

Aalborg Universitet

Compositional verification of real-time systems using Ecdar

David, A.; Larsen, K.G.; Møller, M.H.; Nyman, Ulrik; Ravn, A.P.; Skou, A.; Legay, A.;
Wasowski, A.
Published in:
International Journal on Software Tools for Technology Transfer

DOI (link to publication from Publisher):
10.1007/s10009-012-0237-y

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
David, A., Larsen, K. G., Møller, M. H., Nyman, U., Ravn, A. P., Skou, A., Legay, A., & Wasowski, A. (2012).
Compositional verification of real-time systems using Ecdar. International Journal on Software Tools for
Technology Transfer, 14(6), 703-720. https://doi.org/10.1007/s10009-012-0237-y

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 28, 2024

https://doi.org/10.1007/s10009-012-0237-y
https://vbn.aau.dk/en/publications/9794c783-97d2-4fe3-acaa-7d3de1b2e67d
https://doi.org/10.1007/s10009-012-0237-y

International Journal on Software Tools for Te
hnology Transfer manus
ript No.(will be inserted by the editor)
Compositional Veri�
ation of Real-Time Systems Using E
darAlexandre David and Kim. G. Larsen and Axel Legay andMikael H. Møller and Ulrik Nyman and Anders P. Ravn and Arne Skou andAndrzej W¡sowski
Re
eived: date / A

epted: dateAbstra
t We present a spe
i�
ation theory for timedsystems implemented in the E
dar tool. We illustratethe operations of the spe
i�
ation theory on a runningexample, showing the models and veri�
ation
he
ks. Inorder to demonstrate the power of the
ompositionalveri�
ation we perform an in depth
ase study of aleader ele
tion proto
ol; Modeling it in E
dar as TimedInput/Output Automata Spe
i�
ations and performingboth monolithi
 and
ompositional veri�
ation of twointeresting properties on it. We
ompare the exe
utionAuthors of this paper has been supported by MT-LAB, AVKR Centre of Ex
ellen
e in Modeling of IT, and the Sino-Danish Basi
 Resear
h Center IDEA4CPS.Alexandre DavidComputer S
ien
e, Aalborg University, DenmarkE-mail: adavid�
s.aau.dkKim G. LarsenComputer S
ien
e, Aalborg University, DenmarkE-mail: kgl�
s.aau.dkAxel LegayINRIA/IRISA, Rennes Cedex, Fran
eE-mail: axel.legay�irisa.frMikael H. MøllerComputer S
ien
e, Aalborg University, DenmarkE-mail: mikaelhm�
s.aau.dkUlrik NymanComputer S
ien
e, Aalborg University, DenmarkE-mail: ulrik�
s.aau.dkAnders P. RavnComputer S
ien
e, Aalborg University, DenmarkE-mail: apr�
s.aau.dkArne SkouComputer S
ien
e, Aalborg University, DenmarkE-mail: ask�
s.aau.dkAndrzej W¡sowskiIT University of Copenhagen, DenmarkE-mail: wasowski�itu.dk

time of the
ompositional to the
lassi
al veri�
ationshowing a huge di�eren
e in favor of
ompositional ver-i�
ation.Keywords Timed Input/Output Automata · Com-positional Veri�
ation · Real-Time Systems · LeaderEle
tion Proto
ol1 Introdu
tionPrograms are intrinsi
ally
omponent based, they arebuilt from simple
ommands, and when we reason abouttheir
orre
tness, we intuitively think in terms of whatwe
an assume about the program state before the
om-mand is performed and what it guarantees about thestate afterwards. This simple fa
t was formalized earlyon in terms of Floyd assertions [18℄ and led to Floyd-Hoare logi
 [20℄ and is really the foundation of programveri�
ation, whi
h led to mu
h fruitful resear
h in thefollowing years. In parti
ular, the
hallenge of
omposi-tional analysis of
on
urrent programs was pursued �rstin 1976 by Owi
ki and Gries [32℄, who extended Floyd-Hoare logi
 to parallel programs with shared variables,and later in 1981 by Jones [23℄, who introdu
ed the rely-guarantee method, allowing for a
ompositional ver-sion of the Owi
ki-Gries method. Yet, there are larger
omponents in software appli
ations: subroutines fromlibraries,
lasses in obje
t-oriented languages, servi
emodules in servi
e-oriented ar
hite
tures,
ontrol mod-ules in embedded systems, et
.Common for su
h larger s
ale
omponents are the
hara
teristi
s made expli
it by Szyperski [36℄:a unit of
omposition with
ontra
tually spe
i�edinterfa
es and fully expli
it
ontext dependen
iesthat
an be deployed independently and is a sub-je
t to third party
omposition.

2 David, Larsen, Legay, Møller, Nyman, Ravn, Skou and W¡sowskiWe shall not
onsider deployment or
omponent imple-mentation. These are interesting questions, but we getto grips with
omposition at the level of interfa
es, be-
ause this is essential for getting a useful produ
t outof gluing
omponents together and deploying them. In-terfa
es are essentially spe
i�
ations of what we assumeabout the environment of the
omponent and what theimplementation guarantees to deliver. In order to havea good theory for reasoning about
omponent interfa
espe
i�
ation, we expe
t that for a given spe
i�
ation,we
an determine:Consisten
y. When a spe
i�
ation is satis�ed by at leastone implementation it is
onsistent. Consisten
y is need-ed to verify that spe
i�
ations are well-formed and donot
ontain
ontradi
tory statements. Without
onsis-ten
y, we
an spe
ify mira
ulous
omponents whi
h noone
an deliver.Conjun
tion. Spe
i�
ations are essentially logi
s, andwhen
omposing them using
onjun
tion this shouldgive exa
tly the interse
tion of feasible implementationsof the
onstituents. Should the interse
tion be empty,that is, the
onjun
tion is not
onsistent, it is uselessto put those
omponents together.Composition.When a
tual
omponents are deployed to-gether they form a new
omposite
omponent. A sim-ilar parallel
omposition operation is needed for theirspe
i�
ations in order to build systems in a stepwisemanner.Re�nement.There is a natural partial order on
ompo-nents de�ned by repla
ement of one by another whilemaintaining the fun
tionality of the system as a whole.When su
h substitutions are possible, the more detailedand
onstraining spe
i�
ation re�nes the one for the
omponent that is repla
ed.Spe
i�
ation theories with re�nement were pioneeredby Jones [24℄ in a setting of sequential program
om-ponents and it has lead to further development of su
htheories, most re
ently in the area of obje
t-orientedprogramming with design by
ontra
t and for instan
ethe Java Modeling Language (JML) [28℄.However, sin
e we wish to deal with a
ontext of dis-tributed,
ommuni
ating
omponents, a spe
i�
ationtheory with the state given by program variables is notwell suited. Spe
i�
ations for su
h systems are betterbuilt on pro
ess algebras [5℄ and their underlying tran-sition system semanti
s. Transition systems are also in-timately linked to automata models. Sin
e transitionsystems generate tra
es of events or a
tions, spe
i�
a-tion logi
s des
ribe properties of tra
es, and here a very

liberal use of assumptions and guarantees may lead tounsound reasoning. Essentially a guarantee
an spe
-ify that the past is
hanged to �t an assumption, oran assumption
an speak about a future that the guar-antee
ontradi
ts. This was investigated by Abadi andLamport [1℄. However, sin
e the spe
i�
ation formal-ism employed here is automata based, it does not su�erfrom these anomalies.An interesting question with (parallel)
ompositionof
omponents is whether one
an �nd a strongest spe
i-�
ation for an unknown
omponent that
omposes witha given one to give a desired result. It is the questionof �nding a quotient or a weakest prespe
i�
ation. This
an be done for the
urrent theory, a result that origi-nates in [26,27,4℄. Similar results in a logi
 based re�ne-ment theory are found in [21℄, although this solution ismore a proof of existen
e than an a
tual
onstru
tion.1.1 Related WorkIn a series of re
ent work, it has been advo
ated thatspe
i�
ations
an be represented by interfa
e automata,that are automata whose transitions are typed with in-put and output . The semanti
s of su
h an automaton isgiven by a two-player game: the input player representsthe environment, and the output player represents the
omponent itself. Contrary to the input/output modelproposed by Lyn
h [30℄, this semanti
 o�ers an opti-misti
 treatment of
omposition: two interfa
es
an be
omposed if there exists at least one environment inwhi
h they
an intera
t together in a safe way. In [16℄, atimed extension of the theory of interfa
e automata hasbeen introdu
ed, motivated by the fa
t that time
an bea
ru
ial parameter in pra
ti
e, for example in embed-ded systems. In this paper, we represent spe
i�
ationsby timed input/output automata [25℄, i.e., timed au-tomata whose sets of dis
rete transitions are split intoInput and Output transitions. Contrary to [16℄ and [25℄we distinguish between implementations and spe
i�
a-tions by adding
onditions on the models. This is doneby assuming that implementations have �xed timingbehavior and they
an always advan
e either by pro-du
ing an output or delaying. Also, we provide a game-based methodology to de
ide whether a spe
i�
ation is
onsistent, i.e. whether it has at least one implementa-tion. An implementation exists when there is a strategythat despite the behavior of the environment will avoidstates that
annot possibly satisfy the implementationrequirements.Our theory is ri
h in the sense that it
aptures allthe good operations for a
ompositional design theorydis
ussed above. Also, all the algorithms have been im-plemented in the E
dar tool set. This implementa-

Compositional Veri�
ation of Real-Time Systems Using E
dar 3tion (available at e
dar.
s.aau.dk) is build on top ofthe Uppaal-tiga tool-set [7℄. Uppaal-tiga is a toolthat implements a series of algorithms for solving timedgames [10℄ as well as
he
king timed temporal logi
 prop-erties.E
dar usesUppaal-tiga to solve various gamesthat arise in
omputing the
omposition operations andre�nements.The �rst part of the paper presents an overview ofthe theory implemented in the E
dar tool set. These
ond, and maybe most interesting part of the pa-per, applies E
dar theory to a leader ele
tion proto
ol.More pre
isely, we show how
ompositional design
anbe used to
he
k two important properties of the proto-
ol in an in
remental manner, outperforming
lassi
almodel
he
king te
hniques for timed automata that areworking on the entire system dire
tly. The in
rementalapproa
h used is based on the
on
ept of independentimplementability [15℄, in whi
h a spe
i�
ation
an bere�ned into a more detailed spe
i�
ation independentlyof what it is
omposed with. This method is
orre
t be-
ause our re�nement operator is a pre
ongruen
e withrespe
t to parallel
omposition [13℄.Another tool supporting re�nement is PAT [34,35℄.Unlike E
dar, it builds on CSP with a failures, di-vergen
es and refusal semanti
s whi
h makes a dire
t
omparison di�
ult. However, the CSP theory does notsupport quotienting nor simple
onjun
tion of spe
i�-
ations. And thus in
ontrast to E
dar, PAT does notsupport assume/guarantee reasoning about systems.1.2 Stru
tureThe rest of the paper falls in three parts: Theory, Case-study and Con
lusion. The theory is presented in Se
-tion 2 on page 3. The theory with its de�nitions is in-
luded in order to make the paper self-
ontained. The-orems and proofs
an be found in [13℄. The
ase-study,a leader ele
tion proto
ol, is presented in Se
tion 3 onpage 10. While
on
lusion and future work is given inSe
tion 4 on page 16.2 Timed Input/Output AutomataSpe
i�
ationsBefore we pro
eed to dis
uss our
ase study, let uspresent the main
on
epts and
onstru
tions of the spe
-i�
ation theory for real time systems supported by theE
dar tool. We only fo
us on the designer-fa
ing as-pe
ts of the framework. A reader interested in the the-oreti
al dis
ussions is referred to [13℄.The main
on
ept in our modeling framework is thatof a spe
i�
ation�an abstra
t, usually under-spe
i�ed,

des
ription of an implementation of a system. Ea
hspe
i�
ation normally admits multiple implementationsthat
an be derived by di�erent resolutions of detaileddesign
hoi
es.We use the syntax of Timed I/O Automata (TIOA)to represent spe
i�
ations. We will now re
all their def-inition and only then pro
eed to de�ne spe
i�
ationsthemselves along with a notion of satisfa
tion of a spe
i-�
ation by an implementation, notion of re�nement be-tween spe
i�
ations, and the
ompositional design op-erators that allow manipulating and
ombining spe
i�-
ations.TIOAs are essentially the usual Timed Automata[2℄ extended with two types of edges: inputs and out-puts. Input edges are drawn as solid arrows labeled bya
tions followed by a question mark. Output edges aredashed and their a
tions are su�xed with an ex
lama-tion point. Fig. 1 shows an example of a TIOA des
rib-ing the main resear
h pro
ess at a hypotheti
al univer-sity, that, given grants as inputs produ
es patents asoutputs.The kind of
ommuni
ation an automaton
an en-gage in is limited by its sort�a signature of availableinput and output a
tions. In Fig. 1, the sort is depi
tedas in
oming arrows (inputs) and outgoing arrows (out-puts) in
ident with the border surrounding the automa-ton. The initial lo
ation is indi
ated by a doubly
ir
ledoutline. In this initial lo
ation, after the university re-
eives the grant input, it will output a patent.The
olors used in the �gures do not
arry seman-ti
 meaning but are used
onsistently in order to in-
rease the readability of the models. These
olors�guards (green), resets (navy blue), invariants (violet),and a
tions (turquoise)�are the same as used in theeditor of E
dar and in related tools su
h as Uppaal.Additional labels on edges denote timing
onstraintsover
lo
ks (known as guards) and
lo
k resets. For ex-ample, the grant must be re
eived before the
lo
k u ex-
eeds two time units (u ≤ 2). This
lo
k is reset imme-diately upon re
eption of the grant (u = 0). Then thepatent is issued within 20 time units, as the automaton
an only reside in the target lo
ation for twenty timeunits as indi
ated by the lo
ation invariant u ≤ 20. Anyfurther grants re
eived within this time interval are ig-nored through the grant input loop that has no guardand no resets. When the patent is issued the
lo
k u isagain reset.If the �rst grant arrives after more than two timeunits, or if any subsequent grant arrives later than twotime units after a patent has been �led, then the behav-ior of the university automaton be
omes unpredi
table.This is
aptured by the leftmost lo
ation in the �gure,a so
alled universal lo
ation, in whi
h any
ommuni
a-

4 David, Larsen, Legay, Møller, Nyman, Ravn, Skou and W¡sowskition
an appear at any time; the lo
ation has outgoingedges for any available a
tion and imposes no timing
onstraints. Stri
tly speaking the behavior of the au-tomaton is still
ompletely spe
i�ed, but sin
e it pro-vides no guarantees about its output in a universal lo-
ation we also
all this unpredi
table.Let us now re
all a formal de�nition of a TIOA:De�nition 1 A Timed I/O Automaton (TIOA) is atuple A = (Lo
, q0,Clk, E,Act, Inv) where Lo
 is a �-nite set of lo
ations, q0 ∈ Lo
 is the initial lo
ation,Clk is a �nite set of
lo
ks, E ⊆ Lo
 × A
t× B(Clk) ×
P(Clk) × Lo
 is a set of edges with B(Clk) being aset of
lo
k
onstraints, P(Clk) is the set of
lo
ksto reset, A
t = A
ti ⊎A
to is a �nite set of a
tions,partitioned into inputs and outputs respe
tively, andInv : Lo
 7→ B(Clk) is a set of lo
ation invariants.As we have intuitively sket
hed above, TIOA syn-tax has a semanti
 interpretation as a timed exe
utionof a bran
hing pro
ess. This is formally
aptured by aTimed I/O Transition System (TIOTS), whi
h is like ausual dis
rete automaton but in�nitely bran
hing andover an in�nite state spa
e. In a TIOTS, time delaysare modeled as
ontinuously many 'dis
rete' a
tions.De�nition 2 (TIOTS) A Timed I/O Transition Sys-tem (TIOTS) is a quadruple S = (StS , s0, ΣS,−→S),where StS is an in�nite set of states, s0 ∈ St is theinitial state, ΣS = ΣSi ⊕ ΣSo is a �nite set of a
tionspartitioned into inputs (ΣSi) and outputs (ΣSo) and
−→S : StS × (ΣS ∪ R≥0) × StS is a transition relation.We write s a−→Ss′ instead of (s, a, s′) ∈ −→S and use i?,
o! and d to range over inputs, outputs and R≥0 respe
-tively. We sometimes omit the transition system name(s a−→s′) if obvious from the
ontext and we omit thetarget lo
ation (s a−→S) if we only need to know the ex-isten
e but not the identity of the target lo
ation. Inaddition any TIOTS satis�es the following:[time determinism℄ whenever s d−→Ss′ and s d−→Ss′′ then
s′=s′′[time re�exivity℄ s 0−→Ss for all s ∈ StS[time additivity℄ for all s, s′′∈ StS and all d1, d2 ∈ R≥0we have s d1+d2−−−−→Ss′′ i� s d1−−→Ss′ and s′ d2−−→Ss′′ for an
s′ ∈ StSA state of the TIOTS derived from a TIOA A is apair (q, V) where q is a lo
ation and V : Clk 7→ R≥0 isa valuation fun
tion that assigns a non-negative valueto ea
h
lo
k in Clk. We use u, u′ to range over
lo
kvaluations. We write u + d, where d ∈ R≥0 is a delay,to denote a valuation su
h that for any
lo
k r we have
(u+ d)(r) = x+ d i� u(r) = x. Given c ⊆ Clk, we write
u[r 7→ 0]r∈c for a valuation whi
h agrees with u on all

grant patent

patent!

grant?grant?

grant?

u>2

u<=2

u<=20

grant?
u=0

patent! u=0

UniSpe

Fig. 1 University spe
i�
ation UniSpe
.values for
lo
ks not in c, and returns 0 for all
lo
ks in
c. We use 0 to denote the
onstant fun
tion mapping all
lo
ks to zero. The initial state of A is the pair (q0,0).The semanti
s of a TIOA A = (Lo
, q0,Clk, E,A
t,Inv) is a TIOTS [[A]]sem = (Lo
 × (Clk 7→ R≥0), (q0,0),A
t,−→), where −→ is the transition relation de�ned bythe following rules:� Ea
h (q, a, ϕ, c, q′) ∈ E gives rise to (q, u) a−→(q′, u′)for ea
h
lo
k valuation u ∈ [Clk 7→ R≥0] su
h that

u |= ϕ and u′ = u[r 7→ 0]r∈c and u′ |= Inv(q′).� Ea
h lo
ation q ∈ Lo
 with a valuation u ∈ [Clk 7→ R≥0]gives rise to a transition (q, u) d−→(q, u+ d) for ea
hdelay d ∈ R≥0 su
h that u+ d |= Inv(q).We only
onsider deterministi
 TIOAs, so TIOAswhose semanti
s results in a deterministi
 TIOTS: forea
h a
tion�state pair at most one a
tion is enabled.2.1 Spe
i�
ationsWe now de�ne spe
i�
ations in terms of TIOAs.De�nition 3 A spe
i�
ation automaton is a TIOA thatis input-enabled, i.e., in ea
h state all the inputs shouldbe available at all times.The assumption of input-enabledness, also seen inmany interfa
e theories [29,19,33,37,31℄, re�e
ts our be-lief that an input
annot be prevented from being sentto a system, but it might be unpredi
table how thesystem behaves after re
eiving it. The idea is a
tuallyquite old, and
an be tra
ed to the notion of a CHAOSpro
ess in CSP [22℄.Input-enabledness en
ourages expli
it modelling ofunpredi
tability, and
ompositional reasoning about it;for example, de
iding if an unpredi
table behavior ofone
omponent indu
es unpredi
tability of the entiresystem. Observe that it is easy to
he
k whether a TIOAis input-enabled. In pra
ti
e tools
an interpret absentinput transitions in at least two reasonable ways. First,they
an be interpreted as ignored inputs,
orrespond-ing to lo
ation loops in the automaton. Se
ond, theymay be seen as unavailable ('blo
king') inputs, whi
h

Compositional Veri�
ation of Real-Time Systems Using E
dar 5
an be a
hieved by assuming impli
it transitions to adesignated error state.We note that our example of Figure 1
an always a
-
ept grant? from any lo
ation. It is also deterministi
.Thus UniSpe
 TIOA is a well-formed spe
i�
ation.2.2 ImplementationsThe role of spe
i�
ations in a spe
i�
ation theory is toabstra
t, or under-spe
ify, sets of possible implementa-tions. Implementations are
on
rete exe
utable realiza-tions of systems. We will assume that implementationsof timed systems have �xed timing behavior (outputso

ur at predi
table times) and systems
an always ad-van
e either by produ
ing an output or delaying. Animplementation that
annot voluntarily output or de-lay would have to blo
k passage of time, whi
h is notrealisti
.De�nition 4 An implementation P is a spe
i�
ationwhose underlying TIOTS satis�es the following
ondi-tions:1. Independent progress: in ea
h state either an out-put is possible or one
an delay until an output isenabled.either (∀d ≥ 0. p d−→P) or
∃ d∈R≥0. ∃ o!∈ΣPo . p d−→p′ and p′ o!−−→P .2. Output urgen
y: an available output
annot be de-layed:

∀ p′, p′′ ∈ StP if p o!−−→P p′ and p d−→P p′′ then d = 0(and
onsequently, due to determinism and time re-�exivity we have p = p′′)Example. Figure 2(a) spe
i�es a vending ma
hine that
an serve tea or
o�ee. We will use this as a
ompo-nent in our example. A possible implementation of thisma
hine
an be found in Figure 2(b). The implementa-tion re�nes the spe
i�
ation, whi
h is de�ned in thenext se
tion. Both automata are deterministi
. Notethat the output transitions of the implementation Implarrive at a �xed moment in time and
annot be de-layed, whi
h guarantees output urgen
y (the invariantguarantees progress and the guard
onstrains the tran-sition). Ea
h time the output tea! from Idle to Idle istaken, the
lo
k y is reset. Without this reset, indepen-dent progress would not be guaranteed for valuationsof the
lo
k y that are greater than 6.2.3 Satisfa
tion and Re�nementRe�nement is always a pivotal element of a spe
i�
ationtheory. Akin to entailment for logi
al spe
i�
ations, re-�nement allows to start with very abstra
t models, and

elaborate them towards more spe
i�
 ones. An earlyabstra
t spe
i�
ation would typi
ally allow a large setof diverse implementations. This set is monotoni
allyredu
ed in a stepwise re�nement pro
ess towards a de-tailed, more �ne grained and
on
rete spe
i�
ation that
an be implemented dire
tly.Any re�nement should satisfy the following substi-tutability
ondition: If AS re�nes AT , it should be pos-sible to repla
e AT with AS in every
ontext and obtaina safe system. It is well known from the literature [14,15,8℄ that in order to give these kind of guarantees are�nement should have the �avor of alternating (timed)simulation [3℄.In our theory we de�ne the re�nement between spe
-i�
ations, by requiring a suitable re�nement relation intheir semanti
 expansion (TIOTS).De�nition 5 (Re�nement relation) Let AS andATbe two spe
i�
ation automata and S = (StS , s0, Σ,

−→S) and T = (StT, t0, Σ,−→T) be their
orrespondingtimed transition systems. We say that AS re�nes AT ,written AS ≤AT , i� there exists a binary relation R⊆StS×StT
ontaining (s0, t0) and for all states sRt implies:1. Whenever t i?−−→
T t′ for some t′∈StT then s i?−−→

Ss′ and
s′Rt′ for some s′∈StS2. Whenever s o!−−→

Ss′ for some s′ ∈ StS then t o!−−→
T t′ and

s′Rt′ for some t′ ∈ StT3. Whenever s d−→
Ss′ for d ∈ R≥0 then t d−→

T t′ and s′Rt′for some t′ ∈ StTIntuitively, if AS re�nes AT then it
an delay atmost as mu
h as AT
an, and it
an only produ
e out-puts that AT produ
es�not others. It, however, mayadmit more inputs than AT , as long as all AT 's inputsare handled. This
onstru
tion ensures substitutability,be
ause then, if pla
ed in the same
ontext, AS will en-gage in less
omputations than AT , while maintainingability to always re
eive the same inputs. This meansthat safety properties will be preserved.In the example of Figure 2, Ma
hine2 (
), Ma
hine3(d), and Ma
hine4 (e) re�ne Ma
hine (a). Ma
hine6 (f)re�nes both Ma
hine3 (d) and Ma
hine4 (e). Ma
hine7(h) re�nes Ma
hine4 (e).De�nition 5 is non-
onstru
tive in the sense that it
annot be dire
tly used to de
ide re�nement betweentwo automata. Dis
ussion of a proper e�
ient re�ne-ment
he
king algorithm is out of s
ope for this work.See [8,13℄ for details.We relate spe
i�
ations to implementations usinga notion of satisfa
tion. A proper implementation ofa spe
i�
ation is said to satisfy it. Te
hni
ally, in ourframework the satisfa
tion is a spe
ial
ase of the re�ne-ment, when the left hand side is an implementation (it

6 David, Larsen, Legay, Møller, Nyman, Ravn, Skou and W¡sowskia)
teacoin cof

coin?

tea!

tea!

y=0cof! coin?

Idle

y<=6

Serving

y=0 y=0

y>=2

y>=4

y=0Ma
hine
b)

teacoin cof

coin?

tea!

y=0cof! coin?

Idle

y<=5

Serving

y=0

y=0 y==6

y==5

Impl.

)

teacoin cof

coin?

tea!

y=0cof! coin?

Idle

y<=5

Serving

y=0

y=0 y>=4

y>=5

Ma
hine2
d)

teacoin cof

coin?

tea!

y=0 tea!coin?

Idle

Serving

y=0

y=0

y<=6

y>=4Ma
hine3
e)

teacoin cof

coin?

tea!

tea!

y=0cof! coin?

Idle

y<=4

Serving

y=0 y=0

y>=4

y>=4

y=0Ma
hine4
f)

teacoin cof

coin?

tea!

y=0 tea!coin?

Idle

Serving

y=0

y=0

y<=4

y>=4Ma
hine6
g)

teacoin cof

coin?

tea!

y=0cof! coin?

Idle

y<=4

Serving

y=0

y=0 y>=4

y>=5

Ma
hine5
h)

teacoin cof

tea!

coin?

y=0cof! coin?

Idle

Serving

y=0 y=0

y<=4

y>=4

Ma
hine7
Fig. 2 a) Spe
i�
ation of a
o�ee/tea Ma
hine, b) an implementation, and
) d) e) f) g) h) more spe
i�
ations of a
o�ee/teama
hine.satis�es independent progress and output urgen
y�seeDef. 4).The set of all implementations ofA is denoted [[A]]mod.In [13℄, we have shown that the re�nement relation is
omplete for our implementation model, i.e., AS re�nes
AT if and only if the set of implementations that satisfy
AS is in
luded in the set of implementations that satisfy
AT . This is an important usability
riterion for tools. Itmeans that if you indeed elaborated AT into AS su
hthat any implementation of the latter implements theformer, the tool will never report a false positive when
he
king AS ≤ AT .Consisten
y. It
an happen that a spe
i�
ation
an-not be implemented, for example, be
ause it enfor
esrea
hability of a stu
k state, whi
h violates indepen-dent progress. As all implementations satisfy indepen-dent progress, they
an never satisfy su
h a spe
i�
a-tion. We say that a spe
i�
ation whi
h admits at leastone implementation is (globally)
onsistent. For exam-ple
o�ee ma
hine of Figure 2, the implementation 2(b)re�nes 2(a). Sin
e 2(a) admits at least one implemen-tation, it is a
onsistent spe
i�
ation.In the example of Figure 2, Ma
hine5 (g) is in fa
tin
onsistent sin
e, in the state Serving no output isavailable and time
annot diverge, thus violating inde-pendent progress.In
onsisten
y of a spe
i�
ation in a stepwise designpro
ess is normally unintended�an error on behalf ofthe spe
i�er. Thus it is important for tools to providefeedba
k on
onsisten
y. In [13℄, we have shown thatthis question
an be answered automati
ally using analgorithm that de
ides if there exists a strategy for thesystem (output) to avoid rea
hing stu
k states in thespe
i�
ation. Furthermore we added a fa
ility
alled

pruning that removes from the TIOA all behaviors thatare not
overed by su
h a maximal strategy. Pruningthus redu
es the size of the TIOA spe
i�
ation by re-moving in
onsistent parts, while maintaining the sameset of implementations (Theorem 5 in [13℄).2.4 Step-wise Re�nementWe de
ompose and re�ne our University spe
i�
ationof Figure 1 in a top-down manner. The re�nement isbased on a knowledge of how the system under design issupposed to meet the overall requirements. We de
om-pose our spe
i�
ation into three
omponents in parallel:a Co�ee/Tea ma
hine, a Resear
her, and an Adminis-tration. The Ma
hine (Figure 2(a)) needs
oins to fun
-tion and provides the Resear
her with
o�ee and tea.In addition it may o�er tea for free. The Resear
her(Figure 3(a)) produ
es publi
ations with some guaran-teed timing
onstraints when provided with
o�ee andtea regularly, otherwise the publi
ation output is notguaranteed any more. The Administration is in
hargeof turning grants into
oins to enable the use of theMa
hine and also to �le patents when publi
ations areprodu
ed by the Resear
her.We
ould make one TIOAto spe
ify this behavior but it is naturally expressed asa
onjun
tion and making this TIOA manually is er-ror prone. Instead we spe
ify our Administration as a
onjun
tion of HalfAdm1 and HalfAdm2, ea
h in
hargeof one of the tasks. Figure 3(b) shows the alternationbetween
oin! and grant? while Figure 3(
) shows thealternation between patent! and pub?. We note thatsin
e both automata are parts of the administration,HalfAdm1 always allows patent! and HalfAdm2 always

Compositional Veri�
ation of Real-Time Systems Using E
dar 7a)
coftea

pub

tea?

tea?

pub!

cof?

pub!

x=0 pub!
tea?cof?

Idle

x<=8x<=4

Stuck

Coffee Tea

x=0x=0

x<=15 x=0

x>15

x>=4

x>=2

Resear
her b)
grant pubpatent coin

pub? patent!

patent!

coin! grant?

A

B

pub? grant?

x<=2

x=0

HalfAdm1
)
grant pubpatent coin

grant? coin!

coin!

patent! pub?

C

D

pub? grant?

y<=2

y=0

HalfAdm2
Fig. 3 Spe
i�
ation of (a) the Resear
her, and the Administration as a
onjun
tion of two
omponents (b) HalfAdm1 and(
) HalfAdm2.allows
oin!. Both sub-spe
i�
ations are also input-enabled and
an always a

ept grant? and pub?.Veri�
ation of this re�nement is
arried out step-wise using pruning at every step. In this example, the
omponents are
he
ked for
onsisten
y individually andpruned to valid behaviors. Then they are
ombinedstep-wise, �rst with the
onjun
tion operator (explainedlater), the result being pruned, and then with the
om-position operator, and then pruned. The resulting stategraphs for both spe
i�
ations are �nally
he
ked for re-�nement.The result here is that the re�nement does not hold,whi
h may seem surprising. It turns out that the orig-inal spe
i�
ation of Figure 1 does not allow for �free�patents: grants must be re
eived before a patent is pro-du
ed. However, given that the Ma
hine
an produ
efree tea, free publi
ations may appear, and therefor freepatents as well, whi
h was not spe
i�ed. It is possibleto
orre
t this by either allowing for free patents or re-moving free tea in the Ma
hine.In the following se
tions we will elaborate how thespe
i�
ations are
omposed in the framework.2.5 Combining Spe
i�
ationsIn our example we used parallel
omposition and
on-jun
tion intuitively. Now we give more details on allavailable operators, namely parallel
omposition,
on-jun
tion, and quotient. In the rest of the se
tion, we will
onsider two spe
i�
ation automata AS = (Lo
1, q10 ,Clk1, E1, Act

1, Inv1) and AT = (Lo
2, q20 ,Clk2, E2, Act
2,Inv2). For te
hni
al reasons, we also assume that Clk1∩Clk2 = ∅.There are two main ways of
omposing spe
i�
a-tions in our framework:
onjun
tion and parallel
om-position. The latter is the well known stru
tural
ombi-nation of
omponents�parallel
omposition is meant to
ombine spe
i�
ations of two separate intera
ting
om-ponents into a single box. In our example the Resear
her

spe
i�
ation is
omposed with the beverage dispensingMa
hine spe
i�
ation in this manner.The other operator,
onjun
tion, is meant to
om-bine two di�erent spe
i�
ations for the same
ompo-nent. The two spe
i�
ations
an typi
ally represent re-quirements from a di�erent viewpoint. In our exampleHalfAdm1 represented requirements with respe
t to pro-viding funding (
oins); HalfAdm2 represented require-ments on produ
ing patents.Conjun
tion. In our framework,
onjun
tion
an onlybe de�ned if ActSi = ActTi and ActSo = ActTo (the ex-tension to dissimilar alphabets is straightforward). Theoperation redu
es to
he
k whether the two spe
i�
a-tions
an progress in the same way. Formally, the
on-jun
tion of AS and AT , denoted AS ∧AT , is the TIOA
A = (Lo
, q0,Clk, E,ActS , Inv) given by: Lo
 = Lo
S ×Lo
T , q0 = (qS0 , q

T
0), Clk = ClkS ⊎ClkT , Inv((qS , qT)) =Inv(qS) ∧ Inv(qT). The set of edges E is generated bythe following rule:

(qS , a, ϕS , cS , q
′
S
) ∈ ES (qT , a, ϕT , cT , q

′
T
) ∈ ET

((qS , qT), a, ϕS ∧ ϕT , cS ∪ cT , (q
′
S
, q′

T
)) ∈ EThe
onjun
tion operator may introdu
e lo
ally in-
onsistent states. For example, assume that AS rea
hesa state from s where the only available a
tion is theoutput a and AT rea
hes a state t from where the onlyavailable a
tion is the output b. Assume also that ASand AT
annot delay in s and t. In (s, t), the
onjun
-tion will not issue any output and will not be able todelay, whi
h violates the independent progress property.As stated above the lo
ally in
onsistent states are re-moved by E
dar using the pruning fa
ility.In the example of Figure 2, Ma
hine5 (g) is a
on-jun
tion of Ma
hine2 (
) and Ma
hine4 (e) (though itis an in
onsistent
onjun
tion). Furthermore, Ma
hine6(f) is a
onjun
tion of Ma
hine3 (d) and Ma
hine4 (e).

8 David, Larsen, Legay, Møller, Nyman, Ravn, Skou and W¡sowskiParallel Composition. This operation
omputes the
las-si
al produ
t between timed spe
i�
ations [25℄, where
omponents syn
hronize on
ommon inputs/outputs.Two
omponents are
omposable i� the interse
tion be-tween their output alphabets is empty.Formally, the parallel
omposition of AS with AT ,denoted AS ||AT , is the TIOA A = (Lo
, q0,Clk, E,Act,Inv) given by: Lo
 = Lo
S × Lo
T , q0 = (qS0 , q
T
0), Clk =ClkS ⊎ ClkT , Inv((qS , qT)) = Inv(qS) ∧ Inv(qT) and theset of a
tions A
t = A
ti ⊎ A
to is given by A
ti =A
tSi \A
tTo ∪A
tTi \A
tSo and A
to = A
tSo ∪A
tTo . Theset of edges E is generated by the following rules:1. Whenever (qS , a, ϕS , cS , q

′
S
)∈ESwith a ∈ A
tS\A
tT then for ea
h qT ∈ Lo
Talso ((qS , qT), a, ϕS , cS , (q

′
S
, qT)) ∈E2. Whenever (qT , a, ϕT , cT , q

′
T
) ∈ ETwith a ∈ A
tT \A
tS then for ea
h qS ∈ Lo
Salso ((qS , qT), a, ϕS , cS , (qS , q

′
T
)) ∈E3. Whenever (qS , a, ϕS , cS , q

′
S
)∈ES and

(qT , a, ϕT , cT , q
′
T
)∈ET with a∈A
tS∩A
tT thenalso ((qS , qT), a, ϕS∧ϕT , cS∪cT , (q′S , q

′
T
)) ∈ E.The �rst rule represents all the
ases where AS makesan individual move, be it input or output, be
ause a isnot in the signature of AT . Similarly the se
ond rulehandles all individual moves by the se
ond
omponent

AT . The third rule handles all syn
hronizations betweenthe two
omponents. The possibilities are input/inputwhi
h again gives an input or input/output whi
h givesan output.Quotient. The operation of quotienting is radi
ally dif-ferent from the other
omposition operators. It is adi�eren
ing operator [17℄ that
an be used to synthe-size requirements for missing
omponents in a proje
t.Two �x attention, let's assume that we have an abstra
tspe
i�
ation AT for the entire system, and a spe
i�
a-tion AS of an existing available
omponent. The quo-tient synthesizes a spe
i�
ation AT \\AS for the missing
omponent�the
omponent that when
omposed with
AS would implement AT .The use of quotient simpli�es independent design of
omponents. Assume that X is the missing
omponentthat needs to be designed by another person, or evenanother vendor than the rest of the system. The
or-re
tness requirement for X is AS ||X ≤ AT . In generalthis requirement might be a rather
ompli
ated veri�
a-tion expression. Fortunately, it is su�
ient to separatethe
on
erns using quotienting. The new designer doesnot need to have a

ess to the entire system, nor doeshe need to perform the veri�
ation of the entire systemea
h time he
he
ks his
urrent design for X . It su�
esto synthesize the quotient AT \\AS and he
an simply

he
k whether X ≤ AT \\AS . This latter spe
i�
atione�e
tively
aptures all
ontextual requirements for X .Summarizing, quotienting allows for fa
toring outbehavior from a larger
omponent. If one has a large
omponent spe
i�
ation AT and a small one AS then
AT \\AS is the spe
i�
ation of exa
tly those
omponentsthat when
omposed with AS re�ne AT .Quotienting for spe
i�
ations is de�ned in the fol-lowing way. Consider two spe
i�
ationsAT = (Lo
T , qT0 ,ClkT , ET , ActT , InvT) and AS = (Lo
S , qS0 ,ClkS , ES ,

ActS , InvS) with A
tSi ⊆ A
tTi ∪A
tTo and A
tSo ⊆ A
tTo .The quotient, whi
h is denoted AT \\AS is the TIOAgiven by: Lo
 = Lo
T × Lo
S ∪ {lu, l∅}, q0 = (qT0 , q
S
0),Clk = ClkT ⊎ClkS⊎{xnew}, Inv((qT , qS)) = Inv(lu) = ttand Inv(l∅) = {xnew ≤ 0}. The two new lo
ations luand l∅ are respe
tively universal and in
onsistent. Theset of a
tions A
t = A
ti ⊎ A
to is given by A
ti =A
tTi ∪A
tSo ∪ {inew} and A
to = A
tTo \A
tSo .The set of edges E is generated by the followingrules:� Whenever qT ∈ Lo
T , qS ∈ Lo
S and a ∈ A
tthen also ((qT , qS), a,¬InvS(qS), {xnew}, lu) ∈ E.� Whenever qT ∈ Lo
T , qS ∈ Lo
S then also

((qT , qS), inew,¬InvT (qT)∧InvS(qS), {xnew}, l∅)∈E.� Whenever (qT , a, ϕT , cT , q
′
T
) ∈ ETand (qS , a, ϕS , cS , q

′
S
) ∈ ESthen ((qT , qS), a, ϕT ∧ ϕS , cT ∪ cS , (q

′
T
, q′

S
)) ∈ E� Ea
h (qS , a, ϕS , cS , q

′
S
) ∈ ES with a ∈ A
tSogives rise to ((qT , qS), a, ϕS∧¬GT , {xnew}, l∅) where

GT =
∨
{ϕT | (qT , a, ϕT , cT , q

′
T
)}� Ea
h (qT , a, ϕT , cT , q

′
T
) ∈ ET and a /∈ A
tSgives ((qT , qS), a, ϕT , cT , (q

′
T
, qS)) ∈ E� Ea
h (qT , a, ϕT , cT , q

′
T
) ∈ ET with a ∈ A
tSogives rise to ((qT , qS), a,¬GS , {}, lu) where GS =

∨
{ϕS | (qS , a, ϕS , cS , q

′
S
)}� Ea
h a ∈ A
ti gives rise to (l∅, a, xnew = 0, {}, l∅)� For ea
h a ∈ A
t gives rise to (lu, a, tt, {}, lu)Just like
onjun
tion, the quotient operation mayprodu
e (lo
ally) in
onsistent spe
i�
ations. Hen
e, ea
hquotient operation is followed by pruning.In the following we will illustrate the quotientingthrough a very simple example. The example
onsistsof three Timed Input/Output Automata Spe
i�
ationsas shown in Fig. 4. We start with a simple spe
i�
a-tion, shown in Fig. 4a) of a system with two buttons.The spe
i�
ation states that as long as only button1 ispressed then only good output will be produ
ed. If atsome point button2 is pressed then the system
ouldstart to produ
e bad output.The following de�nition de�nes an operator knownas weaken or weakening, that is used for easier spe
i�-
ation of assume guarantee spe
i�
ations.

Compositional Veri�
ation of Real-Time Systems Using E
dar 9a)
bad good button1 button2

button1?

button2?

bad!

good!

s1 s2

button2?

button1?
good!

ButtonSpe
 b)
bad good button1 button2

button1!

good?

bad?

ButtonA
)
bad good button1 button2

button2?

good!button1?
G

ButtonG
Fig. 4 Spe
i�
ation of (a) the ButtonSpe
, (b) the assumption ButtonA (
) the guarantee ButtonG.De�nition 6 Weaken >>:For any two Timed Input/Output Automata spe
i�
a-tions A and G we de�ne G >> A as follows:
G >> A ≡ (A||G)\\AIn our simple example we would like to express theassumptions and guarantees that we have to the systemseparately. In Fig. 4b) we spe
ify the assumption thatbutton2 is never pressed while in Fig. 4
) we spe
ify theguarantee that the system never produ
es bad output.Even though, in this example, our ButtonSpe
 is quitesimple the assumption ButtonA and guarantee ButtonGare even simpler and extremely easy to understand.For this example we
an use E
dar to prove thefollowing two re�nements:refinement: (ButtonG >> ButtonA) <= ButtonSpe
refinement: ButtonSpe
 <= (ButtonG >> ButtonA)Thus e�e
tively being able to substitute ButtonG
>> ButtonA for ButtonSpe
 in any
ontext.The possibility of splitting assumptions from guar-antees be
omes even more appealing when having mul-tiple assumptions and guarantees that are
onjoined.2.6 Synta
ti
 ExtensionsThe E
dar tool o�ers a range of synta
ti
 extensionsbuild over the
ore language des
ribed above. These ex-tensions do not a�e
t the theoreti
al expressiveness ofthe language, but instead they enable more natural de-s
ription of systems using primitives su
h as �nite do-main types, variables,
onstants,
hannels,
ommittedlo
ations, and arrays. These are the same extensions asknown from Uppaal, but adapted to the two playersemanti
s.Types, variables and
onstants. E
dar allows to intro-du
e �nite domain variables ranging over restri
ted in-teger types. The variables are more
on
ise des
riptions

of
ounters and value pla
eholders than �nite state ma-
hines. Named
onstants allow easy parameterizationof models, for example with allowed delays.Channels and arrays. A
tions are de�ned using the syn-tax: �broad
ast
han a� whi
h gives both the inputlabel a? and the output label a!. A
tions are, as de�nedin the theory, broad
ast and thus outputs are neverblo
ked.Channels
an be organized in arrays. This is very
onvenient to en
ode lo
al
ommuni
ation�for exam-ple a two dimensional n×n array of
hannels
an modelindividual two-ended
hannels between n pro
esses.Sele
t statements. The modeling language of E
daralso allows for using sele
t statements of the form e:id_ton a transition. This translates into a set of transitionswith e having ea
h of the possible values that the typeid_t
an assume. This is only synta
ti
 sugar whi
hallows for mu
h more
ompa
t models.Templates. Templates are spe
i�
ations parameterizedwith named but unresolved
onstants. Templates
anbe instantiated by providing values for
onstants, andthe semanti
s is given by ma
ro expansion. Templatesare useful for instantiating many similar pro
esses, per-haps with di�erent initial
onditions. They interplaywell with
onstants and
hannel array.Instantiating templates allows not only to
hangetiming properties, but also to
on�gure various
om-muni
ation topologies. For example, parameterize thetemplate with the name (index in an array) of a
han-nel to be used for
ommuni
ation. Then instantiate theparameters so that the instan
es
reate trees, rings, andother layouts. We will use this te
hnique to model ringsin the
ase study in the following se
tion.

10 David, Larsen, Legay, Møller, Nyman, Ravn, Skou and W¡sowski3 The Leader Ele
tion Proto
olWe analyze a variant of the leader ele
tion proto
ol thatoperates on a ring topology. The proto
ol
an be instan-tiated for an arbitrary number of nodes. Ea
h node inthe ring has both a pla
e in the ring represented by itsid and, apart from this, also a unique priority. The pro-to
ol performs one round of leader ele
tion sele
ting thenode with the highest priority as the leader. When theproto
ol is initiated all nodes know that the ele
tion hasstarted and
an thus start to send their own priority tothe next node in the ring topology. Figure 5 illustratesan instantiation of the proto
ol for six nodes, with theirinitial priorities and the
ommuni
ation
hannels usedbetween the nodes. If a node re
eives a priority that islower than its own priority it will just dis
ard the re-
eived priority. If it re
eives a priority that is higherthan its own priority it will keep a
opy of the new pri-ority and then send it on at the same time stopping tosend its own priority. If at some point a node re
eivesits own priority, it will know that it is the leader, sin
ethis priority has traveled one full round on the ringtopology without being dis
arded and thus is greaterthan all other priorities.

Fig. 5 Overview of the ring topology and
ommuni
ation
hannels in a ring with 6 nodes. Ea
h node has both an idgiven by its name (e.g. N0) and a priority (e.g. pr5). Betweenea
h set of nodes in the ring there is a set of
ommuni
ation
hannels used to mimi
 value passing.The exe
ution of the proto
ol is illustrated in Fig. 6whi
h shows how the information �ows in a ring of6 nodes, in the
ase where all nodes just happen tosend the information at exa
tly the same time (syn-
hronously).We pro
eed to spe
ify the proto
ol using Timed I/OAutomata in the E
dar tool. Let N be a
onstant thatdetermines the number of nodes in the ring.

onst int N = 6;We also de
lare a
onstant for the maximum delay be-fore a node sends the maximal priority that it has seento the next node in the ring.
onst int MaxD = 2;Finally we de
lare a data type id_t whi
h is used forall the variables
ontaining ids and priorities.typedef int[0,N-1℄ id_t;Using the
onstant N we de
lare two global arrays of
hannels that are used to
ommuni
ate the informationin the model.broad
ast
han send[N℄[N℄;broad
ast
han leader[N℄;The send
hannel is a
tually an array of N by N
han-nels. In the
hannel expression send[4℄[3℄! the �rstindex (in this
ase node number 4) represents the id ofthe node that is the re
eiver of the message. The se
ondindex (in this
ase 3) represents the priority pr that isbeing send as the message. This is the standard way ofmodeling value passing in Timed (I/O) Automata.3.1 Spe
i�
ation model for the nodesFigure 7 shows the template for spe
ifying the nodes.Ea
h node is instantiated with an identi�er id and apriority pr. Ea
h node uses a lo
al variable
ur of typeid_t to store the
urrent priority value, initialized withthe value of the pr
onstant:id_t
ur := pr;The node
onsists of three lo
ations. The top lo
ationwhi
h is also the initial lo
ation represents the normaloperation of the proto
ol. This state has an invariantx<=MaxD ensuring that the node will send the maximalpriority that it has seen so far, stored in the lo
al vari-able
ur to the next node in the ring with intervals ofno more that MaxD time units.Ea
h node re
eives on the set of
hannels send[id℄[e℄?where e
an be any priority. Similarly it sends on a setof
hannels send[(id+1)%N℄[e℄ to the next node inthe ring (the % is the modulus operator). On a givenedge in the template, say the top leftmost one in Figure7, the sele
t statement e:id_t semanti
ally translatesinto the instantiated template being able to re
eive anypriority whi
h is then bound to the variable e.The node template has three input transitions in itsinitial lo
ation. The one leading to the se
ond lo
ationis taken exa
tly in the
ase where the priority re
eivedmat
hes the priority of the node itself. If this transition

Compositional Veri�
ation of Real-Time Systems Using E
dar 11

Fig. 6 Illustration of one s
enario of how the information
ould be passed around the ring using the proto
ol. For the sake ofillustration every node happens to send the information to the next node at exa
tly the same time thus giving us six distin
tsteps. Noti
e that the maximum priority will travel exa
tly on
e around the ring. In this
ase giving a total of 30 messages.
send[id][e]?

send[id][pr]?

leader[id]!

send[id][e]?

send[id][e]?

send[(id+1)%N][cur]!

send[id][e]?

e:id_t

e:id_t

x<=MaxD

Leader

x=0

e<=cur &&
 !(e==pr)

cur=e

e:id_t
e>cur

e:id_t

Fig. 7 Node template used for ea
h of the nodes in the ringtopology.is taken the node will de
lare itself leader. The othertwo represents the two
ases where the lo
al variable
ur should be updated or not.Both the se
ond and third lo
ation are input en-abled but does nothing with the input. The se
ond lo-

ation, marked with a u meaning that it is urgent, willimmediately send out the leader[id℄! output.3.2 Veri�
ationThe
orre
tness of a ring of N nodes we are interestedin has both a fun
tional part�i.e. the
orre
t leader isele
ted�as well as a non-fun
tion part�i.e. the leaderis ele
ted within an a

eptable upper time bound. Forthis we formulate and verify the two general propertieselaborated below.The �rst property S , shown in Fig. 8, states thatonly the
orre
t node, the one with the lowest priority,
an de
lare itself leader.
leader[0]!Fig. 8 The most basi
 spe
i�
ation S stating that only the
orre
t node de
lares itself leader.

12 David, Larsen, Legay, Møller, Nyman, Ravn, Skou and W¡sowskiThe se
ond property T , shown in Fig. 9, states thata leader will be ele
ted within x<=(N+1)*MaxD timeunits, being equal to the maximal priority traveling ex-a
tly one round as slowly as possible.
leader[e]!

leader[e]!

x<=(N+1)*MaxD

e:id_t

e:id_tFig. 9 A property T stating that a leader is ele
ted withinthe spe
i�ed time-bound.These overall properties of the ring of nodes
an beveri�ed with the following re�nement
he
ks:refinement:(N0 || N1 || N2 || N3 || N4 || N5) <= Srefinement:(N0 || N1 || N2 || N3 || N4 || N5) <= TWe
all this type of veri�
ation monolithi
, sin
eit
onstru
ts and explores the spe
i�
ation represent-ing the entire systems in order to settle the suggestedre�nements. In the present
ase with 6 nodes E
darqui
kly proves the re�nements and provides a witness-ing strategy whi
h
an be exer
ised intera
tively. How-ever, it is
lear that the monolithi
 approa
h will su�erfrom the exponential growth of the states in the numberof nodes in the ring.3.3 Compositional Veri�
ationIn order to
ombat the state-spa
e explosion problemand enable veri�
ation of the
orre
tness of the proto-
ol for larger numbers of nodes we will apply
ompo-sitional veri�
ation for both the fun
tional
orre
tnessproperty S and the non-fun
tional
orre
tness property
T . The idea is to
reate N sub-spe
i�
ations Si (and
Ti) that may be shown to
apture the behavior of thesub-ringNN || . . . ||Ni indu
tively, by demonstrating thefollowing sequen
e of re�nements:

NN ≤ SN (1)
Si+1||Ni ≤ Si for i = (N − 1) . . . 1 (2)
S1||N0 ≤ S (3)As mentioned in the introdu
tion this
ompositionalveri�
ation is sound be
ause our re�nement operatoris a pre
ongruen
e with regards to parallel
omposi-tion[13℄.

Using the that the re�nement relation ≤ is a pre
on-gruen
e with respe
t to parallel
omposition and tran-sitive it may be
on
luded that the ring is a re�nementof S. Given six nodes (1), (2) and (3) amounts to per-forming the following series of re�nement
he
ks:refinement: N5 <= S5refinement: (S5 || N4) <= S4refinement: (S4 || N3) <= S3refinement: (S3 || N2) <= S2refinement: (S2 || N1) <= S1refinement: (S1 || N0) <= SThe series of re�nement
he
ks is illustrated in Fig.10. Though greater in number than the single mono-lithi
 veri�
ation ea
h of the six re�nement
he
ks onlyinvolve three small
omponents, thus making the over-all veri�
ation e�ort linear rather than exponential inthe number of nodes in the ring.

Fig. 10 Overview of how the indu
tion hypothesis ϕ1 is usedto prove the property for a larger and larger set of nodes.In order to obtain the sub-spe
i�
ations Si and Ti asinstan
es of general templates, we de�ne the followingset of Boolean arrays whi
h are simply used as a reverselook up of whi
h ids are in
luded in the set of nodesthat a given instantiation of the indu
tion hypothesis
overs.
onst bool S5[N℄ = { 0, 0, 0, 1, 0, 0};
onst bool S4[N℄ = { 0, 0, 1, 1, 0, 0};
onst bool S3[N℄ = { 0, 0, 1, 1, 1, 0};
onst bool S2[N℄ = { 0, 1, 1, 1, 1, 0};
onst bool S1[N℄ = { 1, 1, 1, 1, 1, 0};These Boolean arrays are then used as input pa-rameters to the
orresponding instantiations of the in-du
tion hypotheses. The sub-spe
i�
ations Si used toindu
tively prove the fun
tional property S is shown inFigure 11, and may be informally des
ribed as follows:

Compositional Veri�
ation of Real-Time Systems Using E
dar 13
send[0][e]!

send[i][e]?

leader[e]!

S[e]==0

send[i][e]?

send[i][e]?send[0][e]!

e : id_t

e : id_t

e : id_t

S[e]==1

e>=i

e : id_t

e : id_t
e : id_t

Fig. 11 The sub-spe
i�
ation Si. The nodes
overed by thesub-spe
i�
ation (NN , . . . , Ni)
an only de
lare themselvesleader after having re
eived a priority also
overed by thesub-spe
i�
ation.
Si �rst and �nal version:Whenever the sub-ring NN || . . . ||Ni re
eives pri-orities outside those belonging to one of its nodes,no leader is de
lared. If a priority belonging toone of the nodes of the sub-ring is re
eived, it isallowed for any of the nodes to de
lare leader-ship.The sub-spe
i�
ation does not restri
t that it hasto be the same node that de
lares itself leader as theone that re
eives its own id. It is worth noting thatthe sub-spe
i�
ation is this way
aptures the part ofthe behavior that is important to prove exa
tly thisproperty, while ignoring other aspe
ts. In parti
ular,nothing is said about timing of events.3.3.1 Timing propertyNow let us apply the
ompositional approa
h to estab-lish the non-fun
tional property T , i.e. that a leader willbe ele
ted within (N+1)*MaxD time units. Thus, we aresear
hing a (timed) sub-spe
i�
ation Ti, for i = N . . . 1satisfying the following set of re�nements:

NN ≤ TN (4)
Ti+1||Ni ≤ Ti for i = (N − 1) . . . 1 (5)
T1||N0 ≤ T (6)The �rst attempt at de�ning the timed sub-spe
i�-
ation is shown in Fig. 12 and may informally be readas follows:

Ti �rst attempt:Whenever the sub-ring NN || . . . ||Ni re
eives apriority larger than any one belonging to one ofits nodes, this priority will be delivered to N0 be-fore (N-i+1)*MaxD time-units.

Note the use of the lo
al variable g for ensuring thatthe priority delivered is the one re
eived. However, thisproposal for a sub-spe
i�
ation Ti turned out to be tooerroneous (too strong) as it is too strong to be used asthe indu
tion hypothesis as it is possible to prove the�nal step but neither the iterative step nor the base
ase.In parti
ular, the base
ase does not hold as there isno guarantee that a �large� priority re
eived will even-tually be delivered to N0 as an even �priority� may bere
eived by the sub-ring in the mean-time. An attemptof
orre
ting this is given in Fig. 13, and may be readinformally as follows:
Ti se
ond attempt:Whenever the sub-ring NN || . . . ||Ni re
eives apriority larger than any one belonging to one ofits nodes, this priority will be delivered to N0before (N-i+1)*MaxD time-units, unless anotherpriority is re
eived before.As desired, the modi�ed sub-spe
i�
ation validatesthe re�nements required in the base
ase and the �nal
ase. Unfortunately, though seemingly a true property,it turns out that it is too weak for the re�nement of theiterative step to hold.Figure 14 is an attempt of �nding a sub-spe
i�
ationfor whi
h the re�nements of the iterative steps are valid.Here, the behavior after having re
eived a priority andstoring it in g is made dependent on whether the pri-ority re
eived is equal to the one stored in g. Unfortu-nately this renders all the re�nement
he
ks in
orre
t.After three (and in fa
t several) more failing at-tempts, we �nally obtain the satisfa
tory sub-spe
i�
a-tion in Fig. 15, that radi
ally di�ers from the previousin that it only keeps tra
k of what happens to the mes-sages that
ontains the maximum priority. Informally,the sub-spe
i�
ation reads as follows:
Ti �nal version:Whenever the sub-ring NN || . . . ||Ni re
eives themaximum priority before i*MaxD time-units - andunless one of the nodes of the sub-ring de
laresitself leader - the maximum priority will be de-livered to N0 before (N-i+1)*MaxD time-units.Fortunately, this make the sub-spe
i�
ation strongenough to prove the �nal property T as well as theiterative re�nement steps, yet weak enough to be ableto prove the base
ase and pass the
onsisten
y
he
k.3.4 Assume/Guarantee Spe
i�
ationsIn order to make the hunt for the
orre
t sub-spe
i�
a-tions easier we will spe
ify S and T in the form of a pair

14 David, Larsen, Legay, Møller, Nyman, Ravn, Skou and W¡sowski
leader[e]!

leader[e]!leader[e]!

send[i][e]? send[0][e]!

x=0, g=e

send[i][e]?

leader[i]!send[0][e]!

(exists (j : id_t) S[j] && e<=j)
send[i][e]?

send[0][g]!

send[i][e]?

send[0][e]!

send[0][e]!

send[i][e]? e:id_t

e:id_te:id_t

e : id_t e : id_t

x<=(N−i+1)* MaxD

e:id_t

e:id_te:id_t

(forall (j:id_t) S[j] imply e>j)

e>=i

e>=ie>=i

e != ge : id_t

e : id_te : id_t

e : id_t

e>=i

e : id_t

Fig. 12 The �rst version of Ti turned out to be too strong.

send[i][e]?leader[e]!

send[0][e]!

send[0][g]!x=0, g=e
leader[e]!

leader[e]!

(exists (j : id_t) S[j] && e<=j)
send[i][e]?

send[i][e]?

send[0][e]!

send[0][e]!
send[i][e]?

e : id_t
e:id_t

e : id_t

e : id_t

x<=(N−i+1)* MaxD

e:id_t

e:id_t

(forall (j:id_t) S[j] imply e>j)

e>=i

e>=i

e != g
e : id_t

e : id_t e : id_t

e>=i

e : id_t

Fig. 13 The se
ond version of Ti, whi
h turns out to be too weak.
leader[e]!

leader[e]!

leader[e]! send[i][e]?

(exists (j : id_t) S[j] && e<=j) send[i][e]?

x=0, g=e

x=0, g=e

(forall (j:id_t) S[j] imply e>j)

send[i][e]?

send[0][e]!

send[0][e]!

send[0][g]!

send[i][e]?

send[i][e]?

send[0][e]!

e : id_te:id_t

e : id_t

e : id_t

x<=(N−i+1)* MaxD

e:id_t

e:id_t

e:id_t

e != g

e>=i

e>=i

e>=i

(forall (j:id_t) S[j] imply e>j)

e : id_t

e : id_t e : id_t

(exists (j : id_t) S[j] && e<=j)e : id_t

Fig. 14 Third version of Ti

Compositional Veri�
ation of Real-Time Systems Using E
dar 15
send[i][e]?leader[e]!

send[0][e]!

send[0][(N−1)]!

send[i][(N−1)]?

leader[e]!

leader[e]!

e<(N−1)
send[i][e]? send[i][e]? send[0][e]!

send[0][e]!
send[i][(N−1)]?

e : id_te:id_t

e : id_t

e : id_t

x<=(N+1)* MaxD

e:id_t

e:id_t

x<=i*MaxD

e>=i

e>=i

e<(N−1)
e : id_te : id_t

e : id_t

e>=i

x>i*MaxD

Fig. 15 Final version of Ti, whi
h only keeps tra
k of the timing regarding messages
arrying the maximum priority.of an assumption and a guarantee part. The assumptionand guarantee equivalents of S are shown in Fig. 16 andFig. 17 respe
tively.
leader[e]?

S[e]==0
send[0][e]? send[i][e]!

e:id_t
e>=i

e:id_t e:id_t

Fig. 16 The simple assumption SAi that no input will besent with priorities that belong to the set of nodes representedby the sub-spe
i�
ation.
SAi �rst and �nal version:We will never send any priority to the sub-ring
NN || . . . ||Ni with priorities belonging to one ofits nodes.

send[0][e]!

send[i][e]?
e:id_t

e:id_tFig. 17 The simple guarantee SGithat no leader output willbe generated.

SGi �rst and �nal version:The sub-ring NN || . . . ||Ni will never generate anyleader output.These two very simple Timed I/O Automata
an be
ombined into a
ontra
t using the weakening operator
>>.The following two re�nements hold (for ea
h i):refinement: S1 <= (SG1 >> SA1)refinement: (SG1 >> SA1) <= S1Thus we have shown that the S that we have
omeup with is identi
al to the more easily understandableassumption and guarantee.The assumption and guarantee equivalents of T areshown in Fig. 18 and Fig. 19 respe
tively.

leader[e]?

send[i][e]!

leader[e]?send[i][(N−1)]!

e<(N−1)

send[0][e]?

send[i][e]!

send[0][e]?

e:id_t

e:id_t

e:id_t

x<=i*MaxD

e>=i

e>=i

e:id_t

e : id_t

e : id_t

Fig. 18 The assumption T Ai that a message with the maxi-mum priority will be delivered to the sub-spe
i�
ation before
i ∗MaxD time units.

T Ai �rst and �nal version:The maximum priority will be delivered to thesub-ring NN || . . . ||Ni before i∗MaxD time units.
T Gi �rst and �nal version:The sub-ring NN || . . . ||Ni deliver a message withthe maximum priority to the node 0 before (N +

1) ∗MaxD time units.

16 David, Larsen, Legay, Møller, Nyman, Ravn, Skou and W¡sowski
send[i][e]?

send[0][e]!

leader[e]!

leader[e]!

e<(N−1)

send[0][(N−1)]!

send[0][e]!

send[i][e]?

e:id_t

e : id_t
e:id_t

x<=(N+1)* MaxD e>=i

e>=i

e : id_t

e : id_t

e : id_tFig. 19 The guarantee T Gi the sub-spe
i�
ation will delivera message with the maximum priority within (N+1)∗MaxDtime units.Similarly as for the other
ase we
an now
ombinethese two spe
i�
ations into a
ontra
t. For this
aseonly one way of the re�nements hold (for ea
h i):refinement: (TG1 >> TA1) <= T1This means that in this
ase we
an
on
lude thatthe
omposed sub-spe
i�
ation T that we have
ome upwith re�nes the
ontra
t
omposed from the assumptionand guarantee and thus we
an use T when performingthe veri�
ation and still rely on the fa
t the guaranteewill hold.3.5 Performan
e
omparison of analysis methodsIn order to
ompare the e�
ien
y of regular monolithi
and
ompositional veri�
ation we timed the veri�
ationof the two properties S and T for several di�erent valuesof N. All the veri�
ation was performed on the samema
hine and all veri�
ation instan
es where allowed amaximum of �ve minutes to terminate. The
hoi
e ofexa
tly �ve minutes as the upper bound is arbitrary andwill not e�e
t the shape of the graphs that we obtain,but only determine the point at whi
h the graphs stop.The upper bound is needed in order to be able to runa large amount of experiments e�
iently. The resultsare listed in Fig. 20. For both the properties in themonolithi

ases they took more than �ve minutes toverify for rings with 7 nodes.As
an be seen from the graph the
ompositionalveri�
ation method is
apable of handling mu
h largerinstan
es within a reasonable time bound. Besides thisthe
ompositional method also has a mu
h larger the-oreti
al upper bound. It will only verify one step ata time and thus will not su�er from la
k of availablememory as long as a single step
an be handled withthe available memory.

4 Con
lusion & Further WorkCon
lusion. In this paper we have presented the
om-plete spe
i�
ation theory for timed systems underlyingthe E
dar tool. Being powered by the game solving en-gine of the bran
h Uppaal-tiga, the E
dar tool pro-vides support for re�nement and
onsisten
y
he
kingbetween spe
i�
ations as well as allow for the logi
aland stru
tural
omposition. In parti
ular, as demon-strated in our treatment of the Leader Ele
tion Pro-to
ol example, the theory and tool allow for e�
ient
ompositional veri�
ation of systems by the exploita-tion of engineer-provided sub-spe
i�
ations. As su
h,the
ompositional usage of the tool is not fully auto-mated, and the design of appropriate sub-spe
i�
ations� strong enough to entail an overall spe
i�
ation andsu�
iently weak to be entailed themselves � is a major
hallenge. We believe that engineers will always be un-familiar with any new spe
i�
ation formalism. However,we believe that engineer-provided sub-spe
i�
ations arenot only ne
essary in the development of realisti
 sys-tems, but also extremely useful for raising the overallunderstanding of the systems. In order for the methodto be appli
able in large s
ale proje
ts it needs to besupported by a mature tool that is as intuitive as possi-ble to use. As demonstrated in the Leader Ele
tion Pro-to
ol, tool support is vital in establishing a
oherent setof sub-spe
i�
ations. The need for programmer gener-ated spe
i�
ations is in no way unique to our approa
hand is also needed in frameworks su
h as SPEC# [6℄ inwhi
h assertions (invariants) written by the program-mer about a C# program are
he
ked by a range ofdi�erent analysis te
hniques.An important feature of our theory is the existen
eof a quotient
onstru
t (i.e. weakest property trans-former with respe
t to parallel
omposition), whi
h inparti
ular allows for sub-spe
i�
ations to be obtainedfrom pairs of assumptions and guarantees. As demon-strated, this often allow for substantially simpler spe
-i�
ations of sub-systems.Performan
e Analysis. The spe
i�
ation theory present-ed and the tool E
dar provide support for establishinghard real-time guaranteed properties from TIOA mod-els. However, as we will sket
h in the following, it is pos-sible to also derive soft real-time properties in terms ofexpe
ted behavior from the same TIOA models. E.g. inthe extensive treatment of the Leader Ele
tion Proto
olof Se
tion 3, we have �rmly established that the
orre
tleader is guaranteed to be de
lared within (N+1)*MaxDtime-units, given a ring of N nodes ea
h implementingthe TIOA spe
i�
ation of Fig. 7, i.e. 14 time-units for aring with 6 nodes. The spe
i�
ation theory presented in

Compositional Veri�
ation of Real-Time Systems Using E
dar 17

5 10 15 20 25 30 35 40

Nodes

00:00

00:20

00:40

01:00

01:20

T
im

e
 (

m
m

:s
s
)

S_c
S_m
T_c
T_m

Fig. 20 Timing results of veri�
ation of S and T for the
ompositional and monolithi

ases.this paper, assumes that implementations are
on
reteexe
utable realizations of spe
i�
ations. In parti
ularimplementations are assumed to have �xed timing be-havior, meaning that outputs o

ur at predi
table andexa
t time moments. However, in a ri
her setting thetiming behavior of implementations
ould be sto
has-ti
, with timing delays of
omponents being
hosen bydistributions.In a line of re
ent work [12,11,9℄ su
h a sto
hasti
semanti
s has been put forward for networks of TIOA,giving a probability measure on sets of runs. This allowsfor re�ned probabilisti
 performan
e properties to bede�ned and analyzed, su
h as the property �the proba-bility of the set of runs where a leader is de
lared within4 time-units is greater than 0.3�, whi
h
ould be highlyinteresting for the Leader Ele
tion Proto
ol. The newUppaal-sm
 bran
h o�ers a simulation engine allow-ing to settle su
h probabilisti
 properties within desiredlevels of
on�den
e based on a number of random runsof the system. Assuming that the delay of ea
h node isgiven by uniform distribution on the interval [0,MaxD℄Fig. 21 (a) gives the estimated probability, that theleader (node N2) is de
lared within T time-units, with Tranging from 0 to 14. Knowing from our previous veri�-
ation e�ort that 14 is the guaranteed upper bound, it isinteresting to see that the average time before ele
tionis signi�
antly lower, namely 4.42624 time-units Using

(a)
(b)Fig. 21 Performan
e Analysis of the Leader Ele
tion Pro-to
ol, giving the probability that the leader will be de
lared(a) within T time-units and (b) within M messages being send,estimated by Uppaal-sm
.Uppaal-sm
 we obtain [0.38241, 0.402412] as a 95%
on�den
e interval for the probability of that the leaderis ele
ted within 4 time-units using 18,445 random runs.On the other hand, dire
tly testing whether this prob-

18 David, Larsen, Legay, Møller, Nyman, Ravn, Skou and W¡sowskiability is greater than 0.3 with signi�
an
e level 0.05is
on�rmed with only 266 runs, using the sequentialtesting method implemented in Uppaal-sm
.Extending the model slightly, we may also estimatethe �probability that a leader is de
lared within a givennumber M of messages being send�. Fig. 21 (b) givesan estimation of this probability for M ranging from 0to 50. We note that on average transmission of some 25messages is needed.Following the sket
h above for the Leader Ele
tionProto
ol, we believe that a semanti
ally well-foundedextension of the presented TIOA-based spe
i�
ation the-ory to allow for sto
hasti
 implementation would be ex-tremely interesting. In parti
ular, it would enable there�nement of hard real-time guarantees with soft per-forman
e statisti
s in a
onsistent manner, and allowfor the analysis and development of mixed-
riti
alitysystems.Referen
es1. Martín Abadi and Leslie Lamport. Composing spe
i�
a-tions. ACM TRANSACTIONS ON PROGRAMMINGLANGUAGES AND SYSTEMS, 15(1):73�132, 1993.2. Rajeev Alur and David L. Dill. A theory of timed au-tomata. Theor. Comput. S
i., 126(2):183�235, 1994.3. Rajeev Alur, Thomas A. Henzinger, Orna Kupferman,and Moshe Y. Vardi. Alternating re�nement relations.In CONCUR'98, volume 1466 of LNCS. Springer, 1998.4. Henrik Reif Andersen and GlynnWinskel. Compositional
he
king of satisfa
tion. In Kim Guldstrand Larsen andArne Skou, editors, CAV, volume 575 of Le
ture Notes inComputer S
ien
e, pages 24�36. Springer, 1991.5. Jos C. M. Baeten. A brief history of pro
ess algebra.Theor. Comput. S
i., 335(2-3):131�146, 2005.6. Mike Barnett, K. Rustan, M. Leino, and WolframS
hulte. The Spe
programming system: An overview.In CASSIS 2004, LNCS, volume 3362. Springer, 2004.7. Gerd Behrmann, Agnès Cougnard, Alexandre David,Emmanuel Fleury, Kim G. Larsen, and Didier Lime.Uppaal-tiga: Time for playing games! In CAV, volume4590 of LNCS. Springer, 2007.8. Peter Buly
hev, Thomas Chatain, Alexandre David, andKim G. Larsen. E�
ient on-the-�y algorithm for
he
k-ing alternating timed simulation. In FORMATS, volume5813 of LNCS, pages 73�87. Springer, 2009.9. Peter E. Buly
hev, Alexandre David, Kim GuldstrandLarsen, Marius Miku
ionis, and Axel Legay. Distributedparametri
 and statisti
al model
he
king. In Jiri Bar-nat and Keijo Heljanko, editors, PDMC, volume 72 ofEPTCS, pages 30�42, 2011.10. Fran
k Cassez, Alexandre David, Emmanuel Fleury,Kim G. Larsen, and Didier Lime. E�
ient on-the-�y al-gorithms for the analysis of timed games. In CONCUR,2005.11. Alexandre David, Kim G. Larsen, Axel Legay, MariusMiku
ionis, Danny Bøgsted Poulsen, Jonas van Vliet, andZheng Wang. Statisti
al model
he
king for networks ofpri
ed timed automata. In Uli Fahrenberg and StavrosTripakis, editors, FORMATS, volume 6919 of Le
tureNotes in Computer S
ien
e, pages 80�96. Springer, 2011.

12. Alexandre David, Kim G. Larsen, Axel Legay, MariusMiku
ionis, and Zheng Wang. Time for statisti
al model
he
king of real-time systems. In Ganesh Gopalakrishnanand Shaz Qadeer, editors, CAV, volume 6806 of Le
tureNotes in Computer S
ien
e, pages 349�355. Springer,2011.13. Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Ny-man, and Andrzej Wasowski. Timed i/o automata: a
omplete spe
i�
ation theory for real-time systems. InKarl Henrik Johansson and Wang Yi, editors, HSCC,pages 91�100. ACM ACM, 2010.14. Lu
a de Alfaro and Thomas A. Henzinger. Interfa
eautomata. In FSE, pages 109�120, Vienna, Austria,September 2001. ACM Press.15. Lu
a de Alfaro and Thomas A. Henzinger. Interfa
e-based design. In In Engineering Theories of Software In-tensive Systems, Marktoberdorf Summer S
hool. KluwerA
ademi
 Publishers, 2004.16. Lu
a de Alfaro, Thomas A. Henzinger, and Marielle I. A.Stoelinga. Timed interfa
es. In Alberto L. Sangiovanni-Vin
entelli and Joseph Sifakis, editors, EMSOFT, volume2491 of LNCS, pages 108�122. Springer, 2002.17. Uli Fahrenberg, Axel Legay, and Andrzej Wasowski. Vi-sion paper: Make a di�eren
e! (semanti
ally). In JonWhittle, Tony Clark, and Thomas Kühne, editors, MoD-ELS, volume 6981 of Le
ture Notes in Computer S
ien
e,pages 490�500. Springer, 2011.18. R. W. Floyd. Assigning meanings to programs. Pro
eed-ings of the Ameri
an Mathemati
al So
iety Symposia onApplied Mathemati
s, 19:19�31, 1967.19. Stephen J. Garland and Nan
y A. Lyn
h. The IOAlanguage and toolset: Support for designing, analyz-ing, and building distributed systems. Te
hni
al report,Massa
husetts Institute of Te
hnology, Cambridge, MA,1998.20. C. A. R. Hoare. An axiomati
 basis for
omputer pro-gramming. Communi
ations of the ACM, 12(10):576�580, 1969.21. C. A. R. Hoare and Jifeng He. The weakest prespe
i�
a-tion. Inf. Pro
ess. Lett., 24:127�132, January 1987.22. C.A.R. Hoare. Communi
ating Sequential Pro
esses. In-ternational Series in Computer S
ien
e. Prenti
e Hall,1985.23. Cli� B. Jones. Spe
i�
ation as a design base (extendedabstra
t). In A. J. W. Duijvestijn and Peter C. Lo
ke-mann, editors, ECI, volume 123 of Le
ture Notes in Com-puter S
ien
e, pages 103�105. Springer, 1981.24. Cli� B. Jones. Systemati
 Software Development usingVDM. Series in Computer S
ien
e. Prenti
e-Hall Inter-national, 1986.25. Dilsun K. Kaynar, Nan
y A. Lyn
h, Roberto Segala, andFrits W. Vaandrager. Timed i/o automata: A mathe-mati
al framework for modeling and analyzing real-timesystems. In RTSS, pages 166�177. IEEE Computer So
i-ety, 2003.26. Kim G. Larsen. Context-Dependent Bisimulation Be-tween Pro
esses. PhD thesis, Department of ComputerS
ien
e, University of Edinburgh, 1986.27. Kim Guldstrand Larsen and Liu Xinxin. Compositional-ity through an operational semanti
s of
ontexts. In MikePaterson, editor, ICALP, volume 443 of Le
ture Notes inComputer S
ien
e, pages 526�539. Springer, 1990.28. Gary T. Leavens and Albert L. Baker. Enhan
ing the pre-and post
ondition te
hnique for more expressive spe
i�-
ations. In Jeannette M. Wing, James Wood
o
k, andJim Davies, editors, FM'99 � Formal Methods: World

Compositional Veri�
ation of Real-Time Systems Using E
dar 19Congress on Formal Methods in Development of Com-puter Systems, volume 1709 of Le
ture Notes in Com-puter S
ien
e, pages 1087�1106. Springer Verlag, 1999.29. Nan
y Lyn
h. I/O automata: A model for dis
rete eventsystems. In Annual Conferen
e on Information S
ien
esand Systems, pages 29�38, Prin
eton University, Prin
e-ton, N.J., 1988.30. Nan
y A. Lyn
h and Mark R. Tuttle. An intro-du
tion to input/output automata. Te
hni
al ReportMIT/LCS/TM-373, The MIT Press, November 1988.31. Ro

o De Ni
ola and Roberto Segala. A pro
ess algebrai
view of input/output automata. Theoreti
al ComputerS
ien
e, 138, 1995.32. Susan S. Owi
ki and David Gries. An axiomati
 proofte
hnique for parallel programs i. A
ta Inf., 6:319�340,1976.33. Eugene W. Stark, Ran
e Cleavland, and S
ott A. Smolka.A pro
ess-algebrai
 language for probabilisti
 I/O au-tomata. In CONCUR, LNCS, pages 189�2003. Springer,2003.34. Jun Sun, Yang Liu, and Jin Song Dong. Model
he
k-ing
sp revisited: Introdu
ing a pro
ess analysis toolkit.In Pro
eedings of the Third International Symposium onLeveraging Appli
ations of Formal Methods, Veri�
ationand Validation (ISoLA 2008), volume 17 of Communi
a-tions in Computer and Information S
ien
e, pages 307�322. Springer, 2008.35. Jun Sun, Yang Liu, Jin Song Dong, Yan Liu, Ling Shi,and Andre Etienne. Modeling and verifying hierar
hi
alreal-time systems using stateful timed
sp. ACM Trans.Softw. Eng. Methodol., 2012. A

epted.36. C. Szyperski. Component Software, Beyond Obje
t-Oriented Programming. Addison-Wesley, 1997.37. Frits W. Vaandrager. On the relationship between pro-
ess algebra and input/output automata. In LICS, pages387�398, 1991.

