
Synthesis from Component Libraries?

Yoad Lustig?? and Moshe Y. Vardi

Rice University, Department of Computer Science, Houston, TX 77251-1892, U.S.A.
Email:{yoad,vardi}@cs.rice.edu,

URL: http://www.cs.rice.edu/∼yoad http://www.cs.rice.edu/∼vardi

Abstract. Synthesis is the automated construction of a system from its specifi-
cation. In the classical temporal synthesis algorithms, it is always assumed the
system is “constructed from scratch” rather than “composed” from reusable com-
ponents. This, of course, rarely happens in real life. In real life, almost every
non-trivial commercial system, either in hardware or in software system, relies
heavily on using libraries of reusable components. Furthermore, other contexts,
such as web-service orchestration, can be modeled as synthesis of a system from
a library of components.
In this work we define and study the problem of LTL synthesis from libraries
of reusable components. We define two notions of composition: data-flow com-
position, for which we prove the problem is undecidable, and control-flow com-
position, for which we prove the problem is 2EXPTIME-complete. As a side
benefit we derive an explicit characterization of the information needed by the
synthesizer on the underlying components. This characterization can be used as
a specification formalism between component providers and integrators.

1 Introduction

The design of almost every non-trivial commercial system, either hardware or software
system, involves many sub-systems each dealing with different engineering aspects and
each requiring different expertise. For example, a software application for an email
client contains sub-systems for managing graphic user interface and sub-systems for
managing network connections (as well as many other sub-systems). In practice, the
developer of a commercial product rarely develops all the required sub-systems himself.
Instead, many sub-systems can be acquired as collections of reusable components that
can be integrated into the system. We refer to a collection of reusable components as a
library.1

? Work supported in part by NSF grants CCR-0124077, CCR-0311326, CCF-0613889, ANI-
0216467, and CCF-0728882, by BSF grant 9800096, and by gift from Intel.

?? Part of this research was done while this author was at the Hebrew University in Jerusalem.
1 In the software industry, every collection of reusable components is referred to as a “library”. In

the hardware industry, the term “library” is sometimes reserved for collections of components
of basic functionality (e.g., logical and-gates with fan-in 4), while reusable components with
higher functionality (e.g., an ARM CPU) are sometimes referred to by other names (such as IP
cores). In this paper we refer to any collection of reusable components as a library, regardless
of the level of functionality.

The exact nature of the reusable components in a library may differ. The litera-
ture suggest many different types of components. For example: IP cores (in hardware),
function libraries (for procedural programming languages), object libraries (for object
oriented programming languages), and aspect libraries (for aspect oriented program-
ming languages). Web-services can also be viewed as reusable components used by an
orchestrator.

Synthesis is the automated construction of a system from its specification. The ba-
sic idea is simple and appealing: instead of developing a system and verifying that it
adheres to its specification, we would like to have an automated procedure that, given a
specification, constructs a system that is correct by construction. The first formulation
of synthesis goes back to Church [1]; the modern approach to that problem was initiated
by Pnueli and Rosner who introduced LTL (linear temporal logic) synthesis [2]. In LTL
synthesis the specification is given in LTL and the system constructed is a finite-state
transducer modeling a reactive system.

In the work of Pnueli and Rosner, and in the many works that followed, it is always
assumed that the system is “constructed from scratch” rather than “composed” from
reusable components. This, of course, rarely happens in real life. In real life, almost ev-
ery non-trivial system is constructed using libraries of reusable components. In fact, in
many cases the use of reusable components is essential. This is the case when a system
is granted access to a reusable component, while the component itself is not part of the
system. For example, a software system can be given access to a hard-disk device driver
(provided by the operating system), and a web-based system might orchestrate web ser-
vices to which it has access, but has no control of. Even when it is theoretically possible
to design a sub-system from scratch, many times it is desirable to use reusable com-
ponents. The use of reusable components allows to abstract away most of the detailed
behavior of the sub-system, and write a specification that mentions only the aspects of
the sub-system relevant for the synthesis of the system at large.

We believe therefore, that one of the prerequisites of wide use of synthesis algo-
rithms is support of synthesis from libraries. In this work, we define and study the
problem of LTL synthesis from libraries of reusable components.

As a perquisite to the study of synthesis from libraries of reusable components, we
have to define suitable models for the notions of reusable components and their com-
position. Indeed, there is no one correct model encompassing all possible facets of the
problem. The problem of synthesis from reusable components is a general problem to
which there are as many facets as there are models for components and types of compo-
sition. Components can be composed in many ways: synchronously or asynchronously,
using different types of communications, etc. . As an example for the multitude of
composition notions see [3], where Sifakis suggests an algebra of various composition
forms.

In this work we approach the general problem by choosing two specific concrete no-
tions of models and compositions, each corresponding to a natural facet of the problem.
For components, we abstract away the precise details of the components and model a
component as a transducer, i.e., a finite-state machine with outputs. Transducers consti-
tute a canonical model for a reactive component, abstracting away internal architecture
and focusing on modeling input/output behavior.

2

As for compositions, we define two notions of component composition. One relates
to data-flow and is motivated by hardware, while the other relates to control-flow and is
motivated by software. We study synthesis from reusable components for these notions,
and show that whether or not synthesis is computable depends crucially on the notion
of composition.

The first composition notion, in Section 3, is data-flow composition, in which the
outputs of a component are fed into the inputs of other components. In data-flow com-
position the synthesizer controls the flow of data from one component to the other. We
prove that the problem of LTL synthesis from libraries is undecidable in the case of
data-flow composition. In fact, we prove a stronger result. We prove that in the case of
data-flow composition, the LTL synthesis from libraries is undecidable even if we re-
strict ourselves to pipeline architectures, where the output of one component is fed into
the input of the next component. Furthermore, it is possible to fix either the formula to
be synthesized, or the library of components, and the problem remains undecidable.

The second notion of composition we consider is control-flow composition, which
is motivated by software and web services. In the software context, when a function is
called, the function is given control over the machine. The computation proceeds under
the control of the function until the function calls another function or returns. There-
fore, it seems natural to consider components that gain and relinquish control over the
computation. A control-flow component is a transducer in which some of the states are
designated as final states. Intuitively, a control-flow component receives control when
entering an initial state and relinquish control when entering a final state. Composing
control-flow components amounts to deciding which component will resume control
when the control is relinquished by the component that currently is in control.

Web-services orchestration is another context naturally modeled by control-flow
composition. A system designer composes web services offered by other parties to form
a new system (or service). When referring a user to another web service, the other ser-
vice may need to interact with the user. Thus, the orchestrator effectively relinquishes
control of the interaction with that user until the control is received back from the re-
ferred service. Web-services orchestration has been studied extensively in recent years
[4–6]. In Subsection 1.1, we compare our framework to previously studied models.

We show that the problem of LTL synthesis from libraries in the case of control-
flow composition is 2EXPTIME-complete. One of the side benefits of this result is an
explicit characterization of the information needed by the synthesis algorithm about the
underlying control-flow components. The synthesis algorithm does not have to know
the entire structure of the component but rather needs some information regarding the
reachable states of an automaton for the specification when it monitors a component’s
run (the technical details can be found in Section 4). This characterization can be used
to define the interface between providers and integrators of components. On the one
hand, a component provider such as a web service, can publish the relevant information
to facilitate the component use. On the other hand, a system developer, can publish
a specification for a needed component as part of a commercial tender or even as an
interface with another development group within the same organization.

3

1.1 Related work

The synthesis problem was first formulated by Church [1] and solved by Büchi and
Landweber [7] and by Rabin [8]. We follow the LTL synthesis problem framework pre-
sented by Pnueli and Rosner in [2, 9]. We also incorporate ideas from Kupferman and
Vardi [10], who suggested a way to work directly with a universal automata for the spec-
ification. In [11], Krishnamurthi and Fisler suggest an approach to aspect verification
that inspired our approach to control-flow synthesis.

While the synthesis literature does not address the problem of incorporating reusable
components, extensive work studies the construction of systems from components. Ex-
amples for important work on the subject can be found in Sifakis’ work on component
based-construction [3], and de Alfaro and Henzinger’s work on “interface-based de-
sign” [12].

In addition to the work done on the subject by the formal verification commu-
nity, much work has been done in field of web-services orchestration [4–6]. The web-
services literature suggests several models for web services; the most relevant to this
work is known as the “Roman model”, presented in [5]. In the Roman model web ser-
vices are modeled, as here, by finite-state machines. The abstraction level of the mod-
eling, however, is significantly different. In the Roman model, every interaction with a
web-service is abstracted away to a single action and no distinction is made between
the inputs of the web service and the outputs of the web service.

In our framework, as in the synthesis literature, there is a distinction between output
signals, which the component controls, and input signals, which the component does
not control. A system should be able to cope with any value of an input signal, while
the output signals can be set to desired values [2]. Therefore, the distinction is critical as
the quantification structure on input and output signals is different (see [2] for details).
In the Roman model, since no distinction between inputs and outputs is made, the ab-
straction level of the modeling must leave each interaction abstracted as a single atomic
action. The Roman model is suitable in cases in which all that is needed to ensure is the
availability of web-services actions when these are needed. Many times, however, such
high level of abstraction cannot suffice for complete specification of a system.

2 Preliminaries

For a natural number n, we denote the set {1, . . . , n} by [n]. For an alphabet Σ, we
denote by Σ∗ the set of finite words over Σ, by Σω the set of infinite words over Σ,
and by Σ∞ the union Σ∗ ∪Σω .

Given a set D of directions, a D-tree is a set T ⊆ D∗ such that if x · c ∈ T , where
x ∈ D∗ and c ∈ D, then also x ∈ T . For every x ∈ T , the words x · c, for c ∈ D, are
the successors of x. A path π of a tree T is a set π ⊆ T such that ε ∈ π and for every
x ∈ π, either x is a leaf or there exists a unique c ∈ D such that x · c ∈ π. The full
D-tree is D∗. Given an alphabet Σ, a Σ-labeled D-tree is a pair 〈T, τ〉 where T is a
tree and τ : T → Σ maps each node of T to a letter in Σ.

A transducer, (also known as a Moore machine [13]) is an deterministic finite au-
tomaton with outputs. Formally, a transducer is tuple T = 〈ΣI , ΣO, Q, q0, δ, F, L〉

4

where: ΣI is a finite input alphabet, ΣO is a finite output alphabet, Q is a finite set of
states, q0 ∈ Q is an initial state, δ : Q×ΣI → Q is a transition function, F is a set of
final states, and L : Q → ΣO is an output function labelling states with output letters.
For a transducer T and an input word w = w1w2 . . . wn ∈ Σn

I , a run, or a computa-
tion of T on w is a sequence of states r = r0, r1, . . . rn ∈ Qn such that r0 = q0 and
for every i ∈ [n] we have ri = δ(ri−1, wi). The trace tr(r) of the run r is the word
u = u1u2 . . . un ∈ Σn

O where for each i ∈ [n] we have ui = L(ri−1). The notions of
run and trace are extended to infinite words in the natural way.

For a transducer T , we define δ∗ : Σ∗I → Q in the following way: δ∗(ε) = q0, and
for w ∈ Σ∗I and σ ∈ ΣI , we have δ∗(w · σ) = δ∗(δ∗(w), σ). A ΣO-labeled ΣI -tree
〈Σ∗I , τ〉 is regular if there exists a transducer T = 〈ΣI , Σ,Q, q0, δ, L〉 such that for
every w ∈ Σ∗I , we have τ(w) = L(δ∗(w)).

A transducer T outputs a letter for every input letter it reads. Therefore, for every
input word wI ∈ Σω

I , the transducer T induces a word w ∈ (ΣI×ΣO)ω that combines
the input and output of T . A transducer T satisfies an LTL formula ϕ if for every input
word wi ∈ Σω

I the induced word w ∈ (ΣI ×ΣO)ω satisfies ϕ.
For a setX , let B+(X) be the set of positive Boolean formulas overX (i.e., Boolean

formulas built from elements in X using ∧ and ∨), where we also allow the formulas
True (an empty conjunction) and False (an empty disjunction). For a set Y ⊆ X and
a formula θ ∈ B+(X), we say that Y satisfies θ iff assigning True to elements in Y
and assigning False to elements in X \Y makes θ true. An alternating tree automaton
is A = 〈Σ,D,Q, qin, δ, α〉, where Σ is the input alphabet, D is a set of directions, Q
is a finite set of states, δ : Q×Σ → B+(D×Q) is a transition function, qin ∈ Q is an
initial state, and α specifies the acceptance condition (a condition that defines a subset
of Qω; we define several types of acceptance conditions below). For a state q ∈ Q, we
denote by Aq the automaton 〈Σ,D,Q, q, δ, α〉 in which q is the initial state.

The alternating automaton A runs on Σ-labeled full D-trees. A run of A over a Σ-
labeled D-tree 〈T, τ〉 is a (T ×Q)-labeled N-tree 〈Tr, r〉. Each node of Tr corresponds
to a node of T . A node in Tr, labeled by (x, q), describes a copy of the automaton that
reads the node x of T and visits the state q. Note that many nodes of Tr can correspond
to the same node of T . The labels of a node and its successors have to satisfy the
transition function. Formally, 〈Tr, r〉 satisfies the following:
1. ε ∈ Tr and r(ε) = 〈ε, qin〉.
2. Let y ∈ Tr with r(y) = 〈x, q〉 and δ(q, τ(x)) = θ. Then there is a (possibly empty)

set S = {(c0, q0), (c1, q1), . . . , (cn−1, qn−1)} ⊆ D × Q, such that S satisfies θ,
and for all 0 ≤ i ≤ n− 1, we have y · i ∈ Tr and r(y · i) = 〈x · ci, qi〉.

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance condition. Given
a run 〈Tr, r〉 and an infinite path π ⊆ Tr, let inf(π) ⊆ Q be such that q ∈ inf(π)
if and only if there are infinitely many y ∈ π for which r(y) ∈ T × {q}. We consider
Büchi acceptance in which a path π is accepting iff inf(π) ∩ α 6= ∅, and co-Büchi
acceptance in which a path π is accepting iff inf(π) ∩ α = ∅. An automaton accepts
a tree iff there exists a run that accepts it. We denote by L(A) the set of all Σ-labeled
trees that A accepts.

The alternating automaton A is nondeterministic if for all the formulas that appear
in δ, if (c1, q1) and (c2, q2) are conjunctively related, then c1 6= c2. (i.e., if the transition

5

is rewritten in disjunctive normal form, there is at most one element of {c} × Q, for
each c ∈ D, in each disjunct). The automaton A is universal if all the formulas that
appear in δ are conjunctions of atoms in D × Q, and A is deterministic if it is both
nondeterministic and universal. The automaton A is a word automaton if |D| = 1.

We denote each of the different types of automata by three-letter acronyms in {D,N,U}×
{B,C} × {W,T}, where the first letter describes the branching mode of the automa-
ton (deterministic, nondeterministic, or universal), the second letter describes the ac-
ceptance condition (Büchi or co-Büchi), and the third letter describes the object over
which the automaton runs (words or trees). For example, NBT are nondeterministic tree
automata and UCW are universal co-Büchi word automata.

Let I be a set of input signals and O be a set of output signals. For a 2O-labeled
full-2I tree T = 〈(2I)∗, τ〉 we denote by T ′ the 2I∪O-labeled full 2I -tree in which ε is
labeled by τ(ε) and for every x ∈ (2I)

∗
and i ∈ 2I the node x·i is labeled by i∪τ(x·i).

The LTL realizability problem is: given an LTL specification ϕ (with atomic propo-
sitions from I ∪ O), decide whether there is a tree T such that the labelling of every
path in T ′ satisfies ϕ. It was shown in [7] that if such a tree exists, then a regular such
tree exists. The synthesis problem is to find the transducer inducing the tree if such a
transducer exists [2].

3 Data-flow composition

Data-flow composition is the form of composition in which the outputs of a component
are fed into other components as inputs. In the general case, each component might have
several input and output channels, and these may be connected to various other compo-
nents. For an exposition of general data-flow composition of transducers we refer the
reader to [14]. In this paper, however, the main result is a negative result of undecidabil-
ity. Therefore, we restrict ourselves to a very simple form of data-flow decomposition:
the pipeline architecture. To that end, we model each component as a transducer with
a single input channel and single output channel. The composition of such components
form the structure of a pipeline. We prove that even for such limited form of data-flow
composition the problem remains undecidable.

A data-flow component, is a transducer in which the set of final states plays no role.
We denote such a component by C = 〈ΣI , ΣO, Q, q0, δ, L〉. For two data-flow compo-
nents: Ci = 〈Σi

I , Σ
i
O, Q

i, qi0, δ
i, Li〉, i = 1, 2, where Σ1

O ⊆ Σ2
I , the composition of

C1 and C2 is the data-flow component C1 ◦ C2 = 〈Σ1
I , Σ

2
O, Q

1 ×Q2, 〈q10 , q20〉, δ, L〉
where δ(〈q1, q2〉, σ) = 〈δ1(q1, σ), δ2(q2, L1(q1))〉, and L(〈q1, q2〉) = L2(q2). It is not
hard to see that the trace of the composition on a word w is the same as the trace of the
run of C2 on the trace of the run of C1 on w.

A library L of data-flow component is simply a set of data-flow components. Let
L = {Ci} be a collection of data-flow components. A data-flow component C is a
pipeline composition of L-components if there exists k ≥ 1 and C1, . . . , Ck ∈ L, not
necessarily distinct, such that C = C1 ◦C2 ◦ . . . ◦Ck. When the library L is clear from
the context, we abuse notation and say that C is a pipeline.

6

The data-flow library LTL realizability problem is: Given a data-flow components
library L and an LTL formula ϕ, is there a pipeline composition of L-components that
satisfies ϕ.

Theorem 1. Data-flow library LTL realizability is undecidable.2 Furthermore, the fol-
lowing hold:
1. There exists a library L such that the data-flow library LTL realizability problem

with respect to L is undecidable.
2. There exists an LTL formula ϕ such that the data-flow library ϕ-realizability is

undecidable.

The standard way to prove undecidability of some machine model is to show that
the model can simulate Turing machines. Had we allowed a more general way of com-
posing transducers, for example, as in [14], such an approach, indeed, could have been
used. Indeed, the undecidability proof technique in [16] can be cast as an undecidability
result for data-flow library realizability, where the component transducers are allowed
to communicate in a two-sided manner, each simulating a tape cell of a Turing machine.
Here, however, we are considering a pipeline architecture, in which information can be
passed only in one direction. Such an architecture seems unable to simulate a Turing
machine. In fact, in the context of distributed LTL realizability, which is undecidable in
general [9], the case of a pipeline architecrure is the decidable case [9].

Nevertheless, data-flow library LTL realizability is undecidable even for pipeline
archirecture. We prove undecidability by leveraging an idea used in the undecidability
proof in [9] for non-pipeline architectures. The idea is to show that our machine model,
though not powerful enough to simulate Turing machines, is powerful enough to check
computations of Turing machines. In this approach, the environment produces an input
stream that is a candidate computation of a Turing machine, and the synthesized system
checks this computation.

We now proceed with details. Let M be a Turing machine with an RE-hard lan-
guage. We reduce the language of M to a data-flow library realizability problem. Given
a word w, we construct a library of components Lw and a formula ϕ, such that ϕ is
realizable by a pipeline of Lw-components iff w ∈ L(M).

The gist of the proof, is that given w, we construct a pipeline that checks whether
its input is an encoding of an accepting computation of M on w. Each component in
the pipeline is checking a single cell in M ’s tape. The detailed proof can be found in
the full version below we present an overview of the proof.

Intuitively, the pipeline C checks whether its input is an encoding of an accepting
computation ofM onw. (To encode terminating computations by infinite words, simply
iterate the last configuration indefinitely). The pipeline C produces the signal ok either
if it succeeds to verify that the input is an accepting computation of M on w, or if the
input is not a computation of M on w. That way, if w ∈ L(M) then on every word ok
is produced, while if w 6∈ L(M) then on the computation of M on w, the signal ok is
never produced.

2 It is not hard to see that the problem is computationally enumerable, since it is computationally
possible to check whether a specific pipeline composition satisfies ϕ [15].

7

The input to the transducer is an infinite word u over some alphabet Σtape defined
below. Intuitively, u is broken into chunks where each chunk is assumed to encode a
single configuration of M . The general strategy is that every component in the pipeline
tracks a single tape cell, and has to verify that letters that are supposed to correspond to
the content of the cell “behave properly” throughout the computation.

The input alphabet Σtape is used to encode configurations in a way that allows the
verification of the computation. The content of one cell is either a letter from M ’s tape
alphabet Γ , or both a letter and the state of M encoding the fact that the head of M is
on the cell. Each letter in Σtape encodes the content of a cell and the content of its two
adjacent cells. The reason for this encoding is that during a computation the content of a
cell can be predicted by the content of the cell and its neighbors in the previous cycle. In
addition to letters from Γ , we allow a special separator symbol # to separate between
configurations. For simplicity, assume that all the configurations of the computation are
encoded by words of the same length. (In the full version we deal with the general case.)

The library Lw contains only two types of componentsCf andCs. In the interesting
pipelines a singleCf component is followed by one or moreCs components. Intuitively,
each Cs component tracks one cell tape (e.g., the third cell) and checks whether the
input encodes correctly the content of the tracked cell throughout the computation. The
Cf component drives the Cs components.

The alphabet Σtape is the input alphabet of the Cf component. The output alphabet
of Cf as well as the input and output alphabet of Cs is more complicated. We describe
this alphabet as Cartesian product of several smaller alphabets. The first of these is
Σtape itself, and both Cf and Cs produce each cycle the Σtape letter they read (thus the
content is propagated through the pipeline).

In order to make sure each component tracks one specific cell (e.g., the third cell),
we introduce another alphabet Σclock = {pulse,¬pulse}. The components produces
a pulse signal as follows: A Cf component produces pulse one cycle after it sees a
letter encoding a separator symbol #, and a Cs component produces a pulse signal two
cycles it reads a pulse. On other cycles ¬pulse is produced. Note that one cycle delay is
implied by the definition of transducers. Thus, a Cs component delays the pulse signal
for one additional cycle. In the full version we show that this timing mechanism allows
each Cs transducer to identify the letters that encode the content of “his” cell.

As for the tracking itself, the content of a tape cell (and the two adjacent cells)
in one configuration contains the information needed to predict the content of the cell
in the following configuration. Thus, whenever a clock pulse signal is read, each Cs
component compares the content of the cell being read to the expected content from the
previous cycle in which pulse was read. If the content is different from the expected
content a special signal is sent. The special signal junk, sent is part of another alphabet
Σjunk = {junk,¬junk}. When junk is produced it is propagated throughout the
pipeline. The Cf component is used to check the consistency of adjacent Σtape letters,
as well as that the first configuration is an encoding of the initial configuration. If an
inconsistency is found junk is produced.

To discover accepting computations we introduce another signal, acc, that is pro-
duced by aCs ifM enters the accepting state and is propagated throughout the pipeline.
Finally, we introduce the signal ok. A Cs component produces ok if it never saw M ’s

8

head and either it reads junk (i.e., the word does not encode a computation), or it
reads acc (i.e., the encoded computation is accepting). Note that the signal ok is never
produced if the pipeline is too short to verify the computation.

In the full version we prove the following: if w ∈ L(M) then there exists a (long
enough) pipeline in which ok is produced on every word, while if w 6∈ L(M) then ok
is never produced (by any pipeline) on the word that encodes M ’s computation on w.
The above shows Theorem 1 for the fixed formula Fok. The proof for a fixed library is
similar.

4 Control-flow composition

In the case of software systems, another model of composition seems natural. In the
software context, when a function is called, the function is given control over the ma-
chine. The computation proceeds under the control of the function until the function
calls another function or returns. Therefore, in the software context, it seems natural to
consider components that gain and relinquish control over the computation.

In our model, during a phase of the computation in which a component C is in
control, the input-output behavior of the entire system is governed by the component.
An intuitive example is calling a function from a GUI library. Once called, the function
governs the interaction with user until it returns. Just as a function might call another
function, a component might relinquish control at some point. In fact, there might be
several ways in which a component might relinquish control (such as taking one out of
several exit points).

The composition of such components amounts to deciding the flow of control. This
means that the components have to be composed in a way that specifies which compo-
nent receives control in what circumstances. Thus, the system synthesizer provides an
interface for each component C, where the next component to receive control is speci-
fied for every exit point in C (e.g., if C exits in one way then control goes to C2, if C
exists in another way control goes to C3, etc.). An intuitive example of such interface
in real life would be a case statement on the various return values of a function f . In
case f returns 1: call function g, in case f returns 2: call function h, and so on.3

Below we discuss a model in which the control is passed explicitly from one com-
ponent to another, as in goto. A richer model would consider also control flow by calls
and returns; we leave this to future work. In our model each component is modeled by a
transducer and relinquishing control is modeled by entering a final state. The interface
is modeled by a function mapping the various final states to other components in the
system.

Let ΣI be an input alphabet, ΣO be an output alphabet and, Σ = ΣI ∪ ΣO. A
control-flow component is a transducer M = 〈ΣI , ΣO, Q, q0, δ, F, L〉. Unlike the data-
flow component case, in control-flow components the set F of final states is important.

3 At first sight, it seems that the synthesizer is not given realistic leeway. In real life, systems are
composed not only from reusable components but also from some code written by the system
creator. This problem is only superficial, however, since one can add to the component library
a set of components with the same functionality as the basic commands at the disposal of the
system creator.

9

Intuitively, control-flow components receives control when entering the initial state and
relinquishes control when entering a final state. When a control-flow component is in
control, the input-output interaction with the environment is done by the component.
For that reason, control-flow components in a system (that interact with the same en-
vironment) must share input and output alphabets. A control-flow components library
is a set of control-flow components that share the same input and output alphabets. We
assume w.l.o.g. all the final sets in the library are of the same size nF . We denote the
final set of the i-th component in the library by Fi = {si1, . . . sinF

}.
Next, we discuss a notion of composition suitable for control-flow components.

When a component is in control the entire system behaves as the component and the
system composition plays no role. The composition comes into play, however, when
a component relinquishes control. Choosing the “next” component to be given control
is the essence of the control-flow composition. A control-flow component relinquishes
control by entering one of several final states. A suitable notion of composition should
specify, for each of the final states, the next component the control will be given to.
Thus, a control-flow composition is a sequence of components, each paired with an
interface function that maps the various final states to other components in system. We
refer to these pairs of a component coupled with an interface function as interfaced
component. Note that a system synthesizer might choose to reuse a single component
from the library several times, each with a different interface. Therefore, the number
of interfaced components might differ from the number of components is the library.
Formally, a composition of components from a control-flow components library L is a
finite sequence of pairs 〈C1, f1〉, 〈C2, f2〉, . . . , 〈Cn, fn〉 where the first element in each
pair is a control-flow component Ci = 〈ΣI , ΣO, Qi, qi0, δi, Fi, Li〉 ∈ L and the second
element in each pair is an interface function fi : Fi → {1, . . . , n}. Each of the pairs
〈Ci, fi〉 is an interfaced component.

Intuitively, for an interfaced component 〈Ci, fi〉, when Ci is in control and enters
a final state q ∈ Fi, the control is passed to the interfaced component 〈Cfi(q), ffi(q)〉.
Technically, this amounts to moving out of the state as if the state is not the final state q
of Ci but rather the initial state qfi(q)

0 of Cfi(q). For technical reasons, we restrict every
interface function fi : Fi → {1, . . . , n} in the composition to map every final state to
a component whose initial state agrees with the final state on the labelling.4 Thus, fi is

an an interface function if for every j ≤ |Fi| we have Li(sij) = Lfi(si
j)

(q
fi(s

i
j)

0).
The fact that a control-flow component C might appear in more than one interfaced

component means that each component in the composition can be referred to in more
than one way: first, as the i-th component in the library, and second, as the component
within the j-th interfaced component in the composition. To avoid confusion, whenever
we refer to a component from the library (as in the i-th component from the library)
we denote it by M i ∈ L, while whenever we refer to a component within an inter-
faced component in the composition (as in the component within the j-th interfaced
component) we denote it by Cj . We denote by type(j) the index, in the library, of the
component Cj which is the component within the j-th interfaced component. Thus, Ci
is the same reusable component as M type(i).

4 This restriction is only a technicality chosen to simplify notation in proofs.

10

The result of the composition is the transducer M = 〈ΣI , ΣO, Q, q0, δ, L〉 where:
1. The state space Q is

⋃n
i=1(Qi × {i}).

2. The initial state q0 is 〈q10 , 1〉.
3. The transition function δ is defined as follows:

(a) For a state 〈q, i〉 in which q ∈ Qi \ Fi, we set δ(〈q, i〉, σ) = 〈δi(q, σ), i〉.
(b) For 〈q, i〉, where q ∈ Fi we set δ(〈q, i〉, σ) = δfi(q)(〈q

fi(q)
0 , fi(q)〉, σ).

4. The labelling function L is defined L(〈q, i〉) = Li(q).
The control-flow library LTL realizability problem is: Given a control-flow compo-

nents library L and an LTL formula ϕ, decide whether there exists a composition of
components from L that satisfies ϕ. The control-flow library LTL synthesis problem is
similar, given a L and ϕ, find the composition realizing ϕ if one exists.

Theorem 2. The control-flow library LTL synthesis problem can is 2EXPTIME-complete.

Proof: For the lower bound, we reduce classical synthesis to control-flow library syn-
thesis. Thus, a 2EXPTIME complexity lower bound follows from the classical synthesis
lower bound [17]. We proceed to describe this reduction in detail.

As described earlier, the problem of classical synthesis is to construct a transducer
such that for every sequence of input signals, the sequence of input and output signals
induced by the transducer computation satisfies ϕ. The reduction from classical syn-
thesis is simply to provide a library of control-flow components of basic functionality,
such that every transducer can be composed out of this library.

An atomic transducer, is a transducer that has only an initial state and final states.
Furthermore, every transition from the initial state enters a final state. Thus, in an atomic
transducer we have state setQ = {q0, q1, . . . , qm}, wherem = |ΣI |, final state set F =
{q1, . . . , qm}, and transition function δ(q0, ai) = qi. The different atomic transducers
differ only in their output function L.

Consider now the library of all possible atomic transducers. It is not hard to see that
every transducer can be composed out of this library (where every state in the transducer
has its own interfaced component in the composition). Therefore synthesis is possible
from this library of atomic control-flow components iff synthesis is possible at all. This
concludes the reduction.

We proceed to prove the upper bound. Before going into further details, we would
like to give an overview of the proof and the ideas underlying it. The classical synthesis
algorithm [2] considers execution trees. An execution tree is an infinite labelled tree
where the structure of the tree represents the possible finite input sequences (i.e., for
input signal set I the structure is (2I)∗) and the labelling represents mapping of inputs
to outputs. Every transducer induces an execution tree, and every regular execution
tree can be implemented by a transducer. Thus, questions regarding transducers can be
reduced to questions regarding execution trees. Questions regarding execution trees can
be solved using tree automata. Specifically, it is possible to construct a tree automaton
whose language is the set of execution trees in which the LTL formula is satisfied, and
the realizability problem reduces to checking emptiness of this automaton.

Inspired by the approach described above, we should ask what is the equivalent of
an execution tree in the case of control-flow components synthesis? Fixing a library L

11

of components, we would like to have a type of labelled trees, representing composi-
tions, such that every composition would induce a tree, and every regular tree would
induce a composition. To that end, we define control-flow trees. Control-flow trees rep-
resent the possible flows of control during computations of a composition. Thus, the
structure of control flow trees is simply [nF]∗, each node representing a finite sequence
of control-flow choices. (Where each choice picks one final state from which the control
is relinquished.) A control-flow tree is labelled by components from L. Thus, a path in
a control-flow tree represents the flow of control between components in the system.
Note that a control-flow tree also implicitly encodes interface functions. For every node
v ∈ [nF]∗ in the tree, both v and v’s sons are labelled by components from L. We
denote the labelling function by τ : [nf]∗ → L. For a direction d ∈ [nF], the labelling
τ(v · d) ∈ L of the son of v in direction d, implicitly the flow of control. (Formally,
τ(v · d) defines the component from L, within the interfaced component, to which the
control is passed.) Thus, a regular control-flow tree can be used to define a composition
of control-flow components from L.

Each path in a control-flow tree stands for many possible executions, all of which
share the same control-flow. It is possible , however, to analyse the components in L
and reason about the possible executions represented by a path in the control-flow tree.
This allows us to construct a tree automaton that runs on control-flow trees and accept
the control-flow trees in which all executions satisfy the specification. Once we have
such tree automaton we can take the classical approach to synthesis.

An infinite tree composition 〈[nF]∗, τ〉 is an [|L|]-labeled [nF]∗-tree in which τ(ε) =
1. Intuitively, an infinite tree composition represents possible flow of control in a com-
position. The root is labeled 1 since the run begins when C1 is in control. The j-th
successor of a node is labeled by i ∈ |L| if on arrival to the j-th final state, the con-
trol passed to M i. Every finite composition 〈C1, f1〉, 〈C2, f2〉, . . . , 〈Cn, fn〉 can be un-
folded to an infinite composition tree in the following way: τ(ε) = 1, and for x ∈ [nF]∗,
and i ∈ [nF] we set τ(x · i) = fτ(x)(s

τ(x)
i). In the proof we construct a tree automaton

A that accepts the infinite tree compositions that satisfy ϕ. As we show below, if the
language of A is empty then ϕ cannot be satisfied by any control-flow composition. If,
on the other hand, the language of A is not empty, then there exists a regular tree in the
language of A, from which we can extract a finite composition.

The key to understanding the construction, is the observation that the effect of pass-
ing the control to a component is best analyzed in terms of the effect on an automaton
for the specification. The specification ϕ has a UCW automatonAϕ = 〈Σ,Qϕ, q0, δ, α〉
that accepts exactly the words satisfying ϕ. To constructAϕ we construct an NBWA¬ϕ
as in [18] and dualize it [10]. The effect of giving the control to a component M i, with
regard to satisfying ϕ, can be analyzed in terms of questions of the following type: as-
sumingAϕ is in state q when the control is given to M i, what possible statesAϕ might
be in when M i relinquishes control by entering final state s, and whether Aϕ visits an
accepting state on the path from q to s.

Our first goal is to develop notation for the formalization of questions of the type
presented above. For a finite word w ∈ Σ, we denote δ∗ϕ(q, w) = {q′ ∈ Qϕ | there
exists a run of Aqϕ on w that ends in q′}. For q ∈ Qϕ and q′ ∈ δ∗ϕ(q, w) we denote by

12

α(q, w, q′) the value of 1 if there exists a path in the run of Aqϕ on w that ends in q′ and
traverses through a state in α. Otherwise, α(q, w, q′) is 0.

For a word w ∈ Σ∗I and a component C = 〈ΣI , ΣO, QC , qC0 , δC , FC , LC〉, we de-
note by δ∗C(w) the state C reaches after running on w. We denote by Σ(w,C) the word
from Σ induced by w and the run of C on w. For w ∈ Σ∗I , we denote by δ∗ϕ(q, C,w)
the set δ∗ϕ(q,Σ(w,C)) and by α(q, w, q′) the bit α(q,Σ(w,C), q′). Finally, we de-
fine eC : Qϕ × FC → 2Qϕ×{0,1} where eC(q, s) = {〈q′, b〉 | ∃w ∈ ΣI s.t. s =
δ∗C(w) and q′ ∈ δ∗ϕ(q, C,w) and b = α(q, w, q′)}. Thus, 〈q′, b〉 is in eC(q, s) if there
exists a word w ∈ Σ∗I such that when C is run on w it relinquishes control by entering
s, and if at the start of C’s run on w the state of Aϕ is q then at the end of C’s run the
state of Aϕ is q′. Furthermore, b is 1 iff there is a run of Aqϕ on Σ(C,w) that ends in q′

and traverses through an accepting state.
Note, that it also possible that for some component C and infinite input word w ∈

Σω
I the component C never relinquish control when running on w. For an Aϕ-state

q ∈ Qϕ, the component C is a dead end if there exists a word w ∈ Σω
I on which C

never enters a final state, and on which Aqϕ rejects Σ(C,w).
Next, we define a UCT A whose language is the set of infinite tree compositions

realizing ϕ.
Let A = 〈L, Q,∆, 〈q0, 1〉, α〉 where:

1. The state space Q is (Qϕ ×{0, 1})∪ {qrej}. Where qrej is a new state (a rejecting
sink).

2. The transition relation ∆ : Q× L → B+([nF]×Q) is defined as follows:
(a) For every C ∈ L and i ∈ [nF] we have ∆(qrej , C) =

∧
i∈[nF](i, qrej).

(b) For 〈q, b〉 ∈ Qϕ × {0, 1} and C ∈ L:
– If C is a dead end for q, then ∆(〈q, j〉, C) =

∧
i∈[nF](i, qrej).

– Otherwise, for every j ∈ [nF] the automaton A sends in direction j the
states in eC(q, sij). Formally,∆(〈q, b〉, C) =

∧
i∈[nF]

∧
〈qi,bi〉∈eC(q,si

j)
(i, 〈qi, bi〉).

3. The initial state is 〈q0, 1〉 for q0 the initial state of Aϕ.
4. The acceptance condition is α = {qrej} ∪ {Qϕ × {1}}.

Claim 3 L(A) is empty iff ϕ is not realizable from L

The proof can be found in the full version.
Note that while Claim 3 is phrased in terms realizability, the proof actually yields

a stronger result. If the language of A is not empty, then one can extract a composition
realizing ϕ from a regular tree in the language of A. To solve the emptiness of A we
transform it into an “emptiness equivalent” NBTA′ by the method of [10]. By [10], the
language of A′ is empty iff the language of A is empty. Furthermore, if the language
of A′ is not empty, then the emptiness test yields a witness that is in the language of A
(as well as the language of A′). From the witness, which is a transducer labelling [nf]∗

trees with components from L, it is possible to extract a composition.
This concludes the proof of correctness for Theorem 2 and all that is left is the

complexity analysis. The input to the problem is a library L = {M1, . . . ,M |L|} and
a specification ϕ. The number of states of the UCW Aϕ is 2O(|ϕ|). The automaton Aϕ
can be computed in space logarithmic in 2O(|ϕ|) (i.e., space polynomial in |ϕ|). The

13

main hurdle in computing the UCTA is computing the transitions by computing the eC
functions for the various components. For a component M i ∈ L, an Aϕ-state q ∈ Qϕ,
and a final state sij ∈ Fi the value of eC(q, sij) can be computed by deciding emptiness
of small variants of the product of Aϕ and M i. Thus, computing eC(q, sij) is nondeter-
ministic logspace in 2O(|ϕ|) · |M i|. The complexity of computingA is nondeterministic
logspace in 2O(|ϕ|) · nF · (

∑|L|
i=1 |M i|). The number of states of A is twice the number

of states of Aϕ, i.e. 2O(|ϕ|), and does not depend on the library.
To solve the emptiness of A we use [10] to transform it into an “emptiness equiv-

alent” NBT A′. The size of A′ is doubly exponential in |ϕ| (specifically, 22|ϕ|
2·log(|ϕ|)

)
and the complexity of its computation is polynomial time in the number of its states.
Finally, the emptiness problem of an NBT can be solved in quadratic time (see [19]).
Thus, the overall complexity of the problem is doubly exponential in |ϕ| and polyno-
mially dependent on the size of the library.

An interesting side benefit the work presented so far, is the characterization of the
information needed by the synthesis algorithm on the underlying components. The only
dependence on a component C is by its corresponding eC functions. Thus, given the
eC functions it is possible to perform synthesis without further knowledge of the com-
ponent implementation. This suggest that the eC functions can serve as a specification
formalism between component providers and possible users.

5 Discussion

We defined two notions of component composition. Data-flow composition, for which
we proved undecidability, and control-flow composition for which we provided a syn-
thesis algorithm.

Control-flow composition required the synthesized system to be constructed only
from the components in the library. In real life, system integrators usually add some
code, or hardware circuitry, of their own in addition to the components used. The added
code is not intended to replace the main functionality of the components, but rather
allows greater flexibility in the integration of the components into a system. At first
sight it might seem that our framework does not support adding such “integration code”.
This is not the case, as we now explain.

Recall, from the proof of Theorem 2, that LTL synthesis can be reduced to our
framework by providing a library of atomic components. Every system can be con-
structed from atomic components. Thus, by including atomic components in our library,
we enable the construction of integration code.

Note, however, that if all the atomic components are added to the input library, then
the control-flow library LTL synthesis becomes classical LTL synthesis, as explained in
the proof of Theorem 2. Fortunately, integration code typically supports functionality
that can be directly manipulated by the system, as opposed to functionality that can
only accessed through the components in the library. Therefore, it is possible to add to
the input library only atomic components that manipulate signals in direct control of

14

the system. This allows the control-flow library LTL synthesis of systems that contain
integration code.

References

1. Church, A.: Logic, arithmetics, and automata. In: Proc. Int. Congress of Mathematicians,
1962, Institut Mittag-Leffler (1963) 23–35

2. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th ACM Symp. on
Principles of Programming Languages. (1989) 179–190

3. Sifakis, J.: A framework for component-based construction extended abstract. In: Proc.
3rd Int. Conf. on Software Engineering and Formal Methods (SEFM 2005), IEEE Computer
Society (2005) 293–300

4. Alonso, G., Casati, F., Kuno, H.A., Machiraju, V.: Web Services - Concepts, Architectures
and Applications. Springer (2004)

5. Berardi, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Mecella, M.: Automatic compo-
sition of e-services that export their behavior. In: ICSOC. (2003) 43–58

6. Sardiña, S., Patrizi, F., Giacomo, G.D.: Automatic synthesis of a global behavior from mul-
tiple distributed behaviors. In: AAAI. (2007) 1063–1069

7. Büchi, J., Landweber, L.: Solving sequential conditions by finite-state strategies. Trans.
AMS 138 (1969) 295–311

8. Rabin, M.: Automata on infinite objects and Church’s problem. Amer. Mathematical Society
(1972)

9. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: Proc. 31st
IEEE Symp. on Foundations of Computer Science. (1990) 746–757

10. Kupferman, O., Vardi, M.: Safraless decision procedures. In: Proc. 46th IEEE Symp. on
Foundations of Computer Science. (2005) 531–540

11. Krishnamurthi, S., Fisler, K.: Foundations of incremental aspect model-checking. ACM
Transactions on Software Engineering Methods 16(2) (2007)

12. de Alfaro, L., Henzinger, T.: Interface-based design. In Broy, M., Grünbauer, J., Harel, D.,
Hoare, C., eds.: Engineering Theories of Software-intensive Systems. NATO Science Series:
Mathematics, Physics, and Chemistry 195, Springer (2005) 83–104

13. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley (1979)

14. Nain, S., Vardi, M.Y.: Branching vs. linear time: Semantical perspective. In: 5th Int. Symp.
on Automated Technology for Verification and Analysis. Volume 4762 of Lecture Notes in
Computer Science., Springer (2007) 19–34

15. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
16. Apt, K., Kozen, D.: Limits for automatic verification of finite-state concurrent systems.

Infornation Processing Letters 22(6) (1986) 307–309
17. Rosner, R.: Modular Synthesis of Reactive Systems. PhD thesis, Weizmann Institute of

Science (1992)
18. Vardi, M., Wolper, P.: Reasoning about infinite computations. Information and Computation

115(1) (1994) 1–37
19. Grädel, E., Thomas, W., Wilke, T.: Automata, Logics, and Infinite Games: A Guide to Cur-

rent Research. Volume 2500 of Lecture Notes in Computer Science. Springer (2002)

15

