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Abstract. Inspired by work on model-based design of
printers, the notion of a parametrized partial order (PPO)
was introduced recently. PPOs are a simple extension
of partial orders, expressive enough to compactly rep-
resent large task graphs with finite repetitive behavior.
We present a translation of the PPO subclass to timed
automata and prove that the transition system induced
by the Uppaal models is isomorphic to the configura-
tion structure of the original PPO. Moreover, we intro-
duce real-time task systems (RTTS), a general model
for real-time embedded systems that we have used to
describe the data paths of realistic printer designs. In
an RTTS, tasks are represented as PPOs and the pace
of a task instance may vary, depending on the resources
that are allocated to it. We describe a translation of
a subclass of RTTSs to Uppaal, and establish, for an
even smaller subclass, bisimulation equivalence between
the timed configuration semantics of an RTTS and the
transition system induced by the corresponding Uppaal
translation. Lastly, we report on a series of experiments
which demonstrates that the resulting Uppaal models
are more tractable than handcrafted models of the same
systems used in earlier case studies.

1 Introduction

The complexity of today’s real-time embedded systems
and their development trajectories is increasing rapidly.

* An extended abstract of this paper appeared as [1].The re-
search of Igna and Vaandrager has been carried out as part of
the OCTOPUS project under the responsibility of the Embed-
ded Systems Institute. This project is partially supported by the
Netherlands Ministry of Economic Affairs under the Bsik program.
This research was also supported by European Community’s Sev-
enth Framework Programme under grant agreement no 214755
(QUASIMODO).

At the same time, development teams are expected to
produce high-quality and cost-effective products, while
meeting stringent time-to-market constraints. A com-
mon challenge during development is the need to explore
extremely large design spaces, involving multiple met-
rics of interest (timing, resource usage, energy usage, or
cost). The number of design parameters (number and
type of processing cores, sizes and organization of mem-
ories, interconnect, scheduling and arbitration policies)
is typically very large. Moreover, the relation between
parameter settings and design choices on the one hand
and metrics of interest on the other hand is often dif-
ficult to determine. Given these observations, real-time
embedded system design trajectories require a system-
atic approach, that should be automated as far as possi-
ble. To achieve high-quality results, design process and
tooling need to be model-driven.

Many methods and tools for real-time embedded sys-
tems follow the Y-chart pattern [2,3]. This pattern is
based on the observation that the development of these
systems typically involves the co-development of a set of
applications, a platform, and the mapping of the applica-
tions onto the platform. In the Y-chart pattern, specifi-
cation of applications, platforms and mappings are sep-
arated. This allows independent evaluation of various
alternatives of one of these system aspects while fixing
the others. For example, various platform and mapping
options are often investigated for a fixed (set of) appli-
cation(s). Diagnostic information is used to, automati-
cally or manually, improve application, platform, and/or
mapping.

Applications are typically described in terms of task
graphs representing partially ordered sets of tasks. In
practice, we frequently see that certain tasks need to
be executed repetitively, for a finite number of times,
and that there exists a hierarchical relationship between
tasks. For instance, a manufacturing order of a beer
brewery consists of several pallets, containing several
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crates, each containing several bottles of beer. Another
example concerns a wafer scanner manufacturing system
from the semiconductor industry. Wafers are produced
in batches (lots). A wafer scanner projects a mask on a
wafer, using light. Eventually, the projected masks re-
sult in Integrated Circuits (ICs). On one wafer, multiple
ICs and types of ICs are manufactured. Multiple types
of ICs involve multiple masks, and multiple masks are
placed on a reticle. As a final example, we mention a
copier machine, which has to process a certain number
of copies of a file, which in turn consists of a certain
number of pages. Due to the nested, finite repetitive be-
havior, task graphs tend to become very large and no
longer practical for specification and analysis of applica-
tion behavior. Following [4,5], we argue that repetitive
task structure of applications plays an important role in
real-time embedded systems design, and needs to be ad-
dressed in methods for specifying and reasoning about
such systems. Repetitive execution of tasks leads to finite
repetitive patterns in schedules. In practice, execution of
the first few instances and last few instances of a task dif-
fer slightly from the rest. This is a large difference with
unlimited repetitive (’periodic’) behavior, which has re-
ceived much attention in the scheduling literature.

Within concurrency theory, several semantic mod-
els have been proposed that are based on partial order-
ing of events such as Mazurkiewicz [6] traces, pomsets
(partially-ordered multisets) [7], and event structures [8],
but these models do not incorporate an explicit notion
of repetitive events. Partial orderings of events with rep-
etition can be defined using Colored Petri Nets [9,10],
but this is an extremely rich and expressive formalism,
which may be considered too complicated for the task
at hand.

The Octopus project has developed a Design-Space
Exploration (DSE) toolset [11] that aims to leverage
existing modeling, analysis, and DSE tools to support
model-driven DSE for real-time embedded systems [12].
The Octopus toolset is centered on an intermediate rep-
resentation, DSEIR (Design-Space Exploration Interme-
diate Representation), to capture design alternatives.
DSEIR models can be exported to various analysis tools.
This facilitates reuse of models across tools and provides
model consistency between analyses. The use of an in-
termediate representation also supports domain-specific
abstractions and reuse of tools across application do-
mains. The current version of the Octopus DSE toolset
integrates CPN Tools [9,10] for stochastic simulation of
timed systems, SDF3 [13] for worst-case throughput cal-
culation, and Uppaal [14] for model checking and sched-
ule optimization. Inspired by work on model-based de-
sign of printers, the Octopus project has introduced the
notion of parametrized partial orders [15]. PPOs are a
simple extension of partial orders, but expressive enough
to compactly represent large task graphs with repeti-
tive behavior. In DSEIR, applications are represented as
PPOs. This intermediate representation can be trans-

lated into the input formats of CPN Tools and Uppaal.
which in turn can be translated into the input formats
of CPN Tools and Uppaal. A translation of PPOs to
CPN Tools has recently been described in [15]. In this
paper, we define a restricted version of PPOs that is
more amenable to model checking. Moreover, we give
a translation into timed automata, the semantic model
underlying Uppaal.

Uppaal [14] is a model checker for networks of timed
automata [16]. It has been successfully used in many do-
mains, e.g. for finding optimal solutions for scheduling
problems [17,18], performance analysis of real-time dis-
tributed systems [19,20], protocol verification [21] and
controller synthesis [22]. Within the Octopus project,
we aim at harnessing the verification power of Uppaal
for DSE of real-time embedded systems. We have ap-
plied Uppaal for DSE of industrial printer designs, in
particular for computing and optimizing schedules, la-
tencies, and controller strategies [23—-25]. Although these
case studies demonstrate that Uppaal is able to handle
industrial sized designs, the tool is really pushed to its
limits. Therefore, it is crucial to have a translation from
PPOs to Uppaal that is maximally efficient. By unfold-
ing a PPO into a task graph and introducing a sepa-
rate automaton for each task in the unfolding, we ob-
tain a general translation of PPOs to Uppaal. However,
especially when we have many repetitive events (e.g.
print a 300-page document) the translation becomes in-
tractable. Based on the observation that in practice the
PPOs often contain tasks that are not auto-concurrent
and precedence relations between task instances obey
certain monotonicity conditions, we define a subclass of
PPOs that allows a more efficient translation.

In the literature, numerous modeling frameworks for
real-time task systems have been proposed, see for in-
stance [26-32]. In the design space exploration of print-
ers, a small gain (5%) of performance can be decisive,
and consequently detailed models of real-time task sys-
tems are needed in which, for instance, we can express
that the completion time of a task slightly increases if
another task is using the same communication bus simul-
taneously. To the best of our knowledge, such a refined
performance analysis is not possible in existing analysis
methods for task systems (see, for instance, the detailled
comparison of difference performance analysis methods
by Hendriks & Verhoef [19] and by Perathoner et al [20]).
Therefore we introduce, in this paper, real-time task sys-
tems (RTTS), a general model for real-time embedded
systems able to accurately describe the data paths of
realistic printer designs. In an RTTS, tasks are repre-
sented as PPOs and the pace of a task instance may
vary, depending on the resources that are allocated to
it. This allows us to accurately model common scenar-
ios in which, for instance, the completion time of a task
depends on the varying amount of memory and commu-
nication bandwidth allocated to it over time.
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This brings us to the main contributions of this pa-
per:

1. A definition of a PPO subclass and its translation to
Uppaal together with a correctness proof (the transi-
tion system induced by the Uppaal model is isomor-
phic to the configuration structure of the PPO).

2. A notion of a real-time task systems (RTTS), a gen-
eral model for real-time embedded systems that we
have used to describe the data paths of realistic printer
designs. We describe a translation of a subclass of
RTTSs to Uppaal, and establish, for an even smaller
subclass, bisimulation equivalence between the timed
configuration semantics of an RTTS and the tran-
sition system induced by the corresponding Uppaal
translation.

3. A series of experiments which demonstrates that Up-
paal models obtained through this translation are
more tractable than handcrafted models built for a
printing system described in [23].

The structure of this paper is as follows. Section 2
recalls some preliminary definitions regarding labeled
transition systems, the underlying semantic notion used
throughout the paper. Section 3 defines PPOs and their
semantics, and the translation of a subset of PPOs into
networks of timed automata together with a proof of its
correctness. Section 4 introduces the new model of real-
time task systems. Section 5 explains how the transla-
tion of PPOs to Uppaal can be lifted to real-time task
systems. Section 6 presents performance evaluation re-
sults of models generated by comparing them with hand-
crafted Uppaal models presented before in our papers.
Concluding remarks and future work follow in Section 7.
The models generated for Section 6 are available at www.
mbsd.cs.ru.nl/publications/papers/fvaan/HIV12.

2 Preliminaries

We use R>¢ and R to denote the sets of nonnegative
and positive real numbers, respectively, and N to denote
the set of natural numbers.

If X and Y are sets then we write X — Y for the
set of partial functions from X to Y. Given a partial
function f € X — Y, we write f(z) | if f(z) is defined,
and f(x) 1 if f(z) is undefined, for x € X.

A labeled transition system (LTS) is a tuple £ =
(S, s, X, —), where:

— S is a set of states,

— 8o € S is an initial state,

— X is a set of action labels, and

— —C § x Y x S is a transition relation.

We write s % s iff (s,a,5') €— and s — s’ if there
exists an action a € X such that s % s’. A path of L
is a sequence of states m = sgs1 - - - s, such that, for all
0 <1i<mn,s; — s;+1. In this case we say 7 is a path

from sg to s,. A state s € S is reachable in L if there
exists a path from sg to s. We say that £ is deterministic
if, for each state s € S and for each action label a € X,
s 5 s and s = s” implies s’ = s”.

Two labeled transition systems £, = (S1, s, X1, —1)
and Lo = (S2, 82, Yo, —2) are isomorphic if X1 = X5 and
there exists a bijective function f :.5; — S5 such that:

— f(s$) = s? and
— 55,8 & f(s) Ba f(s'), for all 5,8 € Sy, a € Xy.

We say that £1 and Lo are bisimilar if Xy = X5 and
there exists a relation R C S; x Sy such that (s}, s3) € R
and, for each (s,7) € R,

— if s %, & then there exists a state 7’ € S5 such that
r Ly’ and (s',7') € R, and
— if r 55 7/ then there exists a state s’ € S; such that
s %, s and (s',7') € R.
Given an LTS £ = (S, sg, X, —), we define reach(L)
to be the LTS (5, s, X', =), where S’ is the set of reach-
able states of £ and —'= {(s,a,5) | 5,8’ € S'As = s'}.

3 Parameterized Partial Orders

A parametrized partial order (PPO) is a partial order
that comes equipped with some extra structure to cap-
ture repetitive behavior. In [15], a PPO is defined at task
level and assumes a precedence relation between tasks.
Here we view a PPO from a different angle where tasks
are decomposed into events and a PPO imposes a partial
order relation at event level. This perspective allows us
to introduce a subclass of PPOs that can be efficiently
translated into networks of automata, and later in this
section we establish the correctness of this translation.

3.1 Definition of PPOs

Tasks in a PPO may be executed repeatedly: each task
has a collection of parameters and each valuation of these
parameters defines a task instance. The events in a PPO
are structured and correspond to either the start or the
end of a task instance.

Formally, we assume a universe P of typed variables
called parameters. A valuation of a set P C P of param-
eters is a function that maps each parameter in P to an
element of its domain. We assume that the domain of
each parameter is a nonempty set. We write V(P) for
the set of valuations of variables in P.

A parameterized partial order (PPO) is a tuple A =
(T, M, E,U) where

— 7 is a finite set of tasks. We define the set of event
types by € = {s,e} x T. Projection functions task :
€ — T and type : £ — {s, e} are given by task((¢,T)) =
T and type((t,T)) = t, and embeddings start : 7 — &
and end : 7 — & are given by start(T) = (s,7) and
end(T) = (e,T), with ¢t € {s,e}, and T € 7.
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— M is a function that assigns to each task T' a finite
set of parameters in P; we write V(T as a shorthand
for V(M(T)).

— E C & x & is a set of edges. We require, for each
T eT, (start(T),end(T)) € E.

— For each edge p = (A,B) € E, U(p) : V(task(A4)) —
V (task(B)) is a precedence function. We write A % B
if (A,B) € E and U(A,B) = u. We require that
the start of a task instance precedes the end of that
instance, that is, for each task T € 7 and valuation
v e V(T), U((start(T),end(T)))(v) = v.

Below, we present two examples that illustrate how
PPOs can be used to model scheduling applications.

Ezample 1 (Printer). Figure la depicts a part of an ap-
plication encountered in the printer domain (see [23]).
There are three tasks: Scan, ScanlP and Delay, repre-
sented by rectangles. The corresponding start and end
event types are indicated by subrectangles inscribed with
s and e. Edges show the dependencies between event
types (the edges from start to corresponding end are
not shown). All three tasks have one parameter: p of
type [0,..., L] representing the number of the current
page processed. The constant L € N is a bound for the
parameter p. A precedence function A — B is repre-
sented by a predicate that may contain both the param-
eters of task(A) and primed versions of the parameters
of task(B). For instance, the predicate p’ = p + 1 on
the edge from ScanlP to Scan represents the precedence
function that maps a valuation v of the ScanlP param-
eters to the unique valuation v’ of the Scan parameters
that satisfies v'(p) = v(p) + 1.

An instance of ScanlP may start as soon as its cor-
responding instance of Scan has started. These task in-
stances of Scan and ScanlP may then proceed in paral-
lel. However, the next instance of Scan may only start
after the current instances of both Scan and ScanlIP have
ended. Between the ScanlP and Delay tasks, there is also
a dependency: only after the occurrence of the start
event in the ScanlP task, the start event of the corre-
sponding Delay task may occur.

Ezample 2 (Wafer production). The PPO displayed in
Figure 1b describes the production of an infinite series
of lots, where each lot is composed of 15 wafers. This
example is inspired by [5]. After the start of each lot,
15 wafer tasks are executed in sequence, followed by the
end of the lot.

8.2 From PPOs to Configuration Structures

The semantics of a PPO can be described in terms of
a labeled transition system, referred to as the configu-
ration structure of the PPO (see [8,33]). The states of
a configuration structure are configurations, finite sets
of events that have already occurred. Each transition

p'=ptl

Scanlp],

p:[0,L]

p' =p+l
p'=p PP =141
ScanIPl[pl, m
plon]  |®

s|  Lotll] e

1=1, A _

vw‘=1 w=15
Delaylp], s| Wafer[l,w] |e
p:[0,L]
w7 |
p'=ptl (Ww<15 A 1=l A w'=w+1) v

(w=15 A I'=1+1 A w'=1)

(a) Printer (b) Wafer production

Fig. 1: PPO representation

marks the occurrence of a single new event for which all
the immediate predecessors have occurred.

Formally, an event is a pair (A, v) where A is an event
type and v € V(task(A)) is a valuation of its task param-
eters. We write ev_type((4,v)) = A and task((A,v)) =
task(A). Also, we write ev(A) for the set of events of a
PPO A. We call event (B, w) an immediate predecessor
of event (A,v), notation (B,w) — (4,v), if (B,A) €
EANU(B,A)(w) =wv.

Let C C ev(A) and « € ev(A) with o ¢ C. We say
that C enables «, and write C' F «, if all immediate
predecessors of «a are in C.

Let A be a PPO. The set conf(.A) of configurations
of A is the smallest subset of the power set p(ev(A)) of
events of A such that:

1. 0 € conf(A),
2. if C € conf(A), and C F « then C'U {a} € conf(A).

The configuration structure of A is the LTS C(A) =
(conf(A),D,E,~), where (C,A,C U {a}) e~ iff C €
conf(A), ev_type(e) = A and C' F a. We write C A
if (C,A,C") €~. Also, we sometimes write C' <> C’ to

denote that C * 2 ¢’ and ¢’ = C'U {a}.

The above definition implies that each configuration
C' € conf(A) has a securing, that is, a sequence ayq, . .., ap,
of events such that C = {aq,...,a,} and, for each
1<i<n,{a;|j<i}€conf(4)and {a; | j < i} F a.

In a PPO there are no conflicts between events: it
is not possible that the occurrence of one event disables
the occurrence of another event. In fact, it is easy to
prove that the set of configurations of a PPO is closed
under union: if C € conf(A) and C’ € conf(A) then
CUC'" € conf(A). We call an event reachable if it occurs
in some configuration, and write rev(A) for the set of
reachable events of A. Note that, since in a PPO we
allow cyclic predecessor relations, it may occur that some
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(or even all) events are not reachable. If o and o are
in rev(A), we write « <4 «/, if for each configuration
C € conf(A), o € C implies o € C. The technical
lemma below states that the <4 contains the immediate
predecessor relation:

Lemma 1. Let A be a PPO with events o and o such
that o — o'. Then o' € rev(A) implies a € rev(A) and
a<ga.

Proof. If o/ € rev(A), then there is a configuration
C' € conf(A) that contains o’. Furthermore, this configu-
ration has a securing, that is, a sequence aq, ..., a, such
that C = {a1,...,a,} and there is a configuration C/,
that we can construct with some of the events of C' that
enables o’. Since C/, + o/, C/, contains all immediate
predecessors of o/. Let a be an immediate predecessor
of o'. Since a € C!, then a € rev(A). Because C!, C C,
then a € C, namely « is include in any configuration
that contains o, therefore o < 4 o’.

The following lemma states that a parametrized par-
tial order (PPO) induces a partial ordering relation on
its (reachable) events.

Lemma 2. Let A be a PPO, then <4 is a partial order
on rev(A).

Proof. 1. (Reflexivity). We need to prove that o <4 «
is true, for any « € rev(.A), which holds.

2. (Antisymmetry). Let o, o’ € rev(A). We should prove
that if <4 @', and o/ <4 o = a = o'. Assume
that a # o’. If a <4 o, there exists a securing whose
configuration C/, contains « and enables o/. Further,
if o’ <4 «, there exists a securing whose configura-
tion C,, contains o’ and enables a and C?, C C,,. This
implies that a € C,, and C,, F «, which is impossible.

3. (Transitivity). Let a, o/, € rev(A). We should prove
that if @« <4 o/, and o/ <47 = a <4 7. Assum-
ing that e <4 o/, this implies that any configuration
that contains o’ also contains a. Further, if o/ <4 7,
any configuration that contains v also contains o/.
Since any configuration that contains o, also con-
tains «, this allows us to conclude that any configu-
ration that contains v also contains «, and therefore

a<g7.
3.8 Restricted PPOs

We explore the behavior of PPOs using the Uppaal model
checker, and for this we need to translate PPOs to the
input language of Uppaal. Here we describe a transla-
tion of a subclass of PPOs in which no two instances of
a task can run concurrently. It is possible to translate
arbitrary PPOs to Uppaal (provided the parameter do-
mains are finite) but this translation leads to networks
of automata that are much harder to analyze.

We call a PPO A restricted if it satisfies the following
five conditions, for all tasks T and 1", for all precedence

functions A % B with task(4) = T and task(B) = 1",
and for all valuations v,w € V(T):

— CO0: The only edges between events of the same task
are the ones from the start event to the end event,
and from the end event to the start event:

task(A) =task(B) = ((A,B) e E & A# B)

We write next(T') for the function U((end(T), start(T)),
and let <7 be the least transitive relation on val-
uations in V(T satisfying v <7 next(T)(v). Write
v <prwiff v <7 w or v=w.

— C1: There is exactly one valuation of the parameters
of T that does not appear in the range of next(T).
This valuation is referred to as the nitial valuation
of T, and is written v9..

— C2: next(T) is injective

— C3: u is only defined for reachable valuations:

u(v) | = 11(% <rwv
— C4: u is monotonic:
v<pwAu(w) | =u) | Aul) <p u(w)

Axioms CO0, C1 and C2 impose precedence restrictions
between event instances of the same task that exclude
auto-concurrency. Axiom CO implies that we have an
edge from the end event type of a task to the corre-
sponding start event type. Axiom C1 implies that, for
each task, there is only one event that does not depend
on some other event of the same task: necessarily this is
going to be the first event of the task that will occur.
Axiom C2 implies that each event of a task, except the
initial one, has a unique immediate predecessor event
that belongs to the same task. Axioms CO0-C2 still al-
low cyclic precedence edges between events of the same
task, but axiom C3 implies that u is not defined for
such “ghost events”. Axiom C4, finally, states that a
precedence function that links events of different tasks
is monotonic w.r.t the event ordering within tasks. The
reader may check that the examples of subsection 1 are
restricted.

Lemma 3. Let A be a restricted PPO. Given a task T
and valuation v Then

1. (end(T),v) € rev(A) implies (start(T),v) € rev(A)
and (start(T'),v) <4 (end(T),v).

2. (start(T'), next(T)(v)) € rev(A) implies (end(T),v) €
rev(A) and (end(T'),v) <4 (start(T), next(T)(v)).

3. <4 is a total order on the set {« € rev(A) | task(a) =
T} of reachable events of T.

Proof. Statements (1) and (2) follow by Lemma 1.

For (3), first observe that < 4 is a partial order on rev(.A)
by Lemma 2. Hence it is also a partial order on the sub-
set of reachable events of T. Let a,a’ € rev(A) with
task(a) = T and task(a’) = T'. Tt suffices to prove that ei-
ther a <4 o' or o <4 . Assuming that a = (tq, va), o/ =
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L1
ldone[T] &&
dep_met(end(T)) dep_met(start(T))
end(T)? start(T)!
update()
L2

Fig. 2: Automaton for task T'

(tL,vl), with to,t), € {end(T),start(T)}. If v, = v,
then by applying the first case of this lemma, it fol-
lows that o <4 o’ or o <4 «. If not, without loss of
generality, we assume v, <7 v,. Then using the first
two cases of this lemma, it follows that (tn,vs) <a
(start(T), next(T)(vy)) <4 ... <a (t,,,v)), which by tran-
sitivity implies that o <4 /.

8.4 From Restricted PPOs to Networks of Automata

We will show how each restricted PPO can be translated
into a Uppaal-style parallel composition of a number of
automata in such a way that (the reachable part of)
the LTS induced by the composition of these automata
is isomorphic to the configuration structure of the PPO.
We refer the reader to [14] for an introduction to Uppaal.

Let A be a PPO as above. We define N'(A) to be the
LTS induced by the parallel composition of automata
that instantiate the template displayed in Figure 2, for
each task T € 7. Below we explain the various predi-
cates and functions occurring in Figure 2. The composed
system N (A) has the following set of global shared vari-
ables:

{T.p,loc[T],done[T] | T € T Ap e M(T)}.

Variable loc[T] records the current location of the task
automaton for T', which can be either L1 or L2. Boolean
variable done[T] records whether the last event of 7" has
been executed. Since different tasks may use the same
parameter names, we make a copy 7.p of each parameter
p € M(T). Aslong as task T has not yet been completed,
variable T.p gives the value of p in the next event of
T that will occur. Variable loc[T] is initialized to L1,
variable done[T] is initialized to false, and variable T.p
is initialized to v%(p), for each parameter p € M(T).

For a given state of the automaton for task T, let
function val(7T') return the current valuation of the pa-
rameters of task T'. For each event type A with task(A) =
T, function done(A) returns true iff the last event of A
has occurred:

done(A) = done[T] V (loc[T] = L2 A
type(A) = s A next(T)(val(T)) 1)

If the last event of A has not occurred, function next(A)
gives the valuation of the parameters for the next event
of A:

_Jnext(T")(val(T")),if loc[T] = L2 A type(A) = s
next(4) = {vaI(T) , otherwise

Suppose that the last event of type A has not occurred,
then in order to decide whether the next event of A
may occur, we check for each incoming precedence edge
B % A whether the dependency induced by that edge
has been met:

dep_met(A) = VB,u: B = A Atask(B) # task(4) =
dep_met(B,u, A)

Note that the task automaton already takes care of the
dependencies induced by precedence functions between
pairs of start and end events of T. In order to decide
whether the dependencies induced by B = A are met,
we first check if done(B) evaluates to true. If so then all
events of B have occurred and hence all dependencies in-
duced by B % A have been met. Next we check whether
u(next(B)) is defined. If not then, by monotonicity, all
dependencies induced by B = A have been met. Finally,
we check whether next(A) precedes u(next(B)). If so,
then for any immediate predecessor of next(A), that is,
for any parameter valuation v of B with u(v) = next(A),
monotonicity implies v < next(B). Formally,

dep_met(B,u, A) = done(B) V u(next(B)) T
V next(A) <r u(next(B))
Finally, function update() sets done[T] to true if the last

event for task T" has occurred, and otherwise updates the
parameters of T" according to function next(T).

Lemma 4. For all reachable states s of N(A) and for
all tasks T € T, the following invariant properties hold:
1. 0% <7 swval(T)

2. s.done[T] = next(T)(s.val(T)) 1

3. s.done[T] = s.loc[T] = L1

Proof. Straightforward by induction on the length of
the shortest path leading to s.

Theorem 1. Let A be a PPO. Then LTSs C(A) and
reach(N(A)) are isomorphic.

Proof. Let N(A) = (S,s0,E,—). If s € S is a state and
e is an expression containing variables of A(A), then
we write s.e for the result of evaluating expression e in
state s. For each event type A € £, we define a function
Ra: S — 22 that associates to each state of N(A)
a set of events of type A. Intuitively, this is the set of
events of type A that have occurred before reaching state
s. Suppose task(A) = T'. Then
Ra(s) = if s.done(A) then
{(A,v) € ev(A) | v <p s.val(T)}
else
{(4,v) € ev(A) | v <7 s.next(A4)}
fi
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Let function R : S — 2¢¥(4 be defined by:

= U %A(S)

Aecg

We will prove that R is an isomorphism from reach(N(A))
to C(A).
Claim 1. R(so) = 0.

Proof. Let A be an event type. Let task(A) = T By def-
inition of sy we have sg.done(A) = false and sp.next(A) =
v%. Hence, by definition of R4, Ra(so) = {(4,v) | v <r
v%}. But since, by condition C1, v2 does not appear in
the range of next(T), there exists no v such that v <r v.
Hence R4(so) = 0. Since A has been chosen arbitrarily,
it follows that also R(sg) = 0.

Claim 2. If s is a reachable state and s A, s’ then

R(s) F (A, s.val(T)).

Proof. Let v = s.wval(T'). Assume that s 2, ¢ and as-
sume that (B, w) is an immediate predecessor of (A, v).
It suffices to prove that (B,w) € Rp(s).

If task(B) = task(A4) and A = start(T) then, by
C0, B = end(T) and next(T)(w) = v. Since s 4 ¢,
s.done[T] = false. This implies s.done(B) = false. Also
s.next(B) = s.val(T') = v. We infer that

Rp(s) ={(B,z) €ev(A) | z < v}

Since w <t v it follows that (B, w) € Rp(s), as required.

If task(B) = task(A) and A = end(T) then B =
start(T) and w = v. If s.done(B) holds then (B,w) €
Rp(s) and we are done. If s.done(B) does not hold then
next(T)(val(T))) | and next(B) = next(T)(val(T))). It
follows that (B, w) € Rp(s).

We may therefore assume that task(B) # task(A).
Let U(B,A) = u and task(B) = T’. Then u(w) = v.
Since 5 2 ', s.dep_met(B, u, A) holds. This means that
one of the following three cases applies:

— s.done(B).
Using the first invariant of Lemma 4, we infer v3, <
s.val(T"). Using the second invariant of Lemma 4, we
infer that next(T”)(s.val(T”)) 1. Condition C3 im-
plies that v%, <7/ w. It follows that w <7 s.val(T").
Hence (B,w) € Rp(s), as required.

— s.done(B) = false and u(s.next(B)) 1.
By monotonicity imposed by condition C4, we do not
have s.next(B) <7+ w. Condition C3 implies v$, <
w, and Lemma 4 implies v9, <7 s.next(B). Hence
w <7s s.next(B) and thus (B, w) € Rp(s).

— s.next(A) < u(s.next(B)).
Since s 2 s/, s.next(A) = s.val(T) = v. As in the
previous case, we use conditions C3, C4 and Lemma 4
to argue that w <p s.next(B), and thus (B,w) €

R (s).

Claim 3. If s 2 s’ then R(s) = R(s) U {(A, s.val(T))}.

Proof. Assume s A ¢ Tt is easy to check that for all
event types B with task(B) # task(4), Rp(s') = Rp(s).
Let - : £ — & be the function given by start(7") = end(T'
and end(T") = start(T"), for all T. We claim that R4(s") =
Ra(s)U{(A, s.val(T))} and R4(s") = Rz(s). We consider
four cases:

— A = start(T) and next(T')(s.val(T)) 1.

)

Since s > s', s.next(A) = s.val(T) and s.done(A) =
false. Hence

Ra(s) = {(4,v) € ev(A) | v < sval(T)}

Since s 2> s, s’ Joc[T] = L2 and s'.val(T') = s.val(T).
Since next(T)(s'.val(T')) T, then s’.done(A). Hence

Ra(s') = {(A,v) €ev(A) | v <7 sval(T)}

Thus Ra(s") = Ra(s)U{(A,s.val(T))}. Since s A9,
s.done(end(T")) = false and s’.done(end(T")) = false.
Moreover s'.next(end(T")) = s.next(end(T")) = s.val(T).
Hence

Ra(s") = Rz(s)
= {(4,v) € ev(A) | v <7 s.val(T)}
A = start(T) and next(T)(s.val(T)) |.
Since s 2> ¢/, s.next(A) = s.val(T') and s.done(A) =
false. Hence

Ra(s) ={(4,v) e ev(A) | v <p sval(T)}

Since s 2> s, §'loc[T] = L2 and §'.val(T) = s.val(T).
Since next(T)(s'.val(T)) |, then s’'.done(A) = false
and s’.next(A) = next(T')(s’.val(T)). Hence

Ra(s) = {(A,v) € ev(A) | v <r next(T)(s.val(T))}

By €2, Ra(s') = Ra(s) U{(4, s.val(T)) }. Since s EN
s s. done(end( )) = false and s’.done(end(T")) = false.
Moreover s’ .next(end(T")) = s.next(end(T)) = s.val(T).
Hence

Rz(s") = Rz(s)
= {(A,v) € ev(A) | v <7 s.val(T)}

A =end(T) and next(T)(s.val(T)) 1.

Since 5 25 s, done(A) = false and s.next(4) =

s.val(T). Hence

Ra(s) ={(4,v) € ev(A) | v < sval(T)}
Moreover, s'.done[T7], s’.done(A) and s'.val(T) = s.val(T).
Hence

Ra(s) = {(A,v) €ev(A) | v <p sval(T)}
Thus R4(s’) = Ra(s) U {(4,s.val(T))}. By the as-
sumptions, s.done(A4), we can also infer s’.done(A).
Hence

Ra(s') = Rls

= {(4,v) € ev(A) | v <7 s.val(T)}

~—
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— A =end(T) and next(T)(s.val(T)) |.

Since s = done(A) = false and s.next(4) =
s.val(T). Hence

Ra(s) ={(4,v) e ev(A) | v <p sval(T)}

Moreover, s’.done(A) = false, s’.next(A) = s'.val(T)
and s'.val(T) = next(T')(s.val(T)). Hence

Ra(s') = {(A,v) € ev(A) | v <7 next(T)(s.val(T))}

By C2, Ra(s") = Ra(s) U{(A,s.val(T))}. By the as-
sumptions, s.done(A) = false and s’.done(A4) = false.
Moreover

s.next(A) = next(T)(s.val(T)) = s'.val(T) = s’ .next(A)
This implies
Rz(s) = Rz(s)
It follows that R(s") = R(s) U{(A, s.val(T))}.

Claim 4. If s is a reachable state of N'(A) then R(s) €
conf(A).

Proof. Straightforward, by induction on the length of
the shortest path to s, using Claims 1-3.

Claim 5. If s, s" are reachable states of N'(A) and s EN
s’ then R(s) 4 R(s).

Proof. Straightforward, by combining Claims 2, 3 and
4.

In order to prove that R is bijective, we define an in-
verse function & that maps configurations of A to states
of N(A). Let C be a configuration and let 7" be a task.
Write Cr for the subset of C of events of type T. We
consider four cases:

1. If Cr = () then variable loc[T] is set to L1, variable
done[T] is set to false, and variable T.p is set to v%(p),
for each parameter p € M(T).

2. If Cr # () and the unique maximal event of Cp (cf
Lemma 3) is of the form (start(T"),v), then variable
loc[T] is set to L2, variable done[T] is set to false,
and variable T.p is set to v(p), for each parameter
p e M(T).

3. If Or # 0, the unique maximal event of Cr is of
the form (end(7T'),v) and next(7T")(v) |, then variable
loc[T7] is set to L1, variable done[T] is set to false, and
variable T'.p is set to next(T")(v)(p), for each param-
eter p € M(T).

4. If Cp # 0, the unique maximal event of Cr is of
the form (end(7T),v) and next(7T")(v) T, then variable
loc[T] is set to L1, variable done[T] is set to true,
and variable T.p is set to v(p), for each parameter

p e M(T).

The following claim directly implies that & is injective.
Claim 6. For each reachable state s of network N'(A),
S(R(s)) = s.

Proof. Assume s is a reachable state of N'(A). Let C' =
R(s) and s’ = &(C). We must prove s’ = s. Assume T' €
7. It suffices to prove, s'.val(T) = s.val(T), s'.loc[T] =
§'loc[T] and s'.done[T] = s’.done[T]. Let A = start(T)
and B = end(T"). We consider 5 cases:

1. s.done[T]| = false and s.loc[T] = L1 and s.val(T) =
v9.. Then, by Claim 1, C' = ). Hence, also Cp = 0.
By definition of &, s'.loc[T] = L1, s’.done[T] = false
and s’.val[T] = v$.. Thus, s’ = s, as required.

2. s.done[T] = false and s.loc[T] = L1 and s.val(T) #
v9.. Then s.done(A) = s.done(B) = false, so

Cr ={(A,v),(B,v) | v < s.val(T)}.

By Lemma 4, v <r s.wal(T). Hence, by assump-
tion s.val(T) # v%, v3 <r s.Val(T). Thus Cp # ()
and the unique maximal event of Cr is of the form
(B,w) with next(T)(w) = s.val(T)). By definition of
S, §'.loc[T] = L1, s'.done[T] = false and s'.val[T] =
s.val[T]. Thus, s’ = s, as required.
3. s.done[T] = false, s.loc[T] = L2 and next(T")(s.val(T)) 1.

Then s.done(A) = true and s.done(B) = false, so

Cr ={(A,v) | v <p sval(T)} U{(B,v) | v <r sval(T)}

Thus Cr # () and the unique maximal event of Cr is
(A, s.val(T')). Hence, by definition of &, s'.loc[T] =
L2, s’.done[T| = false and s'.val[T] = s.val[T]. Thus,
s’ = s, as required.

4. s.done[T] = false, s.loc[T] = L2 and next(T")(s.val(T)) |.
Then s.done(A) = s.done(B) = false and

Cr = {(A4,v) | v <y next(T)(s.val(T))}
U{(B,v) | v < sval(T)}

Thus Cr # () and the unique maximal event of Cr is
(A, s.val(T')). Hence, by definition of &, §'.loc[T] =
L2, s’.done[T] = false and s'.val[T] = s.val[T]. Thus,
s’ = s, as required.

5. s.done[T] = true. Then, by definition of R, Cp =
{(A,v),(B,v) | v <r s.val(T)}. Hence Cr # () and
the unique maximal event of Cr is (B, s.val(T')). By
Lemma 4, next(T)(s.val(T)) 1 and s.loc[T] = L1. By
definition of &, s'.loc[T] = L1, s'done[T] = true and
s'val[T] = s.val[T]. Thus s’ = s, as required.

Claim 7. If s is reachable, R(s) = C, C' < C’ and
s’ = &(C") then s NS
Proof. By Claim 6, &(C) = s. Let task(A) = T'. Since
c4 (', s.done[T] = false. Hence, in order to prove that
s enables an A-transition, it suffices to establish that

dep-met(A) holds in s. For this, in turn, it suffices to
prove, for any incoming precedence edge B — A with
task(B) # task(A), that dep_met(B, u, A) holds in s. Let
C' = CU{a} with a = (A,v). Since C' F «, all im-
mediate predecessors of o are in C. Let B 5 A be a
precedence edge of A and let task(B) = T". We consider
the following cases:
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- Cr =10
Since C' contains all immediate predecessors of «,
there exists no event (B, w) such that U(B, A)(w) =
v. Since Cr = (), then s.done[T”] = false and s.loc[T”]
L1, it means that s.done(B) = false. Knowing that
B % A and s.done(B) = false, the next event of
type B, namely 8 = (B,v%,) will occur in future.
If u(next(B)) | and B is not an immediate prede-
cessor of a, it follows that v < u(next(B)), meaning
that dep_met(B,u, A) holds in s. If u(next(B)) T, by
the second case in the definition of dep_met(B,u, A),
dep_met(B, u, A) is true in s.

— O # () and (B, w) is the unique maximal event of
Crv of the form (end(T), w) with next(T”)(w) 7. This
implies that s.done[T”] = true and that s.done(B)
holds, therefore dep_met(B, u, A) holds is s.

— O # 0 and (B, w) is the unique maximal event of
Cr where next(T")(w) | and wu(s.next(B)) 1. This
means that the second condition in the definition of
dep_met(B, u, A) is true, meaning that
dep_met(B, u, A) holds is s.

— Cpr # () and (B, w) is the unique maximal event of
Cr where next(T”)(w) | and u(s.next(B)) |. Since
u(B, A)(w) = v it means that u(s.next(B)) #r v,
and by C4, we have that u(w) <p u(s.next(B)),
therefore dep_met(B, u, A) holds in s.

We conclude that s enables an A-transition. Suppose
s 2 s" Then, by Claim 5, R(s) 4 R(s"). Since C has
only one outgoing A-transition, R(s”) = C’. Hence, by
Claim 6, s” = &', as required.

Claim 8. R is a bijection from the reachable states of

N(A) to conf(A).
Proof. Straightforward using Claims 1, 4, 6 and 7.

The theorem now follows by combination of the claims.

4 Real-Time Task Systems

In the previous section, we have introduced PPOs as
a compact representation of task graphs with repetitive
behavior. PPOs provide a convenient formalism to model
embedded applications, but need to be incorporated in
a larger formalism that supports modeling of the execu-
tion platform and of the mapping from applications onto
this platform. In this section, we introduce such a for-
malism, which we name real-time task systems (RTTS),
and describe how the translation of PPOs to Uppaal
from Section 3 can be lifted to RTTSs.

4.1 Definition of RTTS

In a real-time task system, the application is modeled us-
ing a PPO A together with a function w that gives the

size of each task. The platform is modeled abstractly us-
ing a set R of resources and a function cap. Resources in
R can be anything ranging from CPUs, memory, com-
munication bandwidth and dedicated processing blocks,
to devices such as scanners and printers. Each resource
r has cap(r) units available, e.g., 3 CPUs, 133M B mem-
ory, and 10Mb/s bandwidth. The mapping from appli-
cation to platform is specified using functions cl, h and
p. Function cl specifies, for each task T' and resource r,
a bound of the number of units of r that can be allo-
cated to T. In practice, resources are often handed over
from one task to another, for instance when one task has
created a file that is being procesed further by another
task. This handover of resources is specified by function
h. Finally, function p specifies the pace at which a task
progresses, given the resources that have been allocated
to it.

Formally, a real-time task system (RTTS) is a tuple
RTTS = (A, R,cap,cl,h,w, p), where:!

- A= (7T,M,E,U) is a PPO.

— R is a finite set of resources.

— cap : R — N is a function that specifies for each
resource the total number of units that is available.

—cl: 7 — (R — N) is a function that specifies, for
each resource, the maximum number of units that a
task may claim. A task may not claim more resources
than what is available: for each T € T, cl(T) < cap.

— h: E — (R — N) specifies the resources handed over
from one task to another via edges of the PPO. We
require that resources may be handed over only to
start events: for all A€ £ and T € 7T,

h(A,end(T)) = 0,

where 0 : R — N is given by 0(r) =0, for r € R.

— w: 7 — Nis a function that specifies the size of each
task, i.e., the amount of work that has to be done.

— p:7T x (R — N) — Nis a function that specifies the
pace at which each task is processed, given the re-
sources that have been assigned to it. We require that
the pace increases monotonically with the number of
resources available: for all T € 7 and a,a’ € R — N,

a<a = p(T,a) < p(T,d).

However, the pace will not increase any further once
the maximum number of resources that a task may
claim has been allocated: p(T,a) < p(T,cl(T)).

We call a resource r static if each task in the system
may only progress when its maximum claim for resource
r has been assigned. Formally, r € R is static if, for all
T €T and for alla € R — N,

a<cd(T)Ap(T,a) > 0= a(r) =c(T)(r).

1 In this section, we use functions of type R — N, where R is
some set of resources. Operations and predicates on N are extended
to such function by pointwise extension. For instance, for f,g :
R — N, we say that f < g iff Vr € R: f(r) < g(r), and we define
F4g:R—Nby (f +9)(r) = 1(r) + g(r).
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Resources that are not static are called dynamic. A task
that uses a dynamic resource may run faster if we assign
more units of this resource to it. A typical example of a
dynamic resource is communication bandwidth.

4.2 Semantics of RTTS

A task instance of PPO A is a pair 8 = (T,v), where
T €T and v € V(T). We write task(8) = T and use
start(() and end(8) to denote the start and end event,
respectively, that correspond to 3. We let ti(A) denote
the set of task instances of PPO A. We say that a task
instance § is done in configuration C' if end(3) € C, we
say that 3 is active in C if start(3) € C and end(53) € C,
and we say that [ is waiting in C if start(3) € C'. Clearly
each task instance is either done, active or waiting, in
any given configuration C'. We define:

done(C) = {B € ti(A) | end(B) € C},
active(C') = {3 € ti(A) | start(8) € C Aend(B) & C},
waiting(C) = {0 € ti(A) | start(B) € C}.

A timed configuration records the precise global state
of the modeled system at some point during execution,
that is, the set of events that have occurred, the resources
that have been allocated to each task instance, and the
completion level of each task instance. Formally, a timed
configuration of RTTS is a triple (C, O, 0) where:

— C € conf(A).

— O :ti(A) — (R — N) specifies allocation of resources
to task instances. We require that O does not allo-
cate more resources than what is available in total:
Zveﬂ( A O(v) < cap. Moreover, we require, for each
B € ti(A) with task(8) =T,

1. O does not allocate more resources to 3 than T
may claim: O(8) < cl(T).

2. If B is waiting in C, the only resources allocated
to B are those that have been handed over by
preceding events: 3 € waiting(C) =

oy = >

aeC|arstart(3)

h(ev_type(a), start(T))

3. If B is active in C, enough resources are allocated
to B for the handover to its successors upon ter-
mination: 8 € active(C) =

o) > >

acev(A)lend(B)—a

h(end(T), ev_type(«))

4. If B is done in C, no resources are allocated to it:
B € done(C) =

o(p) =0

c start(3) c’
(©,0,0) =2, (o 0 9)
d € Rx>o
Yy & active( 0'(v) = 0(v)

)
Vv € active(C) : §'(v) = 9( ) —d - p(task(y), O(7))
(C,0,0) % (C,0,0)

C end(B) c’

(€,0,0) =9, (¢’,0',6)

Fig. 3: Semantics of real-time task systems

— 0 : ti(A) — R specifies for each task instance the
amount of work that remains to be done. We require,
for each 8 € ti(A),

0 < 0(B) < w(task(B))
B3 € done(C) 0(B)=0
B € waiting(C') = 6(8) = w(task(5))

The timed configuration structure of RTTS is the
LTS TC(RTTS) with as states the timed configura-
tions of R77TS, as initial state the timed configuration
(0,00,00), where, for all 3, Og(3) = 0 and 6y(8) =
w(task(53)), as actions the set ev(A) UR>, and a tran-
sition relation that is defined by the rules in Figure 3.
These rules describe how R7 7S may evolve from timed
configuration (C, O, #) to timed configuration (C’, 0’, 6")
due to the occurrence of an event or through passage of
time.

Note that the rules of Figure 3 do not impose any
relationship between the resource allocations before and
after an event. In fact, a priori we allow for a complete
reshuffling of the resource allocation whenever an event
occurs. Also, there are no constraints on the time at
which a new task instance starts. In practice, of course,
we need to impose restrictions on timing and on how
resource allocations may change. This is achieved using
so-called scheduling rules, which we will discuss in the
next subsection.

4.8 Scheduling rules

The timed configuration structures defined in the previ-
ous subsection are highly nondeterministic LTSs. After
each event there may be an arbitrary, complete realloca-
tion of resources between tasks. Also, the choice when to
start a new task instance is entirely left open (there can
be an arbitrary delay). We allow for delays and reallo-
cation of resources in our semantics because this is what
happens in the embedded systems that we model. How-
ever, in applications we will typically adopt a number of
scheduling rules that severely reduce (or even eliminate)
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the nondeterminism within a real-time task system, and
impose constraints on the timing of events. Effectively,
these rules cut away certain transitions and configura-
tions in the semantics of the real-time task system that
we have defined in Figure 3. Below we give two examples
of commonly used, generic scheduling rules. Additional
scheduling rules may be defined for each application.

1. Nonlaziness
A task may be lazy or nonlazy. Semantically, this
means that we remove all the time passage transi-
tions (C, O, 0) 4, (C",0', "), such that d > 0 and
an event start(3) with task(8) nonlazy is enabled in
(C,0,0). In this way, we express that no time delay
is allowed whenever an instance of a nonlazy task is
enabled and sufficient resources are available: imme-
diately either this or a competing task will start.

2. Preemption
A task may be preemptive or non-preemptive. An in-
stance of a preemptive task may be interrupted while
running (that is, the pace may become 0 due to re-
sources that are taken away), while this is not pos-
sible for any instance of a non-preemptive task. Se-
mantically, we reduce the timed configuration struc-
ture by removing all configurations (C,0,0) with
p(task(),O0(y)) = 0, for some event instance v €
active(C') with task(-y) non-preemptive.

Ezample 3. Figures 4-6 depict, in a graphical manner,
an RTTS that models a printer application. This case
study will also be used in Section 6 for the framework
performance evaluation. The underlying PPOs are de-
picted using the notational conventions explained al-
ready in Example 1. We assume that all tasks are non-
lazy and nonpreemptive. The ovals encode resources and
the parentheses contain their maximum capacity avail-
able (one if not mentioned). All the resources are static,
except for USBup and USBdown. The dynamic resources

USBup and USBdown obey the additional scheduling rule:

USB: A timed configuration (C, O, #) is only al-
lowed if, when O(«)(USBup) and O(3)(USBdown)
are both positive, for some task instances a and
B, then they are both equal to 3Mb/s. If only one
is positive then it is equal to 4Mb/s.

The idea is that if two processes use the bus simultane-
ously, transmission takes place at a lower pace.

The dashed lines between resources and tasks indi-
cate resource claims. Precedence edges are annotated
with the number of resource units handed over. The to-
tal resource claim of a task can be obtained by taking
the resource claims indicated by dotted lines plus all the
resources that are handed over via incoming precedence
edges of the start event minus all the resources that are
handed over via outgoing precedence edges of the start
event. Thus, for instance, task IP1 in Figure 4 claims 1
unit of resource IP1 and 24 units of resource RAM. Task

RAM 24MB
(96MB) ~ < _| |Downloadlp]
4Mb/s” (dynamic)
(4Mb/s) RAM 24MB
| A—
_1__ 4| 1l
(3s)
p'=p
RAM 24MB
 A—
_A__ ]| 1Tp2b
(3s)
p'=p
v RAM 12MB
SB up 4Mb/s | s Uploadlp]
(4Mb/s) (dynamic)

Fig. 4: Process from Store

Scan in Figure 6 claims 1 unit of resource Scanner and 0
units of resource RAM.

The rectangles denoting tasks may contain, between
parentheses, task durations. If a task 7" is annotated with
a task duration ¢ seconds then this means that the total
amount of work is ¢ units and the pace is 1 unit per
second if the task has all the resources that it claims,
and 0 units per second otherwise. For tasks that use
dynamic resource USBup, the duration is determined by
the expression dynamic that is defined by:

dynamic = if USBup = 4Mb/s then 3s else
if USBup = 3Mb/s then 4s else 0.

For tasks that use dynamic resource USBdown, the cor-
responding predicate is defined by:

dynamic = if USBdown = 4Mb/s then 3s else
if USBdown = 3Mb/s then 4s else 0.

For these tasks, the total amount of work is 12Mb and
the pace is either 4Mb/s or 3Mb/s. The reader may
verify that the timed configuration of this RTTS is a
deterministic LTS. In particular, after each event the
allocation of resources to task instances is uniquely de-
termined.

5 Generated Uppaal models

We have implemented a tool that generates Uppaal mod-
els for a subclass of RTTSs. Our tool supports specifi-
cation of lazy and nonlazy tasks, and of preemptive and
nonpreemptive tasks. It accepts any RTTS R77S =
(A, R,cap,cl,h,w, p) in which:
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L1

ldone[T] &&
dep_met(start(T))&&
canClaim(T)&&greedy
greedyClaim!
claim(T), x=0,
cPace=Pace(T)

Pace(T)!=cPace

ldone[T] &&
dep_met(start(T))&&
canClaim(T)&&
Igreedy

lazyClaim!

claim(T),

x=0, cPace=Pace(T)
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cPace==Pace(T) &&
cPace>0 &&

x >= divide(cWork,cPace)
release!

update(),

release(T),

cWork=w(T)

Update

throttle!

J

cPace==0

cPace=Pace(T), x=0

i

cPace>0 && i<=x

&& (i+1)>x

L2
cPace > 0 imply x <= divide(cWork,cPace)

cWork=(cWork-cPace*i)>? 0,
cPace=Pace(T), x=0

Fig. 7: Automaton for task T

RAM 12MB
(96MB) ~~ | |Downloadlpl
AMB/s” (dynamic)
SB down™ ~ p'=p
(4Mb/s) RAM12MB
R Print[p]
(4s)

Fig. 5: Simple Print
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p=p s (0s) N

Print(p]
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Fig. 6: Direct Copy

. Ais a restricted PPO such that, for each T' € 7, the
only incoming edge of end(T") comes from start(T).
This assumption allows us to obtain a translation
of RTTSs to Uppaal by extending the translation of
PPOs to Uppaal that we defined in Section 3.

. Handover of resources from task T to task T" is only
allowed if the precedence function for the correspond-
ing PPO edge is bijective.

This assumption simplifies the treatment of handovers,
since whenever an instance of a task T is enabled,
that is, all its immediate predecessors are done, the
total number of resources that has been handed over
to this task instance is always:

h(A,start(T)).
Ae&|(Astart(T))eE

Additional scheduling rules enforce that, for each timed
configuration, the resource allocation is uniquely de-
termined by the configuration of the PPO. Formally,
we require that there exists a function alloc : conf(A) —
(ti(A) — (R — N)) such that, for each timed config-
uration (C, 0, 0), (C,0,0) is allowed by the schedul-
ing rules if and only if O = alloc(C). We require
that alloc(f) = Oy and that, for each configuration
C, O = alloc(C) satisfies the five conditions on O
required for timed configurations.

This assumption simplifies the translation since it
eliminates the need to record, in each state, the exact
allocation of resources to all the task instances.

It is easy to verify that the RTTS described in Exam-
ple 3 satisfies the above conditions. In particular, the
resource allocation O is uniquely determined by the con-
figuration C' of the PPO: (1) For a task instance 3 that
is waiting in C, the only resources allocated are those
that have been handed over by preceding task instances.
(2) By definition of a timed configuration, no resources
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can be allocated to a task instance [ that is done in C.
(3) If 8 is active in C, then for each static resource r,
O(B)(r) = cl(task(B))(r) (all tasks in the example are
nonpreemptive), and for USBup and USBdown the re-
source allocation is uniquely determined by rule USB.

Let R77S be an RTTS and alloc be a resource al-
location function that satisfy the above restrictions. We
define N (RT TS, alloc) as the LTS induced by the paral-
lel composition of the Uppaal timed automaton shown in
Figure 7, for each T' € 7. Below we explain the various
predicates and functions used in this timed automaton.
The automaton uses the same global shared variables as
the automaton for PPOs described in Section 3:

{T.p,loc[T],done[T] | T € T Ap e M(T)}.

As in Section 3, variable T.p gives the value of p in the
next event of T that will occur. Variable loc[T] records
whether the automaton is in location L1 or L2. Even
though there is now an extra location Update in the
automaton, the domain of loc[T] remains unchanged:
during the brief excursions to location Update, variable
loc[T] keeps value L2. As in Section 3, Boolean variable
done[T] records whether the last event of T has been
executed.

In addition, the timed automaton maintains three lo-
cal variables: integer cWork records the latest estimate of
the work that remains to be done, integer cPace records
the current pace of task T, and clock x records the time
that has elapsed since the start of the task or the last
change of pace. Initially cWork = w(T'), cPace = 0 and
x = 0. Finally, for each resource r, variable resource_cap|r]
records the number of units of resource r that are still
available. Initially, resource_cap[r] = cap(r), for each r.

The automaton shown in Figure 7 has the same struc-
ture as the automaton of Figure 2 in Section 3 and uses
the exact same functions dep_met and update. However,
in order to handle resource allocation and timing, the
automaton is equipped with some additional structure.
Predicate canClaim(T") checks whether enough resources
are available to start the next instance of task 7"

canClaim(T) = p(T, resource_cap

D

Ael|(Astart(T))eE

-

Be&|(start(T),B)EE

h(A,start(T))
h(start(7),B)) >0

Predicate canClaim(T) evaluates to true and the next
instance of T" may start if enough resources can be al-
located such that, together with the resources that have
been handed over make the pace positive.

Parameter greedy specifies if task T is nonlazy (true)
or lazy (false). The automaton has two transitions from
location L1 to L2. If task T is nonlazy we take the transi-
tion labeled with urgent broadcast channel greedyClaim,
whereas if task T is lazy we take the transition labeled
with (nonurgent) broadcast channel lazyClaim. In this

way we ensure that a nonlazy task starts as soon as it
becomes enabled, whereas the start of a lazy task may
be postponed.

Function claim(T') first sets location variable loc[T]
to L2. Let s be the resulting global state of the Uppaal
model. We may then compute the corresponding PPO-
configuration by applying? the function R introduced
in the proof of Theorem 1: C' = R(s). Next, we may
compute the resource allocation function associated to
C: O = alloc(C). Once we know which resources have
been assigned, function claim computes which resources
are still available in the new state and updates the value
of resource_cap:

resource_cap = cap — ( Z 0(v))
vEti(A)

Function Pace(T") computes the pace of the task in-
stance of T that is currently active. If s is the current
global state of the model then

Pace(T) = p(T, alloc(R(s))(T, s.val(T)))

Whenever the automaton starts a new instance of task
T by jumping from location L1 to location L2, it resets
clock x and sets variable cPace to Pace(T). Assuming the
pace remains unchanged, the time needed to complete
the task instance is i\é\fg: Since in Uppaal we may only
compare clocks to integers, we sometimes need to slightly

overapproximate the task duration: the automaton may

leave location L2 when x == divide(cWork, cPace). Here
function divide divides its two arguments and takes the
ceiling.

At any point during execution of an instance of task
T, due to the start or completion of some other task in-
stance, the allocation of resources and hence the pace of
T may change. Whenever this happens, the automaton
for task T instantly jumps to location Update via a tran-
sition labelled with urgent broadcast channel throttle.
From location Update the automaton instantly jumps
back to location L2.2 Since Update is committed, no
other automaton may perform a transition in between.
There are two cases. If task T' was preempted (cPace ==
0), the amount of work to be done remains unchanged:
the automaton sets cPace to the new value, resets clock
x, and jumps to L2. If task 7" was running (cPace > 0)
then the remaining amount of work is cWork — cPace * x.
Since Uppaal does not permit the use of clock variables
in integer expressions, we (conservatively) approximate
this value. Using a select statement, we pick the largest
integer i that does not exceed x and decrement cWork
with cPacexi. In addition, we set cPace to the new value,
reset clock x, and jump to L2.

2 Formally, function R takes as input global states of the Uppaal
model described in Section 3. We may apply R to global states of
the extended model described in this section by removing all the
additional state variables.

3 The intermediate location Update is required since in Uppaal
clock guards are not allowed on edges labeled with urgent channels.
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A task instance may end and the automaton may
jump back from L2 to L1 when the work has been com-
pleted: since we assume that in the PPO the only in-
coming edge of end(T) comes from start(7"), we do not
need to check anymore if dep_met(end(7")) holds. On the
transition from L2 to L1, function update() (introduced
in Section 3) sets done[T] to true if the last event for task
T has occurred and otherwise updates the parameters of
T. Variable cWork is reinitialized to w(T"), and function
release(T) sets loc[T] to L1, computes which resources
are still available in the new state and updates the value
of resource_cap accordingly, in exactly the same way as
function claim(T).

Of course, we would like to prove that, for any R7 7S
and resource allocation alloc that satisfies our constraints,
the LTS N (R7TTS,alloc) induced by our Uppaal trans-
lation is behaviorally equivalent with the timed configu-
ration structure 7C(R7 7 S), pruned according to func-
tion alloc. Unfortunately, due to the throttle transitions
in the Uppaal model and the overapproximations which
they induce, there is no exact correspondence. Previ-
ous experiments with this type of approximations [23,24]
suggest that in practical applications (from the printing
domain) the errors that they introduce are minimal, but
it remains to be investigated if (and how) these obser-
vations can be formalized using some notion of schedule
robustness.

Below we establish that in the special case in which
all tasks are non-preemptive and all resources are static,
and moreover work divided by pace is always an integer,
there is an exact correspondence between the semantics
of an RTTS and the semantics of its Uppaal translation.
It is not possible to prove that the two structures are
isomorphic: from a timed configuration we can not infer
a unique value for the local clock of a task automaton in
location L1. Instead, we establish a bisimulation between
the two semantic structures.

Theorem 2. Let RTTS be a real-time task system, with
all tasks non-preemptive and all resources static, let alloc
be a function that maps configurations to resource allo-
cations, and assume RTTS and alloc satisfy the con-
straints listed at the beginning of this section. Assume
further that, for each task T and resource allocation a
with p(T,a) > 0, w(T)/p(T,a) is an integer. Then the
LTSTC(RTTS), pruned according to alloc, and the LTS
N(RTTS,alloc) are bisimilar.

Proof. Since all tasks of R77S are nonpreemtive, an
active task instance always has a positive pace. More-
over, since all tasks of R77TS are static,

a<c(T)Ap(T,a) >0=a=cl(T).

This means that the pace of an active instance of task T'
is constant and always equal to p(T,cl(T")). Hence, in a
run of the Uppaal model location, the automaton for any
task T will never reach location Update. Hence, if s is a

Controller

usB
client

< "T>USB

PrintiP

MEMORY

Scanner ScanlP

Fig. 8: Océ printer architecture

reachable state of the Uppaal semantics with s.loc[T] =
L2, then s.T.cPace = p(T,cl(T)) and s.T.cWork = w(T).

Let s be a reachable state of the Uppaal semantics.
We define f(s) to be the timed configuration (C, O, )
where C' = R(s), O = alloc(C) and, for each 3 € ti(A)
with task(8) =T,

if 8 € waiting(C)
T) — s.Tx-p(T,cl(T)) if B € active(C)
0 if 8 € done(C)

Observe that (C, O, ) is a timed configuration since by
Claim 4 in the proof of Theorem 1, C' = R(s) is a configu-
ration; by the assumption about alloc, O = alloc(C) sat-
isfies the 5 conditions for O required for timed configura-
tion, and by construction 6 also satisfies the conditions
required for a timed configuration. Since O = alloc(C),
the timed configuration is allowed by the scheduling rules.

It is routine to check that the relation R that re-
lates s and f(s), for each reachable state of the Uppaal
semantics, is a bisimulation relation.

6 Experiments

We now turn to an experimental evaluation of Uppaal
models generated from the RTTS representation. We
compare these models with handcrafted models that have
been presented in [23]. In the handcrafted models, an ap-
plication is represented as a collection of use cases, each
use case being modeled as a single automaton that con-
tains all tasks. This way of modeling is more natural for
design engineers but less efficient to analyze as proven
below. The case study used for comparison is about Océ
printing systems. The printer architecture studied here
is depicted in Figure 8 with the RTTS of Example 3.
We computed for each experiment the fastest time in
which all tasks were completed (also called makespan)
assuming that all tasks were nonlazy. All experiments
were performed with Uppaal, version 4.1.2, on a Sun
Fire X4440 server with 16 cores (AMD Opteron 8356,
2.3GHz) and 128 Gb of DDR2 RAM.
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Table 1: Direct copy(dc) || Simple print(sp) Case - Compar-
ison Handcrafted Models(grey) vs. Generated Models (O.M.
- out of memory)

Table 2: Direct copy(dc) || Process from store (pfs) Case -
Comparison Handcrafted Models(grey) vs. Generated Mod-
els (O.M. - out of memory)

Three performance metrics were used to evaluate each
experiment: the peak memory usage (column 'Mem’)
and running time (column ’Time’) of Uppaal, and the
total number of states explored. Table 1 gives the com-
parison results for PPO Direct Copy in parallel with the
Simple Print and Table 2 shows the Direct Copy case in
parallel with Process from Store. The first two columns
in each table give the total number of task instances
processed for each PPO.

To combat state space explosion, we applied the sweep
line method of Uppaal [34]. As a consequence, each model
was annotated with progress measures (i.e. parameter
valuation) that Uppaal used during the analysis to store
only the states where the progress measures were weakly
monotonically increasing, or occasionally decreasing.

The state space obtained from the generated models
is between 41% and 71% smaller than the one obtained
from the handcrafted models. Therefore, the state space
explosion problem emerges later in the analysis of the
RTTS-based models, and we could analyze a higher num-
ber of task instances.

There are two causes that lead to the large differ-
ence in the sizes of the state spaces generated. Firstly, in
handcrafted modeling approach each resource was mod-
eled by a separate automaton that comprises three states:
Idle, Running and one to model a recovery phase that
some resources like Scanner require. The first two states
corresponded to the L1 and L2 in the task automaton.
However, the extra state was not needed in the generated
models, the recovery phase being modeled as a separate
task. The other cause comes from the tasks that claim
more than one resource. In the generated models, one

#dc | #sp Mem Time Make- States #dc | #pfs Mem Time Make- States
(KB) (s) | span(s) | Explored (KB) (s) | span(s) | Explored
2 3 4500 0.50 23 1130 1 2 4456 0.40 15 704
5124 0.40 23 413 5516 0.40 15 411
7 10 5480 1.60 71 10578 10 20 7540 4.10 114 47551
5408 1.10 71 3050 6936 6.41 114 20118
35 50 12808 11.31 367 149926 25 50 21352 19.51 279 334606
9184 13.51 367 48196 13984 40.14 279 135453
70 100 26568 27.92 737 433816 120 240 586172 384.66 1324 8255421
18016 43.74 737 155491 244260 991.61 1324 3269408
334 500 598996 279.70 3585 6843592 240 480 2555392 1857.78 2644 | 33327861
282220 898.98 3585 3038099 1007540 4245.12 2644 | 13162088
667 | 1000 | 2321768 | 1304.87 7166 | 25206064 303 | 606 | 4077452 | 2419.45 3337 | 53223828
1076196 3702.10 7166 | 11704000 1572420 7053.88 3337 | 21007415
903 | 1355 | 4165896 | 1937.88 9705 | 45225661 304 | 608 O.M. O.M. O.M. O.M.
1962636 7165.40 9705 | 21272017 1582848 7157.23 3348 | 21146664
904 | 1356 O.M. O.M. O.M. O.M. 480 | 960 O.M. O.M. O.M. O.M.
1964952 7173.70 9715 | 21302397 4056016 | 20827.78 5284 | 52819448
1460 | 1960 O.M. O.M. O.M. O.M.
4053164 | 17055.36 15117 | 44117751

could easily model this multi-resource claim by checking
the number of resource units available (see Figure 7).
By contrast, in the handcrafted models, multi-resource
claim was modeled with the help of third party automata
placed between the RTTS and resource automata, an ex-
tra third party automaton being added for each resource
claimed. This extra automaton registered the claim to
the resource automaton then it waited for the resource
automaton to become available. When it was available,
it sent the request to the resource automaton. On com-
pletion of the processing, it sent an end event to the
RTTS automaton.

Tables 1 and 2 also show up to a 61% decrease in
the peak memory used by Uppaal during the analysis.
However, analysis of the generated models required more
time. This was the price to pay for the parametric rep-
resentation of these models, where a lot of details were
encoded into functions. The evaluation of some of these
functions (e.g. dep_met) required a lot of time due to the
conditions or function calls that they contain.

7 Conclusions

PPOs are a simple extension of partial orders, but ex-
pressive enough to compactly represent large task graphs
with finite repetitive behavior. We presented a transla-
tion from a subclass of PPOs to Uppaal, together with
a correctness proof that the transition system induced
by a Uppaal model is isomorphic to the configuration
structure of a PPO.

This paper introduces real-time task systems (RTTS),
a general model for real-time embedded systems that
uses PPOs for modeling applications. A distinguishing
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feature of RTTSs is the ability to express that the pace
of a task depends on the number of resources that have
been allocated to it. We described a translation to Up-
paal for a significant subclass of RT'TSs.

Finally, we presented experiments which demonstrate
that the Uppaal models obtained through our transla-
tion are more tractable than handcrafted models of the
same systems used in earlier case studies.

As explained in this paper, when the applications
(use cases) of a real-time embedded system design are
described using PPOs, then we have a well-defined par-
tial order structure on the corresponding events. Due to
competition for resources and timing constraints, only
a fragment of all the interleavings of this partial order
will be possible in the full system model. Nevertheless,
it will be interesting to see if partial order reduction
techniques [35,36] will allow us to exploit the inherent
structure of PPOs to alleviate the state space explosion
problem when analyzing the full system model.

Another interesting topic for future research is to
adapt the results of [5] to the PPO settings. This ap-
proach reduces the complexity of scheduling problems
by exploiting the finite repetitive structure of tasks: it
reduces a scheduling problem to a problem containing a
minimal number of identical repetitions, and after solv-
ing this smaller problem, the computed schedule is ex-
panded to a schedule for the original, more complex
scheduling problem.

In addition, we plan to extend the translation with
more scheduling rules that we have encountered while
modeling the behavior of practical systems.

The experiments that we described in Section 6 of
this paper, like the design-space exploration algorithms
that have currently been implemented in the Octopus
toolset, are entirely non-parametric: only after the values
of all timing parameters, CPU speeds, buffer sizes, etc
have been fixed, we may compute the reachable states of
our model using Uppaal and compute performance met-
rics such as the makespan. It would be very interesting
to explore the possibility of a parametric analysis in or-
der to speed up the design-space exploration, along the
lines that have been explored in [37,38].
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