
Int J Softw Tools Technol Transfer (2014) 16:481–491
DOI 10.1007/s10009-014-0324-3

RERS

Thoughtful brute-force attack of the RERS 2012 and 2013
Challenges

Jaco van de Pol · Theo C. Ruys · Steven te Brinke

Published online: 6 August 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract The Rigorous Examination of Reactive Systems’
(rers) Challenges provide a forum for experimental evalua-
tion based on specifically synthesized benchmark suites. In
this paper, we report on our ‘brute-force attack’ of the rers

2012 and 2013 Challenges. We connected the rers problems
to two state-of-the-art explicit state model checkers: LTSmin

and Spin. Apart from an effective compression of the state
vector, we did not analyze the source code of the problems.
Our brute-force approach was successful: it won both edi-
tions of the rers Challenge.

Keywords Software verification · Multi-core model
checking · Randomized depth-first search

1 Introduction

“Reactive systems appear everywhere, e.g., as web services,
decision support systems, or logical controllers. Their val-
idation techniques are as diverse as their appearance and
structure. They comprise various forms of static analysis,
model checking, symbolic execution and (model-based) test-
ing, often tailored to quite extreme frame conditions. Thus, it
is almost impossible to compare these techniques, let alone

J. van de Pol (B) · S. te Brinke
University of Twente, Enschede, The Netherlands
e-mail: j.c.vandepol@utwente.nl

S. te Brinke
e-mail: s.tebrinke@utwente.nl

T. C. Ruys
RUwise, Deventer, The Netherlands
e-mail: theo.ruys@gmail.com

to establish clear application profiles as a means for recom-
mendation.

The Rigorous Examination of Reactive Systems’ (rers)
Challenges [7] aim at overcoming this situation by provid-
ing a forum for experimental profile evaluation based on
specifically designed benchmark suites. These benchmarks
are automatically synthesized to exhibit chosen properties,
and then enhanced to include dedicated dimensions of diffi-
culty, ranging from conceptual complexity of the properties
(e.g., reachability, full safety, liveness), over size of the reac-
tive systems (a few hundred lines to tens of thousands of
them), to exploited language features (arrays and arithmetic
expressions)”.1

The 2012 [6] and 2013 [13] Challenges are the first edi-
tions of rers. Their problems are provided as C and Java
programs. The programs basically consist of a main loop,
where in each iteration an input event is read and processed
by the system. Depending on the internal state, the system
changes its internal variables and possibly writes an output to
the standard output. If an unexpected input event is provided,
an error message is printed and the system terminates.

Our main motivation to compete in the rers Challenges
was to find out whether our model checking tool-set LTSmin

can deal with large, industrial-size reactive systems provided
as source code. LTSmin [1,10,15] is a tool-set for the gen-
eration, manipulation and model checking of transition sys-
tems with state and edge labels. Its strengths are language-
independence and high-performance parallel model check-
ing, with multi-core and distributed implementations. It
offers symbolic model checking engines as well as explicit
state model checkers with efficient state compression tech-
niques. LTSmin is under development within the Formal

1 Rationale of the rers Challenge from [16].

123

482 J. van de Pol et al.

Methods and Tools group of the University of Twente. The
tool-set is freely available from our website [15].

Although the specification of the problems of both Chal-
lenges was more-or-less the same (i.e., specified in C and
Java), we used two completely different approaches for
the 2012 and 2013 Challenges. For the 2012 Challenge,
we reverse engineered the rers problems to mcrl2 and
Promela specifications. LTSmin supports both modeling
languages. We used LTSmin to model check the mcrl2 and
Promela models. For the 2013 Challenge, however, we kept
the C versions of the rers problems more-or-less intact and
constructed a small driver in C to connect the C program
directly to LTSmin. Each iteration of the system was regarded
as a single, atomic transition: we simply executed the C code
of the rers problem. For the 2013 Challenge, we also used
the the model checker Spin [4,17]. Given Spin’s advanced C-
interface, it was easy to implement the same patch-and-glue
approach for Spin.

For both approaches, we did not really analyze the source
code of the problems: in 2012, we simply translated the code
to different modeling formalisms and in 2013, we just exe-
cuted the code. Still, our brute-force approaches were suc-
cessful: both editions of the rers Challenges were won!

This paper mainly focuses on the rers 2013 Challenge.
We mention some differences with the rers 2012 Chal-
lenge where necessary. Section 2 explains our patch-and-glue
approach for the rers 2013 White-Box Challenge in detail.
It describes how we link LTSmin and Spin to the rers prob-
lems, respectively. It also introduces additional techniques to
handle the Gray-Box Challenges and to achieve state com-
pression. Section 3 summarizes the algorithms and heuristics
used for checking errors and ltl properties, respectively. We
also mention the results that we achieved using these tech-
niques. Finally, Sect. 4 concludes the paper and discusses the
limitations and some future improvements of our approach.

2 Connecting RERS problems to model checkers

For the rers 2013 Challenge, there were three categories of
reactive systems to be considered:

– White-Box systems: for these systems, the complete
source code was provided (Java and C).

– Black-Box systems: for these systems only an executable
binary was provided. Furthermore, the output of several
test runs was given.

– Gray-Box systems: for these systems, source files were
also provided, but the source code contained calls to
grey-functions, for which there was no source, only
object code. To test a Gray-Box system, an executable
binary was also provided.

Table 1 Characteristics of some White-Box problems

C program Features Loc (k) Size Vars Comp

Problem28.c Plain 2.4 67 KB 139 3

Problem43.c Plain 7,098 161 MB 13,209 683

Problem45.c Array 4,842 119 MB 54,702 876

Problem51.c Array 9,436 269 MB 7,349 495

Problem54.c Array 6,606 194 MB 21,486 1,615

We started the rers 2013 Challenge by trying to solve the
White-Box systems. After submitting our results of the White-
Box systems, we were fortunate enough that the deadline
for the Gray-Box systems was extended, due to an error in
several of the source files. We were able to convert the Gray-
Box systems into White-Box systems, on which we could
use our proven techniques. We did not look at the Black-Box
problems.

For each White-Box (and Gray-Box) system, three seman-
tically equivalent programs were provided: (1) a Java pro-
gram which uses characters for its input and output, (2) a
Java program which uses integers for its I/O (i.e., the char-
acters A…Z are mapped upon the integers 1…26), and (3) a
similar C program which also uses integers for its I/O. Due to
the nature of our verification tools, we only considered the C
versions of the problems. Each system has a unique number
and is identified as ProblemN, where N is an integer. The C
version of the N-th problem is called ProblemN.c.

In each category (White, Gray or Black-Box), there were
27 reactive systems to be considered which ranged from
plain, structurally simple and small systems to structurally
complex and huge systems comprising arithmetic and arrays.
All these systems had to be checked for 160 properties, which
fell into two categories:

– Sixty implicit properties, specified as assertion errors;
these properties had to be checked for reachability, and

– Hundred explicit behavioral properties, described ver-
bally and formalized in ltl over the input and output
values.

To give an idea of the size of the problems, Table 1 shows
statistics on some problems of the White-Box category. Col-
umn loc lists the number of lines of code of the C program.
Column size gives the program size in kilo or megabytes.
Column vars lists the number of global variables of the pro-
gram. The comp column shows the number of integer vari-
ables needed when our compression techniques are enabled
(we will explain these compression techniques in Sect. 2.4).
Problem28.c is the smallest White-Box problem. It should
be noted that the bigger problems can barely be compiled
with a standard C compiler such as gcc.

123

Thoughtful brute-force attack of the RERS 483

Fig. 1 Skeleton of a White-Box ProblemN.c file

Figure 1 shows a simplified skeleton of a ProblemN.c

rers’ program. Within the (infinite) while-loop of main, the
program reads integers from the input (line 56) and for each
input, the function calculate_output (line 57) is called.
Within calculate_output, several things might happen:

– an output is emitted (line 34), or
– an error has been detected (line 19), or
– the input is considered invalid (line 48).

Within calculate_output, global variables might be mod-
ified. Further, note that within calculate_output auxiliary
calculate_outputN functions might be called. These func-
tions may also modify the global variables or emit an output.

2.1 White-Box

As seen in Fig. 1, a rers system is a potentially large
but finite system, which keeps reading inputs and emitting
outputs indefinitely, or aborts with an error. In our brute-
force approach, we connect an explicit state model checker
(LTSmin and Spin) to a ProblemN.c file to systematically
feed all possible sequences of inputs to the program and
observe its output.

We thus regard each call to calculate_output as a sin-
gle, atomic transition. Apart from keeping track of the inter-
nal state of the program (i.e., the global variables), we must
make sure that all observable behavior (i.e., normal output,
invalid input, assertions) is dealt with.

This brute-force approach has several advantages. We
simply execute the code: the function calculate_output.
Therefore, a lot of analysis issues are not required. We do not
need to worry about complicated control flow (nested ifs,
multiple functions). We do not need to worry about integer
arithmetic.

The ProblemN.c source files need some patching to con-
nect them to a model checker. We have developed Python
scripts which patch the C programs line-by-line; we do not
parse the C programs. In the following sections, we go into
details of the patching of the programs for LTSmin and Spin,
respectively.

2.2 Connecting to LTSmin

LTSmin [1,15] consists of a collection of high-performance
model checking engines, providing multi-core, distributed,
and symbolic model checking algorithms. These algorithms
obtain on-the-fly access to models in various specification
languages through a uniform interface, called partitioned
interface for the next-state function (pins). The main func-
tionality of pins is to provide an initial state and a next-
state function. LTSmin comes with several language mod-
ules, each implementing pins for a specific modeling lan-
guage. Language modules are available for Promela, dve,
mcrl2 and Uppaal, among others. This provides two dif-
ferent approaches to solve the rers Challenge: modeling a
rers problem in an already supported modeling language,
or building a dedicated language module for rers.

RERS 2012 approach In 2012, we chose the former solu-
tion. Each rers problem was translated into an mcrl2 and
a Promela specification. Both translations were based on
a line-by-line transformation of the well-structured C code

123

484 J. van de Pol et al.

by means of a dedicated Python script. We applied symbolic
reachability, multi-core reachability, and multi-core ndfs to
hunt for error-assertions and check the ltl properties. This
approach was successful, since it won us the rers 2012 Chal-
lenge.

We observed two drawbacks of this translation method.
The first is related to correctness: the transformation scripts
make several assumptions on the shape of a well-structured
rers problem. However, this shape is not guaranteed and
the 2013 rers Challenge problems were considerably less
well-structured and provided several new features, not sup-
ported by the translation scripts. The second drawback is an
efficiency detour: first we translate rers problems from C to
mcrl2/Promela. Then, both mcrl2 and Promela compile
(the main part of) their models to C to speedup model check-
ing. However, the resulting C code is much less efficient than
the original C code.

For the rers 2013 Challenge, we decided to link LTSmin

directly to the rers C code, in particular we directly call
the calculate_output function. This effectively provides
a dedicated rers language module.

Patch-and-glue for LTSmin. First, all effects of the func-
tion calculate_output should be visible in the vector of
global state variables. To this end, we still had to patch the
code. Printing a value to stdout was replaced by assigning
that (positive) value to a new global variable output. Instead
of aborting when an error is detected, a negative error code
is returned in the global variable output, so

error_N: assert (0);

is replaced by

output = -N; return.

Several problems also scanned input from stdin within
the function calculate_output. We handled this by saving
the control location in a global variable, aborting the calcu-
lation, leaving the scanning of input to the main while loop,
and resuming the calculation from the last control location.

While patching the code, we also collect the number of
global variables (state_size), the number of valid inputs
(max_input) and the identifiers of all global variables. This
information is used to generate code to copy all global rers

variables to a state vector array (rers2pins) and copy them
back (pins2rers).

Given the side-effect free version of calculate_output
and the information above, the next-state function can be
readily implemented. A schematic view is provided in Fig. 2.
LTSmin calls next-state on a state vector in array src and
expects a call-back to function cb for each successor. We
generate a successor state for each possible input, by copying
the source state vector to the rers variables (line 5), calling
calculate_output and copying the global variables to the
destination state vector (line 13). In between, we also set the
edge labels for input and the output or error value (line 8–12).

Fig. 2 Template of the pins’ next-state in the rers language module

Thus, to connect a rers Problem to LTSmin, we patched
the ProblemN.c file and glued the code via the rers lan-
guage module to LTSmin. We used a 100-line Python script
(rers2ltsmin.py) to patch the ProblemN.c file. The newly
developed rers module consists of 150 lines of C code.

Note that by excluding the input and output variables in
the state vector, we avoid an unnecessary blow-up of the state
space. Instead, we treat them as edge labels. The edge labels
are used in LTSmin to search for errors, and to report readable
traces to detected errors.

When dealing with ltl properties, we generated a slightly
different state space. First, since LTSmin only supports state-
based ltl, for this case we added input and output variables
to the state vector. This could increase the state space. More-
over, since the ltl properties are interpreted over infinite
traces only, we suppress all transitions that lead to an error.
This prunes the state space.

2.3 Connecting to SPIN

Although we already had a working setup with LTSmin, we
also connected the rers problems to Spin [4,17]. We used
the same patch-and-glue approach as for LTSmin.

The motivation for this alternative implementation was
twofold: (1) one of the authors was much more comfortable
and experienced with Spin than with LTSmin and (2) we
wanted an alternative implementation to check the results
we obtained with LTSmin. It turned out that some things
were easier to accomplish with Spin than with LTSmin, most
notably the ‘jumpstart technique’, which we will report on
in Sect. 3.2.

Similar to rers2ltsmin.py, we have developed a Python
script rers2spin.py to connect a rers’ ProblemN.c file
to a verification model in Promela. Figure 3 shows how
the script is being used. Given a ProblemN.c file, the script
generates three files:

123

Thoughtful brute-force attack of the RERS 485

Problem.c

rers2spin.py

Problem-spin.c Problem-spin.h Problem-spin.prom

SPINgcc

pan.*Problem-spin.o

gcc

pan

Fig. 3 Using Spin to verify White-Box problems

– ProblemN-spin.c, a modified version of the original
Problem.c file,

– ProblemN-spin.h, which contains definitions of some
auxiliary variables and functions, including spin2rers

and rers2spin, and
– ProblemN-spin.prom, the Promela model that drives

the verification.

The rers2spin.py script consists of 500 lines of Python
code.

As seen in Fig. 1, the original ProblemN.c contains
input and output statements to communicate with the outside
world. Furthermore, the program might exit with an assertion
violation in case of an error. To close the Promela model,
the effect of the output statements and the assertions has been
modeled by a global integer variable output:

– In case of a normal output statement, the variable output
gets assigned the value of the (positive) number that
would have been printed. So, line 34 of Fig. 1 gets
replaced by output = 21;

Fig. 4 Promela model as generated by rers2spin.py

– In case of invalid input, the variable output gets assigned
the constant value INVALID. So, line 48 of Fig. 1 gets
replaced by output = INVALID;

– In case of an assertion, the variable output gets assigned
a negative value of the error label of the assertion. So,
line 19 of Fig. 1 gets replaced by output = -1;

Promela model Our modeling approach is a straightforward
adaption of the abstraction techniques of Holzmann and Joshi
[5] and Ruys and Kars [12]. Figure 4 shows the Promela

model as generated by the rers2spin.py script. The array
rersstate (line 5) holds a copy of all global variables of
the ProblemN.c program. The constant N is computed by
the rers2spin.py script. Due to the c_track declaration
of line 7, Spin will save the contents of this array in the
state vector. The C function spin2rers copies the contents
of rersstate to the variables of ProblemN.c. The dual C
function rers2spin fills the variable rersstate with the
variables of ProblemN.c. Both functions are generated by
rers2spin.py. The do-loop of the init-process resembles
the main of ProblemN.c. The if-statement of line 12 non-
deterministically sets the variable input to a value between
1 and 6. Next, the function calculate_output (line 19) is
called, but not before Spin’s saved state is copied back to

123

486 J. van de Pol et al.

Fig. 5 Assignments in rers problems

the variables of ProblemN.c. Thereafter, the variables are
copied to the array rersstate.

After executing the call to calculate_output, the vari-
able output is inspected in the if-statement of the lines 22–
31. If the output is invalid, the current verification trail is
simply abandoned. If the output is less than 1, we have hit
an assertion violation in ProblemN.c and we make sure that
the violation is seen by Spin. If there is normal output, we
just continue.

2.4 Compression of state vectors

We used the C version of all problems, in which all variables
are of the type integer. However, the data types in the Java
source code show that many variables are actually booleans
or enums. This information can be utilized for reducing the
state vector, i.e., the representation of a single state. In this
section, we explain how we compress state vectors, which
reduces the memory consumption of model checking, but
does not reduce the state space (i.e., the number of reachable
states).

Our state compression is simple, we only use the number
of bits needed to store every possible value of a variable
instead of storing each variable as 32 bit integer. To apply the
compression, we must first extract (an over-approximation
of) the possible values of all variables. Extracting these values
is easy because the rers source code is generated and all
assignments are on their own line and always have one of
the forms shown in Fig. 5, which are explained in the next
paragraphs.

When the right hand side is a constant value, as for a1, we
assume the variable is an enum and add the constant to the
possible values of the variable a1. Note that constants and
booleans are also enums, with one or two possible values,
respectively. Thus, these types are not treated differently.

When the right hand side is a variable, as for a2, we add all
possible values of the right hand side to the variable a2. Array
indices are always constants, so we can treat each element as
its own variable without special handling of arrays.

When the right hand side is an expression, as for a3, we
do not analyze it, but just assume that the variable a3 can
have any value, so we do not compress this variable.

Aliasing, as for a4, does not introduce any difficulties,
because in all rers problems, aliases are read only. Since no
assignments are performed through aliases, we can treat a4

Fig. 6 Storing the state vector

3–6 : 16

11–21 : 28

45–49 : 7

60–69 : 3

Fig. 7 Compression factor of state vectors

as an enum of which the possible values are a set of references
instead of a set of concrete values.

The assignments shown in Fig. 5 could, for example, lead
to the state vector shown in Fig. 6: a1 is compressed to 2 bits,
a2 is left out, a3 is uncompressed, and a4 is compressed to 1
bit. We see that in the original code, at least six integers were
present, whereas the state vector contains only two integers.
The code for storing the state vector is generated for correct-
ness, not speed: the assert statements are present to guarantee
that our compression is correct.

When we apply the above analysis, we will have a slight
over-approximation of all possible values, because we do
neither analyze complex expressions nor exploit the unreach-
ability of assignments. However, in practice we reduce the
state vector significantly for most rers problems. Figure 7
shows the various compression factors: the compressed state
vectors are 3–69 times smaller than the original vectors, and
for 70 % of the problems, the state size becomes more than
eleven times smaller.

The rers problems are divided into three categories based
on the used language features: plain, arithmetic, and array.

123

Thoughtful brute-force attack of the RERS 487

0

20

40

60

80

3

7

28

16

Problems sorted by compression factor

C
om

pr
es

si
on

fa
ct

or
Plain

Arithmetic

Array

Fig. 8 Compression factor of state vectors

100 101 102 103 104 105
100

101

102

103

104

105

Original size

C
om

pr
es

se
d

si
ze

Plain
Arithmetic
Array

Fig. 9 Original and compressed size of state vectors

Figure 8 shows the compression factor of all problems,
together with their category. Plain problems are the simplest
problems and, therefore, can be compressed most. Arithmetic
problems contain many expressions, for which the ranges are
unknown, so these problems do not compress well. Array
problems contain both expressions and arrays of which the
content is constant. This results in a quite good compression.

Figure 9 shows the compressed state size compared to
its original size. We see that the compressed vectors are an
order of magnitude smaller, which is essential for Spin: The
number of states that can be processed increases by an order
of magnitude and also the time needed for copying states
reduces. The latter is also helpful in the LTSmin-setting.

2.5 Gray-Box

A Gray-Box ProblemN.c source file has the same struc-
ture as a White-Box problem. The only difference is that
the source code contains calls to gray functions, which are
only available in binary form.
An example of a gray function call is:

gray3(a190 ,input ,a32 ,a131);

A call to a gray function does not have any side effect: there
is no hidden state, there is no I/O and the global variables
are not modified. However, a gray function will dump its
intended side-effect to the stdout as a list of C assignments.
For example:

a46 = 33
a51 = 32
cf = 0

Recall that in our White-Box approach, we simply exe-
cuted the calculate_output function as a single, atomic
transition: we did not care what is happening within this
function. If we can ensure that the intended side-effect of the
gray functions is being executed in the ProblemN.c file, the
Gray-Box problem could be transformed into a White-Box
problem, essentially.

We have thus developed a Python script gray2rers.py
which converts a Gray-Box ProblemN.c to a White-Box
ProblemNw.c file on which we can use our White-Box
scripts. The gray2rers.py script encloses each gray func-
tion between a pre_gray and a post_gray function. The
example call above would then be translated to:

pre_gray ();
gray3(a190 ,input ,a32 ,a131);
post_gray ();

The pre_gray function redirects the standard output to a
temporary file. The post_gray function reads this temporary
file, parses the emitted C assignments and executes these
assignments. Finally, it redirects the standard output back to
stdout.

The script gray2rers.py consists of 250 lines of Pyton
code. The C code for pre_gray and post_gray encom-
passes 100 lines of C code. Since we have now obtained
White-Box problems, we can simply reuse the LTSmin and
Spinsetups and still apply state compression.

3 Checking for errors and behavioral properties

3.1 Finding errors with brute-force reachability

Finding assertion violations boil down to plain reachabil-
ity, which is supported by the symbolic, distributed as well
as the multi-core tools of LTSmin. Command-line option

123

488 J. van de Pol et al.

Table 2 Size of state space and error traces

Problem Levels States Transitions Traces

Completed White-Box

28 (plain) 17 155 930 5–10

49 (plain) 66 405,299 8,105,980 44–45

52 (plain) 85 1,563,872 31,277,440 77–78

Completed Gray-Box

55 (plain) 13 244 1464 4–9

71 (arith.) 52 32,909 329,090 42–44

73 (plain) 45 4,657,893 93,157,860 9–10

Incomplete White-Box

31 (plain) 23 3,819,763,502 22,918,581,012 5

37 (plain) 25 5,443,560,592 54,435,605,920 4

Incomplete Gray-Box

60 (array) 20 1,295,062,475 1,912,487,616 16–20

62 (arith.) 10 1,102,921,328 1,616,818,650 26–30

–action=“error(19)”—trace initiates a reachability pro-
cedure, looking for this specific edge label on-the-fly. On
detecting the action, LTSmin aborts and emits a trace from
the initial state to this transition. To check for all 60 potential
assertion errors, we would have to traverse the state space
60 times. One could also generate the full state space and
check for all “error(N)” labels in the alphabet, but this
would not provide traces. We implemented an alternative:
option—action=“error.*”—trace searches for any error,
and produces a trace to the first occurrence of each error.

Table 2 gives an indication of the size of the state space
generated and searched by LTSmin. Only three White-Box
and three Gray-Box problems could be investigated exhaus-
tively. We also indicate the size of the largest state spaces
that we have partially traversed. For each problem, we show
the number of BFS levels, the numbers of unique states and
transitions (over five billion states!). These figures were com-
puted by multi-core BFS. We also indicate the length of
the traces towards an assertion violation (i.e., the number
of inputs required). Some of these were computed using the
techniques of the following section.

Clearly, we cannot generate the full state space for many
rers problems (cf. Table 2). Although breadth-first search
produces the shortest traces, for large Challenges all errors
were beyond the feasible bfs horizon. We now focus on ran-
domized parallel depth-first search.

Multi-core DFS Multi-core LTSmin [10] is based on a con-
current shared hash table, with one worker per core. All work-
ers perform their own dfs, based on a local work stack. Dupli-
cate work (which could even lead to running on a cycle) is
avoided by storing all visited states in a globally shared hash
table, which has been designed to scale ideally for model
checking applications [9]. A load balancer ensures that when

a worker runs out of work, a portion of another worker’s stack
gets stolen. By selecting successors in a random order, the
workers tend to swarm over different portions of the state
space.

To store as many states as possible in limited main mem-
ory, we applied multi-core variants of tree compression [11]
and Cleary’s compact hashing [14]. These techniques main-
tain the ideal speedups, at least on our compute server, which
consists of 48-cores and 132 GB RAM.

With this maximally brute-force strategy we got results
for all but one White-Box problems, and for many Gray-
Box problems. But for the largest problems, no errors could
still be found. From here on, clever manual intervention was
required to steer the search.

3.2 dfs with restart and jumpstart

While experimenting with the Gray-Box problems, we
observed two characteristics. These observations inspired
techniques to find the first error relatively quickly with
LTSmin and, given the first error, find (presumably) all other
errors efficiently with Spin.

Restart The first observation was that in randomized paral-
lel dfs, either a couple of errors were found in the first few
seconds, or no errors were found at all even after search-
ing for hours. Apparently, the errors occur relatively high in
the search tree. When all 48 workers missed these shallow
errors, they would get lost deep in the state space due to their
depth-first strategy. On the other hand, these errors were often
beyond the horizon that we could reach using breadth-first-
search: In most cases, bfs exhausted all memory even before
the first error was found.

We exploited this characteristic of the rers problems by
putting a maximum to the dfs stack and setting a very short
timeout for the parallel search. Typically, the dfs stack was
limited to depth 30 and increased up to 80, until some error
was found, corresponding to a trace of 30–80 inputs.

The timeout was typically set to 10 s. On timeout,
the parallel dfs procedure was automatically aborted and
relaunched. Effectively, this resets all workers to the initial
state, raising the chance of finding shallow errors. We estab-
lished the right values experimentally for each problem, until
hitting the first error.

Applying these heuristics in LTSmin, we found errors
even in the largest Gray-Box problems within 1–2 h of exper-
imentation. We find this remarkable, since we can have tra-
versed only a tiny fraction of the complete state space within
the given time and memory.

Jumpstart The second observation was that all traces to asser-
tion violations would often share a common prefix. In other
words, the assertion needles lay together within the haystack.

123

Thoughtful brute-force attack of the RERS 489

Table 3 Reported assertion errors in rers 2013 Challenge

White-Box Gray-Box
(3 × 9 × 60) (3 × 9 × 60)

Plain Arith. Array Plain Arith. Array

Sure yes 249 222 227 239 248 242

Sure no 101 0 0 68 32 0

Guessed no 190 258 313 233 260 298

No report 0 60 0 0 0 0

To exploit this apparent characteristic of the rers prob-
lems, we used a so-called jumpstart technique to find asser-
tion violations. First, we would use LTSmin’s randomized
parallel search to find a first assertion violation. When found,
we would use a prefix of the error trail—typically, the error
trail minus the last five inputs—as the start of a new bfs in
Spin. In most cases, the bfs would find several additional
assertion errors.

We could only apply the restart and jumpstart technique to
the Gray-Box problems, since their deadline was extended.
As a result, for one White-Box problem, we did not find
any assertion errors. For the Gray-Box problems, though, we
always found assertion violations. After the correct answers
were revealed by the organizers, it appeared that we had
indeed found all assertion errors with these techniques.

Reachability results In total, the White-Box and Gray-Box
Challenges consisted of 27 problems each, with 60 assertions,
summing up to 3,240 yes/no answers. We summarize our
reported results in Table 3, splitting the reports over the cate-
gories plain/arithmetic/array. It can be noticed that we solved
more plain problems than arithmetic and array problems.

We checked the computed error trails to assertion viola-
tions on the original rers programs, so we can report these
“yes” answers with great confidence. However, only for three
White-Box and three Gray-Box problems, we could compute
the complete state space. Only in these cases, we can guaran-
tee the “no” answers (together, these 6 problems had 201 no
answers). For all other cases, in principle the assertion vio-
lations could happen in an uncovered part of the state space.
We judged that the probability of missing such errors was
very low. Hence, we reported all these cases as “no”, thereby
increasing our expected score. An exception was the largest
arithmetic White-Box problem: Here, we found no errors at
all, so we had no clue which errors are actually reachable. In
that case, we didn’t report any “yes/no” answers.

After the challenge, the correct answers were published by
the organizers. It appeared that all sure yes/no answers were
correct indeed. In the 761 guessed “no” answers in the White-
Box Challenge, we actually missed 12 “yes” answers, 6 in
Problem 36 and 6 in Problem 51. For Problem 53, we had not
reported any answers. These problems were all categorized

as either “hard” or “large” (or both). All reported results in the
Gray-Box category were actually correct, so we have solved
100 % of the Gray-Box reachability Challenge.

3.3 Checking ltl properties

We have addressed the ltl properties in the LTSmin setup
only. We also spent much less time on the ltl properties
than on the reachability properties. In total, each of the 27×2
White-Box and Gray-Box problems came with 100 ltl prop-
erties, yielding 5,400 subproblems. Unlike the reachability
problems, we are not aware of a technique to handle multiple
ltl properties simultaneously. Consequently, we could use
only a fully mechanized strategy.

First, as explained at the end of Sect. 2.2, we modified
the state vector by adding an input and output variable. As a
result, the standard automata-based approach to state-based
ltl model checking can be used [8]. Next, we translated all
given ltl properties into a format that can be understood
by LTSmin. As an example, the property “input C precedes
output Y and Z” was formalized by the original formula:

(!(oY | oZ) WU iC)

We translated this for LTSmin into:

(!((output ==25) ||(output ==26)) W (input
==3))

Multi-core ndfs LTSmin usesltl2ba [3] to generate a Büchi
automaton that accepts all traces violating the ltl property.
The product of the state space of the rers problem and this
Büchi automaton is computed on-the-fly and searched for
accepting cycles, coding for counter examples to the prop-
erty. We used LTSmin’s Cndfs algorithm [2] to find accept-
ing cycles. This is a multi-core algorithm, where all workers
apply Nested dfs. Every worker uses its own stack, but vis-
ited states are stored in a globally shared hash table. This
table also stores the status bits from the outer dfs proce-
dure and the inner search. Conflict resolution repairs situa-
tions in which the strict dfs order is violated due to paral-
lelism. It has been proved that all accepting cycles will be
detected by at least one worker. Also, it has been demon-
strated that parallel Cndfs shows linear speedups for many
benchmarks.

Since there were 5,400 independent jobs, we decided to
apply a cluster of smaller machines, rather than the big com-
pute server used for reachability. A job scheduler distributed
the jobs over 16 nodes, each consisting of an 8-core CPU
with 32 GB RAM. So, each individual job ran Cndfs on
8 cores. In a first run, we limited the time per job to 30
min. Every experiment has four possible outcomes: “yes”,
property holds; “no”, property does not hold and a counter
example is produced; “memout” or “timeout”. Later experi-
ments showed that raising the timeout to 1 h only found very

123

490 J. van de Pol et al.

Table 4 Reported ltl properties in rers 2013 Challenge

White-Box Gray-Box
(3 × 9 × 100) (3 × 9 × 100)

Plain Arith. Array Plain Arith. Array

False 646 607 660 696 683 654

True 53 20 9 110 41 7

Unknown 201 273 231 94 176 239

few additional answers. For the “no” answers, we obtain a
trace (actually a lasso) that can be tested on the original rers

problem. For the “yes” answers, we rely on the completeness
of Cndfs to guarantee that the property holds. In all other
cases, we basically had no clue of the truth value, so we did
not report these cases.

ltl results This standard model checking procedure was
relatively successful. First, in many cases, the product of
the rers problem and the Büchi automaton remained small.
Apparently, the properties pruned away large parts of the
state space. Second, since Cndfs is a truly on-the-fly algo-
rithm, the computation can be aborted as soon as a counter
example is found. Luckily, for most problems, the number
of false properties was much higher than the true properties;
we found cases where 90 out of 100 ltl properties did not
hold.

In all these cases, we generated counter examples, which
were typically shorter than 50 steps. However, we also
noticed some long traces: for White-Box Problem51.c,
LTSmin came up with counter examples of 117,754 steps,
and for Gray-Box Problem74.c the longest counter example
even consisted of 181,555 steps. We successfully tested these
traces on the original C code. Note that due to DFS, these are
probably not the shortest possible counter examples.

Table 4 shows the statistics on the reported ltl properties
for the White-Box and the Gray-Box problems, split over the
subcategories plain, with arithmetic, and with arrays. Appar-
ently, the plain problems were slightly easier than the arith-
metic and array problems, and we have solved more Gray-
Box instances than White-Box instances.

After the challenge, we were suprised to learn that out
of the 240 reported “true” answers, actually 4 results were
wrong, despite the claimed completeness of Cndfs. We
looked into these problems together with the organizers, and
found that the deviations were due to a different interpreta-
tion of ltl formulae over the executions of a rers problem.
Note that the interpretation of ltl formulae is rather fragile
with respect to the granularity of what constitutes an atomic
step, even when the neXt-operator is not used. We viewed
one iteration of the main loop as an atomic step, incorporat-
ing both an input and an output. This interpretation avoids
intermediate states, as illustrated by the following trace:

(
input = 1

output = 25

)
→

(
input = 2

output = 25

)
→

(
input = 3

output = 26

)

The formula (output = 25 U output = 26) would evaluate
to true on this trace following our approach. The organizing
team had a different interpretation in mind, separating input
and output symbols [13, Section 5]. The trace above would
then be:

i A → oY → i B → oY → iC → oZ

The corresponding formula (oY U oZ) evaluates to false
on this trace, because the oY outputs are separated by the i B
input. Luckily, this potentially harmful deviation in seman-
tic interpretation only caused 4 errors out of 4,186 reported
answers.

4 Conclusions

In this paper, we described our attack of the rers 2013 Chal-
lenge. We connected the explicit state model checkers Spin

and LTSmin to the C versions of the problems. Due to the
existing C code facilities of Spin, the former proved easier
than the latter, where we had to develop a complete language
module, including some boiler plate code.

Based on our thoughtful brute-force approach with Spin

and LTSmin, we won the 1st place in the overall category,
as well as in the White-Box and Gray-Box categories. We
could, however, not handle problems in the Black-Box cate-
gory. Besides, our team was awarded the Method Combina-
tion Award, and got 9 gold, 11 silver, and 9 bronze achieve-
ments. Note that a single wrong answer for some problem (as
caused by our interpretation of the LTL formulae) leads to
an immediate disqualification from an achievement for that
problem.

Crucial to our approach is that we can observe the com-
plete state, i.e., all global variables of a ProblemN.cfile. This
was true for the White-Box and Gray-Box problems. More
complex C programs—e.g., pointers with aliasing, dynamic
memory allocation—might be more problematic. It is clear
that we cannot use our approach on the Black-Box problems.

Compression of the state vector might be straightforward,
but still it proved to be an important optimization: without
it we would not have been able to use Spin on the larger
models.

In retrospect, it took us too much time to get up and run-
ning with the rers problems. It required considerable soft-
ware engineering effort to patch and glue the problems to our
verification tools. We also believe that the problems were too
big. If state-of-the-art C compilers have problems with com-
piling the enormous source files, it is not to be expected that

123

Thoughtful brute-force attack of the RERS 491

experimental analysis tools will be able to deal with these
source files.

Future work We regarded each call to calculate_output

as a single, atomic transition during which all variables might
be read or written. For a future rers Challenge, we plan a
fine-grained handling of the C code by splitting the tran-
sition relation and variable dependencies. This would open
optimization techniques such as symbolic model checking
and partial order reduction.

Due to the nature of our approach, we were not able
to prove the absence of reachability errors, except for
small problems. We envision expansion of our verification
approach with further analysis, e.g., slicing, static analysis,
invariants, or cegar.

Connecting the RERS problems to our verification tools
took considerable time and effort. And although we man-
aged to automate a large part of the verification process, still
a lot of manual interventions were needed. We want to fur-
ther automate the verification process, e.g., in the realm of
resource scheduling of our verification with LTSmin.

Finally, we believe it is crucial to get more research groups
involved in competing within future rers Challenges. It
should be made easier to start with the problems. This means
that the problems should be better documented and the inter-
faces to other tools should be improved.

References

1. Blom, S.C.C., van de Pol, J.C., Weber, M.: ltsmin: distributed and
symbolic reachability. In: Touili, T., Cook, B., Jackson, P. (eds.)
Proceedings of CAV 2010 LNCS 6174, pp. 354–359. Springer,
New York (2010)

2. Evangelista, S., Laarman, A., Petrucci, L., van de Pol, J.: Improved
multi-core nested depth-first search. In: Chakraborty, S., Mukund,
M. (eds.) Proceedings of ATVA 2012, LNCS 7561, pp. 269–283.
Springer, New York (2012)

3. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation.
In: Berry, G., Comon, H., Finkel, A. (eds.) Proceedings of the
13th International Conference on Computer Aided Verification
(CAV’01), Paris, vol. 2102. Lecture Notes in Computer Science,
pp. 53–65. Springer, New York (2001)

4. Holzman, G.J.: The Spin Model Checker—Primer and Reference
Manual. Addison-Wesley, Boston (2003)

5. Holzmann, G.J., Joshi, R.: Model-driven software verification. In:
Graf, S., Mounier, L. (eds.) Proceedings of SPIN 2004 LNCS 2989,
pp. 76–91. Springer, New York (2004)

6. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D.: The
RERS grey-box challenge 2012: analysis of event-condition-action
systems. In: Margaria, T., Steffen, B. (eds.) Leveraging Applica-
tions of Formal Methods, Verification and Validation. Technologies
for Mastering Change, vol. 7609. Lecture Notes in Computer Sci-
ence, pp. 608–614. Springer, Berlin (2012)

7. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D., Pasare-
anu, C.S.: Rigorous Examination of Reactive Systems. The RERS
Challenges 2012 and 2013. Software Tools for Technology Trans-
fer. doi:10.1007/s10009-014-0337-y (2014)

8. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
automatic program verification. In: Proceedings of the First
Symposium on. Logic in Computer Science, pp. 332–344. IEEE
Computer Society (1986)

9. Laarman, A.W., van de Pol, J.C., Weber, M.: Boosting multi-core
reachability performance with shared hash tables. In: Bloem, R.,
Sharygina, N. (eds.) Proceedings of FMCAD 2010, pp. 247–255.
IEEE (2010)

10. Laarman, A.W., van de Pol, J.C., Weber, M.: Multi-core LTSmin:
marrying modularity and scalability. In: Bobaru, M.G., Havelund,
K., Holzmann, G.J., Joshi, R. (eds.) Proceedings of NFM 2011,
LNCS 6617, pp. 506–511. Springer, New York (2011)

11. Laarman, A.W., van de Pol, J.C., Weber, M.: Parallel recursive
state compression for free. In: Groce, A., Musuvathi, M. (eds.)
Proceedings of SPIN 2011, LNCS 6823, pp. 38–56. Springer, New
York (2011)

12. Ruys, T.C., Kars, P.: Gossiping girls are all alike. In: Donaldson,
A.F., Parker, D. (eds.) Proceedings of SPIN 2012, LNCS 7385, pp.
117–136. Springer, New York (2012)

13. Steffen, B., Isberner, M., Naujokat, S., Margaria, T., Geske, M.:
Property-driven benchmark generation: synthesizing programs of
realistic structure. Softw. Tools Technol. Transf. doi:10.1007/
s10009-014-0336-z (2014)

14. van der Vegt, S., Laarman, A.W.: A parallel compact hash table. In:
Kotásek, Z., Bouda, J., Cerná, I., Sekanina, L., Vojnar, T., Antos, D.
(eds.) Proceedings of MEMICS 2011, LNCS 7119, pp. 191–204.
Springer, New York (2011)

15. LTSmin—Minimization and Instantiation of Labelled Transition
Systems. http://fmt.cs.utwente.nl/tools/ltsmin/

16. RERS—Rigorous Examination of Reactive Systems. http://
rers-challenge.org/

17. The Spin model checker. http://spinroot.com/

123

http://dx.doi.org/10.1007/s10009-014-0337-y
http://dx.doi.org/10.1007/s10009-014-0336-z
http://dx.doi.org/10.1007/s10009-014-0336-z
http://fmt.cs.utwente.nl/tools/ltsmin/
http://rers-challenge.org/
http://rers-challenge.org/
http://spinroot.com/

	Thoughtful brute-force attack of the RERS 2012 and 2013 Challenges
	Abstract
	1 Introduction
	2 Connecting RERS problems to model checkers
	2.1 White-Box
	2.2 Connecting to LTSmin
	2.3 Connecting to SPIN
	2.4 Compression of state vectors
	2.5 Gray-Box

	3 Checking for errors and behavioral properties
	3.1 Finding errors with brute-force reachability
	3.2 dfs with restart and jumpstart
	3.3 Checking ltl properties

	4 Conclusions
	References

