
Synthesis of Circular Compositional
Program Proofs via Abduction ?

Boyang Li1, Isil Dillig1, Thomas Dillig1, Ken McMillan2, and Mooly Sagiv3

1 College of William & Mary
2 Microsoft Research
3 Tel Aviv University

Abstract. This paper presents a technique for synthesizing circular
compositional proofs of program correctness. Our technique uses ab-
ductive inference to decompose the proof into small lemmas, which are
represented as small program fragments annotated with pre and post-
conditions. Different tools are used to discharge each different lemma,
combining the strengths of different verifiers. Furthermore, each lemma
concerns the correctness of small syntactic fragments of the program, ad-
dressing scalability concerns. We have implemented this technique and
used it combine four different verification tools. Our experiments show
that our technique can be successfully used to verify applications that
cannot be verified by any individual technique.

1 Introduction

Different program verifiers have different limitations. For example, some may
fail to prove a property because they use a coarse abstraction of the program
semantics. In this category, we find abstract interpreters and verification condi-
tion generators, which require the property to be proved to be inductive. Others
model the program semantics precisely, but often do not scale well in practice.
In this category, we find model checkers and inductive invariant generators. To
accomodate the limitations of program verifiers, a classical approach is synthe-
sizing compositional proofs. The idea is to decompose the correctness proof of the
program into a collection of lemmas, each of which can be verified by considering
a small syntactic fragment of the program. This directly addresses the question
of scalability, and indirectly the question of abstraction, since each lemma may
be provable using a fairly coarse abstraction, even if the overall property is not.

The key difficulty in synthesizing compositional proofs is to discover a suit-
able collection of lemmas. Automating this process has proven to be extremely
challenging. Some progress has been made in the finite state case [1, 2] and in
some particular domains such as shape analysis [3]. However, general approaches
for inferring compositional proofs are lacking.

In this paper, we describe an approach to inferring lemmas based on logical
abduction, the process of inferring premises that imply observed facts. Specifi-
cally, our technique uses abduction to synthesize circular compositional proofs.

? This work is supported in part by DARPA #FA8750-12-2-0020

1. int i=1; int j=0;
2. while(*) { j++; i+=3; }
3. int z=i-j;
4. int x=0; int y=0; int w=0;
5. while(*) [assert(x=y)]
6. { z+=x+y+w; y++; x+=z%2; w+=2; }

Fig. 1. Example to illustrate main ideas of our technique

In such a proof, each lemma is a fact that must hold at all times, and we must
prove that each lemma is not the first to fail. In effect, the proof of each lemma
is allowed to assume the correctness of all the others, the apparent circularity
being broken by induction over time. Our goal is to introduce lemmas that can
be discharged in this way, using only small program fragments.

A key feature of our approach is that it is lazy. That is, when a lemma L
cannot be discharged, our technique introduces a new lemma that may help to
prove L. The key insight is that such useful auxiliary lemmas can be inferred
by combining verification condition (VC) generation with logical abduction [4].
Specifically, given an invalid VC φ1 ⇒ φ2, we employ abductive inference to infer
an auxiliary lemma ψ such that ψ∧φ1 ⇒ φ2 is valid. Experimentally, we observe
that lemmas generated to help verification condition checking are also useful for
other types of verifiers, such as model checkers and abstract interpreters.

The ability to synthesize compositional proofs by inferring relevant lemmas
has two important benefits. First, it helps us to address the problems of scale
and abstraction. The lemmas can be verified on small program fragments, and
each can be checked using a different abstraction. Second, lemmas allow us to
combine the strengths of many verifiers, as each lemma may be verified by a
different tool. The tools can be used as black boxes, without any modification.

This paper applies these ideas for verifying safety properties of sequential
programs. In principle, though, they can be applied to any class of programs
and any proof system generating verification conditions in a suitable form.

1.1 Overview

Given an imperative program containing assume and assert statements, we want
to show that no assertion fails in any execution. Our safety proof makes use of
two basic steps: introduction and elimination of assertions. In an introduction
step, we insert a new assertion at any point in the program. In an elimination
step, we prove that some assertion always holds and then convert it to an as-
sumption. When verifying an assertion A, we can convert all the other assertions
to assumptions, since we are only proving that A is not the first to fail. More-
over, given these assumptions, we might be able to verify our assertion locally,
using some small fragment of the program containing the assertion.

As an example, consider the program of Figure 1. The assertion in square
brackets on line 5 represents an invariant of the loop. It must hold each time the

loop is entered and also when the loop exits. We would like to verify this invariant
assertion using just lines 4–6 in isolation. This is not possible, however, because
we require the precondition “z is odd” established by lines 1–3. Having failed in
our verification attempt, we will try to infer a lemma that makes the verification
possible. For this, we decorate the program with symbols representing unknown
assumptions. We then compute a verification condition (VC), that is, a logical
formula whose validity implies the correctness of the decorated program. Then,
using a technique known as abduction, we will solve for values of the unknown
assumptions making the VC valid. These assumptions will then become lemmas
to be proved. Going back to our example, we decorate lines 4–6 as follows:

4. int x=0; int y=0; int w=0;
assume φ1

5. while(*) [assert x=y; assume φ2]
6. z+=x+y+w; y++; x+=z%2; w+=2;

The symbols φ1 and φ2 are placeholders for unknown assumptions. The as-
sumption φ1 is a precondition for the loop, while φ2 is an additional (assumed)
invariant. Our VC generator tells us that our decorated program is correct when
the following formulas are valid:

(z = i− j ∧ x = 0 ∧ y = 0 ∧ w = 0 ∧ φ1)⇒ x = y
(φ2 ∧ x = y)⇒ wp(σ, x = y)

Here, σ is the loop body (the code of line 6), and wp(σ, φ) stands for the weakest
liberal precondition of formula φ with respect to statement σ. These conditions
say that the invariant x = y must hold on entering the loop, and that it is
preserved by the loop body, given our assumptions.

Now, we can easily see that the first condition is valid, but the second one is
not valid. Using the definition of wp, the second condition is equivalent to:

(φ2 ∧ x = y)⇒ x+ (z + x+ y + w)%2 = y + 1

To prove the invariant x = y, we need to find a formula to plug in for φ2 that
makes this formula valid. At the same time, we do not want our new lemma φ2
to contradict the original lemma x = y that we are trying to prove. Thus, we
want φ2 ∧ x = y to be satisfiable. This problem of inferring a hypothesis that
implies some desired fact, while remaining consistent with given facts, is known
as abduction. Using the algorithm described in Section 4, we obtain the solution
(w + z)%2 = 1 for this abduction problem.

Having inferred an auxiliary invariant (w+z)%2 = 1 through abduction, this
formula now becomes a lemma in our proof. We introduce the invariant assertion
“assert (w + z)%2 = 1”, so lines 4–6 now look like this:

4. int x=0; int y=0; int w=0;
5. while(*) [assert x=y; assert (w+z)%2 = 1]
6. z+=x+y+w; y++; x+=z%2; w+=2;

We can now prove the assertion x = y by assuming our new lemma. We therefore
eliminate this assertion by converting it to an assumption, obtaining:

4. int x=0; int y=0; int w=0;
5. while(*) [assume x=y; assert (w+z)%2 = 1]
6. z+=x+y+w; y++; x+=z%2; w+=2;

Unfortunately, the lemma (w+ z)%2 = 1 still cannot be proved using just these
code lines, since it depends on the initial value of z, which is determined by
the first loop. Therefore, we once again decorate the program with unknown
assumptions φ1 and φ2. The VC’s of the new program are:

(z = i− j ∧ x = 0 ∧ y = 0 ∧ w = 0 ∧ φ1 ∧ x = y)⇒ (w + z)%2 = 1
φ2 ∧ (w + z)%2 = 1 ∧ x = y ⇒ wp(σ, x = y ⇒ (w + z)%2 = 1)

where again σ is the loop body. That is, our lemma must hold on entry to
the loop, and must be preserved by the loop, given our assumptions. However,
neither of these conditions is valid, so we try to repair the first condition. To
make it valid, we need to find a formula ψ to plug in for φ1 such that:

(ψ ∧ z = i− j ∧ x = 0 ∧ y = 0 ∧ w = 0 ∧ x = y)⇒ (w + z)%2 = 1

(ψ ∧ z = i− j ∧ x = 0 ∧ y = 0 ∧ w = 0 ∧ x = y) 6⇒ false

That is, the assumption ψ must be sufficient to establish the invariant on entry
to the loop, but not contradict known facts, including the invariant x = y. Our
abduction technique discovers the solution z%2 = 1 for ψ.

This solution z%2 = 1 for φ1 now becomes a lemma, introduced as an asser-
tion before the loop. We now have:

4. int x=0; int y=0; int w=0;
assert z%2 = 1;

5. while(*) [assume x=y; assert (w+z)%2 = 1]
6. z+=x+y+w; y++; x+=z%2; w+=2;

At this point we have two assertions in the program. The VC for the loop in-
variant is still not valid (that is, the invariant is not inductive). However, at this
point we can verify it using just lines 4–6 in isolation, since we have the necessary
precondition z%2 = 1. Converting this assertion to an assumption, we give the
above fragment to a client program analyzer. If this client tool is able to infer
divisibility facts, it can verify the invariant by inferring the auxiliary invariant
w%2 = 0. We have therefore localized the verification of the loop invariant.

Having verified the assertion (w + z)%2 = 1, we eliminate it by converting
it to an assumption and we move on to the remaining assertion, z%2 = 1. This
assertion can be verified using lines 1–4 in isolation. That is, we give these lines
to a client program analyzer that is able to infer the linear invariant i = 3j + 1
of the first loop. From this, it can prove that z is odd. All assertions have now
been eliminated, so the program is verified.

Notice that our inference of lemmas using abduction had two significant ad-
vantages in this example. First, it allowed us to localize the verification, proving
one lemma using just the first loop, another one using just the second. This
addresses the issue of scale. Second, we were able to verify these lemmas using
two different abstractions, in one case using divisibility predicates, and the other
using linear equalities. In this way, proof decomposition allows different program
verification tools to be combined as black boxes.

2 Language and Preliminaries

In this section, we give a small language on which we formalize our technique:

Program Pr := s
Statement s := skip | v := e | s1; s2 | if(?) then s1 else s2

| while(?)[s1] do {s2} | assert p | assume p
Expression e := v | c | e1 + e2 | e%c | c ∗ e
Predicate p := e1 � e2 (� ∈ {<,>,=})| p1 ∧ p2 | p1 ∨ p2 | ¬p

A program consists of one or more statements. Statements include skip, as-
signments, sequencing, if statements, while loops, assertions, and assumptions.
While loops may be decorated with invariants using the [s] notation. The code
s is executed before the loop body and also before exiting the loop, and may
contain assert and assume statements. Expressions include variables, constants,
addition, multiplication, and mod expressions. Predicates are comparisons be-
tween expressions as well as conjunction, disjunction, and negation.

We assume a scheme for numbering the statements in a program, including
compound statements. Given a program π and a statement number (or position)
p occurring in π, we write π|p for the statement in π numbered p. Moreover, given
a statement σ, we write π[σ]p for π with σ replacing the statement numbered p.
We also use asrts(π) to represent the set of positions of assert statements in π
and elim(π, P), where P is a set of assert positions, to represent π with all asserts
in positions P converted to assumes. The notation elim(π,¬p) is a shorthand for
elim(π, asrts(π) \ {p}), that is, π with all asserts except position p converted to
assumes. We use elim(π) for π with all asserts converted to assumes.

3 Searching for Circular Compositional Proofs

In our proofs, we use a vocabulary ΣU of placeholder symbols to stand for un-
known program invariants. A placeholder φ ∈ ΣU may occur only in a statement
of the form “assume φ”. We also use an operator spr that, given a program π,
returns a formula whose validity implies correctness of π. That is, |= spr(π) im-
plies |= wp(π, true). The operator spr is, in effect, our VC generator. We assume
that our VC generator spr returns a set of clauses of the form:

χ ∧ φp ⇒ Γ

` π[assert ψ; σ]p
` π[σ]p

Intro

` elim(π,¬p)
` elim(π, p)

` π Elim

` σ
` π[elim(σ)]p

` π[σ]p
Localize

Fig. 2. Inference rules for compositional proof

where φp ∈ ΣU . The constraint χ does not contain placeholders, and the goal Γ
is some formula asserted in the program. We also allow placeholder-free clauses
of the form χ ⇒ Γ . Our VC generation scheme (Section 3.3) is designed to
produce VC’s in these forms.

Our proof search algorithm makes use of three proof rules shown in Figure 2.
These rules produce judgements of form ` π, where π is a program. The meaning
of this judgement is that π does not fail in any context, i.e., wp(π, true) = true.

Rule Intro allows us to insert a new assertion in any syntactic position in
the program. This rule is sound because adding an assertion can only strengthen
the weakest precondition. The Intro rule is used in our proof search algorithm
to introduce auxiliary lemmas in the form of assertions in the source code.

Rule Elim allows us to eliminate an assertion that is true. It says that, if
the program is correct with all assertions except p converted to assumes, then
we can convert p to an assume. Effectively, the Elim proof rule justifies the use
of circular compositional reasoning in our approach. This rule will be useful in
our proof search algorithm because it says that we can assume the correctness
of all other assertions in proving the correctness of assertion p.

Finally, the Localize rule allows us to syntactically localize the verification
of an assertion. That is, if a fragment of the program containing assertion p is
correct, then p is correct in the entire program. This rule allows us to decompose
large programs into smaller syntactic components for verification. The leaf sub-
goal ` σ in this rule will be discharged by an oracle, which is our set of program
verifiers. If the oracle certifies that σ is correct, then we take ` σ as an axiom.

In searching for a proof in this system, we must make a number of heuristic
decisions. For example, we must decide in what order to process subgoals, and,
at each subgoal, we must choose a proof rule to apply. When applying the Intro
rule, we must choose where and what assertions to introduce. Similarly, for Elim,
we must choose the order of elimination of assertions, and for Localize, we
must decide what program fragment σ to use for the verification of an assertion.
Moreover, if a subgoal is unprovable (for example, because we introduced an
assertion that is not correct), then we require a backtracking strategy.

Our tactic for searching for a proof in this system is illustrated in pseudo-
code in Figure 3. To reduce clutter, we don’t construct the actual proof. Instead
we just return true if a proof of the goal ` π is found. We start by choosing an
arbitrary assertion p to eliminate using the Elim rule (line 3). We call proce-
dure Localize (line 4) to produce a local fragment for verifying p, using the
Localize rule. In our implementation we use the inner-most while loop σ con-
taining p. We then ask the oracle to prove the assertion (including a VC check).

Procedure ProofSearch(π):
input: program π
output: true if proof of π succeeds

(1) let P = asrts(π)
(2) if P is empty, return true
(3) choose some p ∈ P , and let π′ = elim(π,¬p)
(4) let σ = Localize(π′, p)
(5) if the oracle certifies σ or |= spr(π′) then
(6) return ProofSearch(elim(π, p))
(7) let I = InferByAbduction(π′)
(8) for each (p′, φ) in I do
(9) let π′′ = π[assert φ; π|p′]p′
(10) if ProofSearch(π′′) then return true
(11) done
(12) return false

Fig. 3. Proof search algorithm.

If the oracle can prove σ, we move on to the remaining assertions by processing
the second sub-goal of the Elim rule (line 6).

On the other hand, if the oracle fails, we use abduction to generate a sequence
of possible lemma introductions in order to make p provable (line 7). We try these
in turn, applying the Intro rule (line 9) and recurring on the generated subgoal
(line 10). If this proof fails, we move on to the next lemma in the sequence, and
so on, until the sequence is exhausted, at which point, we return failure.

3.1 Using Abduction to Infer New Assertions

The key step in our proof search algorithm is the InferByAbduction proce-
dure, shown in Figure 4. This procedure takes a program π and suggests new
assertions that may be introduced to help make π provable. The first step in this
process is to decorate the program with some assumptions of the form “assume
φp”, where φp is a placeholder symbol corresponding to statement position p.
These placeholders stand for possible assertions we could introduce in a compo-
sitional proof. We discuss the choice of the placeholder locations in Section 3.2.

The next step is to generate the VC for the decorated program using the spr
operator (described in Section 3.3). This is a set of clauses of the form χ⇒ Γ or
χ∧φp ⇒ Γ . To prove the assertion, we need to choose values of the placeholders
to make all of these implications valid. If there is an invalid clause of the form
χ ⇒ Γ we cannot succeed, so we return the empty sequence. Otherwise, we
consider each invalid clause of the form χ ∧ φp ⇒ Γ . We want to choose a
formula to assign to φp in order to make the implication χ ∧ φp ⇒ Γ valid. In
addition, we do not want the implication to be vacuously true, thus, we require
that χ ∧ φp be consistent.

Procedure InferByAbduction(π):
input: program π
output: lazy list of pairs (p, φp)

let π′ = Decorate(π)
let VC = spr(π)
if there exists an invalid clause χ⇒ Γ in VC then return
for each invalid clause χ ∧ φp ⇒ Γ in VC do

for each ψ in Abduc(χ, Γ) do
yield (p, ψ)

done
done

Fig. 4. Inferring assertions by abduction.

This leaves us with the following abduction problem. We must find a formula
ψ over the program variables, such that the following two conditions hold:

|= χ ∧ ψ ⇒ Γ and 6|= χ ∧ ψ ⇒ false

In Section 4, we describe a method of solving this problem. For now, we
assume a procedure Abduc that, given χ and Γ , returns a lazy list of solutions
for ψ. InferByAbduction then returns the list of solutions ψ1, ψ2, . . . , ψn for
each placeholder φp, paired with the corresponding program position p of φp.

3.2 Program Decoration

An important consideration in choosing the placement of placeholder assump-
tions is that each clause in the VC should contain a placeholder to allow us to
to make progress when the VC is not valid (except, of course, for the whole
program’s precondition, which must be valid). In general, this placement strat-
egy depends on the VC generation scheme. In our particular language and VC
scheme, it suffices to put a placeholder at the head of each loop. To support
localization (as seen in the example of Figure 1) we also add a placeholder be-
fore each loop. That is, the procedure Decorate replaces each statement of the
form while(?)[σ]{τ} in a program with:

assume φpre;
while(?) [σ; assume φinv] { τ }

As a heuristic matter, we consider introducing a precondition for a loop before
introducing an invariant.

3.3 VC generation

The general approach we have described can use any VC generator function spr,
provided the VC’s can be rewritten into the required form. Here, we present a

(1)
P,Q ` skip : true, P,Q

(2)
Q′ = ∃v′.(P [v′/v] ∧ v = (e[v′/v]))

P,Q ` v := e : true, Q′, Q[e/v]

(3)
Q′ = P ∧ C P ′ = Q ∧ C

P,Q ` assert C : true, Q′, P ′ (4.1)

Q′ = P ∧ C P ′ = (C ⇒ Q)
C not placeholder

P,Q ` assume C : true, Q′, P ′

(4.2)
VC′ = (P ∧ φp(v) ⇒ Q)

P,Q ` assume φp(v) : VC′, true, true
(5)

P, P ′ ` s1 : VC1, Q
′, P ′′

Q′, Q ` s2 : VC2, Q
′′, P ′

P,Q ` s1; s2 : VC1 ∧ VC2, Q′′, P ′′

(6)

P, true ` I : VC1, , Q
′

true, true ` elim(I); s; I : VC2, , Q2

true, Q ` elim(I) : VC3, P
′, Q3

VC′ = VC1 ∧ VC2 ∧Q2 ∧ VC3 ∧Q3

P,Q ` while(?)[I] do {s} : VC′, P ′, Q′

(7)

P,Q ` s1 : VC1, Q1, P1 P,Q ` s2 : VC2, Q2, P2

Q′ = Q1 ∨Q2 P ′ = P1 ∧ P2

P,Q ` if(?) then s1 else s2 : VC1 ∧ VC2, Q′, P ′

Fig. 5. Rules describing computation of VC’s

simple VC generation approach for programs without procedures that explicitly
generates VC’s in the form χ ∧ φp ⇒ Γ . The approach is based on propagating
both strongest postconditions forwards and weakest preconditions backwards.
However, we could also use a more standard approach based on just weakest
preconditions with some rewriting of the result into the right form.

In our VC generation scheme, we generate a clause for each placeholder φp.
Given the strongest postcondition of the code preceding p, this clause states that
φp guarantees the weakest precondition of the code succeeding p. Since we can’t
compute preconditions and postconditions precisely for loops, we abstract these
conditions, using the stated invariants of the loop. The result is a VC that is a
sufficient but not necessary condition for the correctness of the program.

We describe our VC generation procedure as a set of inference rules (Figure 5)
that produce judgements of the form P,Q ` s : VC′, P ′, Q′. The meaning of this
judgement is that, if the environment of statement s guarantees precondition P
and postcondition Q, then s will guarantee postcondition P ′ and precondition
Q′, given that VC′ is valid. That is, the judgement is valid when |= VC′ implies
|= P ⇒ wp(s, P ′) and |= Q′ ⇒ wp(s,Q).

For primitive statements s, we have VC′ = true, P ′ = sp(s, P) and Q′ =
wp(s,Q). Thus, our rules propagate strongest post-conditions forward and weak-
est pre-conditions backward. However, rule 4.2 is a special rule for placeholder
assumptions. It produces a VC clause rather than propagating sp and wp.

For while loops (rule 6), we weaken the post-condition and strengthen the
precondition by allowing entry to the loop in any state satisfying the stated loop
invariants. The first premise guarantees that the loop invariant holds on entry,
the second that the loop invariant is preserved by one iteration of the loop, and
the third that exiting the loop satisfies its postcondition. One way to think of
this is that, to verify a loop under pre- and post-conditions P and Q, we need
to establish three Hoare triples: {P} I {true} and {true} elim(I); s; I {true}
and {true} elim(I) {Q}. For example, in a typical case, we want to prove an
invariant assertion ψ in a loop. The decorated loop looks like this:

while(?) [assert ψ; assume φinv] { s }

According to the first premise of rule (6), the precondition Q′ of the loop is the
precondition of “assert ψ; assume φinv”, which is ψ. The postcondition P ′ of the
loop (third premise) is the postcondition of “assume ψ; assume φinv”, which is
true, since φinv is a placeholder. Finally, the second premise yields the VC from:

assume ψ; assume φinv; s; assert ψ; assume φinv;

This yields two clauses, one for each placeholder instance, according to rule
4.2. The first is ψ∧φinv ⇒ wp(s, ψ). The second is true. To make the VC valid,
we need to find an assumption φinv, under which ψ is inductive. Furthermore,
since we add an “assume φpre” statement before the loop, Rule (4.2) results in
the generation of the VC clause P ∧ φpre ⇒ ψ where P is the precondition of
φpre. Thus, to make this VC valid, we must find an appropriate solution for φpre
that implies ψ holds initially. Finally, the third premise of Rule (6) results in the
generation of the VC ψ∧φinv ⇒ Q, meaning that we must find a strengthening
φinv of ψ that implies loop postcondition Q.

For program π, our goal is to derive a judgement of the form true, true ` π :
VC′, , Q′. This judgement says that if VC′ is valid, then a sufficient condition
for correctness of our program in any initial state is Q′. Thus, we have spr(π) =
VC′ ∧Q′. Using our particular decoration scheme, we are guaranteed that each
clause in VC′ has exactly one occurrence of a placeholder (rule 4.2), or is free of
placeholders (other rules).

Finally, we note that propagating postconditions forward has an additional
advantage for compositional verification. That is, when we pass a localized pro-
gram loop to the oracle for verification, we can include the precondition for that
loop computed by our VC generator as an additional constraint on the initial
state. This can allow us to verify assertions with smaller localizations.

4 Performing Abductive Inference

We now describe our technique for performing abductive inference, which cor-
responds to the Abduc function used in the InferByAbduction algorithm.
Recall that, given formulas χ and Γ , abduction infers a formula ψ such that:

(1) χ ∧ ψ ⇒ Γ (2) SAT(χ ∧ ψ)

While there are many formulas ψ that satisfy these two conditions, a useful
abductive solution in our setting should have two characteristics:

1. First, ψ should contain as few variables as possible because invariants typi-
cally describe relationships between a few key variables in the program. For
example, if both x = y and x+ 10z + 5w − 4k ≤ 10 are sufficient to explain
Γ , it is preferable to start with the simpler candidate x = y.

2. Second, ψ should be as general (i.e., as logically weak) as possible. For exam-
ple, if x = 0 ∧ y = 0 and x = y are both solutions to the inference problem,
we prefer x = y because solutions that are too specific (i.e., logically strong)
are unlikely to hold for all executions of the program.

To find solutions containing as few variables as possible, observe that χ∧ψ ⇒
Γ can be rewritten as ψ ⇒ (¬χ∨Γ). Now, consider a satisfying assignment σ of
¬χ∨Γ consistent with χ. By definition of a satisfying assignment, σ ⇒ (¬χ∨Γ).
Thus, any satisfying assignment of ¬χ∨Γ consistent with χ is a solution for the
abductive inference problem. However, since we are interested in solutions with
as few variables as possible, we are not interested in full satisfying assignments of
¬χ∨Γ , but rather partial satisfying assignments. Intuitively, a partial satisfying
assignment σ of ϕ assigns values to a subset of the free variables in ϕ, but is
still sufficient to make ϕ true, i.e., σ(ϕ) ≡ true. Therefore, to find an abductive
solution containing as few variables as possible, we will compute a minimum
partial satisfying assignment (MSA) of ¬χ∨Γ [5]. An MSA of formula ϕ is simply
a partial satisfying assignment of ϕ containing no more variables than other
partial satisfying assignments of ϕ. Minimum satisfying assignments for many
theories, including Presburger arithmetic used in this paper, can be computed
using the algorithm described in [5].

Now, if an MSA of ¬χ ∨ Γ contains a set of variables V , we know there
exists an abductive solution containing only V . However, we want to find a
logically weakest formula over V that still implies ¬χ∨ Γ . It can be shown that
a weakest formula over V that implies ¬χ ∨ Γ is given by ∀V . (¬χ ∨ Γ) where
V = Vars(¬χ ∨ Γ) − V . Furthermore, since we typically prefer quantifier-free
solutions, quantifier elimination can be used to eliminate V in theories that
admit quantifier elimination (such as Presburger arithmetic used here).

Example 1. Consider the problem from Section 1.1 of finding a ψ such that:

(1) ψ ∧ P ∧ x = y ⇒ wp(S, x = y) (2) SAT(ψ ∧ P ∧ x = y) where

P = (z = i− j ∧ x = 0 ∧ y = 0 ∧ w = 0)
wp(S, x = y) = (x+ (z + x+ y + w)%2 = y + 1)

To solve this problem, we first compute an MSA of x 6= y∨¬P∨wp(S, x = y) con-
sistent with P ∧x = y. Using the algorithm of [5], an MSA is z = 1, w = 0. Since
variables x, y, i, j are not in the MSA, we generate the formula ∀x, y, i, j. x 6=
y ∨ wp(S, x = y). Using quantifier elimination, this formula is equivalent to
(z + w)%2 = 1, which is the abductive solution we used in Section 1.1.

Name LOC Time (s) # queries Polyhedra Linear Cong Blast Compass Provable by RP?

B1 45 0.6 2 8 8 4 8 8

B2 37 0.2 2 8 4 8 8 8

B3 51 1.0 2 4 8 4 8 4

B4 59 0.4 3 4 8 4 8 8

B5 89 0.6 3 4 8 4 8 8

B6 60 0.5 5 8 4 8 4 8

B7 56 0.6 2 8 8 4 4 8

B8 45 0.2 2 4 8 4 8 4

B9 59 0.5 1 8 8 4 8 8

B10 47 0.2 2 4 8 4 4 8

Fig. 6. Experimental results on micro benchmarks

4.1 Computing All Abductive Solutions

In the previous discussion, we described how to compute one solution to the ab-
ductive inference problem defined by χ and Γ . However, the InferByAbduction
algorithm from Section 3 requires a lazy list of solutions. That is, given a set of
previous solutions ψ1, ψ2, . . . , ψk for the abduction problem defined by χ and Γ ,
how do we compute a new solution ψk+1 distinct from ψ1, ψ2, . . . , ψk?

To find such a solution φk+1, we compute an MSA of ¬χ ∨ Γ , that is not
only consistent with χ but also with the negations ¬ψ1, ¬ψ2, . . . , ¬ψk of each of
the previous solutions. Given such an MSA containing variables V , the formula
∀V . (¬χ∨Γ) yields a new solution distinct from previous solutions. The process
terminates when there is no longer a consistent solution.

5 Implementation and Experimental Evaluation

We have implemented the proposed technique using the SAIL front-end [6]
for C programs and the Mistral SMT solver [7, 5]. Mistral computes MSAs and
performs quantifier elimination, which are necessary for performing abduction.

To evaluate our technique, we performed two experiments, one involving
challenging synthetic benchmarks, and a second using open-source C programs.
In both experiments, our oracle consists of four client tools: BLAST [8], the
polyhedra abstract domain [9] implemented in the Interproc tool [10], the linear
congruences domain [11] also implemented in Interproc, and Compass [12, 13].

The results of the first experiment are summarized in Figure 6. This experi-
ment involves 10 synthetic benchmarks available from http://www.cs.wm.edu/
˜tdillig/tacas-benchmarks.tar.gz. None of these benchmarks can be verified using
one of the four client tools alone. Furthermore, even if we conjoin the invariants
inferred by each tool, the combined invariants are still not sufficient to prove the
assertion. However, using the proposed technique, all ten benchmarks can be
verified using BLAST, polyhedra, linear congruences, and Compass as clients.

Name LOC Time (s) # queries Avg # vars in query Avg LOC in query

Wizardpen Linux Driver 1242 3.8 5 1.5 29

OpenSSH clientloop 1987 2.8 3 2.3 5

Coreutils su 1057 3.0 5 1.7 6

GSL Histogram 526 0.6 4 3.6 15

GSL Matrix 7233 16.9 8 1.8 7

Fig. 7. Experimental results on real benchmarks.

In Figure 6, the column labeled LOC shows the number of lines of code in each
benchmark, and the column labeled “Time” shows analysis time in seconds, ex-
cluding the time taken by client tools to answer queries. The next column shows
the number of queries our technique poses to clients. The next four columns show
which of the analyses were able to successfully answer at least one query on a
given benchmark. Finally, the last column shows whether the original bench-
mark can be verified using the reduced product [14] of the convex polyhedra and
linear congruences abstract domains, as implemented in Interproc.

The main point of the first experiment is that all benchmarks from Figure 6
can be verified using the proposed technique, although no client tool can individ-
ually verify any benchmark. Furthermore, the number of queries to client tools
is small, ranging from 1-5 queries. This indicates that our technique is able to
home in on relevant lemmas necessary to localize the overall proof. Figure 6 also
shows that it is often helpful to combine different approaches in the verification
task. For example, BLAST and polyhedra were useful for verifying benchmark
3, whereas linear congruences and Compass were used to verify benchmark 6.

In a second experiment, summarized in Figure 7, we used the proposed tech-
nique for verifying assertions in real C programs. The programs we analyzed in-
clude a Linux device driver, an OpenSSH component, a coreutil application, and
two modules from the GNU scientific library (GSL). These benchmarks range
from 526 to 7233 lines of code. As in the previous experiment, none of these
benchmarks can be verified by individual client tools alone (i.e., they either do
not terminate or report a false alarm). However, when the four client tools are
combined using our technique, all benchmarks can be successfully verified.

Figure 7 also shows that, although the original programs are quite large, the
extracted program fragments provided to client tools are small, ranging in size
from an average of 5 to 29 lines. This corroborates the claim that our technique
often extracts subgoals on program fragments that are much smaller than the
original program. Although analyses like the polyhedra domain do not typically
work on programs of this size, our technique can utilize such expressive analyses
in the verification task by extracting small proof subgoals.

6 Related Work

Compositional Verification The technique presented here is similar to other
techniques for compositional verification such as [1, 2, 15]. Specifically, [1] and
[2] use Angluin’s L∗ automata learning algorithm for learning assumptions in
concurrent finite-state systems. In this work, we address synthesizing composi-
tional proofs for sequential infinite-state systems, and our approach to generating
missing assumptions is based on logical abduction rather than Angluin’s learn-
ing algorithm. Similar to our proposed technique, the approach described in [15]
also employs a circular compositional approach and uses different abstractions
to discharge proof subgoals. However, in contrast to [15], our proof subgoals are
generated automatically by abduction.

Combining Program Analyzers Most previous work on combining verifi-
cation tools focuses on abstract interpretation. Specifically, the reduced cardinal
product [14] and logical product [16] constructions allow combining different ab-
stract domains. Our work differs from these approaches in several respects: First,
we do not require client tools to be based on abstract interpretation and treat
each client tool as a black box. Second, our technique is compositional and does
not require client tools to verify the entire program, but instead proof subgoals
represented as small code snippets. This aspect of our technique allows utilizing
very expensive analyses even when verifying large programs. Third, unlike the
reduced product construction, our technique is automatic and does not need to
be reimplemented for combining different analyses.

The Hector tool described in [17] also allows information exchange between
different analysis tools. However, Hector does not generate proof subgoals, and
information exchange is through first-order logic rather than source code.

Use of Abduction in Verification Several other approaches have used ab-
ductive inference in the context of program verification [18, 3, 19]. Among these
approaches, [3] and [19] also use abduction to generate missing preconditions.
Specifically, [3] uses abduction for generating missing assumptions in an inter-
procedural shape analysis algorithm, whereas [19] uses abduction in the context
of logic programming. Our work differs from [3, 19] in that we address combining
different verification tools in a compositional way and use a different algorithm
for computing abductive solutions. Our own recent work also uses abductive
inference to semi-automate the task of classifying error reports as false alarms
or real bugs [20]. Similar to [20], we use minimum satisfying assignments [5]
to solve abductive inference problems. However, the present work addresses the
very different problem of combining different verification tools in one framework.

7 Conclusion

We have proposed an algorithm for automatically synthesizing circular compo-
sitional proofs of program correctness. Our technique employs logical abduction
to infer auxiliary lemmas that are useful in a compositional proof. The inference
of helper lemmas allows combining the strengths of different program verifiers in

one framework, as different verifiers can be used to discharge different lemmas.
We have implemented the proposed technique, and our experiments show that
it can verify programs that cannot be proven by individual tools.

8 Acknowledgments

We would like to thank Hongseok Yang, Aaron Bradley, Peter O’Hearn, Noam
Rinetzky, and the anonymous reviewers for their helpful feedback.

References

1. Cobleigh, J., Giannakopoulou, D., Păsăreanu, C.: Learning assumptions for com-
positional verification. TACAS (2003) 331–346

2. Gupta, A., Mcmillan, K.L., Fu, Z.: Automated assumption generation for compo-
sitional verification. Form. Methods Syst. Des 2008

3. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. POPL 44(1) (2009) 289–300

4. Peirce, C.: Collected papers of Charles Sanders Peirce. Belknap Press (1932)
5. Dillig, I., Dillig, T., McMillan, K., Aiken, A.: Minimum satisfying assignments for

SMT, CAV (2012)
6. Dillig, I., Dillig, T., Aiken, A.: SAIL: Static Analysis Intermediate Language.

Stanford University Technical Report
7. Dillig, I., Dillig, T., Aiken, A.: Cuts from Proofs: A Complete and Practical Tech-

nique for Solving Linear Inequalities over Integers. In: CAV. (2009)
8. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Software verification with

BLAST. In: International conference on Model checking software. (2003) 235–239
9. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints among Vari-

ables of a Program. In: POPL, ACM (1978) 84–96
10. Jeannet, B.: Interproc analyzer for recursive programs with numerical variables.

http://pop-art. inrialpes. fr/interproc/interprocweb. cgi
11. Granger, P.: Static analysis of linear congruence equalities among variables of a

program. In: TAPSOFT’91, Springer (1991) 169–192
12. Dillig, I., Dillig, T., Aiken, A.: Fluid Updates: Beyond Strong vs. Weak Updates.

In: ESOP. (2010)
13. Dillig, I., Dillig, T., Aiken, A.: Precise reasoning for programs using containers.

POPL (2011)
14. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:

POPL, ACM (1979) 269–282
15. McMillan, K.: Verification of infinite state systems by compositional model check-

ing. Correct Hardware Design and Verification Methods (1999) 705–705
16. Gulwani, S., Tiwari, A.: Combining abstract interpreters. In: ACM SIGPLAN

Notices. Volume 41., ACM (2006) 376–386
17. Charlton, N., Huth, M.: Hector: Software model checking with cooperating analysis

plugins. In: Computer Aided Verification, Springer (2007) 168–172
18. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified

logical domains. In: POPL, ACM (2008) 235–246
19. Giacobazzi, R.: Abductive analysis of modular logic programs. In: Proceedings of

the 1994 International Symposium on Logic programming, Citeseer (1994) 377–391
20. Dillig, I., Dillig, T., Aiken, A.: Automated error diagnosis using abductive infer-

ence. In: PLDI. (2012)

