULTS

8.1 The scheduling results using full state space generation

Table 2 and 3 summarize our findings when applying breadth-first search in a fully generated state space. We
used the sequential implementation for the small cases, and switched to the distributed implementation for the
larger cases (indicated with *). Table 2 considers the easier case where all test batches consist of a number of
1-reagent tests. In this setting only 12-cycles are needed. In Table 3 all cycles are incorporated. In both cases,
we considered the model with and without a built-in strategy.

The tables should be read as follows: In every row a test batch is specified. In Table 2 the number of tests is
displayed, in Table 3 the descriptions are of the form (a,b, c), where a, b and ¢ indicate the number of 1-reagent,
2-reagent and 3-reagent tests, respectively. The results are in the following format: r/s, where r and s equal the
number of time units and the number of cycles in the minimal-time trace, respectively. Where results could not
be obtained, due to technical reasons, a hyphen is written (-). Also, the number of states in the different state
spaces is given.

From the numbers it is clear that the state spaces grow rapidly in size when using bigger test batches. In
the models without a strategy this is due to the fact that from every state the system can do any of the valid
actions. In Table 2, in case of the 12-cycles model, the size is increasing so rapidly, that already with 10 tests
we had to conclude this would not be promising to continue. The restricted model was sufficient for us to find
minimal-time traces for all configurations.

Table 2: 12-Cycles models search results

#Tests Model 12-cycles | # States | 12-cyclesrestr. # States
5 30/10 * | 416,352 30/10 447
10 - - 45/15 9,878
15 - - 60/20 528,699
20 - - 75/25 8,403,885
30 - - 105/35 * 222,613,811

In Table 3 are the results we obtained when using models with the three types of tests. When using 10 tests,
we were not able to get minimal-time traces anymore using the general model. Although generating the state
spaces took a lot of time and effort, it was still possible. The problem was the fact that CADP, which was
used to obtain minimal-time traces from the state spaces, needs the chunks of the state space, obtained from
a distributed state space generation, to be merged into a single state space, since it only works sequentially
at the moment. In the (6,2,2) test batch the resulting state space took about 30 Gigabytes of disk space, and
was too big to handle afterwards. In the strategy model the size increase is mainly due to the non-determinism
concerning adding new tests (more precisely, deciding which test type should be added at which point). One
could therefore decide to create another strategy model, which applies a fixed order of tests concerning their
type (i.e. first adding 3-reagent tests).

14

Table 3: All cycles models search results

Model All cycles | # States Runtime Strategy # States Runtime
(3,1,1) 36/11 1,148 7.408s 36/11 222 2.640s
(1,3,1) 39/11 5,352 27.498s 39/11 290 2.836s
1,1,3) 45/12 16,380 | 1m16.985s | 45/12 273 2.840s
(6,2,2) - - - 51/15 11,477 44.919s
(3,5,2) - - - 55/15 29,929 1m56.823s
1,2,7) - - - 73/17 23,895 1m34.842s
(7,4,4) - - - 75/21* | 5,300,625 -
(4,8,3) - - - 77/21* | 3,959,226 -
(2,5,8) - - - 91/22 * | 2,634,395 -

8.2 The scheduling results using on-the-fly searching
We also used the optimised search algorithm to find minimal-time traces for the strategy model using five and
ten products (in the varying type combinations). Table 4 contains the results of these tests. Please note that the
number of states in this table cannot be straightforwardly compared to the numbers in Table 2 and 3. This is
because for the on-the-fly searching we added the necessary tick actions to the model, resulting in more states
in the state spaces.

In cases of five products we found that the state spaces still needed to be generated almost completely in
order to find the solutions. When moving to bigger test configurations though, the payoff becomes considerate;
in the (6,2,2) test batch a minimal-time trace was found halfway through the state space generation.

Table 4: All cycles models on-the-fly search results

#Tests Modd All cycles # States Runtime
(3,1,1) 36/11 3,375 (of 4,001) 10.353s
(1,3,1) 39/11 13,194 (of 15,091) 30.482s
(1,1,3) 45/12 34,142 (of 39,132) 1m10.972s
(6,2,2) 51/15* | 341,704,322 (of 677,470,840) -
(3,5,2) - - -
1,2,7) - - -
(7,4,4) - - -
(4,8,3) - - -
(2,5,8) - - -

The results of using this algorithm were twofold: on the one hand, we were able to find minimal-time traces
with less effort; more specific, since we could find these traces on-the-fly, merging the state space chunks into a
single state space and subsequently searching for a specific action using CADP could be avoided. This already
saved us a lot of time. On the other hand, it still proved very difficult to get results for bigger test configurations
as seen in Table 4. The state space for the (6,2,2) test batch was very big and took hours to generate. It has
to be said that, although difficult, getting a minimal-time trace was only possible using on-the-fly searching,
since converting the state space after generation and then searching the state space using a model checker would
have provided technical difficulties (as mentioned earlier in section 8.1). For bigger test configurations we were
unable to find minimal-time traces at the time, since we encountered technical bottlenecks, such as the speed of
communication between the computers in the network we used. Other problems stemmed from this particular

8. Experiments and results 15

case study and model, not from the search algorithm.

8.3 The scheduling results using beam search

Applying detailed and priority beam search to the chemical analyser case study proved very fruitful. It was
possible to prune away traces which were not promising very effectively and it turned out to be very interesting
to try and see how much could be pruned without removing all optimal solutions. Of course, one can only
know if all optimal solutions are pruned if the execution time of these solutions is known. Using previous
results (Tables 2, 3 and 4) the beam widths needed to get optimal solutions could be determined. These beam
width values provide an indication of how big the beam widths would have to be for even bigger tests. Note that
we used a combination here of a detailed beam search with a search from time slice to time slice (as decribed
in section 4.3) so we could find minimal-time traces, as opposed to shortest traces.

In Table 5 the results are given of performing a detailed beam search through the state spaces. The evaluation
function we used counted the number of fluids that still had to be added to the rotor. Worst case a given partial
schedule can always be extended using n cycles, where n is the remaining number of fluids. Note that, in order
to use this function, we had to add an extra parameter to the model described in section 7 to keep track of the
total number of fluids left.

As can be seen, almost at all times were we able to deal with the test batches using a standalone computer.
Notice that in the first number of configurations we were able to provide the number of states in the complete
state space, thereby showing how much we could prune. As is shown with the (6,2,2) configuration, the number
of pruned states can become considerate, in this particular case more than 99.9% of the state space. Looking at
the results, we see that the needed beam width differs from test to test. This makes it hard to predict the needed
beam width for bigger test configurations. The bigger you choose the beam width, the higher the probability
that the solution found is a minimal-time trace, so when choosing a beam width value one should determine
how much time and effort is reasonable to put into finding a solution.

The beam width is not growing in relation to the number of fluids in a test configuration. Probably this is due
to the ordering of states while searching. Sometimes the generator is forced to make some selections which are
not based on the evaluation values of the states, due to the hard limit of states per level set by the beam width.
In those cases the order in which the states are encountered plays a role.

The execution times become very long already when dealing with 10 tests, no doubt because of the evaluation
procedure. It seems interesting to try to optimise this procedure in the future, since a lot of time could be gained
then.

Table 6 shows us results of performing a priority beam search in combination with the minimal-time trace
search algorithm. Again, here we were able to find solutions for most of the test configurations using a stan-
dalone computer. As far as the needed beam widths for the different test configurations, similar arguments can
be made as the ones for Table 5.

Finally, in Table 7 our experiences with flexible priority beam search are shown. The execution times of
searches applied on batches up to 10 tests are very promising, but when dealing with bigger batches we were
not able anymore to find a solution using a standalone computer. Since we could not use distributed state
space generation together with flexible priority beam search, we were not able to get any numbers for batches
containing 15 tests.

The major advantage of flexible beam search is that determining the beam width for each individual con-
figuration is no longer an issue. In all the cases the beam width was initially set to 1, and was increased
automatically where needed during exploration.

Note that we have not conducted any tests using flexible detailed beam search. Although we have imple-
mented it in the toolset, we did not think that, in the CCA case study, it would show a much better performance
than detailed beam search. More on this is mentioned in section 8.4.

8.4 Comparisons

Taking a closer look at the minimal-time traces found we conclude the following: Concerning the 12-cycles
models, the minimal-time traces are straightforward: The first five reagents need to be added without adding a
sample, because of the incubation times. After that a reagent can be added together with a sample, until there

16

Table 5: All cycles models detailed beam search results

Tests Model All cycles | Needed beam width # States Runtime
(3,1,2) 36/11 25 1,461 (of 4,001) 3.428s
(1,3,1) 39/11 41 2,234 (of 15,091) 3.928s
(1,1,3) 45/12 19 1,598 (of 38,276) 3.464s
(6,2,2) 51/15 81 7,408 (of 677,470,840) 7.760s
(3,5,2) 55/15 765 67,470 49.447s
1,2,7) 73/17 75,000 6,708,705 84m38.405s
(7,4,4) 75/21 35,000 3,801,607 41m1.804s
(4,8,3) 77/21 50,000 5,837,325 85m41.599s
(2,5,8) - - - -

Table 6: All cycles models priority beam search results

ot Model || AJ1 cydles | Needed beam wicth # States Runtime
(3,1,1) 36/11 17 668 (of 4,001) 3.220s
(1,3,2) 39/11 29 843 (of 15,091) 3.344s
(1,1,3) 45/12 13 617 (of 38,276) 3.060s
(6,2,2) 51/15 215 9,963 (of 677,470,840) 17.697s
(3,5,2) 55/15 322 15,943 26.918s
1,2,7) 73/17 44 3,058 5.342s
(7,4,4) 75/21 15,000 883,124 20m43.616s
(4,8,3) t.b.d. t.b.d. t.b.d. t.b.d.
(2,5,8) - - - -

Table 7: All cycles models flexible priority beam search results

#Tests Model All cycles # States Runtime
(3,1,2) 36/11 821 (of 4,001) 3.700s
(1,3,1) 39/11 1,133 (of 15,091) 4.060s
(1,1,3) 45/12 1,145 (of 38,276) 4.032s
(6,2,2) 51/15 45,402 (of 677,470,840) | 2m33.654s
(3,5,2) 55/15 128,373 6m44.929s
(1,2,7) 73/17 122,449 4m2.939s
(7,4,4) - - -
(4,8,3) - - -
(2,5,8) - - -

8. Experiments and results 17

are no reagents left to add and the final five samples can be added. Having a batch of i products will therefore
lead to a minimal-time trace of i +5 cycles, and (since every cycle takes three time units) will take 3.(i+ 5)
time units.

For the more general case, using 12, 16 and 24-cycles, it is more difficult to observe a pattern though. There
does not seem to be any advantage gained by adding the reagents for the different kinds of tests in a certain
order (for instance first adding all the reagents for the 3-reagent tests). Besides that there does not have to be
any pattern shared by the particular minimal-time traces found here; it could very well be the case that there are
several minimal-time traces coexisting in the same state space. We only get to see one though, which shows a
possible solution, not necessarily a mandatory one.

Next we compare the results of the different search techniques used. The first observation is, that when
analysing the results of Table 3, the chosen strategy seems to be a good one, at least for the test configurations
we used. So it seems to be a good approach to try to put the first reagents of tests as quickly as possible on the
rotor and to try to do as much as possible in each cycle.

Table 4 tells us that for the smaller configurations (5 tests) the minimal-time traces present are not much
shorter than the longest traces in the state spaces. We get this from the fact that not a big part of each state
space was still unexplored when finding a minimal-time trace. An explanation for this may be the fact that
with 5 tests, not a lot of freedom is given to the system to do actions, which lead to inefficient traces. When
moving to the (6,2,2) configuration, a lot is gained though. Already halfway during state space generation did
we encounter a minimal-time trace. This encourages us to believe that the on-the-fly searching method can
help more and more with even bigger configurations.

The problem with the on-the-fly searching method of course is that still the amount of states that have to be
explored grows rapidly when increasing the number of fluids in a configuration. At this moment we were not
able to deal with configurations bigger than (6,2,2), but once the hardware gets improved and our generator
gets optimised we will be able to in the future.

When performing a priority beam search, in the CCA case study, it turned out that the generation progresses
much faster compared to using a detailed beam search. Furthermore, in most cases, we were able to get
better results with smaller beam widths, when compared to using a detailed beam search. It may be that the
evaluation function used for the detailed beam search could be improved. We have not investigated that yet.
Another reason could be that this particular scheduling problem seems to be solvable by assigning priorities
to actions. This was already noticable by the effectiveness of the strategy models. Based on these results we
decided for the moment not to perform any tests using flexible detailed beam search. At least, the findings here
are in contrast with experiences in other settings, for instance the results found by Valente and Alves [31]. One
has to note, though, that due to these different settings, comparisons cannot be easily made.

Solutions are found quicker using beam search than using on-the-fly searching, but of course, when applied
to bigger cases for which a minimal-time trace has not been found yet, this is at the expense of finding near-
optimal solutions.

Using the flexible priority beam search we found that, with a beam width of 1 and the right priority as-
signments, the results obtained were the same as the ones using strategy models during the earlier testing. The
flexible beam search technique therefore saves the modeller the effort of seperately specifying a strategy model,
if such a model is only needed to assign priorities to actions. This is not only convenient, but also removes
the possibility of errors or unwanted behaviour, which may appear when writing a strategy model. Besides
that, it makes changing a strategy during testing very straightforward. Of course, this comes at a cost; finding
a solution using flexible priority beam search took more time than finding the same solution using a strategy
model, due to the evaluation procedure.

Compared with the other beam search variants used, we no longer have the problem of determining the beam
width for each test batch when using flexible priority beam search.

8.5 Other findings

Looking at the (4,8,3) batch within the strategy model produced some strange results; the state space turned
out to be of infinite size. Since this was unexpected we looked at it in more detail and found a trace of infinite
size showing that it would be wise to have a cycle which only empties a cuvette, if one wants to allow the

18

scheduler to create any valid schedule. The trace in question will now be presented, where we always indicate
the type of the test subjected to an operation, using a superscript i for an i-reagent test. Furthermore, ¢ is the
12-cycle in which no operation at all is executed; basically it is a delay. This is the trace:

[R3(0),R3(1),R3(2),R}(3),RY (),R1s3(5),R1s3(6),R2S%R3(7,0),R3S3R3(8, 1), R2S°R3(9, 2),R2S1RS(10, 0),
SlR§(0 1),RR3(3,2),R(6),5%(1), RIS?R5(4,7),S°R5(2,8),RIR5(5,8), 5%(8),S°R5(9,3), S°R5(0, 4),
S?RE(10,6),52R3(3,5), RR(9), £, ..

In this trace all the cuvets get filled with tests in such a way that there is never a completed test at the emptying
position. In the end the rotor is filled entirely with completed tests, but nothing can be removed, because there
is no cycle in which only a removal operation is done.

9. CONCLUSIONS

The modelling language uCRL is well-suited for modelling scheduling problems. The data support it has
is very convenient when working with complex data structures, as in the case of the CCA. In this regard no
changes have to be made to the current uCRL toolset. Furthermore, it suffices to model a single process, which
can generate all valid sequences of operations. This applies to scheduling problems in general, since the nature
of this kind of problems is to find, within all possible sequences of commands, actions, etc. the minimal-time
trace leading to a successful termination.

The number of possible execution sequences can grow very rapidly though. In case of the CCA, we already
encountered technical problems concerning the size of the state space when working with 10 products in a test
batch. It is possible however to limit the model in certain ways to make this state space smaller. In the case
of the CCA, we restricted new tests to be added to the first empty cuvette on the rotor (counter-clock wise)
available.

Another way is to build a model with a strategy. By introducing a strategy, the number of possible execution
sequences can be brought down a lot, depending on the level of non-determinism still in the model. A strategy
model can be used to compare a certain strategy to the general model, and it can serve to determine a practical
limit for a state space generated from a general model. Note that using strategy models does not guarantee
finding minimal-time traces, depending on the effectiveness of the strategy chosen.

We extended the CRL toolset with a new search algorithm to make on-the-fly searching for a minimal-time
trace in a state space possible. This discards the necessity to generate the complete state space of a system,
converting it and searching the state space using p-calculus formulas. Then we wrote a distributed version of
this algorithm and incorporated that into the distributed state space generator. In the distributed setting we were
able to deal with bigger test configurations and we found that in those cases, bigger parts of the state spaces can
be left alone. Several difficulties, some technical and some stemming from the CCA model used, meant that
we found the limits of using this approach quite soon. In the future we will look further into removing these
difficulties.

We presented several variants of beam search, which is a technique to prune traces from a state space. A lot
is gained when it is possible to prune traces from a state space which are not promising. We used both detailed
and priority beam search on the CCA models, the latter turning out to be more usable in this particular case
study, meaning that using priority beam search smaller beam widths were needed to get similar solutions in
shorter execution times. This could be due to the fact, that the CCA scheduling problem seems to be solvable
by assigning priorities to actions, as could already be seen by the effectiveness of strategy models. Beam search
allows one to make a trade-off between time and effort to spend and the quality of the solutions to find. Having
both detailed and priority beam search to work with even increases the possibilities for such a trade-off. If one
wants a certain level of quality, however, choosing the right beam width becomes a problem.

Because of this, we proposed an extension of priority beam search, called flexible priority beam search, in
which the actual beam width can change while searching, in order to keep track of all actions with a sufficient
priority in each level. This extension removes the necessity to create strategy models if they are only needed
to assign priorities to actions. Flexible priority beam search combines the ease of use of beam search, meaning
that no additional models have to be created to use it, with the flexibility of a strategy model, meaning that

10. Future work 19

there is no limit to the number of states or transitions explored per level.

As a side note, we showed an example of gaining results not related to the scheduling problem in question.
When generating a state space you may notice some unexpected behaviour, which could lead to more insight
into the system.

10. FUTURE WORK

The results so far can be used to find the best schedule for a given batch of tests. It is an interesting (and
much harder) research question, to automatically synthesize an optimal on-line scheduler. In that situation, the
scheduler should optimally react on the arrival of new jobs.

11. ACKNOWLEDGEMENTS

We thank all members of the TIPSy project meetings for their constructive comments, especially Nikola Trtka
for his participation in creating the first design of the CCA uCRL model. Furthermore we thank Bert Lisser
for the implementation of the minimal-time trace search algorithm and the help he provided for implementing
the beam search algorithms.

20

10.

11.

12.

13.

References

J.C.M. Baeten and C.A. Middelburg. Process Algebra with Timing. EATCS Monograph. Springer, 2002.

G. Behrmann, A. Fehnker, T. Hune, K.G. Larsen, P. Pettersson, and J.M.T. Romijn. Efficient Guiding
Towards Cost-Optimality in UPPAAL. In Proc. TACAS 2001, volume 2031 of LNCS, pages 174-188,
2001.

G. Behrmann, A. Fehnker, T. Hune, K.G. Larsen, P. Pettersson, J.M.T. Romijn, and F. Vaandrager.
Minimum-Cost Reachability for Priced Timed Automata. In Proc. HSCC’01, volume 2034 of LNCS,
pages 147-161, 2001.

J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Information and Control,
60(1-3):109-137, 1984.

S. Blom, I. van Langevelde, and B. Lisser. Compressed and distributed file formats for labeled transition
systems. In Proc. PDMC 2003, volume 89 of ENTCS. Elsevier, 2003.

S. Blom and S. Orzan. A Distributed Algorithm for Strong Bisimulation Reduction of State Spaces. In
Proc. of PDMC 2002, volume 68 (4) of ENTCS. Elsevier, 2002.

S.C.C. Blom, W.J. Fokkink, J.F. Groote, I. van Langevelde, B. Lisser, and J.C. van de Pol. uCRL: A
Toolset for Analysing Algebraic Specifications. In Proc. CAV 2001, volume 2102 of LNCS, pages 250—
254, 2001.

S.C.C. Blom, N. loustinova, and N. Sidorova. Timed verification with uCRL. In Proc. PSI 2003, volume
2890 of LNCS, pages 178-192, 2003.

F. Della Croce and V. T’kindt. A recovering beam search algorithm for the one-machine dynamic total
completion time scheduling problem. Journal of the Operational Research Society, 53:1275-1280, 2002.

W.J. Fokkink, J.F. Groote, J. Pang, B. Badban, and J.C. van de Pol. Verifying a Sliding Window Protocol
in uCRL. In Proc. AMAST 2004, volume 3116 of LNCS, pages 148-163, 2004.

W.J. Fokkink, J.F. Groote, and M. Reniers. Modelling Distributed Systems. Unpublished manuscript,
2002.

M.S. Fox. Constraint-Directed Search: A Case Study of Job-Shop Scheduling. PhD thesis, Carnegie
Mellon University, 1983.

H. Garavel, F. Lang, and R. Mateescu. An overview of CADP 2001. In European Association for Software
Science and Technology (EASST) Newsletter, volume 4, pages 13-24, 2002.

References 21

14.
15.

16.

17.

18.

19.
20.
21.

22.

23.

24,

25.

26.
27.

28.

29.
30.

31.

32.
33.
34.

35.

J.F. Groote. The Syntax and Semantics of timed uCRL. Technical Report SEN-R9709, CWI, 1997.

J.F. Groote and M.A. Reniers. Handbook of Process Algebra, chapter 17, pages 1151-1208. Elsevier,
2001.

P.M.C. Hesen. Design of the Clinical Chemical Analyzer. Technical report, Stan Ackermans Institute,
2000.

K.G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int. Journal on Software Tools for Technology
Transfer, 1(1-2):134-152, 1997.

J. Loeckx, H.-D. Ehrich, and M. Wolf. Specification of Abstract Data Types. Wiley-Teubner, Chichester,
Stuttgart, 1996.

B.T. Lowerre. The HARPY speech recognition system. PhD thesis, Carnegie Mellon University, 1976.
S.P. Luttik. Choice Quantification in Process Algebra. PhD thesis, University of Amsterdam, 2002.

R. Mateescu and M. Sighireanu. Efficient On-the-Fly Model-Checking for Regular Alternation-Free Mu-
Calculus. Science of Computer Programming, 46(3):255-281, 2003.

P. Niebert, S. Tripakis, and S. Yovine. Minimum-time reachability for timed automata. In Proc. MED
2000. IEEE, 2000.

P.S. Ow and E.T. Morton. Filtered beam search in scheduling. International Journal of Production Re-
search, 26:35-62, 1988.

P.S. Ow and E.T. Morton. The single machine early/tardy problem. Management Science, 35:177-191,
1989.

P.S. Ow and S.F. Smith. Viewing scheduling as an opportunistic problem-solving process. Annals of
Operations Research, 12:85-108, 1988.

S. Rubin. The ARGOS Image Understanding System. PhD thesis, Carnegie Mellon University, 1978.

T.C. Ruys. Optimal scheduling using Branch-and-Bound with SPIN 4.0. In Proc. 10th International SPIN
Workshop, volume 2648 of LNCS, pages 1-17, 2003.

I. Sabuncuoglu and M. Bayiz. Job shop scheduling with beam search. European Journal of Operational
Research, 118:390-412, 1999.

W.P.C. Spronk. Throughput Analysis of a Clinical Chemical Analyzer. Technical report, TU/e, 1999.

I. Ulidowski and S. Yuen. Extending Process Languages with Time. In Proc. AMAST 97, pages 524-538,
1997.

J.M.S. Valente and R.A.F.S. Alves. Beam search algorithms for the early/tardy scheduling problem with
release dates. Working Paper 143, Faculdade de Economia do Porto, 2004.

J. Vervoort. Model of a Chemical Analyzer. Technical report, TU/e, 1999.
S. Weber. Design of Real-Time Supervisory Control Systems. PhD thesis, TU/e, 2003.

AJ. Wijs and W.J. Fokkink. From x; to uCRL: Combining Performance and Functional Analysis. In
Proc. 10th Conference on Engineering of Complex Computer Systems (ICECCS’05), pages 184-193. IEEE
Computer Society Press, 2005.

A.J. Wijs, J.C. van de Pol, and E. Bortnik. Solving Scheduling Problems by Untimed Model Checking,
The Clinical Chemical Analyser Case Study. In Proc. 10th International Workshop on Formal Methods for
Industrial Critical Systems (FMICS’05), pages 54-61. ACM Press, 2005.

