More Testable Properties*

Ylies Falcone!, Jean-Claude Fernandez?, Thierry Jéron!,
Hervé Marchand', and Laurent Mounier?

! INRIA, Rennes - Bretagne Atlantique, France
2 VERIMAG, Université Grenoble I, France
Firstname.Lastname@Qinria.fr, Firstname.Lastname@Qimag.fr

Abstract. In this paper, we explore the set of testable properties within
the Safety-Progress classification where testability means to establish by
testing that a relation, between the tested system and the property under
scrutiny, holds. We characterize testable properties wrt. several relations
of interest. For each relation, we give a sufficient condition for a property
to be testable. Then, we study and delineate, for each Safety-Progress
class, the subset of testable properties and their corresponding test oracle
producing verdicts for the possible test executions. Finally, we address
automatic test generation for the proposed framework.

1 Introduction

Due to its ability to scale up well and its practical aspect, testing remains one
of the most effective and widely used validation technique for software systems.
However, due to recent needs in the software industry (for instance in terms of
security), it is important to reconsider the classes of requirements this technique
allows to validate or invalidate. The aim of a testing stage may be either to find
defects or to witness expected behaviors on an implementation under test (IUT).
From a practical point of view, a test campaign consists in producing a test suite
(test generation) from some initial system description, and executing it on the
system implementation (test execution). The test suite consists in a set of test
cases, where each test case is a set of interaction sequences to be executed by
an external tester (performed on the points of control and observation, PCOs).
Any execution of a test case should lead to a test verdict, indicating if the system
succeeded or not on this particular test (or if the test was not conclusive).

One way to improve the practical feasibility of a test campaign is to use
a property to drive the test execution. In this case, the property is used to
generate the so-called test purposes [23] so as to select the most relevant test case
behaviors. A property may also represent the desired behavior of the system. In
this setting, the property may be a formalization of a security policy describing
prohibited behaviors and expectations from the users, as considered in [45].
Several approaches (e.g., [6]) combine classical testing techniques and property
verification so as to improve the test activity. Most of these approaches used

* An extended version of this paper with complete proofs can be found in [1J.

A. Petrenko, A. Siméo, and J.C. Maldonado (Eds.): ICTSS 2010, LNCS 6435, pp. 30@ 2010.
© IFIP International Federation for Information Processing 2010

More Testable Properties 31

safety and co-safety properties. A natural question is the existence of other kinds
of properties that can be “tested”, i.e., to define a precise notion of testability.
In [7I8], Nahm, Grabowski, and Hogrefe addressed this issue by discussing
the set of temporal properties that can be tested on an implementation. A pro-
perty is said to be testable if it is possible to determine if a given relation (e.g.,
inclusion) holds between the sequences described by a property and the set of
execution sequences that can be produced by interacting with the TUT, after
the execution of a finite sequence on the IUT. In their work, testability of pro-
perties is studied wrt. the Safety-Progress classification ([9] and Section B) for
infinitary properties. The announced classes of testable properties are the safety
and guarante(ﬂ classes. Then, it is not too surprising that most of the previously
depicted approaches used safety and co-safety properties during testing.

Context. In this paper, we shall use the same notion of testability. We consider
a generic approach, where an underlying property is compared to the possibly
infinite execution sequences of the IUT by a tester. This property expresses finite
and infinité? observable behaviors (which may be desired or not). Usually, IUT’s
execution sequences are expressed in a different alphabet than the one used to
describe the property and have thus to be interpreted. However, testability and
the test oracle problem (i.e., the problem of deciding verdicts) can be studied
while abstracting this alphabet discrepancy. A second characteristic is that we do
not require the existence of an executable specification to generate the test cases.
This allows to encompass several conformance testing approaches by viewing the
specification as a special property.

Motivations and contributions. The main motivation of this paper is to leverage
the use of an extended version of the Safety-Progress classification of properties
dedicated to runtime techniques. We give a precise characterization of testable
properties and provide a formal basis for several previous testing activities. We
extend the results of [7] by showing that lots of interesting properties (neither
safety nor guarantee) are also testable. Moreover, this framework allows to simply
obtain test oracles producing verdicts according to the test execution.

Paper organization. The remainder of this paper is organized as follows. In
Section [2] some preliminary concepts and notations are introduced. A quick
overview of the Safety-Progress classification of properties for runtime validation
techniques is given in Section Bl Section [introduces the notion of testability
considered in this paper. In Section[d, testable properties are characterized. Au-
tomatic test generation is addressed in Section[Gl Next, in Section[7 we overview
the related work and propose a discussion on the results provided by this paper.
Finally, Section [§] gives some concluding remarks and raised perspectives.

! In the Safety-Progress classification the guarantee class is the co-safety class in the
Safety-Liveness classification.

2 The tester observes a finite sequence of the IUT and should state a verdict about all
potential continuations of this execution sequence (finite and infinite ones).

32 Y. Falcone et al.

2 Preliminaries

Given an alphabet of actions X, a sequence o on X is a total function o : I — X
where I is either the interval [0,n] for some n € N, or N itself. The empty
sequence is denoted by e. We denote by X* the set of finite sequences over X
and by X the set of infinite sequences over Y. X* U X% is noted X°°. The
length (number of elements) of a finite sequence o is noted |o| and the (i +1)-th
element of o is denoted by o;. For 0 € X*, 0/ € ¥*°, ¢ - ¢/ is the concatenation
of o and ¢’. The sequence o € X* is a strict prefiz of o/ € X*° (equivalently o’
is a strict continuation of o), noted o < ¢’, when Vi € [0,]|o]| — 1] : 0; = o} and
lo| < |o’|. When ¢/ € £*, wenote 0 <0’ = 6 <0’ Vo =o'. For 0 € ¥ and
n € N, ..., is the sub-sequence containing the n + 1 first elements of 0. The set
of prefixes of ¢ € X is pref(0) = {0’ € £* | ¢/ < o}. For a finite sequence
o € X*, the set of finite continuations is cont*(0) = {0’ € X* | Jo" € ¥* : o' =
o-o"}.

The IUT is a program P abstracted as a generator of execution sequences.
We are interested in a restricted set of operations that influence the truth
value of tested properties and are made on PCOs. We abstract these opera-
tions by an alphabet Y. We denote by Px a program with alphabet X. The
set of execution sequences of Py is denoted by Ezec(Px) C X°°. This set
is prefiz-closed, that is Vo € Ezxec(Ps) : pref(oc) C Ezec(Psx). We will use

Ezecs(Ps) (resp. Erzec,(Px)) to refer to the finite (resp. infinite) execution
def

sequences of Py, that is Ezeci(Px) = Erec(Px) N X* and Erec,(Ps) =
Ezec(Ps) N Xv.

Properties as sets of execution sequences. A finitary property (resp. an infinitary
property, a property) is a subset of execution sequences of X* (resp. X, X°°).
Given a finite (resp. infinite) execution sequence o and a property ¢ (resp. @),
we say that o satisfies ¢ (resp.) when o € ¢, noted ¢(o) (resp. o € ¢, noted
©(0)). A consequence of this definition is that properties we will consider are re-
stricted to linear time execution sequences, excluding specific properties defined
on powersets of execution sequences and branching properties.

Runtime properties [10)]. Runtime properties should characterize satisfaction for
both kinds of sequences (finite and infinite) in a uniform way. To do so, we define
r-properties as pairs IT = (¢, p) C X* x Y. We say that o € Fzec(Pyx) satisfies
(¢,) (noted II(c)) when o € X* A ¢(0) Vo € X% A (o). The definition of
the negation of an r-property follows from definition of the negation for finitary

and infinitary properties. Boolean combinations of r-properties are defined in a
def

natural way. For * € {V, A}, (¢1,01) * (92, 02) = (d1 * P2, 01 * ©2).

An r-property I C X* x X is said to be negatively (resp. positively) deter-
mined [II] by o € X* if —II(0) AV € X : =1l (0 -) (vesp. II(o) AV € X :
II(o -), denoted &—determined (o, II) (resp. ®—determined(o, IT)).

More Testable Properties 33

3 A Safety-Progress Classification for Runtime
Techniques

The Safety-Progress (SP) classification of properties [I2J9] introduced a hierar-
chy between regular (linear time) propertied] defined as sets of infinite execution
sequences. In [10], we extended the classification to deal also with finite-length
execution sequences by revisiting it using runtime properties (r-properties). The
Safety-Progress classification is an alternative to the classical Safety-Liveness
[13/14] dichotomy. Unlike this later, the Safety-Progress classification is a hie-
rarchy and not a partition, and provides a finer-grain classification of properties
in a uniform way according to 4 views [I5]: a language-theoretic view (seeing pro-
perties as sets of sequences), a logical view (seeing properties as LTL formulas),
a topological view (seeing properties as open or closed sets), and an automata
view (seeing properties as accepted words of Streett automata [16]).

A graphical representation of the Safety-
[ﬂ-[ResponR;icsziDtL-sis tmcelﬂ P-rogres.s cl.assiﬁcation of properties is de-
° unrestricted automata picted in Fig. [l Further details and results
can be found in [I7]. Here, we consider only

the language and the automata views.

Response Persistence
‘(Rf(w»R(w))‘ ‘(wa»P(w))
0 R=10

P=

AN / The language-theoretic view of r-properties.
Obligation The language-theoretic view of the SP classi-
[ﬂi[sﬁfﬂJ}): gj‘“jag“”] fication is based on the construction of infini-
Poges ‘ tary properties and finitary properties from
Safety '(~_Guarantee finitary ones. It relies on the use of four op-
[%AL (%Z’))}?,Aﬁ’;)] [(ff_(%)]ff%] erators A, E, R, P (building infinitary pro-

perties) and four operators Ay, Ey, Ry, Py
Fig. 1. SP classification (building finitary properties) applied to fi-
nitary properties. Formal definitions can be

found in [I7]. In the following %) is a finitary property.

A(%) consists of all infinite words o s.t. all prefixes of o belong to ¥. E(¢)
consists of all infinite words o s.t. some prefixes of o belong to 1. R(1)) consists
of all infinite words o s.t. infinitely many prefixes of o belong to 1. P(1)) consists
of all infinite words o s.t. all but finitely many prefixes of o belong to .

Af(1) consists of all finite words o s.t. all prefixes of o belong to . One
can observe that Af(1)) is the largest prefix-closed subset of ¢. Ef(1)) consists
of all finite words o s.t. some prefixes of ¢ belong to 1. One can observe that
E;(¢) = - X*. Ry(v) consists of all finite words o s.t. ¥(0) and there exists
an infinite number of continuations ¢’ of ¢ also belonging to 1. Py(1)) consists
of all finite words o belonging to v s.t. there exists a continuation ¢’ of o s.t. o’
persistently has continuations staying in ¢ (i.e., 0" s.t. ¢’ - ¢” belongs to).

The automata view of r-properties [10]. We define a variant of deterministic
and complete Streett automata (introduced in [I6] and used in [I5]). We add to
original Streett automata an acceptance condition for finite sequences in such a
way that these automata uniformly recognize r-properties.

3 In the remainder of this paper, the term property will stand for regular property.

34 Y. Falcone et al.

P [RHES <l

Safety Guarantee Response Persistence

Fig. 2. Schematic illustrations of the shapes of Streett automata for basic classes

Definition 1 (Streett automaton). A deterministic Streett automaton A is
a tuple (Q*,q2,, X, — 4, {(R1,P1),...,(Rm, Pn)}). The set Q4 is the set of
states, A, € Q% is the initial state. — 4: QA x X — Q4 is the (complete)
transition function. {(R1, P1),...,(Rm, Pm)} is the set of accepting pairs, for all
i<n, Ry C QA and P; C Q™ are the sets of recurrent and persistent states.

We refer to an automaton with m accepting pairs as an m-automaton. A plain-
automaton is a l-automaton, and we refer to Ry and P; as R and P. Moreover,
for o =00 -0,_1 € X* and ¢,¢ € Q*, we note ¢ — ¢ when 3q1,...,qn_2 €
QA ¢ 2% G A A Gro g For ¢ € QA Reach4(q) = {¢' € Q* |
Jo € X"\ {e} : ¢ T4 ¢’} U{q} is the set of reachable states from q. For
o € X the run of o on A is the sequence of states involved by the execution
of o on A. It is formally defined as run(o,A) = qo - q1--- where Vi : (g; €
QAN Reach A(g2)Nt T4 qiv1) Ngo = ¢, For an execution sequence o € X%
on a Streett automaton A, we define vinf(o,.A) as the set of states appearing
infinitely often in run(o, A).

Definition 2 (Acceptance conditions). For o € X%, A accepts o if Vi €
[1,m] : vinf(o, A) N R; # OV vinf(o, A) C P,. For o € X* s.t. |o] =n, A
accepts o if (3qo, ..., qn-1 € QA : run(o, A) = qo- qn-1 Ao = ¢, and
Vi€ [1,m]: q,_1 € PyUR;). A defines an r-property (¢,) € 2 %> iff the set
of finite (resp. infinite) sequences accepted by A is equal to ¢ (resp. ¢).

The hierarchy of r-properties. The hierarchical organization of r-properties can
be seen in the language view using the operators and in the automata view using
syntactic restrictions on Streett automata (illustrated in Fig. 2l for basic classes).

Definition 3 (Safety-Progress classes). An r-property IT defined by (Q*7,
qAn X — 4 (R, Py), ..oy (R, P)}), IT is said to be

— A safety r-property if I = (Af(¢), A(y)) for some v C X* or equivalently
Apr is a plain-automaton s.t. R =0 and there is no transition from P to P.
— A guarantee r-property if II = (E¢(¢), E()) for some) C X* or equivalently
Apr is a plain-automaton s.t. P =0 and there is no transition from R to R.
— An m-obligation r-property if I = (-, (S; (¢)UG; () or IT = \Ji~, (Si(vs)
NG, (1)) where S(¢;) (resp. G(¢})) are safety (resp. guarantee) r-properties
defined over the ¥; and the ¥}; or equivalently Ay is an m-automaton s.t. for

i € [1,m] there is no transition from P; to P; and from R; to R;.
— A response r-property if I = (Rs(¢), R(¢)) for some ¢p C X* or equivalently
Ajr is a plain-automaton s.t. P = ().

More Testable Properties 35

a(}) M . b))
W 5 S
uac

c
(@) v1=a" (b"+c-(c+a)- (b) Streett safety, P = {1,2}

Fig. 3. DFA for ¢, and Streett for (As(¢1), A(¢1))

a b Z
a
b
)

(b) Streett guarantee (c) Streett response

Fig. 4. DFA for 12 and Streett for (Ef(v2), E(¢2)), (Rs(¥2), R(¥2)), R = {3}

— A persistence r-property if II = (Pf(¢), P(y)) for some ¢ C X* or equiva-
lently Apr is a plain-automaton s.t. R = ().

— A reactivity r-property if II is obtained by finite boolean combinations of
response and persistence r-properties or equivalently A is unrestricted.

An r-property of a given class is pure when not belonging to any other sub-class.

Ezample 1 (r-properties). Let us consider X1 = {a, b, ¢} and ¥ = a*- (b*+(:o(c+
a)*-b™) defined by the deterministic finite-state automaton (DFA) in Fig. Balwith
accepting states 1,2. The Streett automaton in Fig. BD defines (Af(¢1), A(1)).
Let Y5 = {a,b}, and the finitary property 12 = (a - b)T recognized by the DFA
depicted in Fig. dal The Streett automaton in Fig. @H (resp. Fig. Fd) represents
the guarantee (resp. response) r-property built upon s.

4 Some Notions of Testability

From its finite interaction with the underlying IUT, the tester produces a se-
quence of events in X*. We study the conditions for a tester, using the produced
sequence of events, to determine whether a given relation holds between the set
of all (finite and infinite) execution sequences that can be produced by the IUT
(Ezec(Pyx)), and the set of sequences described by the r-property II. Roughly
speaking, the challenge addressed by a tester is thus to determine a verdict
between IT and Ezec(Py), from a finite sequence extracted from Ezecs(Px).
Let us recall that the r-property is a pair made of two sets: a set of finite
sequences and a set of infinite sequences. In the sequel, we shall compare this
pair to the set of execution sequences of the IUT which is a set constituted of
finite and infinite sequences. As noticed in [7], one may consider several possible
relations between the execution sequences produced by the program and those

4 Or from a finite set of finite sequences, as a straightforward extension.

36 Y. Falcone et al.

described by the property. Those relations are recalled here in the context of
r-properties. In [I], further relations are studied.

Definition 4 (Relations between IUT sequences and an r-property [7]).
The possible relations of interest between Exec(Psx) and II are:

— Ezecs(Ps) CIINX* and Exec,(Ps) CIINXY (noted Exec(Ps) C II).
— Ezece(Ps)N(IINX*) # 0 and Exec,(P)N(IINXY) # 0 (noted Exec(Ps)NII # ().

The test verdict is thus determined according to the conclusions that one can
obtain for the considered relation. In essence, a tester can and must only deter-
mine a verdict from a finite interaction o € Ezecs(Px). In Section [we will
study the conditions to state weaker verdicts on a single execution sequence.

Definition 5 (Verdicts [7]). Given a relation R between Exec(Ps) and IT and
a test execution o, the tester produces verdicts as follows:

— pass if o allows to determine that R holds;
— fail if o allows to determine that R does not hold;
— unknown otherwise.

We note verdict (o, R(Exec(Px), IT)) the verdict that the observation of o allows
to determine. Let us remark the two following practical problems:

— In general, the IUT may be a program exhibiting infinite-length execution
sequences. Obviously these sequences cannot be evaluated by a tester wrt. I1.

— Moreover, finite execution sequences contained in the r-property cannot be
processed easily. For instance, if the test execution exhibits a sequence o ¢ I,
deciding to stop the test is a critical issue. Actually, nothing allows to claim
that a continuation of the test execution would not exhibit a new sequence
belonging to the r-property, i.c., o’ € X s.t. o -0’ € II.

Thus, the test should be stopped only when there is no doubt regarding the
verdict to be established. Following [7], we propose a notion of testability, that
takes into account the aforementioned practical limitations, and that is set in the
context of the Safety-Progress classification. We suppose the existence of a tester
that can interpret the execution sequences with the IUT Pyx on Erect(Px).

Definition 6 (Testability). An r-property II is said to be testable on Px wrt.
the relation R if there exists an execution sequence o € X* s.t.:

o € Exect(Pyx) = verdict(o, R(Ezxec(Px), II)) € {pass, fail}

Intuitively, this condition compels the existence of a sequence which, if played
on the IUT, allows to determine for sure, whether the relation holds or not. Let
us note that this definition entails to synthesize a test oracle which allows to
determine R(Ezec(Pyx), II) from the observation of a sequence o € Ezece(Px).

A test oracle is a finite state machine (FSM) parametrized by a test relation
as shown in Definition @l It reads incrementally an interaction sequence o €
Ezece(Py;) and produces verdicts in {pass, fail, unknown}.

More Testable Properties 37

Definition 7 (Test Oracle). A test oracle O for an IUT Px, a relation R and
an r-property II is a 4-tuple (Q©,q%,, — o0, I'C). The finite set Q° denotes
the control states and ¢S, € Q© is the initial state. The complete function
—0: Q9 x ¥ — QO is the transition function. The output function I'C :
Q° — {pass, fail, unknown} produces verdicts with the following constraints:

— all states emitting a pass or a fail verdict are final (sink states),
— 3o € Erecs(Px) : ¢©, T0 ¢ AT'(q) = pass = R(Ezxec(Px), II),

init

— 3o € Ezrect(Px) : ¢C, 0 ¢ AT(q) = fail = =R (Evec(Ps),).

init

5 Testable Properties without Executable Specification

The framework of r-properties (Section [3)) allows to determine the testability
of the different classes of properties using positive and negative determinacy.
Moreover, this framework provides a computable oracle, which is a sufficient
condition for testing. Furthermore, we will be able to characterize which test
sequences allow to establish sought verdicts. Then, we will determine which
verdict has to be produced in accordance with the played test sequence.

In this paper, we focus on the relation Frec(Pys) C II. Characterizations for
the relation Fzec(Px) N II # § (by duality) and others relations are in [I].

Obtainable verdicts and sufficient conditions. For this relation, the unique ver-
dicts that may be produced are fail and unknown. We explicit this below.

A pass verdict means that all execution sequences of Py belong to I1. The
unique case where it is possible to establish a pass verdict is in the trivial case
where IT = (X*, X%), i.e., the r-property IT is always verified. Obviously, every
implementation with alphabet X' satisfies this relation. In other cases, it is im-
possible to obtain such a verdict (whatever is the property class under considera-
tion), since the whole set Py is usually unknown from the tester. In Section[H] we
will study the conditions under which it is possible to state weak pass verdicts,
when reasoning on a single execution sequence of the IUT.

A fail verdict means that there exists some sequences of the program which
are not in I7. In order to produce this verdict, a sufficient condition is to exhibit
an execution sequence of Py s.t. IT is negatively determined by this sequence:

Jdo € Fzecs(Pyx) : ©—determined (o, II) = wverdict(o, Exec(Px) C IT) = fail

Testability of this relation in the Safety-Progress classification. For each SP class,
we state the conditions under which the properties of this class are testable.

Theorem 1 (Testability of Evec(Ps) C IT). For Ag = (QA7,¢ 1, —4,,,
{(R1,P1),...,(Rm, Pn)}) recognizing an r-property II, according to the class
of I, the testability conditions expressed both in the language-theoretic and au-
tomata views are given in Table [

38 Y. Falcone et al.

Table 1. Summary of testability results wrt. the relation Ezec(Px) C II

Efl;fi()('Pg) cII Testability Condition Testability Condition
(language view) (automata view)
Safety
(A;(¥), A¥)) |[R=0,P = P Y #0 P#0
Guarantee
(E/(4), B@))IP=0,R = R {o € | pref(0) U cont* (o) C ¥} # 0 {4 € R| Reacha,(g) C R} #0
Obligation
Nz (i) U Gi(w)) Ui, (i n{o € v) | pref (o) U cont™ (o) C ¥7}) # 0
Uisa (Si() N Gi(wh)) Mizy (s U {0 € W) | pref (o) U cont™ (o) € 4i}) # 0
Pi+ P, Ri » R; UiZi(P. N {g € R | Reachay(q) C Ri}) # 0
Response
(Ry(6), Rw)) [P =0 {o€ v cont*(0) C v} £0 {a€ R| Reacha, (a) C R} #0
Persistence
(Py(¥), P¥) [R =0 {o€v| cont*(0) C v} #0 {a€ P | Reach.a, (q) C P} #0

Verdicts to deliver. We now state the verdicts that should be produced by a tester
for the possibly infinite sequences of the IUT. Each testability condition in the
language view is in the form f({1;};) # 0 where the ¢»; C X* (i € [1,n]) are used
to build the r-property and f is a composition of set operations on ;. When
o € Execs(Px)N f({1i}i), the test oracle should deliver fail since the underlying
r-property is negatively determined. Conversely, when o € Ezecs(Px)\ f({v:}4),
the test oracle can deliver unknown. In practice, those verdicts are determined
by a computable function, reading an interaction sequence, i.e., a test oracle. In
our framework, the test oracle is obtained from a Streett automaton:

Property 1 (Test oracle for the relation Exec(Ps) C IT). Given Ay = (Q47,
qrn . 8 — 4 {(R1, P1),...,(Rm, Py)}) defining IT, the test oracle (Q°,
q©., —0,'?) for therelation Evec(Psx) C IT is defined as follows. Q© is the smal-
lest subset of Q77 , reachable from ¢©, by — o (defined below) with ¢, = ¢ .

init init

— I'9 is defined as follows:
— If IT is a pure safety, guarantee, obligation, or response property I"® (q) =
fail if g € Ule(P,» N{q € R; | Reach s, (q¢) C R;} and unknown otherwise,
— If IT is a pure persistence property 1'% (q) = fail if ¢ € {q € P | Reach4,,(q)
C P} and unknown otherwise;
— — is defined as the smallest relation verifying:
—q-S0qifdee X,3¢ €Q°:q -4, ¢ and I'°(q) = fail,
— —p=—>4, otherwise.
The proof of this property follows from Theorem [l and Definition [

Ezample 2 (Testability of some r-properties wrt. Exec(Px) C II). We present
the testability of three r-properties introduced in Example[d The safety r-property
IT, is testable wrt. the relation Exec(Px,) C II . Indeed in the language view,
there are sequences belonging to 1y (the corresponding DFA has a non accept-
ing state). In the automata view, we have sink € P (reachable from the initial
state). The guarantee r-property s is testable wrt. the relation Exec(Px,) C Ils.

5 The test oracle can be also obtained from the r-properties described in others views
(language, logic). Indeed, in [I7] we describe how to express an r-property in the
automata view from its expression in the language or the logic view.

More Testable Properties 39

Indeed, there are sequences belonging to s s.t. all prefizes of theses sequences and
all its continuations are also in o. In the automata view, there is a (reachable)
state in R from which all reachable states are in R. The response r-property I3
is testable wrt. the relation Exec(Psx,) C II3. Indeed, there are sequences belon-
ging to o s.t. all continuations of these sequences belong to 1. In the automata
view, there is a (reachable) state in R from which all reachable states are in R.
Thus, we have clarified and extended some results of [7]. First, we have shown
that the safety r-property (X*, X¢) always lead to a pass verdict and is vacuously
testable. Moreover, we exhibited some r-properties of other classes which are
testable, i.e., some obligation, response, and persistence r-properties.

Refining verdicts. Similarly to the introduction of weak truth values in runtime
verification [I8ITO0I17], it is possible to introduce weak verdicts in testing. In this
respect, stopping the test and producing a weak verdict consists in stating that
the test interaction sequence produced so far belongs (or not) to the property.
The idea of satisfaction “if the program stops here” in runtime verification [I8/10]
corresponds to the idea of “the test has shown enough on the implementation” in
testing. In this case, testing would be similar to a kind of “active runtime verifica-
tion”: one is interested in the satisfaction of one execution of the program which
is steered externally by a tester. Basically, it amounts to not seeing testing as a
destructive activity, but as a way to enhance confidence in the implementation
compliance wrt. a property.

Under some conditions, it is possible to determine weak verdicts for some
classes of properties in the following sense: the verdict is expressed on one single
execution sequence o, and it does not afford any conclusion on the set Ezec(Px).

We have seen that, for Exec(Pyx) C I1, the only verdicts that can be produced
were fail and unknown. Clearly, fail verdicts can still be produced. Furthermore,
unknown verdicts can be refined into weak pass verdicts when the sequence o
positively determines the r-property. In this case, the test can be stopped since
whatever is the future behavior of the IUT, it will exhibit behaviors that will
satisfy the r-property. In this case, it seems reasonable to produce a weak pass
verdict and consider new test executions in order to gain in confidence.

We revisit, for each Safety-Progress class, the situations when weak pass ver-
dicts can be produced for this relation.

For safety r-properties. Let Il be a safety r-property, then there exists ¢p C X*
s.t. IT can be expressed (Af(), A(y)). When the produced sequence belongs to
{o € Y| pref(c) U cont*(c) C 1}, the tester can produce a weak pass verdict.

For guarantee r-properties. Let II be a guarantee r-property, then there exists
1 C X* s.t. I can be expressed (Ey(¢), E(¥)). It is possible to produce a weak
pass verdict if the set 1) is not empty: guarantee r-properties are always positively
determined when they are satisfied.

For obligation r-properties. Let II be an m-obligation r-property.

- Ifform € N*, I is expressed (), (S; (4;) UG, () where S;(1;) (vesp. Gi(¢}))
is a safety (resp. guarantee) r-property built upon 1; (resp. ¥!), ¢ € [1,m]. The
tester can produce a weak pass verdict when the interaction sequence belongs

to ﬂ?; Vi

40 Y. Falcone et al.

- If for m € N*, IT is expressed |~ (S (:)NG;(¢})) where S;(¢;) (vesp. G;(¢}))
is a safety (resp. guarantee) r-property built upon 1; (resp. ¢}), i € [1,m]. The
tester can produce a weak pass verdict when the interaction sequence produced
by the program belongs to (J;~, ({o € ¢; | pref (o) U cont* (o) C ¢} NL).

For response and persistence r-properties. The reasoning is similar to the one
used for safety r-properties. Let II be a response (resp. persistence) r-property,
then there exists ¢ C X* s.t. IT can be expressed (Rf(¢), R(¢)) (resp. (Pr(¢),
P(v)))). When the interaction sequence belongs to {o € 9 | pref (o) U cont™ (o) C
¥}, the tester can produce a weak pass verdict.

6 Automatic Test Generation

In this section, we address test generation for the testing framework introduced
in this paper. Here, test generation is based on r-properties, and the purpose
of the test campaign is to detect verdicts for a relation between an r-property
and an IUT. Before entering into the details of test generation, we first discuss
informally some practical constraints that have to be taken into account for test
generation. After that, we are able to compute the canonical tester, discuss test
selection, and show how quiescence can be taken into account in our framework.

Which sequences should be played? The sequences of interest to play on the
IUT are naturally those leading to a fail or a weak pass verdict and these can
be used to generate test cases. In the language view (resp. automata view),
these sequences are those belonging to the exhibited sets (resp. leading to the
exhibited set of states) in testability conditions. For instance, for a safety r-
property ITs = (Af (), A(¢)) built upon 9, and defined by a safety automaton
Az, one should play sequences in ¥ or equivalently those leading to P in Ap,.

When to stop the test? When the tested program produces an execution sequence
o € X* araised question is when to safely stop the test. Obviously, a first answer
is when a fail or weak pass verdict has been issued since this verdict is definitive.
Although in other cases, when the test interactions produced some test sequences
leading so far to unknown evaluations, the question prevails. It remains to the
tester appraisal to decide when the test should be stopped (see Section [6.2)).

Vocabularies and test architecture. In order to address test generation, we will
need to distinguish inputs and outputs and the vocabularies of the IUT and the
r-property. The alphabet X' of the property is now partitioned into X» (input
actions) and X\ (output actions). The alphabet of the IUT becomes X'V" and is
partitioned into X3Y" (input actions) and X{Y" (output actions) with Xy = X207
and Xy = X{Y". As usual, we also suppose that the behavior of the IUT can be
modeled by an IOLTS T = (Q%, ¢, X'V, —1).

6.1 Computation of the Canonical Tester

We adapt the classical construction of the canonical tester for our framework.
The canonical tester that we build for a relation R between an IUT Py and

More Testable Properties 41

a r-property II is purposed to detect all verdicts for the relation between the
r-property and all possible interactions that can be produced with Ps.

We define canonical testers from Streett automata. To do so, we will use a
set of subsets of Streett automaton states that we introduced in [10] for runtime
verification. For a Streett automaton Ay, the sets GA” GA” BAH BA7 form
a partition of Q47 and designate respectively the good (resp currently good,
currently bad, bad) states:

- GAn = {quA”ﬂﬂi 1(P;) | Reachay(q) gﬂiﬂ i U P;)}
— G ={q e QM NN, (R UP) | Reacha, (q) € N~y (Rs U Py)}
— B{" ={qe QN 1(RmP) | Reachay (q) £ Ui~y (Ri N Pi)}
— BAn —{qEQA”ﬁul L(RiN Py) | Reacha,(q) CUL, (RiNP:)}

It is possible to show [10] that if a sequence o reaches a state in BA1 (resp. GA17),
then the underlying property IT is negatively (resp. positively) determined by o.
The canonical tester is defined as follows.

Definition 8 (Canonical Tester). From a Streett automaton A = (QA1,
qrn . —— 4 (R, Py, (R, P)}) defining a testable r-property II, the
canonical tester is the IOLTS T = (QT,qL.,, X, —1) defined as follows:

— Q" = BA1 U G4 U {Fail}y U { WeakPass} with ¢
— — s deﬁned as follows:

Ve € X : Fail ¢ Fail N WeakPass —7 WeakPass,

q 7 Fail if ¢ =554, ¢ N¢' € BAT, for any e € X,

q —7 WeakPass if ¢ —>4,, ¢ Nq € GA1, for any e € X,
q-7d ifq—4, ¢ Nq,d € GATUBAT, for any e € X,

init ~ qm;: ’

A Streett automaton is transformed as follows. Transitions leading to a bad
(resp. good) state are redirected to Fail (resp. WeakPass). Those latest states
are terminal: the test can be stopped and the verdict produced.

6.2 Test Selection

For a given r-property, the set of potential sequences to be played is infinite. In
practice, one may use the underlying Streett automaton to constrain the states
that should be visited during a test. Furthermore, as usual, one needs to select
a test case that is controllable [3]. It can be done on the canonical tester by first
disabling input actions that do not permit to reach sought verdicts. Second, for a
state in which several input actions are possible, one needs to generate different
test cases with one input per state. More details can be found in [I].

Test selection plays also a role to state weak pass verdicts. Indeed, when deal-
ing with sequences satisfying a r-property so far and not positively determining
it, test selection should plan the moment for stopping the test. It can be, for
instance, when the test lasted more than a given expected duration or when the
number of interactions with the IUT is greater or equal than an expected number.
However, one should not forget that there might exist a continuation, that can
be produced by letting the test execution continue, not satisfying the r-property
or even negatively determining it. Here, it thus remains to the tester expertise
to state the halting criterion (possibly using quiescence, see Section [6.3)).

42 Y. Falcone et al.

6.3 Introducing Quiescence

Quiescence [19/3] was introduced in conformance testing in order to represent
IUT’s inactivity. In practice, several kinds of quiescence may happen (see [3] for
instance). Here we distinguish two kinds of quiescence. Outputlocks (denoted d,)
represent the situations where the IUT is waiting for an input and produces no
outputs. Deadlocks (denoted d4) represent the situations where the IUT cannot
interact anymore, e.g., its execution is terminated or it is deadlocked. Thus, we
introduce those two events in the output alphabet of the IUT. We have now the
following additional alphabets: X\§" = X/Y" U {d,, da}, X3"" = DN SNUDI LES

We also have to distinguish the set of traces of the IUT from the set of poten-
tial interactions with the IUT. This latest is based on the observable behavior
of the TUT and potential choices of the tester. The set of executions of the
IUT is now Ezec(Psrur) C (X5Y")%°. The set of interactions of the tester with
the TUT is Inter(X'V7") C (X" + 6,)* - (04 + €), i.e., the tester can observe
TIUT’s outputlocks and finishes by the observation of a deadlock or program ter-
mination. When considering quiescence, characterizing testable properties now
consists in comparing the set of interactions to the set of sequences described by
the r-property. The intuitive ideas are the following;:

— the tester can observe self-terminated executions of the IUT with dg4,
— the tester can decide to terminate the program when observing an outputlock.

The notion of negative determinacy is now modified in the context of quiescence
as follows. We say that the r-property II is negatively determined upon quies-
cence by the sequence o € Inter(Psgrvr) (denoted ©—determined—q(o, IT)) if
S—determined (o s, IT) V (|o] > 1 Alast(o) € {64,00} A —II((0...|5|—2)
where o _,,, is the projection of o on X'97.

For the proposed approach, the usefulness of quiescence lies in the fact that
the current test sequence does not have any continuation. Consequently, testa-
bility conditions may be weakened. Indeed, when one has determined that the
current interaction with the IUT is over, it is not necessary that the r-property
should be evaluated in the same way. In some sense, it amounts to consider that
the evaluation produced by the last event before observing quiescence “termi-
nates” the execution sequence. Thus, if the r-property is not satisfied by the last
observed sequence, then the r-property is negatively determined by it.

l):IUT)7

Revisiting previous results. With quiescence, the purpose of the tester is now to
“drive” the IUT in a state in which the underlying r-property is not satisfied,

»r ST
: & 507" WPass o R P Iy P p)
WPass : P 5 T 4 WPaSE_ ?34 Unknown V do WPaSE 75,1 Unknown v do
4 04 |Unknown [s% E'“' (\ T I pOLCES I
H Yo %) e N
»ir v] <. R J : v ‘A_‘.:»» Y V ‘.:_‘__ -y
»r ‘ Fail Fall 04 | Unknown 7 Fail <~ R) Fail : P)
d | Unknown .- 60 (5(1 Unknown v 6“
Safety Guarantee .
Response Persistence

Fig. 5. Schematic illustrations of the canonical tester for basic classes

More Testable Properties 43

Table 2. Testability wrt. Inter(Pgrur) C II with quiescence

Ezec(Px) C II Possible Verdicts Testability Condition
Safety fail, unknown
(Ar(¥), A(¥)) v#0
Guarantee fail, unknown
(Er(v), E(¥)) {o €| pref(o) Cy}}#0
Obligation fail, unknown
N1 (S:(w) U Gi(w)) Uiy (i 0 {0 € v | pref (o) C i) #0
Ui (Si(w) N Ga(wh) Nizs (¥s U{o €9} [pref(o) C o} #0
Response fail, unknown
(Ry (), R(¥)) #£D
Persistence fail, unknown
(Pr(¥), P(¥)) Y #0

and then observe quiescence. Informally, the testability condition relies now on
the existence of a sequence s.t. the r-property is not satisfied. Testability results,
upon the observation of quiescence and in order to produce fail verdicts when
the tested r-property is not satisfied, are updated using the notion of negative
determinacy with quiescence as shown in Table

The canonical tester construction is also updated by adding the following
rules for —sp: Vg € BT 1 g MiT Fail, Vg € G211+ ¢ Lor qNq i>T WeakPass.
Illustrations of the construction of the canonical tester for basic classes with
quiescence is given in Fig.[B] where the original (resp. modified) transitions from
the Streett automaton are in plain (resp. dotted) lines.

Ezample 3 (Testability with quiescence). We illustrate the usefulness of quies-
cence. Consider the IUT depicted in Fig.[0d with observable actions X3¥" = {?a}
and X{V" = {Ib}. This IUT waits for an ?a, produces a b, and then non deter-
ministically terminates or waits for an Ta, and repeats the behavior consisting
in recewing an 7a and producing a 'b. The executions and possible interactions
with the tester are (“¢” and “I” are not represented and x* stands for x +¢€):

Ezec(Pyivr) = 6, - <a& Fa-be(0a+0%) (a- [0, ((a-b)¥)]" a&)&>

Inter(Pyror) = 8, (-5 - (5a+6,%) - (a- [5,% - (a- 1)) - 6,5)%) "
Now let us consider the r-property defined by the Streett automaton depicted in
Fig. [6B. Its vocabulary is {?a,!b}, and it has one recurrent state: R = {1}. The
underlying r-property states that every input 7a should be acknowledged by an out-
put !b. Though being not testable under the conditions expressed in Section[d, this
r-property is testable with quiescence. One can observe that Inter(Pxvr) € I1

b
10, 10,
vy 8 & e o
50 b 27 < 7a A 2 (%
0 L2, o b o 164 o oe
(a) IUT (b) Response r- (c) Canonical tester

property
Fig. 6. Illustrating the usefulness of quiescence

44 Y. Falcone et al.

because the existence of Ta-'b-7a-18, in Inter(Pxivr). The synthesized canonical
tester is depicted in Fig.[6d.

7 Related Work and Discussion

In this section we overview related work or work that may be leveraged by the
results proposed in this paper. Then, we propose a discussion on the results
afforded by this paper. A deeper treatment of related work is provided in [I].

Testing oriented by properties for generating test purposes. One of the limits of
conformance testing [19] lies in the size of the generated test suite which can be
infinite or impracticable. Some testing approaches oriented by properties were
proposed to face off this limitation by focusing on critical properties. In this case,
properties are used as a complement to the specification in order to generate test
purposes which will be then used to conduct and select test cases [3J20]. For a
presentation of some general approaches, the reader is referred to [21].

Combining testing and formal verification. In [6], the complementarity between
verification techniques and conformance testing is studied. Notably, the authors
shown that it is possible to detect (using testing) violations of safety (resp.
satisfaction of co-safety) properties on the implementation and the specification.

Requirement-Based testing. In requirement-based testing, the purpose is to gen-
erate a test suite from a set of informal requirements. For instance, in [2223], test
cases are generated from LTL formula using a model-checker. Those approaches
were interested in defining a syntactic test coverage for the tested requirements.

Property testing without a behavioral specification. In previous approaches, we
used the notion of tiles which are elementary test modules testing specific parts
of an implementation and which can be combined to test more complex behaviors
using a property (see [24125]).

Using the Safety-Progress classification in validation techniques. The Safety-
Progress classification of properties is rarely used in validation techniques. We
used (e.g., [10]) the Safety-Progress classification to characterize the sets of pro-
perties that can be verified and enforced during the runtime of systems. In some
sense, this previous endeavor similarly addressed the expressiveness question for
runtime verification and runtime enforcement.

Discussion. Several approaches fall in the scope of the generic one proposed in this
paper. For instance, our results apply and extend the approach where verification
is combined to testing as proposed in [6]. Furthermore, this approach leverages the
use of test purposes [2I3] in testing to guide test selection. Indeed, the characteriza-
tion of testable properties gives assets on the kind of test purposes that can be used
in testing. Moreover, the properties considered in this paper are framed into the
Safety-Progress classification of properties [I2J9] which is equivalently a hierarchy
of regular properties. Thus the results proposed by this paper concern previous de-
picted approaches in which the properties at stake can be formalized by a regular

More Testable Properties 45

language. Furthermore, classical conformance testing falls in the scope of the pro-
posed framework. Indeed, suspended traces of an implementation preserving the
ioco relation wrt. a given specification can be expressed as a safety property [6].

8 Conclusion and Perspectives

Conclusiton. In this paper, we study the space of testable properties. We use a
testability notion depending on a relation between the set of execution sequences
that can be produced by the underlying implementation and the r-property. Lever-
aging the notions of positive and negative determinacy of properties, we have iden-
tified for each Safety-Progress class and according to the relation of interest, the
testable fragment. Moreover we have seen that the framework of r-properties in the
Safety-Progress classification provides a decidable test oracle in order to produce
a verdict depending on the interaction between the tester and the IUT. Further-
more, we also propose some conditions under which it makes sense for a tester to
state weak verdicts. Finally, results of this paper are implemented in an available
prototype tool for which a description is given in [I].

Perspectives. A first research direction is to investigate the set of testable pro-
perties for more expressive formalisms. Indeed, the Safety-Progress classification
is concerned with regular properties, and classifying testable properties for e.g.,
context-free properties would be of interest. Another perspective is to combine
the approach proposed with weak verdicts to a notion of test coverage. Indeed, in
order to bring any confidence in the fact that e.g., the implementation respects
the property, it involves to execute the test several times to make it relevant.
The various approaches [22I23] for defining test coverage for property-oriented
testing could be used to reinforce a set of weak verdicts.

References

1. Falcone, Y., Fernandez, J.C., Jéron, T., Marchand, H., Mounier, L.: More Testable
Properties. Technical Report 7279, INRIA (2010)

2. Koch, B., Grabowski, J., Hogrefe, D., Schmitt, M.: Autolink: A Tool for Auto-
matic Test Generation from SDL Specifications. In: Industrial-Strength Formal
Specification Techniques (1998)

3. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. International Journal
on Software Tools for Technology Transfer (STTT), 297-315 (2005)

4. Traon, Y.L., Mouelhi, T., Baudry, B.: Testing Security Policies: Going Beyond Func-
tional Testing. In: Int. Symp. on Software Reliability Engineering, pp. 93-102 (2007)

5. Mallouli, W., Orset, J.M., Cavalli, A., Cuppens, N., Cuppens, F.: A Formal Ap-
proach for Testing Security Rules. In: SACMAT 2007: Proceedings of the 12th
ACM symposium on Access control models and technologies, pp. 127-132. ACM,
New York (2007)

6. Constant, C., Jéron, T., Marchand, H., Rusu, V.: Integrating Formal Verification
and Conformance Testing for Reactive Systems. IEEE Trans. Software Eng. 33,
558-574 (2007)

7. Nahm, R., Grabowski, J., Hogrefe, D.: Test Case Generation for Temporal Proper-
ties. Technical report, Bern University (1993)

46

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Y. Falcone et al.

Grabowski, J.: SDL and MSC based test case generation— an overall view of the
SAMSTAG method. Technical report, University of Berne IAM-94-0005 (1994)
Chang, E., Manna, Z., Pnueli, A.: Characterization of Temporal Property Classes.
In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 474-486. Springer, Heidelberg
(1992)

Falcone, Y., Fernandez, J.C., Mounier, L.: Runtime Verification of Safety-Progress
Properties. In: The 9th Int. Workshop on Runtime Verification, pp. 40-59 (2009)
Pnueli, A., Zaks, A.: PSL Model Checking and Run-Time Verification Via Testers.
In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp.
573-586. Springer, Heidelberg (2006)

Manna, Z., Pnueli, A.: A Hierarchy of Temporal Properties (invited paper 1989).
In: PODC 1990: Proceedings of The 9th symp. on Principles Of Distributed Com-
puting, pp. 377-410. ACM, New York (1990)

Lamport, L.: Proving the Correctness of Multiprocess Programs. IEEE Trans.
Softw. Eng., 125-143 (1977)

Alpern, B., Schneider, F.B.: Defining Liveness. Technical report, Cornell University,
Ithaca, NY, USA (1984)

Chang, E., Manna, Z., Pnueli, A.: The Safety-Progress Classification. Technical
report, Stanford University, Dept. of Computer Science (1992)

Streett, R.S.: Propositional Dynamic Logic of looping and converse. In: STOC
1981: Proceedings of the 13th Symp. on Theory Of computing, pp. 375-383. ACM,
New York (1981)

Falcone, Y., Fernandez, J.C., Mounier, L.: What can You Verify and Enforce at
Runtime? Technical Report TR-2010-5, Verimag Research Report (2010)

Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL Semantics for Runtime
Verification. Journal of Logic and Computation (2009)

Tretmans, J.: Test Generation with Inputs, Outputs, and Quiescence. In: Margaria,
T., Steffen, B. (eds.) TACAS 1996. Tretmans, J, vol. 1055, pp. 127-146. Springer,
Heidelberg (1996)

de Vries, R.G.: Towards formal test purposes. In: FATES 2001: Formal Approaches
to Testing of Software, pp. 61-76 (2001)

Machado, P.D.L., Silva, D.A., Mota, A.C.: Towards Property Oriented Testing.
Electron. Notes Theor. Comput. Sci., 3-19 (2007)

Rajan, A., Whalen, M., Heimdahl, M.: Model Validation using Automatically Gen-
erated Requirements-Based Tests. In: HASE 2007: 10th IEEE Symposium on High
Assurance Systems Engineering, pp. 95-104 (November 2007)

Pecheur, C., Raimondi, F., Brat, G.: A Formal Analysis of Requirements-based
Testing. In: ISSTA 2009: Proceedings of the 18th International Symposium on
Software Testing and Analysis, pp. 47-56. ACM, New York (2009)

Darmaillacq, V., Fernandez, J.C., Groz, R., Mounier, L., Richier, J.L.: Test Gener-
ation for Network Security Rules. In: Uyar, M.U., Duale, A.Y., Fecko, M.A. (eds.)
TestCom 2006. LNCS, vol. 3964, pp. 341-356. Springer, Heidelberg (2006)
Falcone, Y., Fernandez, J.C., Mounier, L., Richier, J.L..: A Compositional Test-
ing Framework Driven by Partial Specifications. In: Petrenko, A., Veanes, M.,
Tretmans, J., Grieskamp, W. (eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp.
107-122. Springer, Heidelberg (2007)

	More Testable Properties
	Introduction
	Preliminaries
	A Safety-Progress Classification for Runtime Techniques
	Some Notions of Testability
	Testable Properties without Executable Specification
	Automatic Test Generation
	Computation of the Canonical Tester
	Test Selection
	Introducing Quiescence

	Related Work and Discussion
	Conclusion and Perspectives
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

