
International Journal on Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

An Integrated Framework for Checking the Behaviour of
fUML Models Using CSP

Islam Abdelhalim · Steve Schneider · Helen Treharne

Received: date / Accepted: date

Abstract Transforming UML models into a formal rep-
resentation to check certain properties has been ad-
dressed many times in the literature. However, the lack
of automatic formalization for executable UML mod-
els and provision of model checking results as modeller-
friendly feedback has inhibited the practical use of such
approaches in real life projects. In this paper we address
those issues by performing the automatic formalization
of the fUML (Foundational subset for executable UML)
models into CSP without any interaction with the mod-
eller, who should be isolated from the formal meth-
ods domain. The formal analysis provides the mod-
eller with a UML sequence diagram that represents the
model checking result in the case where an error has
been found in the model. This work also considers the
formalization of systems that depend on asynchronous
communication between components in order to allow
checking of the dynamic concurrent behaviour of sys-
tems.

We have designed a comprehensive framework that is
implemented as a plugin to MagicDraw (the CASE tool
we use) that we call Compass. The framework depends
on Epsilon as a model transformation tool that uti-
lizes the Model Driven Engineering (MDE) approach.
It also implements an optimization approach to be able
to model check concurrent systems using FDR2, and at
the same time comply with the fUML inter-object com-
munication mechanism. In order to validate our frame-

I. Abdelhalim · S. Schneider · H. Treharne
Department of Computing, University of Surrey, UK
E-mail: i.abdelhalim@surrey.ac.uk

S. Schneider
E-mail: s.schneider@surrey.ac.uk

H. Treharne
E-mail: h.treharne@surrey.ac.uk

work, we have checked a Tokeneer fUML model against
deadlock using Compass. The model checking results
are reported in this paper showing the advantages of
our framework.

Keywords Formalization · fUML · CSP · Deadlock ·
Model Checking · FDR2 · Tokeneer

1 Introduction

Formal methods benefits from its mathematically rigor-
ous representation that enables automatic analysis us-
ing model checkers and theorem provers. However, not
many software engineers (modellers) have the special-
ist mathematical knowledge to model their industrial
size systems formally. On the other hand, semi-formal
modelling notations, such as UML (Unified Modeling
Language) [25], are easy to use and understand by soft-
ware engineers, making UML the de-facto standard for
modelling object oriented systems. The impossibility of
automated analysis or checking of the UML models,
made it very risky to use UML in modelling safety-
critical systems.

Much work has been done to make use of the two do-
mains’ advantages (formal and semi-formal modelling)
by letting the modeller develop the system model us-
ing UML and then automatically transforming it to a
formal representation which can be checked against cer-
tain properties. Throughout the paper we will refer to
this process as “formalization”.

By reviewing and analyzing the previous work (refer
to Section 9 for more details) we have observed several
issues that we consider are the main barriers for the

2 Islam Abdelhalim et al.

practical use of UML formalization in real life projects.
First, the avoidance of having a comprehensive frame-
work that isolates the modeller from dealing with the
formal methods, and at the same time integrates with
the current case tools. This isolation requires provid-
ing the modeller with modeller-friendly debug feedback
in case of a problem in the checked model. Second,
asynchronous inter-object communication has been ad-
dressed rarely in this field, yet in many systems this
kind of communication is preferred due to its simplic-
ity and modularity compared to other ways of com-
munication that require tight synchronization between
the system’s objects (e.g., using a clock). Finally, us-
ing UML as a semi-formal language requires tremen-
dous effort to formalize such a huge standard, which
has been developed mainly to provide modellers with a
multi-view modelling approach. Moreover, formalizing
the UML models cannot be a direct process because of
its excessive flexibility which increases the gap between
it and the corresponding formal model.

The main originality of our work comes from addressing
the aforementioned issues. We propose a comprehensive
framework that uses fUML (Foundational subset for
executable UML) [26] as a semi-formal modelling lan-
guage. Compared to UML, fUML is a more restricted
subset of the UML2 standard that has a well defined
structural and behavioural semantics. Our framework
also isolates the modeller from the formal methods do-
main through the whole model checking cycle from the
beginning until providing him with a UML sequence
diagram (modeller-friendly) that describes a problem
scenario (if found). We have implemented this frame-
work as a plugin that integrates with MagicDraw 1, the
case tool we use in this work.

We also consider in this work the formalization of the
asynchronous communication mechanism between the
system objects. We took the well defined specification
of the inter-object communication in the fUML stan-
dard and formalized it in CSP (Communicating Se-
quential Processes) [15]. Although the standard was
clear in defining this mechanism, it left the event dis-
patch scheduling (how are signals processed when re-
ceived?) as a semantic variation point to be defined by
the fUML execution engine implementor. The formal-
ization of this point allowed us to test different inter-
pretations.

Having the inter-object communication mechanism for-
malized allowed for checking overall system behaviours.
In this paper we will focus on deadlock freedom only

1 MagicDraw is an (award-winning) architecture, software
and system modeling case tool. It also supports additional
plugins to increase its functionalities

as a sample system behaviour to check. We also chose
the Tokeneer project [3] as a case study to validate our
framework.

This paper extends our previous paper [1] on this area;
it introduces the formalization framework that auto-
mates the transformation process using Epsilon [18]
as an MDE (Model Driven Engineering) framework.
We developed a group of Epsilon transformation rules
which depend on the available fUML [26] and CSP [33]
meta-models. This paper also considers the automatic
generation of a sequence diagram that represents the
counter-example in case of deadlock.

The rest of this paper is organised as follows. In Sec-
tion 2, we give a brief background about the fUML stan-
dard and CSP. In Section 3, we introduce the Tokeneer
project as the used case study in this work. In Sec-
tion 4, we give an overview of the formalization frame-
work. In Section 5, we describe the Model Formalizer,
the most important component in the framework. In
Section 6, we describe the role of FDR2 to check the
model against deadlock. In Section 7, we describe how
the framework automatically provides modeller-friendly
feedback. In Section 8, we outline the implementation
of the framework as a plugin to MagicDraw. Finally, we
discuss related work and conclude in Sections 9 and 10
respectively.

2 Background

2.1 fUML

As defined by OMG, fUML (Foundational Subset for
Executable UML) acts as an intermediary between
“surface subsets” of UML models and platform exe-
cutable languages (e.g., Java) [26]. fUML models are
executable models, which means they can be used by
code-generators to generate full executable code di-
rectly from the models, or model-interpreters that rely
on a virtual machine to directly read and run the mod-
els (e.g., fUML Reference Implementation [20]).

The fUML specification is a subset of the original UML2
specification [25]. This subset was defined by specifying
modifications to the original abstract syntax (of UML2)
of the class and activity diagrams. These modifications
are specified in clause 7 of the standard [26] by merg-
ing/excluding some packages in the UML2 specifica-
tion, as well as adding new constraints.

As defined in the fUML standard, we are listing below
some of the modifications to UML2 that are relevant to

An Integrated Framework for Checking the Behaviour of fUML Models Using CSP 3

our case study (Tokeneer ID Station) fUML model. All
of those modifications are related to the fUML activity
diagrams since our goal is to capture the behaviour of
our model:

– Central buffer nodes are excluded from fUML be-
cause they were judged to be unnecessary for the
computational completeness of fUML.

– Variables are excluded from fUML because the pass-
ing of data between actions can be achieved using
object flows.

– Exception handlers are not included in fUML be-
cause exceptions are not included in fUML.

– Opaque actions are excluded from fUML since, be-
ing opaque, they cannot be executed.

– Value pins are excluded from fUML because they
are redundant with the use of value specifications
to specify values.

The operational semantics of fUML is an executable
model with methods written in Java, with a mapping
to UML activity diagrams. The declarative semantics
of fUML is specified in first order logic and based on
PSL (Process Specification Language) [12].

Inter-object communication mechanism in fUML

This part gives an overview of the semantics of the
inter-object communication in fUML as defined by
clause 8 in the standard [26]. Such communication is
conducted between active objects only. Active objects
in fUML communicate asynchronously via signals. Each
active object is associated with an object activation
which handles the dispatching of asynchronous commu-
nications received by its active object. Figure 1 shows
the structure related to object activation.

Active Object

Object Activation

Event Pool Waiting Event
Accepters

Fig. 1: Object Activation Structure

Object activation maintains two main lists: the first list
(event pool) holds the incoming signal instances wait-
ing to be dispatched, and the second list (waiting event
accepters) holds the event accepters that have been reg-
istered by the executing classifier behaviour. Event ac-
cepters are allowable signals with respect to the current
state of the active object.

The fUML standard permits the specifier (tool imple-
menter) to define a suitable dispatching mechanism for
signals within the event pool (semantic variation point).
The default dispatching behaviour, as described in [26],
dispatches events on a FIFO (first-in first-out) basis.

2.2 CSP

CSP [15] is a modelling language that allows the de-
scription of systems of interacting processes using a few
language primitives. Processes execute and interact by
means of performing events drawn from a universal set
Σ. Some events are of the form c.v , where c represents
a channel and v represents a value being passed along
that channel. Our UML/fUML formalization considers
the following subset of the CSP syntax:

P ::= a → P | c?x → P(x) | d !v → P

| c!v?x : E → P(x) | P1 2 P2

| P1 u P2 | P1 ‖
A B

P2 | P1 ‖
A

P2 | P \ A

| let N1 = P1 , . . . , Nn = Pn within Ni

| if b then P1 else P2

The CSP process a → P initially allows event a to
occur and then behave subsequently as P . The input
process c?x → P(x) will accept a value x along channel
c (corresponding to performance of the event c.x) and
then behave subsequently as P(x). The output process
c!v → P will output v along channel c (corresponding
to performance of the event c.v) and then behave as P .
Processes interact by synchronising on the events c.v .
Channels can have any number of message fields, as a
combination of input and output values, for example:
c!v?x : E → P(x). Also x can be constrained to be a
value from the set E .

The choice P1 2 P2 offers an external choice between
processes P1 and P2 whereby the choice is made by
the environment. Conversely, P1 u P2 offers an internal
choice between the two processes.

4 Islam Abdelhalim et al.

The parallel combination P1 ‖
A B

P2 executes P1 and P2

in parallel. P1 can perform only events in the set A, P2

can perform only events in the set B , and they must
simultaneously engage in (i.e., synchronise on) events
in the intersection of A and B . The interface parallel
P1 ‖

A

P2 requires synchronization only on those events

in the common set (interface) A.

The process P \ A behaves like P except that the events
from A have been internalized. In other words, all these
events are removed from the interface of the process and
no other process will be able to engage with them. The
let . . .within statement defines P with local definitions
Ni = Pi . The conditional choice if b then P1 elseP2

behaves as P1 or P2 depending on the evaluation of the
condition b.

3 Tokeneer: Case study introduction

The Tokeneer project [3] is one of the most interest-
ing pilot projects forming part of the Verified Software
Initiative [16], and has been cited by the US National
Academies as exemplifying best practice in software en-
gineering [17]. The project was certified to Common
Criteria Level 5 and in the areas of specification, design
and implementation achieving Levels 6 and 7. The To-
keneer project re-developed one component of a Toke-
neer system that was developed by the NSA (National
Security Agency) to provide protection to secure infor-
mation held on a network of workstations situated in
a physically secure enclave. A survey of other projects
using formal methods has been discussed in [38].

The entire project archive has been released [2] for ex-
perimentation by researchers. This includes the project
specifications written in Z [4] and an open source imple-
mentation. Woodcock and Aydal [37] have conducted
several experiments using model-based testing tech-
niques to discover twelve anomalous scenarios which
challenged the dependability claims for Tokeneer as a
security-critical system. Several of the scenarios high-
light the importance of the behaviour of the user be-
cause one of the security objectives for Tokeneer is to
prevent accidental, unauthorised access to the enclave
by a user. The user was not formally modelled in the Z
specification [2]. We also note the importance of mod-
elling the user in our analysis.

Our motivation for using the Tokeneer project as a case
study was not to re-validate the project but rather to in-
vestigate the concurrent behaviour of the various com-
ponents of the Tokeneer ID station (TIS) subsystem in
the context of asynchronous communication.

The correspondence between the Tokeneer formal speci-
fications [2] and our Tokeneer fUML model is not a one-
one relationship. Our Tokeneer fUML model contains
more implementation details that are abstracted in To-
keneer Z specifications. Therefore, our formal analysis
benefits from being able to examine the low level de-
tails of asynchronous communication. Such an analysis
allows us to investigate potential deadlocks which might
occur if the formal specifications were implemented us-
ing such communication mechanisms.

3.1 TIS subsystem structure

The components of interest in the TIS subsystem are
represented on the class diagram in Figure 2. We do not
formalize the class diagram, and its inclusion is just to
illustrate the relationship between the system’s compo-
nents.

Door : This is the physical enclave’s door that the user
opens to access the secure enclave. It has no intelli-
gent behaviour as it is entirely controlled by the door
controller component. The two main attributes of this
component are: isOpen attribute which indicates the
status of the door (opened or closed), and the isLocked
attribute which indicates the status of the door’s latch
(locked or unlocked).

Door Controller : This component controls the door’s
latch status (isLocked) by setting its value based on the
incoming signals from the User Panel. It also manages
two timers: the first timer watches if the door is kept
closed and unlocked, and the second timer watches if
the door is kept opened and locked.

User : This component models the user behaviours to-
ward the system. He is responsible for requesting the
enclave entry, and opening the door in case it was suc-
cessfully unlocked by the User Panel. He is also respon-
sible for closing the door after accessing the enclave.
The system may serve more than one user at the same
time. However, the results in this paper focus on a sin-
gle user only.

User Panel : This component models the behaviour of
the panel with which the user interfaces to gain access
to the enclave. It is responsible for deciding whether the
user is allowed to access the enclave or not.

Alarm : This component holds the status of the alarm
(alarming or silent), based on the setting/resetting by
the Door Controller component to the isAlarming at-
tribute.

An Integrated Framework for Checking the Behaviour of fUML Models Using CSP 5

isOpen : boolean
isLocked : boolean

Door

User
User Panel

Door Controller

isAlarming : boolean

Alarm

controls

1

controlled by

1

provides input to

1receives input from

1..*

can activate

1

activated by 1
accesses controller1

accesses panel1

uses 1

used by 1..*

Fig. 2: TIS Class Diagram

3.2 TIS subsystem behaviour

In the Tokeneer fUML model all objects (of the above
classes) which have interesting behaviour have associ-
ated activity diagrams. The Alarm object is a simple
data holder and thus no activity diagram is associated
with it. For the purpose of this paper, we choose to focus
on a segment of the Door Controller activity (depicted
in Figure 3), which includes all the described elements
in Section 5.1.

Initially, the Door Controller waits for the unlock-
LatchSignal to be sent by the User Panel when the User
requests an entry to the enclave and he is authorized to
do so. When receiving this signal, the Door Controller
changes the status of the Door’s lock to be Unlocked by
setting the attribute isLocked to FALSE. Consequently,
the Door Controller sends unlockingDoorCompleteSig-
nal to the User Panel to indicate the completion of
the Door unlocking. At this point, the Door Controller
starts a timer to watch if the User did not open the Door
after getting the permission for entry. The two possible
scenarios for the timer expiry (lockTimeoutExceeded or
lockTimeoutNotExceeded) are represented as an inter-
nal decision. The lockTimeoutNotExceeded choice cor-
responds to the door opening within the allowed time. If
the timer timeouts the Door Controller sends the lock-
LatchSignal to itself to change the Door’s lock status to
Locked. Otherwise, the Door Controller will accept the
doorIsOpenSignal from the Door’s object to continue its
normal behaviour until sending the entryAuthorizedSig-
nal to the User’s object.

4 Framework overview

In this work we propose a framework that allows fUML
models to be formalized to CSP automatically and
checked for deadlock using FDR2. The framework also
translates FDR2 output to a modeller friendly format
(UML sequence diagram). Figure 4 shows the overall ar-
chitecture of this framework and the used components.

Initially, the modeller develops the system fUML model
using the case tool (MagicDraw). The model should in-
clude an fUML activity diagram for each active class in
the system to describe its behaviour. Based on a fea-
ture in the case tool, the framework exports the fUML
model into an XMI (XML Metadata Interchange) [24]
format, thus it can be read by any MDE framework for
transformation.

At this point, the Model Formalizer reads the fUML
model (represented in XMI) and transforms it to a CSP
script based on the available fUML [35] and CSP [33]
meta-models. The Model Formalizer uses the Epsilon
model management framework to perform the model-
to-model and model-to-text tasks. The generated CSP
script contains a process for each active class in the
system, as well as a formalization for the inter-object
communication mechanism to allow those processes to
communicate with each other asynchronously via sig-
nals. The Model Formalizer also generates an Object-
to-Class mapping table, which will be used for trace-
ability to relate the modeller-friendly feedback to the
original fUML model. In the case of a problem during
the formalization process (e.g., an fUML activity dia-
gram without a connected initial node cannot be for-
malized), the Model Formalizer generates the Formal-
ization Report which reports the error(s) in the fUML
model which led to this problem.

6 Islam Abdelhalim et al.

(alarmObj : Alarm, doorObj : Door, selfObj : DoorController, upObj : UserPanel, userObj : User) DoorControllerActivity

upObj : UserPanel

selfObj : DoorController

alarmObj : Alarm

userObj : User

doorObj :
Door

doorObj :
Door

Send
(unlockingDoorCompleteSignal)

<<addStructuralFeatureValue>>

isLocked

<<addStructuralFeatureValue>>

isAlarming

<<addStructuralFeatureValue>>

isLocked

Send
(entryAuthorizedSignal)

Accept
(unlockLatchSignal,
doorIsClosedSignal,

lockLatchSignal)

Accept
(unlockLatchSignal)

Accept
(doorIsOpenSignal,

lockLatchSignal)

Send
(lockLatchSignal)

<<valueSpecification>>

Value(FALSE)

<<valueSpecification>>

Value(FALSE)

<<valueSpecification>>

Valure(FALSE)

To the rest of
the diagram

doorIsOpenSignal

lockLatchSignal

doorIsClosedSignal

lockLatchSignal

unlockLatchSignal

lockTimeoutExceeded

lockTimeoutNotExceeded

Fig. 3: Segment of the Door Controller Activity

Consequently, the framework launches FDR2 to check
the generated CSP script for deadlocks. In case of dead-
lock, FDR2 generates a counter-example which includes
the traces (sequence of events) that led to the dead-
lock. The UML Sequence Diagram Generator reads this
counter-example and visualizes it in the form of a UML
sequence diagram making use of the information stored
in the Object-to-Class mapping table. The generated
sequence diagram represents the deadlock scenario in
a modeller friendly format which visualizes the objects
interactions in a chronological order.

The following sections provide more detail regarding
each component included in this framework.

5 The Model Formalizer

The main functionality of the Model Formalizer compo-
nent is to translate the input fUML model to CSP. The
component achieves this translation in three stages:

1. Translating the fUML activity diagrams into CSP
processes.

2. Generating CSP processes that represents the inter-
object communication mechanism.

3. Combining all the previous CSP processes into one
single process that represents the whole system
(SYSTEM).

The following sections describe each of those stages and
how the Model Formalizer automates the formalization.

An Integrated Framework for Checking the Behaviour of fUML Models Using CSP 7

fUML
Activity Diagrams

Model
Formalizer

fUML
Meta-model

CSP
Meta-model

CSP
Script

Object-to-Class
Mapping Table

FDR2

Counter
Example

UML Sequence
Diagram Generator

Formalization
Report

Modeller

Sequence
Diagram

Fig. 4: Framework Architecture

5.1 fUML activity diagrams formalization

We perform the translation from fUML activity dia-
grams to CSP based on a collection of mapping rules.
Table 1 shows the fUML activity diagram’s elements
and the corresponding CSP representation that reflects
the semantic behaviour for each element.

In the mapping rules, aIH and bIH represent the in-
stance handler of the sender and receiver objects respec-
tively. Instance handlers are used to uniquely identify
each object in the system and are included in all the
CSP events. The values rp1 and rp2 in Rules(3) and
(4) represent the registration points where the object
(bIH) is waiting to accept the signal instances sig1 and
sig1, sig2, or sig3 respectively. Each AcceptEventAction
in an fUML activity diagram (e.g., Figure 3) associated
with a unique registration point.

Mapping from UML activity diagrams to CSP has been
addressed several times in the literature [41,40]. The
novel points of our mapping are as follows:

Rule(1) maps the fUML activity as a parent CSP
process with several parameters (param1, param2, ..).
Within this process we define sub-processes, each acts
as a different fUML element within this activity. The
within statement defines the action (sub-process) con-
nected to the initial node (AC1). Rule(2) and (3) maps
the SendSignalAction and AcceptEventAction to the
CSP parameterized events send and accept respectively.
The registerSignals event is used to let the object acti-
vation fill the waiting event accepters list with the al-
lowed signals to be accepted at this point (registration

point). The value rp1 is explicitly included in the event
so that each AcceptEventAction is uniquely identified.
Without those registration points, the model checker
will not be able to identify the possible signals to be
accepted by the accept event. Section 5.2 describes how
those events synchronize with the object’s buffer pro-
cess to allow the asynchronous communication between
processes (active objects).

The fUML standard supports the fact that the Ac-
ceptEventAction handles more than one signal at a
time. When the control flow of the activity reaches this
action, the object waits for any of the defined signals
(sig1, sig2, or sig3) to be received. If any of those signals
arrive, the object execution proceeds and the incoming
signal instance is passed to the AcceptEventAction out-
put pin. For that reason, in Rule(4), we connect the
decision node to the action’s output pin to branch the
flow based on the incoming signal. We use the same
concept of Rule(3) followed by an external choice to
represent the branching semantics. Rules like (2),(3),
and (4) are not presented in [41,40] because the focus
there is not on interaction between activity diagrams.

Rule(5) maps the combination of the actions: value-
SpecificationAction and addStructuralFeatureValue-
Action to two events to allow (for example) the
aIH instance handler’s attribute isOpen to be set to
FALSE. We represent the decision node as an internal
choice (as in Rule(6)) when the incoming edge to the
decision node is a control flow. But we represent it as
an external choice (as in Rule(4)) when the incoming
edge is an object flow. Having the decision nodes in the

8 Islam Abdelhalim et al.

fUML Element CSP Representation

Rule(1): Activity

(param1, param2) P_ACTIVITY

param1

param2

P ACTIVITY (param1, param2) =
let

Activity/Process Body
within AC1

Rule(2): Send Signal Action

Send (sig1)
bIH

bIH

AC1 = send !aIH !bIH !sig1→ ...

Rule(3): Accept Event Action

Accept(sig1)

AC1 = registerSignals!bIH !rp1→
accept !bIH !sig1→ ...

Rule(4): Accept Event Action (*)

Accept(sig1, sig2, sig3)

...

......
 [sig3] [sig1]

 [sig2]

AC1 = registerSignals!bIH !rp2→ (
accept !bIH !sig1→ ...
2

accept !bIH !sig2→ ...
2

accept !bIH !sig3→ ...)

Rule(5): Add Structural Feature Value Action

«addStructuralFeatureValue»

isOpen := FALSE
aIH

«valueSpecification»

Value(FALSE)
AC1 =
valueSpec!aIH ?val : {FALSE} →
addStFeatureValue!aIH !isOpen!val
→ ...

Rule(6): Decision/Merge Nodes

Action2Action1

decision2decision1
DS1 = decision1→ AC1

u
decision2→ AC2

AC1 = ...→ MR1
AC2 = ...→ MR1
MR1 = ...

Table 1: The fUML to CSP Mapping Rules

An Integrated Framework for Checking the Behaviour of fUML Models Using CSP 9

fUML standard allowed for modelling internal decisions
which was not possible using xUML (Executable UML
[19]).

The mapping rules scope
It is obvious that the mapping rules do not support
all the fUML standard elements, and for the chosen
elements not all the properties are considered in the
formalization. This part discusses the rationale behind
the inclusion and the exclusion for some elements.

The formalization rules include all the fUML elements
that have been used in the Tokeneer fUML model (our
primary case study) and the chosen properties for each
element are sufficient to check deadlock freedom be-
tween the communicating active objects. This explains
why we have excluded elements such as Activity Final
Nodes from the formalization, especially that the dy-
namic objects creation and destruction is not support
in this work. Also, formalizing unnecessary properties
will lead to a complicated CSP model that FDR2 will
possibly fail to check. For example, the formalization of
the addStructuralFeatureValueAction considers the as-
signment of unordered boolean structural features only.

Some of the excluded fUML elements such as Fork and
Join nodes are appropriate to use when modelling the
concurrent behaviour within the active object. We will
show in Section 5.2.2 that modelling the concurrent be-
haviours is considered in our formalization but only be-
tween the active objects which are communicating with
each other asynchronously.

As we are constrained with CSP as a formal represen-
tation, some aspects in the fUML standard cannot be
formalized directly using CSP such as the Join nodes
which are used to combine multiple/parallel flows in the
activity diagram into one flow. That is mainly because
parallel processes in CSP can just synchronize on some
events, but their behaviours cannot be combined to act
as one process.

The fUML standard includes many intermediate ac-
tions such as: Read Structural Feature, Write Struc-
tural Feature and Test Identity actions. Our framework
is flexible enough to support adding more formaliza-
tion rules for such actions. However, some actions such
as Create/Destroy Objects requires adding additional
processes to the CSP model to handle the objects man-
agement tasks.

5.1.1 Formalization automation

We use Epsilon2 as an MDE framework to do the
transformation from the source model (fUML) to a
CSP script. The transformation is done in two stages;
firstly, Model-to-Model transformation from the fUML
model to a CSP model using ETL (Epsilon Transfor-
mation Language), and secondly, Model-to-Text trans-
formation from the CSP model to a CSP script using
EGL (Epsilon Generation Language) [18]. The Model-
to-Model transformation includes all the rules shown in
Table 1 represented in ETL. Epsilon performs the trans-
formation based on the source/target meta-models. In
this work, we use the available UML2 meta-model 3 [35]
and the CSP meta-model used in our previous work
[33].

Figure 5 illustrates a sample ETL rule (Rule(1)) and
segments of the involved meta-models in this rule. The
first meta-model segment (fUML) shows that each Ac-
tivity in the fUML model can have many ActivityN-
odes, and the ActivityParameterNodes are a kind of
those nodes. This small segment is sufficient to under-
stand Rule(1) ETL representation from the fUML as-
pect. Similarly, the second meta-model segment (CSP)
shows that each LocalizedProcess holds mainly a Proces-
sAssignment entity which relates the ProcessID (e.g.,
AC1) with the ProcessExpression (the expression after
the “=” operator).

The execution of this ETL rule
(Activity To LocalizedProcess) applies the map-
ping shown in Rule(1) in Table 1, as it transforms any
activity in the fUML source model (activity) to a CSP
localized process (locProc) and all its related elements
(ProcessAssignment, ProcessID and ProcessParame-
terList). The actions and the nodes inside the fUML
activity are translated using the other mapping rules.

The fUML and CSP models elements can be accessed
using the variables AD and CSP respectively using the
‘!’ operator. The for loop and the nested if condition
in the rule’s body are concerned with the activity pa-
rameters nodes (ActivityParameterNode) that should
be represented as ProcessParameterListItem’s in the
CSP model. Inside the loop, the rule sets the items’
names, adds them to the ProcessParameterList (ppl)

2 Epsilon is a family of consistent and interoperable task-
specific programming languages which can be used to in-
teract with models to perform common MDE tasks such as
code generation, model-to-model transformation, model vali-
dation, comparison, merging and refactoring [18]

3 The unavailability of the fUML meta-model in a format
that can be read by Epsilon forced us to use UML2 as a
source meta-model. This workaround is technically valid be-
cause fUML is a subset of UML2.

10 Islam Abdelhalim et al.

Rule(1) in ETL Meta-models

rule Activity_To_LocalizedProcess
 transform activity: AD!Activity
 to pa : CSP!ProcessAssignment,
 pid: CSP!ProcessID,
 ppl: CSP!ProcessParameterList,
 locProc: CSP!LocalisedProcess
{

 for (node in activity.node)
 {
 if (node.isKindOf (AD!ActivityParameterNode))
 {
 var paramItem: new CSP!ProcessParameterListItem;

 paramItem.name := node.name;

 ppl.item.add(paramItem);
 ppl.size := ppl.size + 1;
 }
 }

 pid.name = activity.name + '_Proc';
 pid.parameterList := ppl;

 pa.processID := pid;
 pa.processExpression := locProc;

}

ProcessID

name: String

ProcessAssignment

LocalizedProcess

process

processID

ProcessExpression

processExpression

ProcessParameterList

size: Integer
paramList

ProcessParameterListItem

name: String

item

0..*

ActivityActivityNode

ActivityParameterNode

name: String

node*
0..1

Segment of the CSP Meta-model

Segment of the fUML Meta-model (simplified)

Fig. 5: Rule(1) for Transforming State Machines to CSP Localized Processes

and adjusts the ppl size. After the loop, the rule sets
the CSP ProcessID (pid) name with the activity name
augmented with ‘ Proc’ and then associates the CSP
elements with each other. The reader can refer to [18]
for more detail about the Epsilon ETL language.

The Model Formalizer uses Epsilon to execute all the
ETL rules followed by the EGL script to perform the
Model-to-Text transformation which generates a com-
prehensive CSP script that represents the source fUML
model behavioral semantics.

5.1.2 Tokeneer fUML activity diagrams formalization

As mentioned in Section 3, our motivation is not to
re-validate the Tokeneer project but to use it as a
case study primarily to validate our framework and
secondly to study the fUML model behaviour in the
context of asynchronous communication as a possible
implementation for Tokeneer Z specifications. This sec-
tion shows a sample output from the Model Formal-
izer when using Tokeneer fUML as an input model.
Figure 6 shows the Door Controller CSP process
(DoorControllerActivity Proc) that represents the be-

havioural semantics of the DoorControllerActivity de-
picted in Figure 3.

As a direct application of Rule(1), the
DoorControllerActivity is translated to the
DoorControllerActivity Proc CSP localized pro-
cess with the corresponding parameters. AC2, AC8
and AC10 are generated by Rule(5). Applying Rule(6)
on the timer expiry decision node resulted in the
internal decision in DS1.

When the process registers (using registerSignals event)
and accepts (using accept event) the unlockLatchSignal
in AC1, this means that the process is ready to ac-
cept this signal when it is placed in its object’s (self-
Obj) event pool. On the other hand, when the send
event in AC4 happens, the unLockingDoorCompleteS-
ignal will be placed in the User Panel object’s (upObj)
event pool. The mechanism that allows for signals send-
ing/accepting is described in more detail in the follow-
ing sections.

Representing the fUML activity as a localized process
(using let · · ·within statement) with a sub-process for
each action makes the CSP process more readable and
the transformation task easier. This style also allows for

An Integrated Framework for Checking the Behaviour of fUML Models Using CSP 11

DoorControllerActivity Proc
(alarmObj , doorObj , selfObj , upObj , userObj) =

let

AC1 = registerSignals!selfObj !rp1→
accept !selfObj !unlockLatchSignal → AC2

AC2 = valueSpec!selfObj?val : FALSE →
addStFeatureValue!doorObj !isLocked !val → AC4

AC4 = send !selfObj !upObj !unLockingDoorCompleteSignal
→ DS1

DS1 = (lockTimeoutNotExceeded !selfObj → MR1
u
lockTimeoutExceeded !selfObj → AC5)

AC5 = send !selfObj !selfObj !lockLatchSignal → MR1

MR1 = AC6

AC6 = registerSignals!selfObj !rp2→ AC7

AC7 = (accept !selfObj !lockLatchSignal → ...
2

accept !selfObj !doorIsOpenSignal → AC8)

AC8 = valueSpec!selfObj?val : FALSE →
addStFeatureValue!alarmObj !isAlarming!val
→ AC10

AC10 = valueSpec!selfObj?val : FALSE →
addStFeatureValue!doorObj !isLocked !val → AC12

AC12 = send !selfObj !userObj !entryAuthorizedSignal
→ AC13

AC13 = registerSignals!selfObj !rp3→ AC14

AC14 = (accept !selfObj !unlockLatchSignal → AC13
2

accept !selfObj !lockLatchSignal → ...
2

accept !selfObj !doorIsClosedSignal → ...)

within AC1

Fig. 6: The Corresponding CSP Process for the Door
Controller Activity Segment (i.e., the translation of Fig-
ure 3)

recalling the same action several times without repeti-
tion.

5.2 Inter-object communication formalization

In the second stage, the Model Formalizer formalizes
the inter-object communication semantics (described
in Section 2.1) into CSP. However, having the events

dispatching scheduling as one of the fUML standard
semantic variation points led to different interpreta-
tions and thus different performances and results for
the model checking using FDR2.

5.2.1 The initial attempts of the events dispatching
formalization

We have conducted several attempts to formalize the
events dispatching scheduling before reaching the cur-
rent implementation. Although all of the attempts are
compatible with the fUML standard, each of them im-
plements the semantic variation point in a different way.
The events dispatching scheduling is mainly controlled
by the representation of the event pool. Among those
attempts, we outline below two of them:

In the first attempt, we represented the event pool as
a bag, which means that any signal can be dispatched
from the it arbitrarily. The main problem in this rep-
resentation was that it does not preserve the order of
the incoming signals. Also when the bag becomes full,
any incoming signal will be dismissed, which will lead
to a quick deadlock invalid afterwards. Decreasing the
effect of the former problem can be done by increasing
the bag’s size. However, with this representation, FDR2
failed to compile the CSP script when the bag’s size was
larger than 4 slots (for the Tokeneer case study), which
in practice is too small to keep the system alive

In the second attempt we represented the event pool
as a queue, which preserves the FIFO (First In First
Out) order of the incoming signals. This is the default
fUML strategy for dispatching events from the event
pool. Using the queue solved the problem of the nonde-
terministic dispatching of signals from the event pool,
preserving the incoming signals order. However, a new
problem was introduced when an object receives an un-
expected signal (i.e., not matched to one of the wait-
ing event accepters). In this situation, the object dis-
misses the incoming signal directly because it has been
already removed from the event pool for matching and
the fUML standard does not allow for returning signals
back to the event pool. In many cases the object may
need to accept this dismissed signal after few further
actions, which generally leads to an invalid deadlock to
the system.

In the following sections we will describe the represen-
tation of the event pool as a Controlled Buffer in CSP
which is the most optimized implementation (compared
to the initial attempts) that led to the minimum com-
pilation and checking time.

12 Islam Abdelhalim et al.

5.2.2 The event pool list as a Controlled Buffer

In the current implementation, the event pool is rep-
resented as a Controlled Buffer (described below). The
Controlled Buffer with the current implementation ben-
efits from its definition using only the CSP primitives
(parallel composition, prefix, etc.) and avoiding using
the Haskell functions which can be used to allow func-
tional definitions within process definitions, as they lead
to a significant decay in FDR2 performance during the
compilation process. In other words, although Haskell
functions are allowed by FDR2, they slow down the
model checking and avoiding them by pure CSP makes
the model checking faster. The current implementation
also maintains the signals sending order and provides
a scalable solution for the event pool size. The idea of
this implementation came from Michael Goldsmith [9].

The Controlled Buffer consists of a sequence of nodes,
where each node holds one signal at a time. When
adding a new signal to the buffer, it is placed in the
first empty node on a queue basis. Signals can be re-
moved from any slot of the buffer (not on a queue ba-
sis). However, when selecting the signal to be removed,
the buffer controller checks the oldest signal first (i.e.,
the signal that matches the selection criteria and at the
same time spent the longest time in the buffer). All the
signals located after the removed signal are shifted up
when it is removed. When the buffer becomes full, the
controller drops the oldest signal in the buffer and shifts
all the other signals.

Figure 7 shows the general structure of a Controlled
Buffer consisting of N consecutive nodes. When an ob-
ject sends a signal to another object (performs the send
event), the signal is placed in the receiver object’s buffer
(event pool) by placing it in the first node (B0), then
the signal will move down the chain automatically un-
til reaching the rightmost node in the buffer. The same
will be repeated for any other incoming signal filling the
buffer from right to left. When the buffer is full, the ac-
cepting of a new signal will result in the signal in the
rightmost node (oldest signal) being dropped out (drop
event) and all the signals shifted right by one node.
Signals are moved down as a parameter to the c1, c2,
. . . , cN events. According to the fUML standard, the
dropped signals cannot be returned back to the event
pool, and thus will never reach the destination.

As will be outlined below, the receiver object uses
the testY event (where Y represents the current node:
A,B , . . .) to check if the contained signal is member of
the object’s waiting event accepters list. If so, the signal
is removed from the event pool via the acceptY event,

B0

B1

B

B2

B

B2

B

B2
…send

acceptA

drop

testA testB testC

rejectA

acceptB

rejectB

acceptC

rejectC

acceptX

rejectX

c1 c2 c3 cN

testX

Fig. 7: The Event Pool as a Controlled Buffer

otherwise the rejectY event is enabled to allow check-
ing the next node. We represent each of those nodes as
a mutually-recursive CSP process with a simple logic
illustrated in Figure 8 for the first node (B0) and the
general node (B). Notice the example possible values
for the processes parameters between square brackets.

The processes B0 and B represent the node when it
is empty, while B1 and B2 represent them when the
node is holding a signal. In B0 and B the only allowed
event is c to fill the node with the passed signal in its
parameter (x). In B1 and B2 the hold signal (x) can
either be passed to the next node (d) or tested (g) by
the buffer controller for acceptance (e) or rejection (h).
If in B1 the c event happened, the oldest signal will
be dropped (f) and then the d event will be allowed to
shift the signals to the right.

As the buffer consists of sequence of nodes, we com-
bine the previous processes (B0 and B ’s) in parallel to
form a new process (CB NODES) that represents the
Controlled Buffer (event pool) but without being con-
trolled yet. Figure 9 shows the CSP representation of a
three node buffer which can hold three signal instances
at a time. The process CB NODES is defined using one
B0 process and two B processes whose parameters are
instantiated appropriately. The functionality of chase
will be described in Section 5.2.4.

CB NODES =
chase(((B0(send , c1, acceptA, drop, testA, rejectA)

‖
{|c1|}

B(c1, c2, acceptB , testB , rejectB))

‖
{|c2,drop|}

B(c2, drop, acceptC , testC , rejectC)

) \ {| c1, c2, drop |})

Fig. 9: Three Nodes Controlled Buffer

5.2.3 Controlling the buffer

To maintain dispatching signals in the same order
they were sent, we developed a controller process

An Integrated Framework for Checking the Behaviour of fUML Models Using CSP 13

x dc

e h

g

f

x dc

e h

g

[send]

[drop]

[c1]

[testA]

[acceptA] [rejectA]

[c2]

[testB]

[acceptB] [rejectB]

[c1]

B0(c, d , e, f , g, h) = c?x → B1(x , c, d , e, f , g, h)
B1(x , c, d , e, f , g, h) =

d !x → B0(c, d , e, f , g, h)

2 g!x → (e!x → B0(c, d , e, f , g, h)

2 h → B1(x , c, d , e, f , g, h))

2 c?y → f ?z → d !x → B1(y, c, d , e, f , g, h)

B(c, d , e, g, h) = c?x → B2(x , c, d , e, g, h)
B2(x , c, d , e, g, h) = d !x → B(c, d , e, g, h)

2 g!x → (e!x → B(c, d , e, g, h)

2 h → B2(x , c, d , e, g, h))

Fig. 8: Buffer’s First and General Nodes

(CB CTRL) that checks nodes one by one from the
oldest (rightmost) to the newest (leftmost) before re-
moving the signal from the event pool, and if the sig-
nal exists in the waiting event accepters list, the pro-
cess allows for its acceptance (accept event) otherwise
the signal is rejected (reject event) and the next node
is checked. Figure 10 shows our representation of the
buffer controller process (CB CTRL) for a three nodes
event pool.

CB CTRL({}) = registerSignals!aIH ?rp →
CB CTRL(getRegisteredSignals(rp))

CB CTRL(EA) = testC?x → if (member(x ,EA)) then
(acceptC !x → CB CTRL({}))
else rejectC →

testB?x → if (member(x ,EA)) then
(acceptB !x → CB CTRL({}))
else rejectB →

testA?x → if (member(x ,EA)) then
(acceptA!x → CB CTRL({}))
else rejectA→
send?anySig → CB CTRL(EA)

Fig. 10: The Buffer Controller Process for a Three
Nodes Event Pool

The getRegisteredSignals is a mapping function that
returns the allowed signal(s) at a certain registration
point (rp). For example, in the Door Controller ac-
tivity, getRegisteredSignals(rp2) returns lockLatchSig-
nal and doorIsOpenSignal. The registerSignals event
synchronizes with the corresponding event in the trans-
lation of the activity diagram (Rule(3) and (4)) to initi-
ate the signals checking process. The controller process
(CB CTRL) checks (testY) the nodes starting from the
rightmost node (C) to the leftmost node (A). If the

signal is a member of the waiting event accepters list
(EA), the controller allows for its acceptance (acceptY)
and flushes all the other signals in EA, otherwise it is
rejected (rejectY) and the next node is checked. The
controller at the end synchronizes with the send event
to stop the checking until an object sends any signal to
aIH.

To allow the CB CTRL process to control the buffer
CB NODES we combine them in parallel in the new
process CB NODES CTRL as illustrated in Figure 11.
The set aSynchEvents contains the synchronization
events: test, reject, and accept for all nodes.

CB NODES CTRL = CB NODES ‖
aSynchEvents

CB CTRL({})

Fig. 11: Controlled Nodes

5.2.4 Moving signals along the Controlled Buffer

The parallel combination in the process
CB NODES CTRL does not provide a mecha-
nism to force FDR2 to move the signals along the
nodes from left to right. For that reason we depend on
the chase function of FDR2 to complete the definition.

Chase gives priority to internal (tau) transitions over
external ones, and chooses one internal transition ar-
bitrarily when there is a choice of several. This re-
duces the state space of the labelled transition system
in FDR2 by removing external transitions competing
with internal ones, and selecting one internal transition
where there is a choice of them. This results in a refine-
ment of the original process, which can only perform ex-
ternal events once all internal progress have completed.

14 Islam Abdelhalim et al.

Thus chase is not semantics-preserving in general (and
in this case), but it is exactly what is required here so
that shuffling the signals along always occurs after an
output event before further visible events are possible.
For more details about how chase works the reader can
refer to [42]. For example, using the chase function for
analyzing the left hand side tree (a tree with some hid-
den events) in Figure 12 will produce only two possible
traces 〈tau, tau, g〉 or 〈tau, tau, h〉.

tau

tau d

g h

b

e f

chase

tau

tau

g h

Fig. 12: Application of Chase function

Figure 9 and Figure 13 illustrate the applica-
tion of chase to the processes CB NODES and
CB NODES CTRL respectively after hiding the buffer
internal events (test, reject, c, and drop) for all nodes
(grouped in aHiddenEvents for the CB NODES CTRL
process). Having those events hidden (taus), FDR2 will
follow them causing signals to be propagated along the
nodes whenever a send event happens. The process CB
is the complete definition of the Controlled Buffer for
one instance in the system.

CB = chase(CB NODES CTRL \ aHiddenEvents)

Fig. 13: The Complete Definition of the Controlled
Buffer

It is important to note that we are not using the chase
function in the conventional way. Chase here prevents
further external events from occurring following out-
put from the buffer until the signals are propagated
internally along the buffer. This is precisely the be-
haviour required: that the effect of an output is instan-
taneous. Representing the the buffer as a parallel com-
bination of small processes (B0 ‖ B ‖ B ‖ · · ·) rather
than a sequence of signals (CB(〈sig1, sig2, · · · , sigN 〉))
shows a substantial performance improvement during
the model checking compared to the later representa-
tion. The non-deterministic design of the CB process
allowed chase to move the signals, because chase has

no effect on the deterministic processes (chase(P) =
P , when P is deterministic).

5.3 The SYSTEM process

This is the third stage of formalizing the fUML model
where the Model Formalizer generates the overall sys-
tem process (SYSTEM). This process is a parallel com-
bination between all processes that synchronize on the
send, accept, and registerSignals events as depicted in
Figure 14. This in turn, for example, will allow object
A to send signals to object B by inserting the signals
in its (object B) event pool (Controlled Buffer).

Object A Behaviour in CSP
(formalization of its activity diagram)

Object A
Controlled Buffer in CSP

(CB_aIH0)
||

|| SYSTEM

All processes
synchronize on the:

send,
accept,

 & registerSignals
 events

Object B Behaviour in CSP
(formalization of its activity diagram) ||

Object N Behaviour in CSP
(formalization of its activity diagram) ||

Object B
Controlled Buffer in CSP

(CB_bIH0)

Object N
Controlled Buffer in CSP

(CB_nIH0)

Fig. 14: The SYSTEM

The SYSTEM process can then be used by FDR2 to
check the whole system against a specific behaviour
such as: deadlock, livelock or determinism.

5.4 The automatic generation of the inter-object
communication CSP processes

The Model Formalizer component generates all
the processes related to the inter-object commu-
nication automatically using Epsilon. A copy of
those processes will be generated using an EGL
script for each instance in the input fUML model
to allow its objects asynchronous communication.
For example, the Model Formalizer generates the
following processes for the Door Controller in-
stance dcIH0 : CB NODES dcIH0, CB CTRL dcIH0,
CB NODES CTRL dIH0 and CB dIH0.

The Model Formalizer also generates the required sets
of alphabets which will be used in those CSP processes
such as: aSynchEvents and aHiddenEvents. Finally, the
Model Formalizer generates the SYSTEM process de-
scribed in the previous section.

An Integrated Framework for Checking the Behaviour of fUML Models Using CSP 15

6 Deadlock checking using FDR2

After the Model Formalizer completes its function and
generates the comprehensive CSP script, the framework
initiates FDR2 to perform the model checking. In this
paper we will focus on the deadlock checking as one of
the possible behaviours that FDR2 can check automat-
ically. FDR2 reports a deadlock when it reaches a state
in which no further actions are possible, which means in
our model that all the objects in the system (SYSTEM
process) are waiting to accept signals from each other.
In case of deadlock, FDR2 displays a counter-example
(sequence of events) that led to this deadlock.

Tokeneer deadlock checking

The Tokeneer CSP model SYSTEM process includes
four interacting processes (Door, Door Controller, User,
and User Panel). Each process has its own event pool
with 10 slots. When checking SYSTEM using FDR2, it
managed to compile the CSP script (about 600 lines)
and reported a deadlock scenario (counter-example) af-
ter exploring 2.5K states in five seconds 4. The following
trace shows part this counter-example:

<...

send.u0.up0.readUserTokenSignal,

accept.up0.readUserTokenSignal,

send.up0.dc0.unlockLatchSignal,

accept.dc0.unlockLatchSignal,

send.dc0.up0.unLockingDoorCompleteSignal,

lockTimeoutExceeded.dc0,

accept.up0.unLockingDoorCompleteSignal,

send.dc0.dc0.lockLatchSignal,

registerSignals.dc0.rp9,

accept.dc0.lockLatchSignal,

valueSpec.dc0.FALSE,

send.up0.u0.doorUnlockedSignal,

addStFeatureValue.dc0.isAlarming.FALSE,

registerSignals.d0.rp20,

registerSignals.u0.rp3,

accept.u0.doorUnlockedSignal,

send.u0.d0.openDoorSignal,

accept.d0.openDoorSignal,

send.up0.up0.resetSignal,

valueSpec.d0.TRUE,

registerSignals.u0.rp4,
addStFeatureValue.d0.isOpen.TRUE,

registerSignals.up0.rp15,

valueSpec.dc0.TRUE,

accept.up0.resetSignal,

registerSignals.up0.rp10,
addStFeatureValue.dc0.isLocked.TRUE,

send.d0.dc0.doorIsOpenSignal,

registerSignals.dc0.rp6,
registerSignals.d0.rp19 >

4 The checking has been done on an Intel Core 2 Duo ma-
chine with 2 GB memory

The trace shows the sequence of events generated from
the checking of Tokeneer SYSTEM process. The reg-
isterSignals event causes the object to wait until one
of the registered signals arrives. As highlighted in the
trace, eventually all the system’s objects are waiting
for each other, causing deadlock. The Door Controller
(dc0) will never send the entryAuthorized signal to the
User (u0) because it does not make sense for a User to
enter when the door is locked. Consequently, the User
cannot evolve its behaviour. Also the unlockLatchSig-
nal will never be sent from the User Panel (up0) to
the Door Controller and so the Door Controller cannot
evolve its behaviour. This scenario might happen in real
life if the user takes a long time (more than the timer
period (lockTimeoutExceeded)) to open the door after
getting permission to enter from the User Panel.

We cannot claim that this deadlock is a breach of the
Tokeneer requirements [7] for two reasons: firstly, the
entry expiration timer that caused this deadlock was
not specified explicitly in the requirements document.
However, we added this timer as part of the system im-
plementation to prevent the Door Controller from wait-
ing forever for a User to enter the enclave. Secondly, the
requirements do not specify a certain communication
mechanism between the system components (objects),
leaving that as an implementation issue. We would ar-
gue that this deadlock was identified because we mod-
elled concurrent behaviour of all the components within
the TIS subsystem.

When we disabled the entry expiration timer (i.e., the
door can be kept closed and unlocked forever), the sys-
tem did not deadlock and FDR2 succeeded in doing a
full model check in eight seconds after exploring 9.2K
states on the same hardware mentioned in Section 6.
The Controlled Buffer with the pre-described imple-
mentation in Section 5.2.2 allowed for this fast compila-
tion and model checking compared to the previous im-
plementations of the inter-object communication mech-
anism.

We also tried to reproduce this deadlock scenario on
the Tokeneer simulator [2]; however, this scenario did
not happen due to the different implementation deci-
sions that were taken in the SPARK implementation
especially for the door unlocking timer.

7 Formalization and model checking feedback

There are two kinds of feedback that can be provided
by the framework to the modeller. The first kind is the
Formalization Report which is generated by the Model

16 Islam Abdelhalim et al.

Formalizer in case of errors during the formalization
process. The second kind, is a UML sequence diagram
which visualizes the counter-example in case of dead-
lock.

7.1 The Formalization Report

The formalization rules described in Section 5 include
only a subset of the fUML elements, this means that
not every fUML diagram can be formalized using the
Model Formalizer. The diagrams have to fulfill min-
imum requirements in order to be formalized. These
requirements include the existence of certain elements
and the assignment of certain properties. For example,
the Model Formalizer cannot formalize an fUML activ-
ity diagram that does not include a connected initial
node, because this will prevent the Model Formalizer
from setting the initial CSP sub-process in the within
clause of the localized process. Another example is not
assigning the name of an edge emerging from a decision
node in an fUML activity diagram.

To be able to check the formalizability of each diagram
(“is formalizable?”), each transformation rule is divided
into two parts. The first part checks for the required
elements/assignments, and if met, the second part per-
forms the transformation. Otherwise, a formalization
error is reported to the modeller that guides him to the
missing items.

7.2 The UML Sequence Diagram Generator

We have shown in Section 6 the output that FDR2
produces in case of deadlock (a counter-example as a
sequence of events). This representation may not be
accessible to the modeller who developed his model as
an fUML model in the beginning. For that reason, we
include the UML Sequence Diagram Generator com-
ponent as part of our framework to transform FDR2
output to a modeller friendly format. This component
takes the counter-example generated by FDR2 as an
input and generates a UML sequence diagram that rep-
resents this counter-example.

The UML Sequence Diagram Generator also makes use
of the Object-to-Class mapping table (generated by the
Model Formalizer) to relate the behaviour of each ob-
ject to its class in the fUML model. Figure 15 shows
the automatically generated sequence diagram which
corresponds to the trace in Section 6.

Table 2: FDR2 Output and the Corresponding sdx rep-
resentation

Events in FDR2 Output SDX Representation

send.dc0.dc0.lockLatchSignal dc0:dc0.lockLatchSignal

registerSignals.d0.rp19

*1 u0
Expecting:
-closeDoorSignal
*1

The UML Sequence Diagram Generator depends on an
open-source tool called Quick Sequence Diagram

Editor [28]. The tool takes an input script (*.sdx file)
that specifies the system objects and how they inter-
act with each others. Based on that script, the tool
generates an image of that sequence diagram. A sub-
component of the UML Sequence Diagram Generator
translates FDR2 output to an sdx script based on a
group of simple mapping rules. Table 2 shows two sam-
ples of FDR2 output and the corresponding sdx repre-
sentation.

To list the corresponding signals of rp19, we use the
information stored in a mapping table called RP-to-
Signals which had been generated by the Model Formal-
izer during the formalization process. This table maps
between each rp and the possible accepted signal(s) at
this point.

7.2.1 Multiple counter-examples

FDR2 has the option to generate more than one
counter-example in case of deadlock. Instead of abort-
ing the model checking once detecting a sequence of
events that lead to a deadlock, FDR2 continues the
model checking until reaching another sequence. Our
framework utilizes this option in FDR2 by allowing the
modeller to identify the maximum number of counter-
examples to be generated in case of deadlock through a
simple GUI (Graphical User Interface) before the model
checking as shown in Figure 16. This is made possible
by FDR2 batch mode that gave us this level of control
through the command line parameters.

The UML Sequence Diagram Generator has the ability
to detect if more than one counter-example have been
generated by FDR2, and thus generates a correspond-
ing sequence diagram for each counter-example.

An Integrated Framework for Checking the Behaviour of fUML Models Using CSP 17

-entryDeniedSignal
-doorUnlockedSignal
Expecting:

openDoorSignal

-entryAuthorizedSignal
Expecting:

readUserTokenSignal

unLockingDoorCompleteSignal

lockLatchSignal

-doorIsOpenSignal
-lockLatchSignal
Expecting:

<<lockTimeoutExceeded>>

resetSignal

-unlockLatchSignal
Expecting:

{isAlarming = FALSE}

{isLocked = TRUE}

doorUnlockedSignal

unlockLatchSignal

doorIsOpenSignal

-resetSignal
Expecting:

-readUserTokenSignal
Expecting:

{isOpen=TRUE}

-closeDoorSignal
Expecting:

-openDoorSignal
Expecting:

:User :DoorController :UserPanel :Door

Fig. 15: The Generated UML Sequence Diagram from the FDR2 Counter-example

Fig. 16: The Modeller Selects the Counter-examples per
Check

7.2.2 Loop detection

Sometimes the generated counter-example includes a
repetition of certain pattern(s) (sub-sequence of events)

many times, which decreases the readability of the cor-
responding sequence diagram as it becomes too long
to track. To avoid this issue, the UML Sequence Dia-
gram Generator has the ability to detect this repetition
automatically using an advanced search algorithm and
replace it with one pattern surrounded by a “loop” box.

Figure 17 shows part of a generated sequence diagram.
As shown inside the “loop” box, the repetition of send-
ing the signals requestEntry and readUserToken three
times, has been detected by the UML Sequence Dia-
gram Generator. Such a scenario can happen due to a
bug in the User activity diagram.

18 Islam Abdelhalim et al.

accept: requestEntrySignal

requestEntrySignal

readUserTokenSignal

readUserTokenSignal

requestEntrySignal

accept: requestEntrySignal

<<bioCheckedNotRequired>>

bioCheckNotRequiredSignal

accept: readUserTokenSignal

accept: bioCheckNotRequiredSignal

:User :DoorController :UserPanel

loop [X3]

Fig. 17: Detecting Loops in the Counter-example

8 Framework implementation

We have implemented the framework within Magic-
Draw as a plugin called “Compass” (Checking Original
Models means Perfectly Analyzed Systems). To use
Compass, the modeller should first model the sys-
tem objects’ behaviours using fUML activity diagrams.
Consequently, he can use the plugin GUI to initiate the
deadlock checking. In case of deadlock the plugin gen-
erates an UML sequence diagram to the modeller in
a separate window. Compass totally isolates the mod-
eller from dealing with the formal representation of the
model.

Figure 18 shows a screen shot of MagicDraw/Compass
during checking Tokeneer fUML model for deadlock.
The screen shows part of the TIS subsystem fUML ac-
tivity diagrams and the sequence diagram which shows
the deadlock scenario.

We would argue that implementing the framework in
the form of a plugin to an already existing case tool
is more practical than implementing it as a standalone
application for several reasons. Compared to a stan-
dalone formalization application, a plugin will allow for
having a single integrated modelling environment. Also
modifying the plugin to work with other case tools is a
straightforward task, which means that the plugin can
be made available for several case tools. This in turn
will allow the modellers who are already using a certain

case tool not to change their modelling environment to
check the models (or even to re-check legacy models).

9 Related work

Much research work has been done on formalizing semi-
formal models to check different properties. Among this
work [13] and [39] focused on checking user defined
safety specification for an xUML models formalized into
mCRL2 [11] and S/R (the input language of COSPAN
[14]) respectively. Roscoe et al. [29] developed a CSP-
M based compiler to formalize Statemate Statecharts
[8] into CSP for the purpose of checking several prop-
erties such as consistency with application-specific re-
quirements.

Our work is more related to those who focused on check-
ing model-independent system behaviours (i.e., can be
checked as part of the toolset) such as deadlock or live-
lock. In this category, Yong Ng et al. [23] used CSP
as a formal representation to check deadlock and di-
vergence for the input UML state machines. Thierry-
Mieg et al. [32] used IPN (Instantiable Petri Nets [22])
to check deadlock and unreachable final states for the
input UML activity diagrams. Also Turner et al. [34]
automatically formalized xUML state machines into
CSP ‖ B [30] (an integrated formal language that com-
bines CSP and B) to check deadlock.

Formally representing the asynchronous communica-
tion between objects has been discussed in a limited
way in [13,10,34] where part of the xUML was for-
malized, which specify a way of communication differ-
ent from fUML. On the other hand, [39] simulated the
asynchronous message passing by synchronous commu-
nication between processes modelling objects and their
message queues. Our previous work [1] considered also
the asynchronous communication mechanism between
system objects; however the manual formalization re-
duced the practicality of the approach.

To perform the formalization automatically, some au-
thors developed their own tools to perform that task.
For example, Cabot et al. in [6] developed a tool called
UMLtoCSP to do the formalization. Also Shah et al.
in [31] used UMLtoAlloy and Alloy Analyzer to do the
formalization and model checking respectively. Another
group of authors used MDE tools to do the transfor-
mation. Varró et al. in [36] summarized a comparison
between eleven different MDE tools used to transform
from UML activity diagrams into CSP (UML-to-CSP
case study [5]), as part of the AGTIVE’07 tool contest.
Also Treharne et al. in [33] used the Epsilon framework
to transform UML state diagrams to CSP‖B.

An Integrated Framework for Checking the Behaviour of fUML Models Using CSP 19

Fig. 18: Screen shot of MagicDraw Running Compass

Providing modeller friendly feedback to report the
model checking results has been addressed only a few
times in the literature. The authors in [6,31] proposed
presenting the model checking results (e.g., counter-
example) as an object diagram that represents a snap-
shot of the system during the error. Alternatively, Mru-
galla et al. in [21] presents the counter-example as se-
quence and timing diagrams. In another approach, the
authors in [32,27] proposed compiler-style errors with
valuable feedback.

Compared to all the reviewed literature, this work is
the first attempt to automatically formalize the fUML
activity diagrams, including the formalization of the
fUML asynchronous inter-object communication mech-
anism.

10 Conclusion and future work

In this paper we have presented a framework that helps
modellers to check the behaviour of their fUML model
automatically. The framework depends on formalizing
the fUML model into CSP and then checks it using
FDR2 taking into consideration the formalization of the
asynchronous inter-object communication mechanism.
The comprehensive formalization (for fUML diagrams
and communication mechanism) allowed for checking
the system against deadlock which may occur if all the
system’s objects stop working waiting for each other.

In case of deadlock, the framework provides the user
with a UML sequence diagram that describes that dead-
lock scenario in terms of the fUML model, not the for-
mal CSP model, to isolate the modeller from the formal
domain.

We have developed an implementation of this frame-
work as a MagicDraw plugin called Compass. Com-

20 Islam Abdelhalim et al.

pass made use of the Epsilon MDE framework to trans-
late the fUML model into a CSP script in two stages
(Model-to-Model then Model-to-Text).

Validating the framework’s functionality and applica-
bility was achieved by applying it on a non-trivial case
study (Tokeneer ID Station). Using the implementa-
tion of the communication mechanism described in Sec-
tion 5.2, FDR2 succeeded in compiling the generated
CSP script and detected the deadlock scenario in five
seconds for a 10 slots event pool for each object. The
detected deadlock scenario was due to an implementa-
tion decision added to Tokeneer fUML model (i.e., not
a breach in the Tokeneer specification).

Currently, the framework supports having only one in-
stance for each class. Such a constraint will be ad-
dressed in our future work to support multiple instances
for each class in the system. Also we will modify the
framework to include safety and security specifications
checking.

Acknowledgements Thanks to Michael Goldsmith, Philip
Armstrong and Bill Roscoe for discussion about implementing
the Controlled Buffer in CSP. Thanks also to James Sharp for
his help in developing the buffer. Finally, we want to thank
Jim Woodcock for his discussion about the Tokeneer project.

Appendix A: The ETL transformation rules

This appendix includes a simplified version (just show-
ing the main logic) of the used ETL rules in the frame-
work and the associated meta-models for each rule. We
have developed a group of Epsilon operations to al-
low for more compact ETL rules. The following outline
those operations:

A.1 Operations

– getCSP Process
Takes an activity diagram element reference as an
input and returns the corresponding CSP ProcessID
for that element.

– createSendEvent
Creates a CSP Event entity (send) for the SendSig-
nal action and returns it. It also creates the cor-
responding CSP EventParameter’s and associates
them with the Event entity.

– createRegisterSignalsEvent
Creates a CSP Event entity (registerSignals) for the

AcceptEvent action and returns it. It also creates
the corresponding CSP EventParameter’s and asso-
ciates them with the Event entity.

– createAcceptEvent
Creates a CSP Event entity (accept) for the Ac-
ceptEvent action and returns it. It also creates the
corresponding CSP EventParameter’s and associates
them with the Event entity.

– createValueSpecificationEvent
Creates a CSP Event entity (valueSpec) for the Val-
ueSpecification action and returns it. It also creates
the corresponding CSP EventParameter’s and asso-
ciates them with the Event entity.

– createAddStructuralFeatureValueEvent
Creates a CSP Event entity (addStFeatureValue) for
the AddStructuralFeatureValue action and returns
it. It also creates the corresponding CSP EventPa-
rameter’s and associates them with the Event entity.

– createInternalChoiceEvent
Creates a CSP Event entity for a given internal
choice branch and returns it.

– addToLocalizedProcess
Adds the created subprocess (ProcessAssignment)
to the corresponding localized process.

– getTargetNode
Returns the target node (connected to the other side
of the edge) given the edge reference.

An Integrated Framework for Checking the Behaviour of fUML Models Using CSP 21

A.2 Rules

Rule(2) in ETL Meta-models

rule SendSignalAction_To_SubProcess
 transform action: AD!SendSignalAction
 to pa: CSP!ProcessAssignment,
 pid: CSP!ProcessID,
 prefix: CSP!Prefix
 {

 pa.processID := getCSP_Process(action);

 var targetObj : String :=
 action.target.incoming.source.name;

 var signalName: String := action.signal.name;

 prefix.event := createSendEvent(targetObj,
 signalName);

 prefix.nextProcess := getCSP_Process(getTargetNode
 (action.outgoing));
 pa.processExpression := prefix;

 addToLocalizedProcesst (action, pa);

}

ProcessID

name: String

ProcessAssignment

processID

ProcessExpression

processExpression

SendSignalAction

Segment of the CSP Meta-model (simplified)

Segment of the fUML Meta-model (simplified)

Prefix
nextProcess

Event

event

EventParameter
eventParams

0..*

Signal

name: String
signal

InputPin
target

0..1 0..1

Pin

ObjectNodeActivityNode

ActivityEdge

incoming
*

target
1 *

outgoing

source
1

22 Islam Abdelhalim et al.

Rule(3 & 4) in ETL Meta-models

rule AcceptEventAction_To_SubProcess
 transform action: AD!AcceptEventAction
 to pa : CSP!ProcessAssignment,
 prefix: CSP!Prefix
 {

 pa.processID := getCSP_Process (action);

 prefix.event := createRegisterSignalsEvent();

 if (action.trigger.size() = 1) - - Rule(3)
 {

 var next_prefix: new CSP!Prefix;

 next_prefix.event := createAcceptEvent (
 action.trigger.event.signal.name);

 next_prefix.nextProcess := getCSP_Process(
 getTargetNode(action.outgoing));

 prefix.nextProcess := next_prefix;

 }
 else - - First part of Rule(4)
 {
 prefix.nextProcess := getCSP_Process (
 getTargetNode(action.result.outgoing));

 }

 pa.processExpression := prefix;

 addToLocalizedProcess(action, pa);

}

ProcessID

name: String

ProcessAssignment

processID

ProcessExpression

processExpression

AcceptEventAction

Segment of the CSP Meta-model (simplified)

Segment of the fUML Meta-model (simplified)

Prefix
nextProcess

Event

event

EventParameter
eventParams

0..*

Trigger
trigger

OutputPin
result

0..1 0..*

Pin

ObjectNodeActivityNode

ActivityEdge

Incoming
*

target
1 *

outgoing

source
1

Event

event
1

MessageEvent SignalEvent Signal

name: String
signal

0..1

An Integrated Framework for Checking the Behaviour of fUML Models Using CSP 23

Note: this rule has been presented in Table 1 as one rule for simplification. However, in the actual ETL code this rule are two rules (one for
ValueSpecification action and one for the AddStructuralFeatureValue action) each one creates a parametrized sub-process.

Rule(5) in ETL Meta-models

rule ValueSpecificationAction_To_SubProcess
 transform action: AD!ValueSpecificationAction
 to pa : CSP!ProcessAssignment,
 prefix: CSP!Prefix,
 next_pid: CSP!ProcessID,
 next_ppl: CSP!ProcessParameterList,
 next_process_var: CSP!ProcessParameterListItem

 {
 pa.processID := getCSP_Process(action);

 prefix.event := createValueSpecificationEvent(
 action.value.name);

 next_pid := getCSP_Process(
 getTargetNode(action.result.outgoing));

 next_process_var.name = 'val';

 next_ppl.item.add(next_process_var);
 next_ppl.firstItem := next_process_var;
 next_ppl.size := 1;

 next_pid.parameterList := next_ppl;

 prefix.nextProcess := next_pid;

 pa.processExpression := prefix;

 addToLocalizedProcess (action, pa);
}

rule AddStructuralFeatureValueAction_To_SubProcess
 transform action: AD!AddStructuralFeatureValueAction
 to pa : CSP!ProcessAssignment,
 prefix: CSP!Prefix,
 pid: CSP!ProcessID,
 ppl: CSP!ProcessParameterList,
 process_var: CSP!ProcessParameterListItem
{
 pid := getCSP_Process (action);

 process_var.name = 'val';

 ppl.item.add(process_var);
 ppl.firstItem := process_var;
 ppl.size := 1;

 pid.parameterList := ppl;
 pa.processID := pid;

 prefix.event := createAddStructuralFeatureValueEvent(
 action.object.incoming.source.name,
 action.structuralFeature.name);

 prefix.nextProcess := getCSP_Process (
 getTargetNode(action.outgoing));

 pa.processExpression := prefix;

 addToLocalizedProcess (action, pa);
}

ProcessID

name: String

ProcessAssignment

processID

ProcessExpression

processExpression

ValueSpecificationAction

Segment of the CSP Meta-model (simplified)

Segment of the fUML Meta-model (simplified)

Prefix
nextProcess

Event

event

EventParameter
eventParams

0..*

ValueSpecification

name : String
value

OutputPin
result

1 1

Pin

ObjectNodeActivityNodeActivityEdge Incoming

outgoingsource

ProcessParameterList

size: Integer

paramList

ProcessParameterListItem

name: String
item

0..*

AddStructuralFeatureValueActionWriteStructuralFeatureAction

StructuralFeatureActionAction

ExecutableNode

StructuralFeature

name : StringstructuralFeature

InputPin
object

ActivityParameterNode

name : String

target

24 Islam Abdelhalim et al.

Note: This ETL script handles Rule (6) and continue the implementation of Rule (4).

Rule (6 & 4) in ETL Meta-models

rule DecisionNode_To_SubProcess
 transform node: AD!DecisionNode
 to pa : CSP!ProcessAssignment
{
 pa.processID := getCSP_Process (node);

 if (node.incoming.isKindOf(AD!ObjectFlow))
 {
 var extChoice : new CSP!ExternalChoice;
 var acceptedSignals : Sequence;

 extChoice.multiOpName := '[]';

 for (edge in node.outgoing)
 {
 var prefix: new CSP!Prefix;

 prefix.event := createAcceptEvent (edge.name);
 prefix.nextProcess := getCSP_Process (edge.target);

 extChoice.expressions.add(prefix);

 acceptedSignals.add(edge.name);
 }
 pa.processExpression := extChoice;
 }
 else - - The incoming edge is Control Flow
 {
 if (node.incoming.size() = 1) - - Decision & Control Flow
 {
 var intChoice : new CSP!InternalChoice;

 intChoice.multiOpName := '|~|';

 for (edge in node.outgoing)
 {
 var prefix: new CSP!Prefix;

 prefix.event := createInternalChoiceEvent(edge.name);

 prefix.nextProcess := getCSP_Process (edge.target);

 intChoice.expressions.add(prefix);
 }
 pa.processExpression := intChoice;
 }
 else - - Merge node
 {
 pa.processExpression := getCSP_Process (
 getTargetNode(node.outgoing));
 }
 }

 addToLocalizedProcess (node, pa);

}

ProcessID

name: String

ProcessAssignment

processID

ProcessExpression

processExpression

ObjectFlow

Segment of the CSP Meta-model (simplified)

Segment of the fUML Meta-model (simplified)

Prefix
nextProcess

Event

event

EventParameter
eventParams

0..*

DecisionNodedecisionInputFlow

ControlNode

BinaryOp

binaryOpName: String

InternalChoice ExternalChoice

An Integrated Framework for Checking the Behaviour of fUML Models Using CSP 25

References

1. Abdelhalim, I., Sharp, J., Schneider, S.A., Treharne, H.:
Formal Verification of Tokeneer Behaviours Modelled in
fUML Using CSP. In: J.S. Dong, H. Zhu (eds.) For-
mal Methods and Software Engineering - 12th Inter-
national Conference on Formal Engineering Methods,
ICFEM 2010, Shanghai, China, November 17-19, 2010.
Proceedings, Lecture Notes in Computer Science, vol.
6447, pp. 371–387. Springer (2010)

2. Altran Praxis: The Tokeneer Project.
http://www.adacore.com/tokeneer (cited August
2009)

3. Barnes, J., Chapman, R., Johnson, R., Widmaier, J.,
Cooper, D., Everett, B.: Engineering the tokeneer enclave
protection software. In: 1st IEEE International Sympo-
sium on Secure Software Engineering (2006)

4. Barnes, J., Cooper, D.: Tokeneer ID station: Formal
Specification. Tech. Rep. S.P1229.41.2, Altran Praxis
(2008)

5. Bisztray, D., Ehrig, K., Heckel, R.: Case Study: UML to
CSP Transformation. In Applications of Graph Transfor-
mation with Industrial Relevance (2007)

6. Cabot, J., Clarisó, R., Riera, D.: Verifying UML/OCL
operation contracts. In: IFM ’09: Proceedings of the 7th
International Conference on Integrated Formal Methods,
pp. 40–55. Springer-Verlag, Berlin, Heidelberg (2009)

7. Cooper, D., Barnes, J.: Tokeneer ID station: System Re-
quirements Specification. Tech. Rep. S.P1229.41.1, Al-
tran Praxis (2008)

8. David, H., Amnon, N.: The STATEMATE se-
mantics of statecharts. ACM Trans. Softw.
Eng. Methodol. 5(4), 293–333 (1996). URL
http://dx.doi.org/10.1145/235321.235322

9. Goldsmith, M., Armstrong, P.: Personal communication
(2010)

10. Graw, G., Herrmann, P.: Transformation and verification
of Executable UML models. Electron. Notes Theor. Com-
put. Sci. 101, 3–24 (2004)

11. Groote, J.F., Mathijssen, A., Reniers, M., Usenko, Y.,
van Weerdenburg, M.: The formal specification language
mCRL2. In: E. Brinksma, D. Harel, A. Mader, P. Stevens,
R. Wieringa (eds.) Methods for Modelling Software Sys-
tems (MMOSS), no. 06351 in Dagstuhl Seminar Proceed-
ings. Internationales Begegnungs- und Forschungszen-
trum für Informatik (IBFI), Schloss Dagstuhl, Germany,
Dagstuhl, Germany (2007)

12. Gruninger, M., Menzel, C.: Process Specification Lan-
guage: Principles and Applications. AI Magazine 24(3),
63–74 (2003)

13. Hansen, H.H., Ketema, J., Luttik, B., Mousavi, M.,
van de Pol, J.: Towards model checking Executable UML
specifications in mCRL2. ISSE pp. 83–90 (2010)

14. Hardin, R.H., Har’El, Z., Kurshan, R.P.: COSPAN 1102
(1996)

15. Hoare, C.: Communicating Sequential Processes. Pren-
tice Hall International Series in Computing Science
(1985)

16. Hoare, C., Misra, J., Leavens, G.T., Shankar, N.: The
verified software initiative: A manifesto. ACM Comput.
Surv. 41(4), 1–8 (2009)

17. Johnson, D.: Cost effective software engineering for se-
curity. In: J. Misra, T. Nipkow, E. Sekerinski (eds.) FM
2006: Formal Methods, Lecture Notes in Computer Sci-
ence, vol. 4085, pp. 607–611. Springer Berlin / Heidelberg
(2006)

18. Kolovos, D., Rose, L., Paige, R.: The Epsilon Book.
URL http://www.eclipse.org/gmt/epsilon/doc/book/
(last viewed 4th of October 2011)

19. Mellor, S.J., Balcer, M.J.: Executable UML, A Foun-
dation for Model-Driven Architecture. Addison-Wesley
(2002)

20. ModelDriven.Org: fUML Reference Implementation.
http://portal.modeldriven.org (last viewed 4th of Octo-
ber 2011)

21. Mrugalla, C., Robbe, O., Schinz, I., Toben, T., West-
phal, B.: Formal Verification of a Sensor Voting and
Monitoring UML Model. In: S.H. Houmb, J. Jürjens,
R. France (eds.) Proceedings of the 4th International
Workshop on Critical Systems Development Using Mod-
eling Languages (CSDUML 2005). Technische Univer-
sität München, Fredrikstad, Norway (2005)

22. Murata, T.: Petri nets: Properties, analysis and applica-
tions. Proceedings of the IEEE 77(4), 541–580 (1989)

23. Ng, M.Y., Butler, M.: Towards formalizing UML state
diagrams in CSP. In: A. Cerone, P. Lindsay (eds.) 1st
IEEE International Conference on Software Engineering
and Formal Methods, pp. 138–147. IEEE Computer So-
ciety (2003)

24. OMG: XML Metadata Interchange (XMI) (Version 2.1.1)
25. OMG: Unified modeling language (UML) superstructure

(version 2.3) (2010)
26. OMG: Semantics of a foundational subset for executable

UML models (fUML) - Version 1.0 (2011)
27. Planas, E., Cabot, J., Gómez, C.: Verifying action se-

mantics specifications in UML behavioral models. In:
CAiSE ’09: Proceedings of the 21st International Confer-
ence on Advanced Information Systems Engineering, pp.
125–140. Springer-Verlag, Berlin, Heidelberg (2009)

28. Quick Sequence Diagram Editor - v3.1:
http://sdedit.sourceforge.net/ (last viewed 4th of
October 2011)

29. Roscoe, A.W., Wu, Z.: Verifying statemate statecharts
using CSP and FDR. In: ICFEM, pp. 324–341 (2006)

30. Schneider, S., Treharne, H.: CSP theorems for communi-
cating B machines. Formal Asp. Comput. 17(4), 390–422
(2005)

31. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML
to Alloy and back again. In: MoDeVVa ’09: Proceedings
of the 6th International Workshop on Model-Driven En-
gineering, Verification and Validation, pp. 1–10. ACM,
New York, NY, USA (2009)

32. Thierry-Mieg, Y., Hillah, L.M.: UML behavioral consis-
tency checking using instantiable Petri nets. ISSE 4(3),
293–300 (2008)

33. Treharne, H., Turner, E., Paige, R.F., Kolovos, D.S.: Au-
tomatic Generation of Integrated Formal Models Corre-
sponding to UML System Models. In: TOOLS (47), pp.
357–367 (2009)

34. Turner, E., Treharne, H., Schneider, S., Evans, N.: Auto-
matic generation of CSP‖B skeletons from xUML mod-
els. In: Proceedings of the 5th international collo-
quium on Theoretical Aspects of Computing, pp. 364–
379. Springer-Verlag, Berlin (2008)

35. UML2 Project: http://www.eclipse.org/modeling/mdt/?
project=uml2 (last viewed 4th of October 2011)

36. Varró, D., Asztalos, M., Bisztray, D., Boronat, A., Dang,
D.H., Geiß, R., Greenyer, J., Van Gorp, P., Kniemeyer,
O., Narayanan, A., Rencis, E., Weinell, E.: Transforma-
tion of UML Models to CSP: A Case Study for Graph
Transformation Tools. Applications of Graph Transfor-
mations with Industrial Relevance pp. 540–565 (2008)

26 Islam Abdelhalim et al.

37. Woodcock, J., Aydal, E.G.: A Token Experiment.
Festschrifts in Computer Science, the BCS FAC Series,
Festschrift for Tony Hoare (2009)

38. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.:
Formal methods: Practice and experience. ACM Com-
put. Surv. 41(4), 1–36 (2009)

39. Xie, F., Levin, V., Browne, J.C.: Model checking for an
executable subset of UML. In: ASE ’01: Proceedings of
the 16th IEEE International Conference on Automated
Software Engineering, p. 333. IEEE Computer Society
(2001)

40. Xu, D., Miao, H., Philbert, N.: Model checking UML ac-
tivity diagrams in FDR. In: ICIS ’09: Proceedings of
the 2009 Eigth IEEE/ACIS International Conference on
Computer and Information Science, pp. 1035–1040. IEEE
Computer Society, Washington, DC, USA (2009)

41. Xu, D., Philbert, N., Liu, Z., Liu, W.: Towards formaliz-
ing UML activity diagrams in CSP. In: ISCSCT ’08:
Proceedings of the 2008 International Symposium on
Computer Science and Computational Technology, pp.
450–453. IEEE Computer Society, Washington, DC, USA
(2008)

42. Zakiuddin, I., Moffat, N., O’Halloran, C., P.Ryan: Chas-
ing events to certify a critical system. Tech. rep., UK
DERA (1998)

