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Abstract Hypothesis testing is an important part of statis-
tical model checking (SMC). It is typically used to verify
statements of the form p > p0 or p < p0, where p is an
unknown probability intrinsic to the system model and p0 is
a given threshold value. Many techniques for this have been
introduced in the SMC literature. We give a comprehensive
overview and comparison of these techniques, starting by
introducing a framework in which they can all be described.
We distinguish between three classes of techniques, differing
in what type of output correctness guarantees they give when
the true p is very close to the threshold p0. For each tech-
nique, we show how to parametrise it in terms of quantities
that are meaningful to the user. Having parametrised them
consistently, we graphically compare the boundaries of their
decision thresholds, and numerically compare the correct-
ness, power and efficiency of the tests. A companion website
allows users to get more insight in the properties of the tests
by interactively manipulating the parameters.

Keywords Statistical model checking · Hypothesis
testing · Probabilistic verification · Survey

1 Introduction

Statistical model checking (SMC) [27] is increasingly seen as
a powerful alternative to numerical model checking. This is
witnessed by two main developments. The first is the imple-
mentation of SMC techniques in classical model checking
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tools such as UPPAAL [8], PRISM [25] and MRMC [24].
The second is that several libraries explicitly dedicated to
SMC techniques have recently been developed, e.g., COS-
MOS [7] and PLASMA [22]. The main reason behind this
increase in popularity is the fact that SMC in many cases
can avoid problems that have long plagued numerical model
checking. These include the state space explosion problem
(the memory requirements of SMC only depend on the high
level description of the model) and the fact that numeri-
cal techniques that deal with more complicated models—
e.g., Markov reward models or probabilistic timed automata
with uniformly distributed transition times—quickly become
computationally, i.e., numerically infeasible.

The core idea underlying statistical model checking is to
use a computer program to repeatedly simulate the behav-
iour of the system model in order to say something about the
system’s performance in terms of a given performance mea-
sure. Throughout this paper this will be some probability of
interest p.1 The exact way in which these simulation runs are
then interpreted depends on the interests of the investigator.
First of all, she could be interested in a quantitative state-
ment, consisting of an estimate of the performance measure
with a corresponding confidence interval (e.g., with 95 %
confidence, the probability of deadlock before termination
is 10 % with a 2 % margin of error). Secondly, she could
be interested in a qualitative statement about a performance
property, specified as a hypothesis that asserts that the true
probability p is larger (or smaller) than some boundary value
p0 (e.g., with 95 % confidence, the probability of deadlock
before termination is greater than 5 %).

The two approaches are closely related. Given a procedure
to construct confidence intervals, one obtains a hypothesis

1 A typical choice for p is the probability that some formula in a tem-
poral logic such as PCTL [17] or CSL [3,5] is satisfied.
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test in the following way: construct the confidence interval,
then check whether the boundary value p0 is inside the inter-
val. If not, accept or reject the assertion p > p0 depending on
whether p0 is to the ‘left’ or ‘right’ of the interval. Despite this
relationship, procedures for constructing confidence inter-
vals are sometimes implemented completely in parallel to
procedures exclusively focused on hypothesis testing.2

In this paper we present a general framework for hypoth-
esis testing that allows for a clear and intuitive comparison
of both ‘pure’ hypothesis tests and tests based on confidence
intervals. We use the framework to describe, classify and
parametrise the tests so far implemented in model checking
tools, and introduce two tests that are new to the field of SMC,
whose output guarantees are fundamentally different from
those of the other tests. We also compare the tests empirically
in a comprehensive case study. To help the reader get a feeling
for the difference between tests and the influence of parame-
ters, we have built a companion website to this paper, where
investigators can interactively modify parameters; see [1].

The structure of this paper is as follows: We present a sin-
gle framework that allows comparison of the hypothesis tests
discussed in this paper in Sect. 2, and discuss the main criteria
by which to judge a test. In Sect. 3, we present an overview of
these tests using the framework of Sect. 2. In Sect. 4, we dis-
cuss how these tests must be parametrised to ensure that the
output guarantees are satisfied. We compare the performance
of all these tests empirically in Sect. 5. Section 6 concludes
the paper.

2 General framework

In this section we discuss the framework that we use to com-
pare the tests described in Sect. 3. We start in Sect. 2.1 with a
discussion of the model setting; we focus particularly on the
generality of the framework. Section 2.2 begins with a sum-
mary of elementary statistical methodology in order to fix
terminology and notation; we then move on to discussing the
features specific to this paper. Having discussed the frame-
work for hypothesis tests, we focus on criteria for comparing
hypothesis tests in Sect. 2.3, and introduce a classification of
tests.

2.1 Model setting

As mentioned in the introduction, we are interested in com-
paring the probability p to a given boundary value p0. Typ-
ically, p denotes the probability that a formula expressed
in a temporal logic is satisfied. With φ denoting the tempo-

2 An example of this is UPPAAL v4.1.18, in which the sequential prob-
ability ratio test (SPRT) of Sect. 3.4 is used for qualitative statements,
while the Chow–Robbins procedure of Sect. 3.1 is used only for quan-
titative statements.

ral logic formula, the performance property that we seek to
evaluate is then often3 expressed asP>p0(φ).4 Formally, this
performance property holds in a state if, from that state, the
probability that an execution path (generated randomly using
the system specification) satisfies the property φ is greater
than p0. The only requirement on the system model that we
want to apply to our tests is that we can randomly generate
execution paths in order to obtain information about whether
or not P>p0(φ) is satisfied. This can be rewritten into the
following requirements:

1. we can generate execution paths from the model, accord-
ing to a well-defined probability measure on the execu-
tion paths;

2. with probability 1, these paths are generated in a finite
amount of time and we can test, also in a finite amount
of time, whether the property φ holds on a path; and

3. we either do not encounter nondeterminism [6], or we
have a well-defined policy or scheduler to resolve it.

In principle, we do not need any additional information about
the system model as long as we can obtain execution paths
that satisfy these three requirements. A system about which
additional information is not available is commonly called a
black-box system [34].

In practice, a system model is often available that allows
us to write a computer program that can generate execu-
tion paths, which means that the system is not completely
black-box. Popular modelling formalisms include general-
ized semi-Markov processes (GSMPs, [14,28]) and stochas-
tic (possibly non-Markovian) Petri nets [16]. Requirements
2 and 3 will not be satisfied in all GSMPs or stochastic Petri
nets. For example, if the property φ does not involve a time
bound then requirement 2 may be violated, e.g., when the
system reaches a bottom strongly connected component that
does not contain termination states. Also requirement 3 may
be violated in a GSMP when two transitions are scheduled
to occur at the same time, e.g., when some of the transitions
have deterministic delays. However, even in such cases it
might still be possible to apply a refined form of statistical
model checking (see, for example [12,35], or [40], in which
requirement 2 is not satisfied). Judging whether requirements
2 and 3 are satisfied given a system model and performance
property is a field of study in itself. As this paper is not about
generating sample paths but about the interpretation of the
results, we refer the interested reader to the vast literature on

3 For example, in the logics pCTL [17], CSL [2], UTSL [43] and CSRL
[4].
4 By treating P>p0 (φ), we treat, without loss of generality, all possible
variations of the probabilistic path operator P , because, using statistical
model checking, we cannot differentiate betweenP>p0 (φ) andP≥p0 (φ)

(more on that later in Sect. 2.2), and because P<p0 (φ) and P≥1−p0 (¬φ)

are equivalent.
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stochastic simulation [13,31], and from now on assume that
we draw samples from a black-box system in order to say
something about P>p0(φ).

In this paper, we will not consider nested probabilistic
operators. To read about how nested operators are treated in
other settings, see, e.g., Sect. 3.2 of [35] or [41], in which a
combined numerical/statistical procedure is used.

2.2 Statistical framework

With i = 1, . . . , N , let ωi be the execution path in the i th
sample, and define:

Xi � 1φ(ωi ) =
{

1 if φ holds on ωi ,

0 otherwise.
(1)

Then Xi has a Bernoulli distribution with parameter p, where
p denotes the true probability that φ is satisfied. This means
that,

P(Xi = x) =
{
p if x = 1,

1 − p if x = 0.

The total sample X � (Xi )i=1,...,N will be used to perform
a statistical test. To do this, we combine all relevant infor-
mation from the individual sample paths into a function that
maps {0, 1}N onto R, called the test statistic. We use the test
statistic to falsify claims about p, called hypotheses. If we
can show that, under the condition that some hypothesis H is
true, the probability that the observed outcome of the test sta-
tistic occurs is smaller than some given α ∈ (0, 1

2 ), then we
reject H . The parameter α is called the significance parame-
ter, and 1−α is called the confidence of the test. A hypothesis
that can be rejected this way is called a null hypothesis, while
a hypothesis that can be accepted through the rejection of a
null hypothesis is called an alternative hypothesis. Rejecting
a valid null hypothesis is called an error of the first kind (or
a false positive). Not accepting a valid alternative hypothesis
is called an error of the second kind (or a false negative).

Since we are interested in checking whether P>p0(φ)

holds, there are two relevant claims: p > p0 and p ≤ p0.
There is no clear distinction between a null and alternative
hypothesis, as there is no asymmetry in our desire to reject
any one of the two claims. Accordingly, we specify two alter-
native hypotheses, each of which we would like to accept if
it were true:

H+1 : p > p0,

H−1 : p < p0.
(2)

Additionally, we have the null hypothesis:

H0 : p = p0.

Note that the null hypothesis cannot be shown to be correct,
as its negation p �= p0 cannot be disproved statistically. The

N

SN

(a)
N

ZN = SN −Np0

(b)

Fig. 1 Markov chain representations of the processes SN and ZN . In
each state, both processes jump up with probability p and down with
probability 1 − p. The two processes have the same structure; the only
difference is a normalisation of the variable on the vertical axis

reason is that no matter how many samples we draw and no
matter how much evidence we see for p = p0, there will
always be some small ε such that we cannot reject the claim
that p = p0 + ε. However, H0 can be shown to be incorrect.

The procedure to test which of the alternative hypotheses
is true is as follows: after having drawn N samples, we let
SN (X) be the test statistic given by the sum of X1 up to XN ,
i.e.,

SN (X) =
N∑
i=1

Xi ,

and omit the argument X for brevity. We can then view the
evolution of SN as the evolution of a discrete-time Markov
chain on state space N

2, with the number of drawn samples
on the x-axis and the value of the test statistic on the y-axis,
where in each step we take a jump to the right or top-right
(as can be seen in Fig. 1a).

While we are drawing samples, the expected behaviour of
the process SN is that it drifts away from the x-axis. The true
parameter p determines the speed of this drift. Remember
that our main interest is to test whether p − p0 is positive or
negative. Hence, we focus on the shifted test statistic,

ZN � SN − Np0.

The process Zn is essentially a random walk that always
jumps up by 1 − p0 with probability p, or down by p0 with
probability 1 − p. Its evolution is depicted in Fig. 1b. The
speed at which ZN drifts away from the x-axis is completely
determined by p− p0. If ZN � 0 then this is strong evidence
for H+1, while if ZN � 0 then this is strong evidence for
H−1.

We then specify four test decision areas which are subsets
of R2. Three of them are called critical, which means that
we draw a conclusion as soon as they are entered by ZN . The
first critical area U is the area such that as soon as ZN enters
U , we accept H+1. The second critical area L does the same
for H−1. As soon as ZN enters the critical area I, we stop the
test without accepting any hypothesis. We accordingly say
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Fig. 2 Graphical representation of the test decision areas L, U , I and
NC. Left: a typical fixed sample size test. Right: a typical sequential
test. Grey areas represent areas in which ZN cannot go

that the test was inconclusive. All that is outside these three
areas makes up the non-critical area NC.

The tests that we consider in this paper are completely
determined by the shape of these areas. There are two main
types of tests: fixed sample size tests, where the decision is
taken after an a-priori determined number of samples, and
sequential tests, where the decision whether or not to con-
tinue sampling is made on the basis of the samples so far;
mixtures of both types are also possible. Typical examples
of both types are illustrated in Fig. 2. The relevant parts of
these figures are the boundaries between the area NC and
the three other areas. After all, we only continue the test-
ing procedure while we are in NC; we stop when a relevant
boundary is crossed. For example, the exact shape of the bor-
der between U and I in Fig. 2a is irrelevant because we stop
when we enter either.

In a fixed sample size test, as illustrated in Fig. 2a, the
borders between NC and the other areas is a single straight
line because for a fixed sample size test, the point at which
we stop is always at the same value for N on the x-axis.
In a sequential test like in Fig. 2b, the important thing is
that NC continues indefinitely, since we keep sampling until
we draw a conclusion. Note that this also implies that typ-
ical sequential tests in principle do not have an area I.5

Hence, the structure of the sequential tests is entirely deter-
mined by two borders: the L-NC boundary, denoted by
l(N ), and the U-NC boundary, denoted by u(N ). Most of
the discussion of the sequential tests will therefore focus
on the shape of these functions. For fixed sample size tests
on the other hand, we merely need to determine two num-
bers, u∗ and l∗, which depend on the chosen sample size,
but are not functions of the number of samples N drawn at
present.

Given L, U and I, we want to bound the probability that
these areas are entered given that a hypothesis is valid. To
formalise this, for i ∈ {−1,+1}, let Ai be the event that we
reject H0 in favour of Hi , and let A0 be the event that we

5 In practice, we might set a time-out parameter τ , thus letting all states
that are to the right of τ be part of I.

do not reject H0, meaning that the test remains inconclusive.
More specifically we have,

A+1 = {reach U before L or I},
A−1 = {reach L before U or I},
A0 = {reach I or stay in NC},

¬A+1 = A−1 ∪ A0,

¬A−1 = A+1 ∪ A0.

Then we typically impose the following two conditions on
the two errors of the first kind (‘false positives’):

P(A+1 | ¬H+1) ≤ α1, (3)

P(A−1 | ¬H−1) ≤ α2. (4)

These probabilities deal with drawing a wrong conclusion.
We will usually bound these probabilities by replacing the
condition ¬H+1 (or ¬H−1) by the worst case, which is H0.
A more detailed explanation of this is given in Sect. 3.1.

Also we like to impose conditions on the two errors of the
second kind (‘false negatives’):

P(¬A+1 | H+1) ≤ β1, (5)

P(¬A−1 | H−1) ≤ β2. (6)

These probabilities deal with drawing no (or a wrong) con-
clusion. For tests that always draw a conclusion (i.e., where
A0 never happens), these probabilities coincide with the ones
in (3) and (4), assuming that H0 is never exactly true. For tests
that may end inconclusively, the probabilities in (5) and (6)
are usually only slightly larger than the probability of A0

(given H+1 or H−1, respectively) since, e.g. under H+1 the
event A−1 is much less likely than A0. This is the reason we
will, instead of (5) and (6), often use the power, which is a
function of the real value of p, and is defined6 as:

P(A−1 ∪ A+1) = 1 − P(A0).

Throughout this paper, we will choose α = α1 = α2 and
β = β1 = β2 for simplicity. In principle, the total probability
of error of the first kind isα1+α2, since if H0 is true, accepting
either H+1 or H−1 constitutes an error. But if H+1 or H−1

is true, the probability of error of the first kind is only α2

or α1, respectively. We argue that we should focus on the
latter case. This is not to say that H0 cannot hold in practice.
However, if it does, then statistical model checking cannot be
used to show it holds, as argued earlier. Thus, an investigator
who wants to know whether H0 is true should use a different
model checking technique. Furthermore, an investigator who
does not care about H0 probably does not mind either H+1

or H−1 being accepted in that case. Throughout this paper,

6 This corresponds to the definition of power in [11] and the general
statistical literature, but note that in our case rejecting H0 does not
necessarily mean that we draw the correct conclusion since we have
two alternative hypotheses.
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Table 1 Overview of test
classes Class I Class II Class III

Risk when
p ≈ p0

Correctness: wrong conclusion,
i.e., error of first kind
(& efficiency)

Power: no conclusion,
i.e., error of second kind
(& efficiency)

Efficiency:
large running time

Parameter Correctness-indifference level δ Power-indifference level ζ Guess γ

Fixed sample
size tests

Gauss-SSP Gauss-CI

Chernoff-CI

Mixed tests Chow–Robbins

Sequential
tests

SPRT Azuma

Darling

we will therefore assume α = α1 = α2. An investigator who
does care about H0 could replace α by α/2 in all tests7 at the
cost of increasing the computational effort.

2.3 Main criteria and classification of tests

Given a selection of tests specified using the framework of
Sect. 2.2, it is up to the investigator to decide which test she
finds the most appealing. We use three main criteria by which
to judge the appeal of these tests:

1. the correctness: we call a test correct if its probability
of not drawing the correct conclusion is guaranteed to
be smaller than α, where 1 − α is the confidence level;
mathematically, this means (3) and (4) hold;

2. the power: recall the definition of power from Sect. 2.2
as the probability that the test will eventually draw a con-
clusion, i.e., 1 − P(A0);

3. the efficiency: the number of samples needed (in expec-
tation) before a conclusion can be drawn.

As these three criteria are partly contradictory, each test will
be affected adversely on at least one criterion when p is close
to p0. We introduce three classes of tests, based on which
criterion is affected (most):

I. Tests whose probability of drawing a wrong conclusion
exceeds α when |p − p0| is small.

II. Tests whose probability of drawing no conclusion (or a
wrong conclusion) exceeds β when |p − p0| is small.

III. Tests that are always correct and always draw a conclu-
sion, at the cost of drawing an extremely large number
of samples before reaching a conclusion when |p − p0|
is small.

7 Except the sequential probability ratio test (SPRT) of Sect. 3.4 and
the Gauss-SSP test of Sect. 3.5 (whose strong assumptions preclude the
validity of H0).

Note that this classification in itself is independent of the
type of test as described in the previous subsection, namely
fixed sample size or sequential. However, it is worth men-
tioning at this point that a fixed sample size test that satisfies
criterion 1 can never also satisfy criterion 2, at least not for
all possible values p close to p0. Such a test will therefore
always be in class II. In other words, tests in class III, that
satisfy both criteria 1 and 2, are necessarily sequential tests.

For each class, we introduce an extra input parameter,
which influences how poor the performance will be when
|p− p0| is small. For classes I and II, the extra parameter is a
threshold on |p− p0|, below which the investigator no longer
cares about the test’s correctness or the power, respectively.
We call these parameters the correctness-indifference level δ
for class-I tests, and thepower-indifference level ζ for class II.
Class-III tests do not need such a threshold parameter, since
their correctness and power do not suffer when |p − p0| is
small; however, they may use a guess called γ , representing
the investigator’s expectation of |p − p0|, to minimise the
runtime for that case.

We emphasise that, although the three parameters δ, ζ ,
and γ are all related to the difference between p and p0,
their meaning is different. The choice of δ or ζ (in class I/II
tests) depends on the interest of the investigator (namely, in
what case she no longer cares either about the correctness or
the probability of receiving a meaningful answer), while the
choice of γ depends on her expectation of the true p, and
only influences the running time, but never the correctness
or power.

All of the above is summarised in Table 1, which also
shows the tests we will consider in Sect. 3, including their
classes and types.

3 Overview of the tests

In this section, we discuss several hypothesis tests that an
investigator can choose to use. In particular, we focus on
how they fit into the framework of Sect. 2.2. For a quick
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overview we refer to Table 1 (a more detailed overview fol-
lows later in Table 5). How these tests can be expressed in
terms of the parameters of Sect. 2.3 is the subject of Sect. 4.
The first five tests (which belong to classes I and II), have
been implemented in existing model checking tools, or are
described in the model checking literature, while the others
(belonging to class III), to the best of our knowledge, are not.

The outline of this section is as follows: Starting with class
II tests, we begin in Sect. 3.1 with a discussion of a hypothe-
sis testing procedure that uses a confidence interval based on
the Gaussian approximation and a sample size that is fixed
beforehand. In Sect. 3.2 we focus on a similar method based
on the Chernoff–Hoeffding bound. In Sect. 3.3, we discuss
the Chow–Robbins test, which is based on confidence inter-
vals that are sequential in the sense that we continue sam-
pling until the width of the confidence interval has reached a
given value. Turning to class I tests, we discuss the sequen-
tial probability ratio test (SPRT) in Sect. 3.4, followed by its
‘fixed sample size variant’, the Gauss-SSP test, in Sect. 3.5. In
Sects. 3.6 and 3.7 we discuss the two tests in class III, namely
the Azuma test and the Darling–Robbins test, respectively.
These two tests have not been implemented in model check-
ing tools so far. Finally, in Sect. 3.8 we briefly discuss some
noteworthy tests that have been proposed but (to the best of
our knowledge) never implemented.

3.1 Binomial and Gaussian confidence intervals

The idea behind the test described in this section is the con-
fidence interval based on an a priori fixed sample size N .
Formally, a (1 − α)-confidence interval is an interval [l, u]
that is constructed using a procedure that, with probability
1 − α, produces intervals containing the true probability p.
As we argued in the introduction, a confidence interval can
be used for a hypothesis test by checking if p0 is inside the
interval.

The critical regions for this test have the form displayed
in Fig. 2a. Since the number of samples drawn is fixed to be
N , the non-critical region NC consists of all points (n, z) for
which n < N . The other regions can be characterised by two
values, namely l∗, which is the border between L and I, and
u∗ which is the border between I and U . According to (3),
we must choose u∗ such that when H0 or H−1 is true, the
probability that ZN > u∗ is smaller than α. As we already
mentioned in Sect. 2.2, it is sufficient to check this under the
worst case assumption, i.e., whether

P(ZN > u∗|H0) < α (7)

holds. The reason is that under H−1 (i.e., for any true p ≤
p0), high values of ZN are even less likely than under H0

(when p = p0), so that P(ZN > u∗|¬H+1) ≤ P(ZN >

u∗|H0). Hence (7) implies (3). Analogously, we base l∗ only
on H0 and not on H+1.

If N is large enough, we can use the CLT to argue that the
distribution of ZN can be well approximated by a normal dis-
tribution. Let � be the standard normal cumulative distribu-
tion function and Var(ZN ) = Var(ZN |H0) = Np0(1 − p0),
then it follows from basic statistical analysis (see [29] for
details) that

l∗ = �−1 (α)
√

Var(ZN ), (8)

u∗ = �−1 (1 − α)
√

Var(ZN ) = −l∗. (9)

Note that the procedure above is not exactly the same as con-
structing a confidence interval and checking whether p0 is
inside the interval. The one difference is that under H0, we
can assume that the variance of both SN and ZN is given
by Np0(1 − p0), while for a regular confidence interval
this would be estimated using the realisation of SN , i.e.,
Var(ZN ) = SN (1 − SN/N ). This difference is only notice-
able when |p − p0| is large.

In this paper we call the test described above the ‘Gauss-
CI’ test because of its relationship with the Gaussian confi-
dence interval obtained using the CLT. Alternatively, confi-
dence intervals can be based on the exact binomial distribu-
tion; they are called ‘Clopper–Pearson’ intervals in the sci-
entific literature. A third alternative exists in the form of the
‘Agresti–Coull’ confidence intervals, which are between the
binomial and Gaussian confidence intervals in terms of the
degree of approximation—such intervals have been imple-
mented in the tool MRMC. Hypothesis tests can also be based
on such confidence intervals, but since the difference with
Gaussian intervals is only noticeable at very small N , we
will not separately consider such tests in this paper.

The choice of N is non-trivial. It impacts both the effi-
ciency (obviously) and the power. In Sect. 4.1, we demon-
strate how to determine N such that for a given power-
indifference level ζ the power of the test is guaranteed to
be at least 1 − β.

3.2 Confidence intervals using the Chernoff–Hoeffding
bound

The test described in this section is a fixed sample size test
based on a different type of confidence interval. Its basis is the
Chernoff–Hoeffding bound [20], which states the following:
for any sequence X1, X2, . . . , XN of independent random
variables with P(0 ≤ Xi ≤ 1) = 1, it holds for all t > 0
that,

P(|X̄ − E(X̄)| > t) ≤ 2e−2Nt2 , (10)

where X̄ = 1
N

∑N
i=1 Xi . A test that is analogous to the Gauss-

CI test of Sect. 3.1 is then as follows. The investigator chooses
a significance parameter α and a so-called ‘approximation
parameter’ ε. She then draws
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N = 1

2ε2 log
( 2

α

)
(11)

samples. We can then rewrite (10) to

P(|X̄ − p0| ≥ ε) ≤ α. (12)

The test is then as follows: we draw N samples and check if
|X̄ − p0| > ε. If so, we reject the null hypothesis, otherwise
the test is inconclusive. If we reject the null hypothesis, we
accept H+1 if X̄ > p0 and we accept H−1 otherwise. The
test satisfies (3) and (4) because under the null hypothesis
E(X̄) = p0, so that (12) is really an upper bound for the
probability of rejecting the null hypothesis when it is valid.
A test of this form is implemented in the tool PRISM. Since
we assume that H0 does not hold, as we argued in Sect. 2.2,
we replace 2

α
in (11) by 1

α
when we compute N for the tables

in Sect. 5.
As with the Gauss-CI test, the shape of the critical regions

is as displayed in Fig. 2a. Apart from α and p0, the main
parameter that determines the location of the critical region
boundaries is ε. Since ε does not have a clear interpretation in
terms of the output guarantees described in Sect. 2.3, we dis-
cuss in Sect. 4.2 how to calculate it from a power-indifference
level ζ instead. As with the Gauss-CI test, ζ will turn out to
impact both the power and efficiency of the test.

3.3 Chow–Robbins test

The test described in this section is similar to the test
described in Sect. 3.1, but the difference is that we continue
drawing samples until the width of the confidence interval
for p̂N = SN/N has reached some given value, denoted by
2ε, at confidence level 1 − 2α. Then H+1 can be accepted
if this confidence interval is entirely above p0, H−1 if it is
entirely below p0, and the test is inconclusive otherwise.

After having drawn N samples, the width of this confi-
dence interval (at confidence level 1 − 2α) equals 2�−1 (α)√

Var( p̂N ), where Var( p̂N ) = p̂N (1 − p̂N )/N . This width
is maximal when p̂ = 1

2 and is smaller when p̂N is closer to
0 or 1. Hence, this test can reach a conclusion more quickly
than the Gauss-CI test when p is further away from 1

2 than
p0, and takes longer otherwise. We call this test the ‘Chow–
Robbins test’ after the authors of [10], who showed that a
confidence interval created this way asymptotically satisfies
the requirements on the errors of the first kind.

The critical areas of this test do not look like those depicted
in Fig. 2. It is between a fixed sample size test and a sequential
test: even though the sample size is clearly not fixed, the
sample size is upper bounded as there is a maximal N for
which the confidence interval reaches the specified width
even if the variance of p̂N is maximal (i.e., when p̂N = 1

2 ).
The exact shape of the critical regions is discussed further in
Sect. 5.1.

What is left is choosing the half-width of the confidence
interval, denoted by ε because of analogy with ε in the
Chernoff-CI test of Sect. 3.2. The parameter ε impacts both
the power and the efficiency. In Sect. 4.3, we show how to
choose ε based on the power-indifference level ζ .

3.4 Sequential probability ratio test

The sequential probability ratio test (SPRT) for statistical
model checking was introduced by Younes8 in [42], based on
ideas that go back to [37]. In [37], Wald tries to sequentially
test which of the following two hypotheses is true,

H+1 : p ≥ p+1,

H−1 : p ≤ p−1
(13)

for values p−1 < p+1. He argues that a suitable test statistic
is the so-called hypotheses’ likelihood ratio:

TN �
pSN+1(1 − p+1)

N−SN

pSN−1(1 − p−1)N−SN
.

Clearly, small values of TN speak in favour of H−1 while
large values speak for H+1. The idea is then to construct
boundaries l ′ and u′ such that when TN crosses either of these
boundaries we accept the corresponding hypothesis. We then
have to bound, for given boundaries l ′ < u′, the probability
of crossing l ′ given H+1 and the probability of crossing u′
given H−1. Wald showed how to achieve such a bound. In
particular, for l ′ = α1/(1 − α2) and u′ = (1 − α1)/α2 one
knows that the probability of accepting H−1 while H+1 is
true is smaller than α2 while the probability of accepting
H+1 while H−1 is true is smaller than α1.

To evaluate the validity of P>p0(φ), we have the hypothe-
ses of (2), which are similar to those of (13) with p+1 =
p−1 = p0. Unfortunately, in this case the value TN is always
1. The idea proposed in [42] is to choose an indifference
level δ such that we can safely assume that the true value for
p is not inside the interval [p0 − δ, p0 + δ]. Then we can set
p−1 = p0 − δ and p+1 = p0 + δ and carry out the above
procedure. To be precise, the hypotheses in this setting9 are
given by:

H ′+1 : p > p0 + δ, and

H ′−1 : p < p0 − δ.
(14)

8 We use slightly different terminology than the authors of [42]. They
use H0 for the H+1 of (13), they use H+1 for the H−1 of (13), and they
use H2 to denote p ∈ [p−1, p+1]. Furthermore, where they speak of a
type 1 error and a type 2 error in the case of the SPRT, we speak of two
errors of the first kind.
9 A more general approach would be to set H ′+1 : p > p0 + δ1 and
H ′−1 : p < p0 − δ2 with δ1 and δ2 not necessarily equal. We choose a
symmetric indifference region for the sake of simplicity.
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To see how this test fits into the framework of Sect. 2.2, first
note that instead of the test statistic TN we could also use:

log TN � q1SN + q2N ,

where

q1 = log

(
p+1 · (1 − p−1)

(1 − p+1) · p−1

)
, q2 = log

(
1 − p+1

1 − p−1

)
.

Hence, an equivalent formulation is to use the process ZN =
SN − Np0 of Fig. 2 as a test statistic, with boundaries:

l(N ) = 1

q1
(log l ′ − q2N ) − Np0, (15)

u(N ) = 1

q1
(log u′ − q2N ) − Np0. (16)

These are linear functions in N . So, whereas the boundaries
of (8) and (9) are proportional to

√
N , the boundaries of (15)

and (16) increase linearly. One can verify that when p0 = 1
2

or in the limit δ ↓ 0 the boundaries are constants.
The bounds on the error probabilities are only valid if p

does not lie in [p0 − δ, p0 + δ]; consequently, δ impacts the
correctness of the test. Furthermore, the efficiency is affected.
Since δ is the only parameter, and has clear interpretations
in terms of the output guarantees of Sect. 2.3, the parameter
choice for this test is not discussed further in Sect. 4.

3.5 Gauss-SSP test

The test discussed in this section goes back to [15], was dis-
cussed in [38] and [35] and has been implemented in the tool
VeStA and its offshoots. It can be seen as a fixed sample size
version of the SPRT. As with the SPRT, we assume that p
is outside the interval [p0 − δ, p0 + δ] and, hence, consider
the hypotheses of (14). The idea is then to draw N samples,
with N fixed beforehand, and accept H ′+1 if ZN ≥ 0 and to
accept H ′−1 otherwise. The sample size N is computed such
that the requirements on the two errors of the first kind are
met. To make this precise: we can write the first error of the
first kind (given in the general setting by (3)) as follows:

P(A+1 | H ′−1) ≤ P(ZN ≥ 0 | p = p0 − δ)

= P

(
YN ≥ Nδ√

Var(ZN )

∣∣∣∣ p = p0 − δ

)
,

where Var(ZN ) = N (p0 − δ)(1 − p0 + δ) if p = p0 − δ and

YN = ZN + Nδ√
Var(ZN )

.

is a normalised version of ZN . One obtains a similar expres-
sion for the second error of the first kind. In [35] the exact
binomial distribution of ZN is used to find an upper bound
for these probabilities. In this paper, we use the fact that YN is
approximately normally distributed for large N , which leads

to the following requirements on N in order to bound the
errors of the first kind:

N ≥
(

�−1(1 − α1)

δ

)2

(p0 − δ)(1 − p0 + δ)

N ≥
(

�−1(α2)

δ

)2

(p0 + δ)(1 − p0 − δ),

where � (as in Sect. 3.1) denotes the Gaussian cumulative
distribution function.

As with the SPRT, the indifference parameter δ impacts
both the correctness and efficiency of the test and because
its interpretation is clear, this test is not discussed further in
Sect. 4.

We call this test the ‘Gauss-SSP’ test; SSP stands for
single sampling plan as it was called in [43]. An SSP test
variant that uses the Chernoff–Hoeffding bound instead of
the Gaussian approximation is discussed in [18] (the authors
call the method based on this test ‘approximate model check-
ing’). This test can be called Chernoff-SSP, and compares to
the Gauss-SSP in a way that is similar to how the Chernoff-
CI test compares to the Gauss-CI; it will not be discussed
here further.

3.6 Azuma test

The test of this section is the first of two class-III tests to
be discussed in this paper. These tests are different from the
tests discussed previously in the sense that their input para-
meters only determine the efficiency of the test. So far, no
class-III tests have been implemented in the model checking
tools. These tests have the shape of the typical sequential
test depicted in Fig. 2b: they are characterised by functions
u(N ) and l(N ) denoting the boundaries between U and L
respectively and NC. We assume that the tests are symmet-
ric (i.e., u(N ) = −l(N )), which means that u(N ) remains to
be chosen such that (3–6) are satisfied.

The function u(N ) must asymptotically grow faster than√
N , otherwise errors of the first kind will be too likely for

small |p − p0|. An informal argument is that the standard
deviation of the process ZN grows proportionally to

√
N ,

so that even under H0, given an infinite amount of time such
boundaries will eventually be crossed with probability 1. This
is discussed in greater detail in [29,30]. Also, u(N ) must
grow slower than linearly in N , otherwise errors of the sec-
ond kind will be too likely for small |p− p0|. The argument
here is that even under one of the alternative hypotheses, the
drift of ZN is only linear, so that for |p − p0| small enough
the function u(N ) will diverge linearly from the expected
trajectory. As a result, the probability of ever crossing a lin-
early increasing u(N ), and thus taking a decision, is too small
when |p − p0| is tiny.
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The first shape of u(N ) that we consider is the form:

u(N ) = a(N + k)b, with b ∈ ( 1
2 , 1

)
,

for some a > 0 and k > 0.

For this case, both the correctness of the test and a lower
bound on the power are proven in [29,30] using a bounding
result that is comparable to, and inspired by, Ross’ “gener-
alized Azuma inequality” in Sect. 6.5 of [32] (which also
explains the name of the test). In particular, (3), (4), (5) and
(6) are all satisfied, with

α1 = α2 = β1 = β2

= e−8(3b−2)a2k2b−1
, for some a > 0 and k > 0. (17)

The input parameters of the test are a and k; we discuss in
Sect. 4.4 how to choose these parameters, based on a guess γ

which only affects the efficiency.

3.7 Darling–Robbins test

In this section, we consider a test similar to the one described
in the previous section but with a different form of u(N ). It is
based on [11] (Theorem 3), in which the following statement
is proven for the test of Sect. 2.2 for general U-NC boundary
u(N ) and L-NC boundary −u(N ): if one can find an ε > 0
such that,

∞∑
n=1

e− u2(n)
n+1 ≤ ε (18)

then the probability of error is bounded from above by 2
√

2ε.
If we assume that H0 does not hold, then the probability of
error can be upper bounded by

√
2ε. The idea is then to carry

out the test of Sect. 2.2, with u(N ) chosen such that (18) can
be used to show that (3–6) hold.

The bound (18) can in principle also be applied to the test
from the previous section, with u(N ) = a(N +k)b, but turns
out to be much looser than the bound of (17). On the other
hand, the proof in [29] of (17) requires analytical steps that do
not work for boundaries that are of order N 2/3 or tighter, such
as N log(N ). So in order to evaluate such tighter boundaries,
only (18) is available. Using this rather loose bound will
negatively affect the efficiency of the resulting method.

In this paper we apply the test based on (18), which we
call the ‘Darling–Robbins’ or ‘Darling’ test for brevity, only
to boundaries of the form:

u(N )=√
a(N + 1) log (N + k),

for some a>0 and k > 0.

As with the Azuma test, the remaining input parameters of
this are a and k; how they can be chosen based on a guess γ

which only affects the efficiency is discussed in Sect. 4.4.

3.8 Other tests

In this section, we mention some other hypothesis tests that
could also be applied in the context of statistical model check-
ing. None of these tests has been implemented in the major
model checking tools, and we will not discuss them in the
rest of this paper.

The first is the Bayesian SPRT which was proposed for
statistical model checking in [23] and which is based on ideas
going back to [21]. In Bayesian statistics, the true parameter p
is itself seen as the realisation of a random variable, of which
a prior distribution must be given, which affects not only
the efficiency of the test but also its correctness. For a more
detailed discussion of the Bayesian SPRT in our framework,
see [29].

A second test is the one proposed in [26] and which
is mentioned, among others, in [41]. The input of this
test is a constant c which represents the relative cost of
drawing a sample compared to the cost of accepting an
invalid hypothesis. The critical areas are then constructed
such that the expected cost is minimised in a Bayesian
setting.

Finally, in [39] a variant of the SPRT is proposed that
includes an inconclusive area I (thus, in our terminology,
it essentially turns the SPRT from a class I test into a class
II version). In fact, the test entails that two SPRT tests are
performed simultaneously (i.e., based on the same sample
path of ZN ), namely one testing p ≥ p0 + δ against p ≤ p0,
and one testing p ≥ p0 against p ≤ p0 − δ. At first sight
this test seems to fit in the framework of Sect. 2.2, with a
somewhat remarkable shape of NC (see Fig. 1b. in [39]), but
one needs to be careful here: since the sample path is not
stopped when one of the sub-tests draws a conclusion, one
should not just look where the process ZN eventually ends
up, but also take into account its whole sample path. Thus,
when implemented correctly, the test does not formally fit in
the framework of Sect. 2.2.

4 Choice of parameters

In Sect. 3, we discussed a range of tests in terms of the frame-
work of Sect. 2.2; in particular, we focused on the general
shape of the critical areas. We found that for each test, an
additional parameter was still needed to be able to determine
the exact shape of the critical areas. For the tests in class I
(i.e., the SPRT and Gauss-SSP test of Sects. 3.4 and 3.5),
this was the indifference level δ. This parameter has a clear
interpretation as discussed in Sect. 2.3; consequently, these
tests do not further appear in this section. For the other tests
we discuss how to choose their parameters such that they
have clear interpretations in terms of the output guarantees
of Sect. 2.3.
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The class II tests are treated in Sects. 4.1, 4.2 and 4.3,
where we discuss how to parametrise the Gauss-CI, Chernoff-
CI and Chow–Robbins tests, respectively, using the power-
indifference level ζ . This replaces their previous parametri-
sation in terms of either the sample size N or the confidence
interval width ε, of which the latter has a clear interpretation
for making quantitative statements (i.e., confidence intervals)
but less so for hypothesis testing. In Sect. 4.4, we discuss the
parametrisation of the class III tests (Azuma and Darling) in
terms of the guess γ .

4.1 Choice of parameters for the Gauss-CI test

In Sect. 3.1, we derived the expressions (8) and (9) for the
critical region boundaries, with α, p0 and N left as parame-
ters. While the interpretation of α and p0 is clear, the choice
of N for the Gauss-CI test is non-trivial as it settles the trade-
off between the power and the efficiency. If p is very different
from p0, a small value for N suffices—choosing N too large
then leads to extra inefficiency. Alternatively, if p is close to
p0 a large value for N is needed—choosing N too small then
leads to a decrease in power. For making quantitative state-
ments, the goal is often to choose N such that the width of the
confidence interval has a certain value. But since we focus
on hypothesis testing, we want a procedure for choosing N
such that (5) and (6) are satisfied.

If p− p0 were known to be equal to some given value ζ >

0, then the minimal choice of N for which (5) and (6) are still
satisfied can be calculated. For large N , p̂N � SN/N can be
well approximated by a normally distributed random variable
with mean p0+ζ and variance σ 2 � (p0+ζ ) (1− p0−ζ )/N .
Writing ξ = �−1(1 − α) and σ 2

H0
� (p0) (1 − p0)/N , the

probability of not being able to accept H+1 after drawing N
samples is given by:

P
(
p̂N ≤ p0 + ξσH0

)
= P

(
p̂N − p0 − ζ

σ
≤ ξσH0 − ζ

σ

)

= �

(
ξσH0 − ζ

σ

)
= �

(
ξ
√
p0(1 − p0) − ζ

√
N√

(p0 + ζ )(1 − p0 − ζ )

)
.

(19)

Setting this equation equal to β and solving for N yields the
following expression:

NG =
(

ξ
√
p0(1− p0)−�−1(β)

√
(p0+ζ )(1− p0−ζ )

ζ

)2

.

An analogous procedure can be carried out for p = p0 − ζ ,
which means that we have two expressions for N . Taking the
maximum of the two guarantees that if this many samples
are drawn, (5) and (6) hold when |p − p0| > ζ .

Table 2 Chernoff (NC ) and Gaussian (NG ) sample sizes, β = α

α ζ p0 = 0.5 p0 = 0.2

NC NG NC NG

0.05 0.1 600 259 600 189

0.025 9,587 4,199 9,587 2,785

0.01 59,915 26,265 59,915 17,056

0.025 0.1 738 372 738 273

0.025 11,805 6,035 11,805 4,012

0.01 73,778 37,752 73,778 24,540

4.2 Choice of parameters for Chernoff-CI test

For the Chernoff-CI test of Sect. 3.2, the remaining parameter
is ε, which is related to the width of a confidence interval.
Since this has an impact on the power, we use it to establish
an upper bound on the error probability of the second kind.
Assume, without loss of generality, that H+1 holds, so that
p = p0 +� for some � > 0; outside the power-indifference
region, we have � ≥ ζ . Note that we can use (11) to write
ε as εN , i.e., as a function of N . For an error of the second
kind to occur it must hold that after N samples we have that
X̄ − p0 < εN . We can use a form of the Chernoff–Hoeffding
bound [20] and the fact that E(p0 − X̄) = −� to establish

P(X̄ − p0 < εN ) = P(p0 − X̄ > −εN )

= P(p0 − X̄ + � > � − εN )

≤ e−2N (�−εN )2
.

Setting β = e−2N (�−εN )2
means that (5) is valid. It has two

solutions for N , one of which gives positive � − εN (which
is a requirement of the Chernoff–Hoeffding bound). Setting
� = ζ in this solution, we find the worst-case number of
samples needed outside the power-indifference region:

NC = 2
√

log(β) log(α) − log(αβ)

2ζ 2 . (20)

A similar argument can be made for � < 0 and (6), which
leads to the same value for NC for both error probabilities of
the second kind.

Table 2 compares the sample size for the Chernoff-CI test
NC and the sample size for the Gauss-CI test NG , for the
same values of α and β, calculated using (19). One thing
to note is that the Chernoff-CI test’s sample size does not
depend on p0, while the Gauss-CI test’s sample size does.
Another thing is that the sample size for the Chernoff-CI test
always seems to be larger than for the Gauss-CI test.

4.3 Choice of parameters for Chow–Robbins test

For the Chow–Robbins test of Sect. 3.3, the only parameter
left to choose is the (half-)width of the confidence interval ε,
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Fig. 3 Impact of the
parameters a and k on the shape
of the critical regions of the
Azuma test

N
k

ZN

a

U

NC

such that the error probability of the second kind is bounded
as desired.

To obtain a value for ε we start by observing that p̂N is
approximately normally distributed with mean p0 + ζ and
standard deviation10 σ = ε/�−1(1 − α) = −ε/�−1(α).
The test will not accept H+1 if p̂N ≤ p0 + ε, leading to (19)
with ξσH0 = ε substituted. Setting this to β, one finds

ε = ζ

1 + �−1(β)/�−1(α)
.

4.4 Choice of parameters for Azuma and Darling tests

Since the Azuma and Darling tests are closely related, we
discuss their parameter choices together. These two tests
have non-critical area upper boundaries u(N ; a, k) given by
a(N + k)b and

√
a(N + 1) log(N + k), respectively. The

impact of the parameters a and k on the cone that defines
NC is illustrated in Fig. 3 for the Azuma test. The parameter
a influences the increase in width of NC and its influence
does not fade relative to N when N grows large. A high
value of the parameter k on the other hand makes the area
NC wider for small values of N . For the Darling test, the
influence of these two parameters is similar. The Azuma test
additionally depends on a parameter b; a high value for b
means that the area NC boundary u(N ) will more closely
resemble a straight line, which means that it will grow much
wider asymptotically.

A high value for k makes it harder to accept an alternative
hypothesis in the beginning, but—sincea andb can be chosen
smaller to maintain the same significance level α—easier
to reject as N grows bigger. Since the upper bound on the
probability of error is fixed to equal α, we can determine k
as a function of a, α and b. For the Azuma test, we easily
derive from (17) that,

kAzuma(a, α, b) =
(

log (α)

8a2(2 − 3b)

) 1
2b−1

.

For the Darling test, it is harder to obtain a similar expres-
sion from (18) since we have to solve for the lower bound

10 This follows from the stopping criterion of the Chow–Robbins test,
but it is only an approximation, not just because the number of samples
N is finite, but also because N in Chow–Robbins’ stopping criterion
depends on the samples themselves, which violates an assumption of
the central limit theorem.

Table 3 Approximately optimal parameter choices for α = 0.05. For
this table we used b = 3

4

γ Azuma a Azuma k Darling a Darling k

10−1 0.3274 1.95·102 1.5973 6.37·102

10−2 0.1036 1.95·104 1.3897 5.95·104

10−3 0.0328 1.95·106 1.2934 5.77·106

10−4 0.0103 1.94·108 1.2371 5.74·108

10−5 0.0033 1.94·1010 1.2000 5.68·1010

10−6 0.0010 1.92·1012 1.1734 5.74·1012

of a summation, but for practical purposes the summation in
(18) can be approximated by the integral∫ ∞

1
e− u2(x)

x+1 dx .

We then derive

kDarling(a, α) =
(

α(a − 1)√
2

)− 1
a−1 − 1.

We then minimise the expected number of samples drawn,
which we approximate using the intersection of the expected
trajectory of ZN and u(N ). This means that we have to solve

|p − p0|N = u(N ; a, k(a, α)) (21)

for N and then minimise over a. Unfortunately, both in the
cases of the Azuma and the Darling tests, solving (21) for
N does not lead to a closed form expression. However, in
both cases we can do the minimisation numerically, since the
function u(N ) − |p − p0|N has a derivative simple enough
to allow for Newton’s method to find its roots. We seek the
minimum of N (a) for a ∈ [0,∞), but for the sake of being
able to use straightforward numerical techniques, we search
for the minimum of N ( 1

1+a ) for 1
1+a ∈ (0, 1]. Since this is

a bounded interval, we can use techniques such as golden
section search [9] to find the minimum. For the Darling test
we even know that a > 1, meaning that we can minimise
N ( 1

a ) on (0, 1].
In Table 3, we show the (approximately) optimal parame-

ters a and k that we found for both tests for several values
of γ (recall that this is our guess for |p − p0|). We can see
that for the Azuma test, a grows proportional to

√
γ , and k

inversely proportional to γ 2.
The final remaining value to choose is then the parameter b

of the Azuma test. A higher value for b means a tighter bound
on the error probability of the first kind, but the area NC will
grow larger asymptotically. The difference in terms of the
tightness of the bound can be observed in Table 4, where
we display the solutions to equation (21) for the Azuma test
with several values of b and the Darling test (with a and k
chosen optimally). The impact of a low value for b is twofold:
the expected number of needed samples when the guess is
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Table 4 For each combination (γ, |p − p0|, test type), we display the
solution to (21) i.e., the N for which the expected trajectory leaves
NC with parameters a and k chosen optimally. Bold values imply that
γ = |p − p0|, i.e., that the guess is correct. In all cases, α = 0.05

|p − p0| γ Azuma Darling

b = 0.67 b = 0.75 b = 0.9

10−1 10−1 7.999 ·103 3.891 ·102 1.842 ·102 1.202 ·103
10−2 3.463·104 1.828·103 9.394·102 1.532·103

10−3 3.220·105 1.720·104 8.923·103 2.015·103

10−4 3.199·106 1.708·105 8.801·104 2.496·103

10−2 10−1 4.736·106 1.150·106 9.200·109 1.946·105

10−2 7.999·105 3.892·104 1.842·104 1.716·105
10−3 3.461·106 1.827·105 9.383·104 2.018·105

10−4 3.222·107 1.718·106 8.844·105 2.495·105

10−3 10−1 5.072·109 1.150·1010 9.200·1019 2.735·107

10−2 4.732·108 1.151·108 9.223·1011 2.360·107

10−3 7.999·107 3.892·106 1.842·106 2.218·107
10−4 3.463·108 1.825·107 9.304·106 2.500·107

10−4 10−1 5.439·1012 1.150·1014 9.200·1029 3.511·109

10−2 5.069·1011 1.151·1012 9.223·1021 3.034·109

10−3 4.735·1010 1.152·1010 9.318·1013 2.815·109

10−4 7.999·109 3.892·108 1.842·108 2.711·109

correct will be higher, but the test will become less sensitive
to the guess γ . Note, however, that even for very low values
of b (e.g., 0.67), the Azuma test will still be more sensitive
than the Darling test. Since for b = 0.67 the Azuma test
has a higher expected number of needed samples than the
Darling test, while it is still less sensitive, the Azuma test
has no advantages over the Darling test so we can say that
it performs strictly worse than the Darling test. The choice
b = 0.9 on the other hand leads to enormous parameter
sensitivity. Values of b around 3

4 seem to strike a nice balance,
and in Sect. 5, where we empirically validate the analysis of
this section, we will only consider the Azuma test with this
parameter choice.

By going through the above numerical procedure for a
wide range of values of α and γ , for b = 3/4, and then fit-
ting a function, we have obtained the following approximate
solutions:

aAzuma ≈ (0.25 − 0.144α0.15)
√

γ /0.0243

and

aDarling ≈ exp
(
0.4913 − 0.0715x + 0.0988y − 0.00089x2

+ 0.00639y2 − 0.00361xy
)
,

with x = log α and y = log γ . Note that we have not thor-
oughly quantified the precision of the above approximations.

However, they need not be very precise: after all, these cal-
culations are only used to optimise the convergence speed
for a guess for γ = |p = p0|, and that guess will typically
be imprecise by itself; furthermore, any error in the calcula-
tion only affects the efficiency of the test, not its correctness.
Thus, simple approximations like the above can suffice for
use in tools.

5 Results and comparisons

In this section we compare the performance of the tests dis-
cussed in Sect. 3—see Table 5 for a summary. We do this in
two ways: we will begin in Sect. 5.1 by comparing the tests
in terms of the implied test decision areas as discussed in
Sect. 2.2, and see how these areas behave as a function of the
number of samples drawn. In Sect. 5.2, we will then com-
pare the tests by the three performance measures mentioned
in Sect. 2.3: the correctness, the power and the efficiency. In
Sect. 5.3, we discuss the implementation of the tests in the
model checking tools.

5.1 Shape of the non-critical areas (NC)

As was explained in Sect. 2.2, all of the tests in this paper can
be considered in the context of a single framework: a random
walk Zn that always jumps up by 1 − p0 with probability p
or down by p0 with probability 1 − p. The tests can then be
defined in terms of the boundaries of the test decision area
NC, as sketched in Fig. 2. In Figs. 4 and 5, we compare the
shapes of these boundaries for all tests introduced before.
For tests that can end inconclusively, the boundary of the
corresponding decision area I is drawn as a grey line.

Figure 4 shows the decision boundaries for the symmet-
rical situation p0 = 1

2 . For the parametrisation, the accepted
error probabilities of first and second kind α and β are set to
0.05. The indifference parameters δ and ζ are set to 0.025,
while the guess γ for p− p0 is 0.1. Note that choosing γ > δ

makes sense: it expresses the investigator’s guess that p is
0.1 away from p0 (and that she wishes to optimise the Dar-
ling and Azuma tests for that case), but also that she wishes
to have reliable results even if p turns out to be only 0.025
away from p0.

First, consider the Darling and Azuma tests. Although they
never terminate inconclusively, they may take very long if p
is very close to p0. Comparing their NC regions, we see that
it is narrower for the Azuma test than for the Darling test
for small values of N , but the Azuma boundaries eventually
overtake those of the Darling test; this is obvious as functions

of the type N
3
4 are asymptotically wider than those of type√

N log(N ).
The SPRT is also a sequential test and may theoretically

take indefinitely long. However, its NC region is narrow, so
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Table 5 Summary of the tests

Test Class Type Input∗ Source Section Comments

Gauss-CI II Fixed N ζ CLT 3.1, 4.1 May terminate inconclusively

Chernoff-CI II Fixed N ζ [18,20] 3.2, 4.2 Same guarantees as Gauss-CI, but less efficient

Chow–Robbins II Mixed ζ [10] 3.3, 4.3 Same, but more or less efficient depending on p and p0

SPRT I Sequential δ [37,42] 3.4 Increased risk of drawing wrong conclusion if |p − p0| < δ

Gauss-SSP I Fixed N δ [35] 3.5 Same risk as SPRT

Azuma III Sequential γ [29,30] 3.6, 4.4 Error probabilities guaranteed; takes long if p ≈ p0

Darling–Robbins III Sequential γ [11] 3.7, 4.4 Like Azuma, but efficiency rather insensitive to guess γ

∗ See 2.3 for details; summary: δ = indifference level for correctness; ζ = indifference level for power; γ = guess only used for efficiency optimisation

Fig. 4 Critical regions,
p0 = 0.5, δ = ζ = 0.025,
γ = 0.1, α = β = 0.05. Solid
lines indicate boundaries of the
critical regions; grey lines
indicate where the test is
inconclusive. Dotted lines
indicate thresholds of Gauss-CI
and Chernoff-CI for different β.
Dashed lines indicates expected
sample path for p = p0 + δ, i.e.,
edge of indifference region, and
for p = p0 + γ , i.e., for which
the Azuma and Darling tests
have been optimally
parametrised Z
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long runs are unlikely. The price for this is that the SPRT may
draw an incorrect conclusion with probability more than α if
the true p is not at least δ away from p0.

Finally, consider the four (almost) fixed-N tests: Cher-
noff-CI, Gauss-CI, Chow–Robbins and Gauss-SSP. As was
pointed out in Sect. 4.2, the Chernoff-CI test is based on a
looser bound than the others and therefore takes more sam-
ples for the same confidence level. The Gauss-CI and Chow–
Robbins use the same bound and only differ in how they
determine at what N to terminate. For the Gauss-CI test,
this N is determined in advance, based on obtaining a suffi-
ciently narrow confidence interval under the null hypothesis
(p = p0). On the other hand, Chow–Robbins stops as soon
as the confidence interval is narrow enough based on the
actual samples. If p is close to 0 or 1, this may occur much
sooner. The Gauss-SSP test is similar to the Gauss-CI test
in that its stopping time is determined in advance. However,
it stops earlier because, like the SPRT, it takes the risk of

drawing the wrong conclusion with probability more than α

if |p − p0| < δ, while the Gauss-CI test in that case mostly
risks terminating inconclusively.

As an aid in understanding, a dashed line shows the
expected sample path if p = p0 + δ, i.e., at the border
of where the investigator is indifferent about the outcome.
This line crosses the Gauss-CI, Chernoff-CI and Chow–
Robbins boundaries well away from the grey (inconclusive)
parts, thus showing that these tests are indeed likely to con-
clude conclusively (namely 95 %), and extremely unlikely
to draw the wrong conclusion. The SPRT area is rather nar-
row; the dashed line leaves it soon, at a point where it is
still relatively near to the lower edge of this area, illustrating
the 5 % risk of drawing the wrong conclusion. The Gauss-
SSP test runs the same risk, due to its early termination.
The Azuma and Darling boundaries are intercepted beyond
the edge of the figure. These tests take rather long in this
case because we chose to parametrise them optimally for a
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Fig. 5 As Fig. 4, but for
p0 = 0.2
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larger difference between p and p0, namely γ = 0.1 rather
than δ = 0.025, which is illustrated by the other dashed
line.

Figure 5 is similar to Fig. 4 but with p0 set to 0.2. We
mention the main differences. First, although this is barely
visible, the boundaries of the SPRT are not constant, but they
decrease in N (see (15) and (16)). Second, the Gauss-CI test’s
area NC is less broad due to the smaller variance under the
null hypothesis. Third, the Chow–Robbins test may now take
longer than the Gauss-CI test, because the Chow–Robbins
test continues until the confidence interval has reached a pre-
scribed width, which takes longest if p = 0.5. The Gauss-CI
test stops earlier in that case, because p is so far away from its
value under the null hypothesis that a much wider confidence
interval still allows for a confident decision.

Figures 4 and 5 are only two examples of the figures that
can be generated interactively on the website [1] mentioned
earlier.

5.2 Simulation results

In this section, we compare the tests discussed in this paper
by empirically evaluating their performance for a range of
underlying parameter values.11 Since we only compare dif-
ferent statistical tests, we do not need to consider the sim-
ulation aspect of statistical model checking. Accordingly,

11 All experiments were done using our own Java-code. In [27], it was
observed that in VeStA, the Gauss-SSP test seemed to have lower con-
fidence than the SPRT of YMER. Using our own implementation of the
tests, we do not observe the same.

we let our computer program directly draw samples from
a Bernoulli distribution with (known) parameter p. With p
chosen, the remaining parameter to be chosen is δ, ζ or γ . In
all cases α = β = 0.05.

For each test we estimate the following metrics:

1. ρ, the probability that a test accepts the right hypothe-
sis, used as a measure for the confidence (the higher the
better);

2. υ, the probability that a test proves inconclusive, used as
a measure for the power (the lower the better);

3. η, the expected number of samples drawn before the test
is concluded, used as a measure for the efficiency (the
lower the better).

The procedure is as follows: we conduct each test 1 000 times,
let ρ̂ be the fraction of correct conclusions, υ̂ the fraction of
tests that remained inconclusive (where for the sequential
tests, we set a 60 s time bound) and η̂ be the average number
of samples drawn. In Tables 6, 7 and 8, we display these
estimates plus/minus the half-width of a 95 %-CI around the
estimate. In Tables 6 and 8 we have set p0 = 0.5; the only
difference between these two tables is the choice of |p− p0|,
which equals 0.1 for the former and 0.001 for the latter. For
Table 7 we have set p = 0.2 and |p − p0| = 0.01. The rows
in bold indicate that the input parameter δ, ζ or γ is exactly
equal to |p − p0|.

The number of samples needed for the Gauss-CI test
grows inversely proportional to the square root of ζ . Because
the Gauss-CI test is a fixed sample size test, η̂ has no vari-
ance. The main drawback is that if ζ is considerably larger
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Table 6 Simulation results for
p0 = 0.5, p = 0.6

Test δ, ζ or γ ρ̂ υ̂ η̂

Gauss-CI 0.1 0.953 ± 0.013 0.047 ± 0.013 2.58·102

0.01 1.0 ± 0.0 0.0 ± 0.0 2.63·104

0.001 1.0 ± 0.0 0.0 ± 0.0 2.63·106

Chernoff-CI 0.1 0.993 ± 0.005 0.007 ± 0.005 6.00·102

0.01 1.0 ± 0.0 0.0 ± 0.0 5.99·104

0.001 1.0 ± 0.0 0.0 ± 0.0 5.99·106

Chow–Robbins 0.1 0.948 ± 0.014 0.052 ± 0.014 (2.473 ± 0.004)·102
0.01 1.0 ± 0.0 0.0 ± 0.0 (2.5215 ± 0.0004)·104

0.001 1.0 ± 0.0 0.0 ± 0.0 (2.52178 ± 0.00004)·106

SPRT 0.1 0.95 ± 0.014 0.0 ± 0.0 (3.68 ± 0.16)·101
0.01 1.0 ± 0.0 0.0 ± 0.0 (3.71 ± 0.06)·102

0.001 1.0 ± 0.0 0.0 ± 0.0 (3.67 ± 0.02)·103

Gauss-SSP 0.1 0.943 ± 0.014 0.0 ± 0.0 6.40·101
0.01 1.0 ± 0.0 0.0 ± 0.0 6.76·103

0.001 1.0 ± 0.0 0.0 ± 0.0 6.76·105

Azuma 0.1 1.0 ± 0.0 0.0 ± 0.0 (3.80± 0.01)·102

0.01 1.0 ± 0.0 0.0 ± 0.0 (1.84 ± 0.01)·103

0.001 1.0 ± 0.0 0.0 ± 0.0 (1.72 ± 0.00)·104

Darling–Robbins 0.1 1.0 ± 0.0 0.0 ± 0.0 (1.17 ± 0.02)·103
0.01 1.0 ± 0.0 0.0 ± 0.0 (1.49 ± 0.02)·103

0.001 1.0 ± 0.0 0.0 ± 0.0 (1.99 ± 0.03)·103

than |p − p0|, the Gauss-CI test will almost never draw a
conclusion. This is witnessed by υ̂ � 0, seen particularly in
Table 8. The bounds on the error probabilities are very tight;
in all tables we see that if ζ = |p − p0|, the probability of
drawing the correct conclusion is close to 1 − β = 0.95.
Furthermore, in Table 8 we observe that when ζ is chosen
much too large, the proportion of incorrect conclusions (i.e.,
1 − ρ̂ − υ̂) is close to α = 0.05.

We see in general that the Chernoff-CI test requires more
samples than the Gauss-CI test; in Table 7, for which p0

equals 0.2 instead of 0.5, the difference between the sample
sizes of the Gauss-CI and Chernoff-CI tests is larger than
in Tables 6 and 8. This is consistent with the discussion of
Sect. 3.2. The bound on the probability of error of the sec-
ond kind for the Chernoff-CI test appears to be rather loose;
when the power-indifference level ζ equals the actual differ-
ence p− p0, the estimate for the probability of inconclusive
termination υ̂ is well below β = 0.05.

That the Chow–Robbins test is a mixture of a fixed sam-
ple size test and a sequential test can be seen from the low
variance of the number of samples drawn. In Table 6, the vari-
ance of ZN under p0 is considerably higher than under p, so
the Chow–Robbins test requires a noticeably smaller sample
size on average than the Gauss-CI test. However, the reverse
is true in Table 7 and the Chow–Robbins test does slightly

worse than the Gauss-CI test as a consequence. Overall, the
two tests have similar efficiency.

The SPRT is the most efficient among all tests when δ is
picked just right; in each table, its value η̂ is the lowest among
all tests that satisfy correctness. However, we indeed see its
performance degrade when its assumptions are violated, i.e.,
when |p − p0| turns out to be smaller than δ. In Table 8, the
CI for ρ̂ contains 1

2 when δ is large, which is the worst level
of ρ that a test can satisfy (after all, if the confidence was
even lower one could always use the opposite result of the
test and obtain a confidence that is >1

2 ). The average number
of samples needed seems to grow inversely proportional to δ.

The Gauss-SSP test is similar to the SPRT, albeit slightly
less efficient. This was to be expected, see also [39] where
the same observation was made.

Both the Azuma and Darling tests are very conservative:
they have a ρ̂ of well over 95 %. When the guess is (almost)
correct, the Azuma test is more efficient than the Darling
test. However, if γ is taken to be considerably larger than
|p − p0|, the number of samples needed for the Azuma test
grows rapidly, while the Darling test remains remarkably
insensitive to the model parameters, as can been seen in all
tables. The Azuma result υ̂ ≈ 1 in Table 8 means that the
Azuma test did not draw a conclusion within a 60 s time
period.
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Table 7 Simulation results for
p0 = 0.2, p = 0.21

Test δ, ζ or γ ρ̂ υ̂ η̂

Gauss-CI 0.1 0.111 ± 0.019 0.869 ± 0.021 1.89·102

0.01 0.944 ± 0.014 0.056 ± 0.014 1.71·104

0.001 1.0 ± 0.0 0.0 ± 0.0 1.68·106

Chernoff-CI 0.1 0.012 ± 0.007 0.988 ± 0.007 6.00·102

0.01 0.999 ± 0.002 0.001 ± 0.002 5.99·104
0.001 1.0 ± 0.0 0.0 ± 0.0 5.99·106

Chow–Robbins 0.1 0.081 ± 0.017 0.868 ± 0.021 (1.91 ± 0.01)·102

0.01 0.945 ± 0.014 0.055 ± 0.014 (1.77 ± 0.00)·104
0.001 1.0 ± 0.0 0.0 ± 0.0 (1.75 ± 0.00)·106

SPRT 0.1 0.658 ± 0.030 0.0 ± 0.0 (3.44 ± 0.17)·101

0.01 0.946 ± 0.014 0.0 ± 0.0 (2.14 ± 0.09)·103
0.001 1.0 ± 0.0 0.0 ± 0.0 (2.37 ± 0.04)·104

Gauss-SSP 0.1 0.577 ± 0.031 0.0 ± 0.0 5.7·101

0.01 0.951 ± 0.013 0.0 ± 0.0 4.50·103
0.001 1.0 ± 0.0 0.0 ± 0.0 4.34·105

Azuma 0.1 1.0 ± 0.0 0.0 ± 0.0 (1.13 ± 0.01)·106

0.01 1.0 ± 0.0 0.0 ± 0.0 (3.86 ± 0.10)·104
0.001 1.0 ± 0.0 0.0 ± 0.0 (1.82 ± 0.01)·105

Darling–Robbins 0.1 1.0 ± 0.0 0.0 ± 0.0 (1.94 ± 0.02)·105

0.01 1.0 ± 0.0 0.0 ± 0.0 (1.70 ± 0.02)·105
0.001 1.0 ± 0.0 0.0 ± 0.0 (2.02 ± 0.02)·105

5.3 Tool implementation

Table 9 contains a summary of the implementation of the
tests of Sect. 3 in model checking tools. In this section, we
discuss each of the tools in some detail.

UPPAAL allows the user to check qualitative as well
as quantitative statements (as described in the introduc-
tion). Qualitative statements are evaluated using the SPRT.
Quantitative statements were evaluated using a sample size
determined using the Chernoff–Hoeffding bound; since ver-
sion 4.1.15, the Chow–Robbins procedure is used to con-
struct a Clopper–Pearson confidence interval. PRISM (ver-
sion 4.1.beta2) implements all four methods in the context of
making qualitative statements; Gauss-CI and Chow–Robbins
are implemented as versions of the ‘ACI’ method, Cher-
noff as the ‘APMC’ method and the SPRT as the ‘SPRT ’
method. PRISM does not allow the user to directly create
confidence intervals for the sake of making quantitative state-
ments; however confidence intervals are created as a by-
product of hypothesis tests and can be found in the ‘log’
section. MRMC (v1.5) [24] only implements the Chow–
Robbins test, but, unlike PRISM, also allows this method
to be used to evaluate steady-state properties (which we do
not discuss in this paper).

COSMOS (v1.0) [7] implements the Chow–Robbins test
for quantitative purposes. PLASMA (version 1.2.8) [22]
implements the SPRT for qualitative statements and the Cher-
noff test for quantitative statements.

YMER uses the SPRT. Different version of YMER fea-
ture different add-ons; e.g., version 3.0.9 includes a numer-
ical solution engine that allows the user to check nested
operators, while version 4.0 includes support for unbounded
until. The tool PVeStA, which is based on the tool VeStA
[36], implements the Gauss-SSP test and the Chow–Robbins
method. Another variant of VeStA, MultiVeStA [33], imple-
ments the Chow–Robbins procedure for quantitative pur-
poses. APMC (v3.0) [19] implements an SSP test based on
the Chernoff bound, cf. end of Sect. 3.5.

6 Conclusions

We have presented a common framework that allows the
hypothesis testing methods—both ‘pure’ hypothesis tests
and those based on confidence intervals—proposed earlier
in the statistical model checking literature to be compared
in a mathematically solid, yet intuitive manner. Previously,
these methods were often implemented in tools completely
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Table 8 Simulation results for
p0 = 0.5, p = 0.501

Test δ, ζ or γ ρ̂ υ̂ η̂

Gauss-CI 0.1 0.055 ± 0.014 0.898 ± 0.019 2.59·102

0.01 0.106 ± 0.019 0.869 ± 0.021 2.63·104

0.001 0.95 ± 0.014 0.05 ± 0.0134 2.63·106

Chernoff-CI 0.1 0.006 ± 0.005 0.985 ± 0.008 6.00·102

0.01 0.026 ± 0.010 0.973 ± 0.010 5.99·104

0.001 0.994 ± 0.005 0.006 ± 0.005 5.99·106

Chow–Robbins 0.1 0.043 ± 0.013 0.919 ± 0.017 (2.581 ± 0.001)·102

0.01 0.102 ± 0.019 0.874 ± 0.021 (2.63 ± 0.00)·104

0.001 0.934 ± 0.015 0.066 ± 0.015 (2.63 ± 0.00)·106

SPRT 0.1 0.482 ± 0.031 0.0 ± 0.0 (6.80 ± 0.34)·101

0.01 0.541 ± 0.031 0.0 ± 0.0 (5.42 ± 0.29)·103

0.001 0.938 ± 0.015 0.0 ± 0.0 (3.12 ± 0.14)·105

Gauss-SSP 0.1 0.483 ± 0.031 0.0 ± 0.0 6.40·101

0.01 0.59 ± 0.030 0.0 ± 0.0 6.76·103

0.001 0.962 ± 0.012 0.0 ± 0.0 6.76·105

Azuma 0.1 0.0 ± 0.0 1.0 ± 0.0 (2.40 ± 0.02)·108

0.01 0.0 ± 0.0 1.0 ± 0.0 (2.39 ± 0.01)·108

0.001 1.0 ± 0.0 0.0 ± 0.0 (3.78 ± 0.1)·106

Darling–Robbins 0.1 1.0 ± 0.0 0.0 ± 0.0 (2.70 ± 0.04)·107

0.01 1.0 ± 0.0 0.0 ± 0.0 (2.30 ± 0.03)·107

0.001 1.0 ± 0.0 0.0 ± 0.0 (2.18 ± 0.03)·107

Table 9 Tool implementation

UPPAAL UPPAAL PRISM MRMC COSMOS PLASMA YMER PVeStA APMC
(before 4.1.15) (4.1.15 onward)

Gauss-CI
Chernoff-CI

Chow-Robbins
SPRT

Gauss-SSP
Chernoff-SSP

A means that the procedure is (also) implemented as a hypothesis test, a means that the procedure is only implemented for making quantitative
statements

parallel to one another with little information given about the
subtle differences between the methods and their parameters.
Our contribution aids general understanding of these meth-
ods, reducing the likelihood of incorrect interpretation of the
outcomes.

In order for the methods to be meaningfully compared to
each other, they have to parametrised. Tools typically ask
the user to specify values for parameters that are specific to
a method (such as the number of samples), without a clear
indication of the consequences for the outcomes. We have
expressed all method-specific parameters in terms of quan-
tities that are meaningful to the user, such as the confidence

level, the risk of inconclusive termination, and indifference
levels.

Having parametrised the methods consistently, we com-
pared them graphically and numerically, highlighting each
method’s properties, and demonstrating quantitative perfor-
mance differences.

Besides all methods known to us and implemented in
tools, our comparison has also included two hypothesis test-
ing methods that have not been discussed in the SMC con-
text before. Those two methods (called Azuma and Darling–
Robbins in this paper) are sequential methods. They behave
fundamentally different from the other methods in cases
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where the model probability being studied is very close to the
threshold under consideration: these methods will neither ter-
minate inconclusively, nor have their confidence level drop.

There is no single best method to be recommended, since
this depends on the requirements of the user. The present
paper gives an overview both of the methods’ characteristics
and their performance, summarised in Table 5, and thus can
help tool users and authors in making a well-informed choice.
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