
The First Reactive Synthesis Competition
(SYNTCOMP 2014)

Swen Jacobs1,2, Roderick Bloem1, Romain Brenguier3, Rüdiger Ehlers4,5, Timotheus Hell1, Robert
Könighofer1, Guillermo A. Pérez3, Jean-François Raskin3, Leonid Ryzhyk6,7, Ocan Sankur8,3, Martina
Seidl9, Leander Tentrup2, Adam Walker6

1 Graz University of Technology, Austria
2 Saarland University, Saarbrücken, Germany
3 Université Libre de Bruxelles
4 University of Bremen, Germany
5 DFKI GmbH, Bremen, Germany
6 NICTA, Sydney, Australia
7 Carnegie Mellon University, Pittsburgh, USA
8 CNRS, IRISA, Rennes, France
9 Johannes-Kepler-University Linz, Austria

Abstract. We introduce the reactive synthesis competi-
tion (SYNTCOMP), a long-term effort intended to stim-
ulate and guide advances in the design and application
of synthesis procedures for reactive systems. The first
iteration of SYNTCOMP is based on the controller syn-
thesis problem for finite-state systems and safety spec-
ifications. We provide an overview of this problem and
existing approaches to solve it, and report on the de-
sign and results of the first SYNTCOMP. This includes
the definition of the benchmark format, the collection of
benchmarks, the rules of the competition, and the five
synthesis tools that participated. We present and ana-
lyze the results of the competition and draw conclusions
on the state of the art. Finally, we give an outlook on
future directions of SYNTCOMP.

Key words: synthesis, reactive systems, competition,
experimental evaluation, benchmarks, safety games

1 Introduction

Ever since its definition by Church [23], the automatic
synthesis of reactive systems from formal specifications
has been one of the major challenges of computer sci-
ence, and an active field of research. A number of funda-
mental approaches to solve the problem have been pro-
posed (see e.g. [31, 53, 54]). Despite the obvious advan-
tages of automatic synthesis over manual implementa-
tion and the significant progress of research on theoret-
ical aspects of synthesis, the impact of formal synthe-
sis procedures in practice has been very limited. One
reason for this limited impact is the scalability problem
that is inherent to synthesis approaches. The reactive

synthesis problem is in general 2EXPTIME-complete for
LTL specifications [53]. A number of approaches have re-
cently been invented to solve special cases of the problem
more efficiently, either by restricting the specification
language [12], or by a smart exploration of the search
space [29, 32–35, 59]. While important progress on the
scalability problem has been made, an additional prob-
lem is the lacking maturity and comparability of im-
plementations, and a lack of incentive for the develop-
ment of efficient implementations [27]. Solving different
aspects of this problem is the main motivation of SYNT-
COMP, as explained in the following (inspired by [48]).

Synthesis tools are hard to compare. Research papers
that introduce a new algorithm in many cases do include
a comparison of its implementation against existing ones.
However, the comparison of a large number of tools on
a benchmark set of significant size can take weeks or
months of computation time. This is often circumvented
in research papers by comparing the new results to ex-
isting experimental data (usually obtained under differ-
ent experimental conditions), or by comparing against a
small number of tools on a small benchmark set. In both
cases, this limits the value of the experimental results. In
contrast, SYNTCOMP provides reliable results for a sig-
nificant number of synthesis tools on a large benchmark
set, with consistent experimental conditions.

It is hard to exchange benchmark sets. Related to the
comparison of tools, we note that almost every existing
tool uses its own input language, and benchmarks have
to be translated from one format to another in order to
compare different tools. This makes it hard to exchange
benchmark sets, and adds another source of uncertainty
when comparing tools. SYNTCOMP aims to solve these
issues by defining a standard benchmark format, and by

ar
X

iv
:1

50
6.

08
72

6v
3

 [
cs

.L
O

]
 1

3
A

pr
 2

01
6

2 Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014)

collecting a benchmark library that is publicly available
for the research community.

Usability of synthesis tools. Implementations of many
synthesis approaches do exist [8,14,28], but they cannot
effectively be used as black-box solvers for applications.
The definition of a standard language is a first step in
this direction. In addition, the competition forces tool
developers to produce implementations that are suffi-
ciently robust to work on the complete benchmark li-
brary of SYNTCOMP with a fixed configuration. Thus,
SYNTCOMP promotes the simplicity of use that comes
with push-button approaches that do not require any
user intervention.

Summing up, the goal of the reactive synthesis competi-
tion (SYNTCOMP) is to foster research in scalable and
user-friendly implementations of synthesis techniques.

Related competitions. Competitions have been used
to achieve these goals in many related fields, including
automated reasoning [5, 43, 62] and automated verifica-
tion [6]1. A difference of synthesis competitions to most
of the competitions in automated reasoning or verifica-
tion is that solutions to the synthesis problem can be
ranked according to inherent quality criterions that go
beyond mere correctness, such as reaction time or size
of the solution. Thus, a synthesis competition also needs
to measure the quality of solutions with respect to these
additional metrics.

In parallel to SYNTCOMP 2014, the syntax-guided
synthesis competition (SyGuS-COMP) was held for the
first time [1]. The focus of SyGuS-COMP is on the syn-
thesis of functional instead of reactive programs, and the
specification is given as a first-order logic constraint on
the function to be synthesized, along with a syntactic
constraint that restricts how solutions can be built. The
goals of SyGuS-COMP are similar to those of SYNT-
COMP, but for a fundamentally different class of pro-
grams and specifications.

Timeline. The organization of the first SYNTCOMP
began formally with a presentation and discussion of
ideas at the second Workshop on Synthesis (SYNT) in
July 2013. The organization team consisted of Roderick
Bloem, Rüdiger Ehlers and Swen Jacobs. The decision
for the specification format was made and announced
in August 2013, and a call for benchmarks, along with
the rules of the competition, was published in November
2013. In March 2014 we published our reference imple-
mentation, and benchmarks were collected until the end
of April 2014. Participants had to submit their tools until
the end of May 2014, and the experiments for the compe-
tition were executed in June and July 2014. The results
were first presented at the 26th International Confer-
ence on Computer Aided Verification (CAV) and the 3rd
SYNT Workshop in July 2014.

1 See also: the Hardware Model Checking Competition, http:
//fmv.jku.at/hwmcc/. Accessed February 2016.

Goals. The first competition had the following goals:

– define a class of synthesis problems and a benchmark
format that results in a low entry-barrier for inter-
ested researchers to enter the competition

– collect benchmarks in the SYNTCOMP format
– encourage development of synthesis tools that sup-

port the SYNTCOMP format
– provide a lobby that connects tool developers with

each other, and with possible users of synthesis tools

SYNTCOMP 2014 was already a success before the ex-
perimental evaluation began: within less than 10 months
after the definition of the benchmark format, we col-
lected 569 benchmark instances in 6 classes of bench-
marks, and 5 synthesis tools from 5 different research
groups were entered into the competition. For four of
the tools, at least one of the developers was present at
CAV and/or the SYNT workshop.

Overview. The rest of this article describes the back-
ground, design, participating solvers (called entrants),
and results of SYNTCOMP 2014. We will introduce the
synthesis problem for safety specifications, as well as dif-
ferent approaches for solving it, in Section 2. We define
the SYNTCOMP format in Section 3, and describe the
benchmark set for SYNTCOMP 2014 in Section 4. Sec-
tion 5 defines the rules of the competition. In Section 6
we give an overview of the entrants of SYNTCOMP
2014, followed by some notes on the execution of the
competition in Section 7. In Section 8, we present and
analyze the experimental results of the competition.

Note that Sections 4 and 6, as well as parts of Sec-
tion 2 are based on the descriptions that the respective
benchmark and tool authors had to supply in order to
participate. The setup of the competition framework as
described in Section 7 was taken care of by Timotheus
Hell. The remainder of this article is original work of the
SYNTCOMP organizers.

This article is based on the first description of the
SYNTCOMP format [39] and a preliminary version of
the SYNTCOMP 2014 report [40].

2 Problem Description and Synthesis
Approaches

Informally, the reactive synthesis problem consists of
finding a system C that satisfies a given specification ϕ
in an adversarial environment. In general, systems may
be infinite-state (programs) or finite-state (circuits), and
specifications can come in different forms, for example as
temporal logic formulas or as monitor circuits.

For the first SYNTCOMP, we aimed for a low entry-
barrier for participants, and to keep the competition
manageable in terms of tasks like the definition of in-
put and output format, and the verification of results.
To this end, we only consider the synthesis of finite-state

http://fmv.jku.at/hwmcc/.
http://fmv.jku.at/hwmcc/.

Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014) 3

systems from pure safety specifications modeled as moni-
tor circuits. The monitor circuit reads two kinds of input
signals: uncontrollable inputs from the environment, and
controllable inputs from the system to be synthesized. It
raises a special output BAD if the safety property ϕ has
been violated by the sequence of input signal valuations
it has read thus far.

Then, the realizability problem is to determine if there
exists a circuit C that reads valuations of the uncontrol-
lable inputs and provides valuations of the controllable
inputs such that BAD is not raised on any possible exe-
cution. The synthesis problem is to provide such a C if it
exists. As a quality criterion, we consider the size of the
produced implementation, which not only correlates to
the cost of implementing a circuit in hardware, but often
also leads to implementations which have other desirable
properties, like short reaction time.

2.1 Synthesis as a Safety Game

The traditional approach to reactive synthesis is to view
the problem as a game between two players [20, 54, 63]:
the environment player decides uncontrollable inputs,
and the system player decides controllable inputs of the
monitor circuit. States of the game are valuations of the
latches in the monitor circuit. A state is safe if BAD is
not raised. The goal of the system player is to visit only
safe states, regardless of the environment behavior.

Game-based Synthesis. In a first step, a so-called win-
ning region for the system player is computed. The win-
ning region W is the set of all states from which the sys-
tem player can enforce the specification, i.e., from which
it can guarantee that the environment cannot force the
game into an unsafe state.

In a second step, a winning strategy is derived from
the winning region. For every state and every valuation
of the uncontrollable inputs, the winning strategy defines
a set of possible valuations of the controllable inputs that
can ensure that the winning region is not left.

The last step is to implement this strategy in a cir-
cuit, where a concrete choice for the controllable inputs
has to be made for every state and valuation of uncon-
trollable inputs.

All of the tools in SYNTCOMP 2014 implement such
a game-based synthesis approach, in one form or an-
other.

Symbolic encoding. To achieve acceptable scalabil-
ity, it is important to implement synthesis algorithms
symbolically, i.e., by manipulating formulas instead of
enumerating states [2]. In synthesis, symbolic algorithms
are usually implemented with Binary Decision Diagrams
(BDDs) [19,60]. Most of the tools in SYNTCOMP 2014
use BDD-based approaches with different optimizations
to achieve good performance in synthesis time and cir-
cuit size.

However, BDDs also have scalability issues, in par-
ticular the growing size of the data structure itself. Al-
ternatively, the problem can be encoded into a sequence
of propositional satisfiability (SAT), quantified Boolean
formulas (QBF), or satisfiability modulo theories (SMT)
problems. The enormous performance improvements in
decision procedures for satisfiability over the last decades
encourage such approaches.

In the following, we give a mostly informal descrip-
tion of the three synthesis techniques used by the tools
that entered SYNTCOMP 2014: BDD-based game solv-
ing (Section 2.3), SAT-/QBF-based game solving (Sec-
tion 2.4), and template-based synthesis (Section 2.5).

2.2 Preliminaries: Circuits and Games

Let B = {0, 1}. If X denotes a finite set of Boolean vari-
ables, then any v ∈ BX is called a valuation of X. Sets
of valuations of X are represented by quantified Boolean
formulas on X, which are made of propositional logic
and first-order quantification on X. A formula f with
free variablesX will be written as f(X), and for the same
formula under a given valuation v of X we write f(v). If
the free variables are X ∪ Y , we also write f(X,Y). For
a set of variables X = {x1, . . . , xn}, we write ∃X instead
of ∃x1∃x2 . . . ∃xn, and similarly for universal quantifica-
tion. For a set of variables X = {x1, . . . , xn}, we use
X ′ to denote {x′1, . . . , x′n}, a set of primed copies of the
variables in X, usually representing the variables after a
step of the transition relation.

Then, the synthesis problem is given as a (sequential)
monitor circuit M over the sets of variables L, Xu, Xc,
where

– L are state variables for the latches in the monitor
circuit,

– Xu are uncontrollable input variables,
– Xc are controllable input variables, and
– BAD ∈ L is a special variable for the unsafe states,

i.e., a state is unsafe iff BAD = 1.2

We assume that the system has a unique initial state, in
which all latches in L including BAD are initialized to 0.

A solution of the synthesis problem is a sequential
circuit C with inputs L∪Xu and outputs Xc, such that
the composition of C and M is safe, i.e., states with
BAD = 1 are never reached, for any sequence of (uncon-
trollable) inputs Xu and starting from the unique initial
state. The synthesis problem is depicted in Figure 1.

Note that a circuit defines a (Mealy-type) finite-state
machine in the standard way. With the additional dis-
tinction between controllable and uncontrollable inputs
and the interpretation of BAD as the set of unsafe states,

2 For simplicity, we assume that BAD is a latch. If BAD is not
a latch in the given monitor circuit, then it can be described as
a formula f(L,Xu, Xc). In this case we can obtain a problem in
the described form by extending the circuit with a new latch that
takes f(L,Xu, Xc) as an input and provides output BAD.

4 Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014)

Xu

C

M

BAD

Xc

LL

Fig. 1. Synthesis problem with monitor circuit M and (unknown)
system circuit C

it defines a safety game: the set of states is BL (val-
uations of latches L), with initial state 0L. The tran-
sition relation of the monitor circuit can be translated
into a formula T (L,Xu, Xc, L

′) that relates valuations of
L,Xu, Xc to the valuation of (next- state variables) L′.
In every turn of the game, first the environment player
chooses a valuation of Xu, and then the system player
chooses a valuation of Xc. The successor state is com-
puted according to T (L,Xu, Xc, L

′). A strategy of the
system player is a function that maps the sequence of
valuations of L and Xu seen thus far to a set of possible
valuations for Xc. It is deterministic if it always maps
to a unique valuation. A strategy is winning for the sys-
tem player if it avoids entering the unsafe states regard-
less of the actions of the environment. Two-player safety
games are determined, i.e., for every such game either
the environment player or the system player has a win-
ning strategy. A memoryless strategy only depends on
the current values of L and Xu. For safety games, there
exists a winning strategy iff there exists a memoryless
winning strategy. A deterministic memoryless winning
strategy can be represented as a circuit, and thus pro-
vides a solution to the synthesis problem.

2.3 BDD-based Game Solving

For a basic BDD-based algorithm, assume that the tran-
sition relation T (L,Xu, Xc, L

′) and the sets of initial and
unsafe states are each represented as a single BDD (see
e.g. [24]). To determine whether the environment has a
strategy that guarantees its victory, one repeatedly com-
putes the set of states from which it can force the game
into the unsafe states. If S(L′) is a formula over the
latches L′, representing a set of states, then the set of
uncontrollable predecessors of S(L′) can be computed as
the set of valuations of latches L that satisfy

UPRE(S(L′)) = ∃Xu ∀Xc ∃L′. S(L′)∧ T (L,Xu, Xc, L
′).

To compute the winning region W (L) of the system
player, we first compute the least fixpoint of UPRE on
BAD:

µS(L). UPRE(S(L′) ∨ BAD′) (1)

The resulting set of latch valuations represents the states
from which the environment can force the game into the
unsafe states. Since two-player safety games are deter-
mined, the complement of this set is the winning region
W (L) for the system player (see, e.g. [63]).

That is, if during our fixpoint computation we no-
tice that the environment can force the game from the
initial state to the unsafe states, then we can stop —
the specification is unrealizable. Otherwise, the initial
state will be contained in the winning region W (L), and
W (L) represents a non-deterministic strategy λ for the
system player, which can be described as a function λ
that maps a valuation s ∈ BL of the latches and a valu-
ation σu ∈ BXu of the uncontrollable variables to a set
of possible valuations for the controllable variables:

λ(s, σu) = {σc ∈ BXc | ∀L′. T (s, σu, σc, L′)→W (L′)}.

To solve the synthesis problem, in principle any deter-
minization of λ can be chosen to obtain a functional
strategy for the system player.

In order to compute the winning region efficiently
and to find a strategy that can be represented as a small
circuit, a number of optimizations can be used. We intro-
duce some of the common optimizations in the following,
in order to be able to compare and distinguish the par-
ticipants that use a BDD-based approach.

Partitioned Transition Relation and Direct Sub-
stitution. To be efficient, the explicit construction of
the BDD for the transition relation should be avoided.
This can be achieved by partitioning the transition re-
lation into a set of simpler relations, inspired by similar
approaches for the model checking problem [21,24,55]. A
common approach is to split T (L,Xu, Xc, L

′) into a set
of (functional) relations {fl(L,Xu, Xc)}l∈L, where each
fl represents the next-state value of latch l.

Then, the uncontrollable predecessor can be com-
puted as

UPRE(S(L′)) = ∃Xu ∀Xc. S(L
′)[l′ ← fl(L,Xu, Xc)]l∈L,

avoiding to ever build the monolithic transition relation,
as well as having to ever declare a next state copy of any
latch variable in the BDDmanager. Substituting individ-
ual latches with functional BDDs is directly supported
by existing BDD packages, e.g., function bddVector-
Compose in the CUDD package [60]. This will be called
partitioned transition relation in the tool descriptions.

A special case of this approach is to identify those
latches that only store the value of some other variable
from the last step, i.e., the latch update function has
the form fl = x for some x ∈ L ∪ Xu ∪ Xc, and use
the substitution of latches by fl only for them. In this
case, we only substitute with a single existing variable
instead of a functional BDD, which can be done, e.g.,
with CUDD’s bddVarMap method. This will be called
direct substitution in the tool descriptions.

Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014) 5

BDD Reordering. Efficiency of BDD-based algorithms
depends to a large extent on the size of BDDs, which
in turn depends on the variable ordering [3]. To keep
the data structures small, reordering heuristics are com-
monly used to try to minimize BDDs at runtime [57].
Standard BDD packages come with pre-defined reorder-
ing strategies. Algorithms that do not use reordering at
all are usually not competitive.

Efficient Computation of UPRE. In the fixpoint com-
putation, we repeatedly use the UPRE operation to com-
pute the set from which the environment wins the game.
This operation consists of conjoining the current set of
states with the transition relation, followed by resolving
the quantification over inputs and current states to get
the description of the set of predecessor states. The latter
is called (existential or universal) abstraction over these
variables. In practice, it is often preferable to not use this
strict order, but instead do conjunction and abstraction
in parallel. This is directly supported in some BDD pack-
ages, e.g., in CUDD’s bddAndAbstract method. We
will call this optimization simultaneous conjunction and
abstraction.

Eager Deallocation of BDDs. Another optimization
is to deallocate BDDs that are no longer needed as soon
as possible. Not only do these BDDs take up memory,
but more importantly they are also counted and ana-
lyzed for BDD reordering. Thus, removing such BDDs
saves space and time. We will call this eager deallocation.

Abstraction-based algorithms. For systems that have
a large state space, an abstraction approach may be more
efficient than precise treatment of the full state space [25,
36, 37]. This can be done by defining a set of predicates
P (which may simply be a subset of the state variables
of the system [26, 47]) and computing over- and under-
approximations of the UPRE function, with respect to
the partitioning of the state space defined by the pred-
icates in P . Computing fixpoints for these approxima-
tions is usually much cheaper than computing the pre-
cise fixpoint for the system. If the system player wins
the game for the over-approximation of UPRE, then it
also wins the original game. If the system player loses
for the under-approximation of UPRE, then it also loses
the original game. If neither is the case, then the abstrac-
tion is insufficient and needs to be refined by introducing
additional predicates.

Extraction of Small Winning Strategies. To obtain
from λ a functional strategy that can be represented as
a small circuit, a number of optimizations is commonly
used. To this end, let λc be the restriction of λ to one
output c ∈ Xc. We want to obtain a partitioned strategy,
represented as one function fc(L,Xu) for every c ∈ Xc:

– For every c ∈ Xc, in some arbitrary order, compute
the positive and negative co-factors of λc, i.e., the
values s, σu for which λc(s, σu) can be 1 or 0, respec-
tively. These can be used to uniquely define fc, e.g.,

by letting fc(s, σu) = 0 for all values in the nega-
tive co-factor, and fc(s, σu) = 1 otherwise [11]. This
will be called co-factor-based extraction of winning
strategies.

– After extracting the functions fc(L,Xu) for all c ∈
Xc, one can minimize the strategy by doing an ad-
ditional forward reachability analysis: compute the
reachable states with this strategy, and restricting all
fc to values of L that are actually reachable.

– After translating the functions fc(L,Xu) into an AIG
representation, a number of minimization techniques
can be used to obtain small AIGs [49,50]. The verifi-
cation tool ABC3 [17] implements a number of these
minimization strategies that can be used in a black-
box fashion to obtain smaller circuits, and we will
call this approach ABC minimization.

2.4 Incremental SAT- and QBF-based Game
Solving

In contrast to the BDD-based approaches already pre-
sented, the SAT- and QBF-based approaches start with
a coarse over-approximation of the winning region, rep-
resented as a CNF formula W (L) over the state vari-
ables L. This approximation is incrementally refined,
such that W (L) eventually represents the winning re-
gion symbolically.

More concretely, we initialize W (L) to the set of all
safe states ¬BAD. In each iteration, the underlying solver
is used to compute a state s |= W (L) ∧ UPRE(¬W (L′))
within the current candidate version W (L) of the win-
ning region from which the environment player can en-
force to leave W (L) in one step. Obviously, such a state
cannot be part of the winning region. Hence, we refine
W (L) by removing this state. The state s can be repre-
sented as a cube over the state variables L, so removing
s from W (L) amounts to adding the clause ¬s.

In order to remove a larger region from W (L), the
algorithm tries to generalize the clause ¬s by remov-
ing literals, as long as the resulting clause ¬s̃ still only
excludes states from which ¬W (L) can be reached by
the environment in one step. More specifically, literals
are dropped as long as (W (L) ∧ ¬s̃) → UPRE(¬W (L′))
holds. Once W (L) ∧ UPRE(¬W (L′)) becomes unsatisfi-
able, i.e., no more state exists from which the environ-
ment can enforce to leave W (L), we have found the final
winning region and the algorithm terminates.

Implementation and Optimizations. A simple real-
ization of this approach uses a QBF solver both to com-
pute a state s and to generalize the induced blocking
clause ¬s. A generally more efficient approach is to use
two competing SAT solvers for the two different quan-
tifiers in UPRE when computing s. Other optimizations

3 http://www.eecs.berkeley.edu/~alanmi/abc/. Accessed
February 2016.

http://www.eecs.berkeley.edu/~alanmi/abc/

6 Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014)

include the utilization of reachability information dur-
ing the computation of s and during the generalization
of ¬s. A detailed description of different realizations and
optimizations can be found in [13].

Extraction of Small Winning Strategies. To obtain
an implementation from the winning region, different
methods can be applied. One possibility is to compute a
certificate for the validity of the QBF formula

∀L,Xu ∃Xc, L
′. W (L)→

(
T (L,Xu, Xc, L

′) ∧W (L′)
)

in the form of functions defining the variables in Xc

based on L and Xu using methods for QBF certifica-
tion [52]. Another option are learning-based approaches
that have also been proposed for BDD-based synthe-
sis, but work particularly well in a SAT-/QBF-based
framework [9, 30]. Similar to the BDD-based methods
for extracting small winning strategies, these learning
approaches also compute solutions for one output c ∈ Xc

at a time. They start with a first guess of a concrete out-
put function, and then refine this guess based on coun-
terexamples.

2.5 Template-based Synthesis

In order to compute a winning region, symbolically rep-
resented as a formula W (L) over the state variables L,
this approach constructs a parameterized CNF formula
W̃ (L,P), where P is a certain set of Boolean template
parameters. Different concrete values for these param-
eters P induce a different concrete CNF formula W (L)
over the state variables. This is done as follows. First, the
approach fixes a maximum number N of clauses. Then,
for every clause and every state variable, it introduces
parameters defining whether the state variable occurs in
the clause, whether it occurs negated or unnegated, and
whether the clause is used at all. This way, the search for
a CNF formula over the state variables (the winning re-
gion W (L)) is reduced to a search for Boolean constants
(values for the template parameters P). A QBF solver
is used to compute template parameter values such that
(a) the winning region contains only safe states, (b) the
winning region contains the initial state, and (c) from
each state of the winning region, the system player can
guarantee that the successor state will also be in the win-
ning region, regardless of the choice of the environment.
This is done by computing a satisfying assignment for
the variables P in QBF:

∃P ∀L,Xu ∃Xc, L
′.

W̃ (L,P)→ ¬BAD ∧
Init(L)→ W̃ (L,P) ∧
W̃ (L,P)→

(
T (L,Xu, Xc, L

′) ∧ W̃ (L′, P)
)
.

More details can be found in [13].

3 Benchmark Format

For the first SYNTCOMP, we have chosen to use an
extension of the AIGER format that is already used in
automatic verification and is suitable for our selected
range of problems, as well as extendable to other classes
of problems. Furthermore, the format poses a low entry-
barrier for developers of synthesis tools, as synthesis
problems are directly given in a bit-level representation
that can easily be encoded into BDDs and SAT-based
approaches. In the following, we first recapitulate the
AIGER format4, defined by Biere as the specification
language for the hardware model checking competition
(HWMCC)5. Then we show an extension of AIGER to
a specification format for synthesis problems with safety
specifications, developed for SYNTCOMP. Finally, we
define how to use the AIGER format for solutions of
synthesis problems in this setting.

3.1 Original AIGER Format

The AIGER format was developed as a compact and
simple file format to represent benchmarks for the hard-
ware model checking competition (HWMCC). Bench-
marks are encoded as multi-rooted And-Inverter Graphs
(AIGs) with latches that store the system state. We
use version 20071012 of the format. There is an ASCII
variant and a more compact binary variant of the for-
mat. Since the binary format is more restricted and thus
harder to extend than the ASCII format, we have chosen
to work with the ASCII variant for SYNTCOMP. In the
following, we explain the structure of AIGER files for
model checking of safety properties.

A file in AIGER format (ASCII variant) consists of
the following parts:

1. Header,
2. Input definitions,
3. Latch definitions,
4. Output definitions,
5. AND-gate definitions,
6. Symbol table (optional), and
7. Comments (optional)

Header. The header consists of a single line
aag M I L O A

where aag is an identifier for the ASCII variant of the
AIGER format, M gives the maximum variable index, and
I, L, O, A the number of inputs, latches, outputs, and
AND gates, respectively.

In the rest of the specification, each input, latch, out-
put, and AND gate is assigned a variable index i. To
support negation, variable indices i are even numbers,
and the negation of a variable can be referred to as i+1.

4 http://fmv.jku.at/aiger/. Accessed February 2016.
5 http://fmv.jku.at/hwmcc/. Accessed February 2016.

http://fmv.jku.at/aiger/
http://fmv.jku.at/hwmcc/

Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014) 7

Variable index 0 is reserved for the constant truth value
false, and accordingly 1 refers to true. In the follow-
ing, all numbers that represent inputs, latches, outputs
or AND-gates need to be smaller or equal to 2M+1.

Input definitions. Every input definition takes one
line, and consists of a single number (the variable in-
dex of the input). Inputs are never directly negated, so
they are always represented by even numbers.

Latch definitions. Every latch definition takes one line,
and consists of an even number (the variable index that
represents the latch), followed by a number that defines
which variable is used to update the latch in every step.
Latches are assumed to have initial value 0.

Output definitions. Every output definition takes one
line, and consists of a single number (representing a pos-
sibly negated input, latch, or AND-gate). For our class of
(safety) problems, there is exactly one output, and safety
conditions are encoded such that the circuit is safe if the
output is always 0.

AND-gate definitions. Every AND-gate definition takes
one line, and consists of three numbers. The first is an
even number, representing the output of the AND-gate,
and is followed by two numbers representing its (possibly
negated) inputs.

Symbol table. The symbol table assigns names to in-
puts, latches, and outputs. It is optional, and need not
be complete. Every line defines the name of one input,
latch, or output, and starts with i,l,o, respectively, fol-
lowed by the number of the input, latch, or output in the
sequence of definitions (not the variable index of the in-
put - so the first input is always defined by a line starting
with i0, the first latch with l0). This is followed by an
arbitrary string that names the variable.

3.2 Modified AIGER format for synthesis
specifications

The SYNTCOMP format is a simple extension of the
AIGER format for controller synthesis: we reserve the
special string “controllable_” in the symbol table, and
prepend it to the names of controllable input variables.
All other input variables are implicitly uncontrollable.

The synthesis problem defined by an extended AIGER
file is to find a circuit that supplies valuations for the
controllable inputs, based on valuations of uncontrol-
lable inputs and latches of the given circuit, such that
the output always remains 0.

3.3 Output of synthesis tools in AIGER format

Starting from an input as defined in Section 3.2, we de-
fine when an AIGER file is a solution of the synthe-
sis problem. Informally, the solution must contain the
specification circuit, and must be verifiable by existing

model checkers that support the AIGER format. We give
a more detailed definition in the following.

3.3.1 Syntactic correctness

Below we define how the input file can be changed in
order to obtain a syntactically correct solution. Unless
specified otherwise below, the output file must contain
all lines of the input file, unmodified and in the same
order.

Header. The original header line
aag M I L O A

must be modified to
aag M’ I’ L’ O A’

where

– I’ = I − c
(for c controllable inputs in the specification)

– L’ = L + l
(for l additional latches defined in the controller)

– A’ = A + a
(for a additional AND-gates defined in the controller)

– M’ = I’ + L’ + A’

The correct value for c can be computed from the
symbol table of the input file, while correct values for l
and a depend on the number of latches and AND-gates
in the solution.

Inputs. Definitions for uncontrollable inputs remain un-
changed. Definitions for controllable inputs are removed,
and the corresponding variable indices have to be rede-
fined either as new latches or AND-gates (see below).

Latches. No definitions of latches may be removed, but
additional latches may be defined in the lines following
the original latches.

Outputs. No definitions of outputs may be removed, no
additional outputs may be defined.

AND-gates. No definitions of AND-gates may be re-
moved, but additional AND-gates may be defined in the
lines following the original AND-gates.

Global restrictions. All variable indices of controllable
inputs have to be redefined exactly once, either as a new
latch or as a new AND-gate. New latches and AND-gates
may be defined using the remaining (uncontrollable) in-
puts, any latches, or newly defined AND-gates, but not
original AND-gates.6

Symbol table and Comments. The symbol table re-
mains unchanged. Comments may be removed or modi-
fied at will.

6 The reason for disallowing original AND-gates is that we want
the controller to work only based on the state of the given circuit
(i.e., values of latches), and the uncontrollable inputs. Original
AND-gates can be duplicated in the controller if necessary.

8 Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014)

3.3.2 Semantic Correctness

All input files will have the same structure as single
safety property specifications used in HWMCC. In par-
ticular, this means that there is only one output, and
the system is safe if and only if this output remains 0 for
any possible input sequence.

Any output file satisfying the syntactical restrictions
described in Section 3.3.1 is an AIGER file. It is correct
if for any input sequence (of the uncontrollable inputs),
the output always remains 0. We say that it is a solution
to the synthesis problem defined by the input file if it is
successfully model checked by an AIGER-capable model
checker within a determined time bound.

4 Benchmarks

The benchmark set for the first SYNTCOMP consisted
of 569 benchmark problems overall, out of which 390
are realizable and 179 unrealizable.7 Most of the bench-
marks existed before in other formats, and have been
translated to our new format. The full set of bench-
marks used in SYNTCOMP 2014 is available in directory
Benchmarks2014 of our public Git repository at https:
//bitbucket.org/swenjacobs/syntcomp/. In the fol-
lowing, we first explain how benchmarks have been col-
lected, translated and tested, and then describe the dif-
ferent sets of benchmarks.

4.1 Collection of Benchmarks

One of the major challenges for the first SYNTCOMP
was the collection of benchmarks in the extended AIGER
format. Following the decision to use this format, a call
for benchmarks was sent to the synthesis community.
Many synthesis tools have their own benchmark set, but
none of them previously used the SYNTCOMP format,
and therefore such benchmarks had to be translated.
Since we restrict to safety specifications currently, such
a translation usually involves a safe approximation of
liveness by safety properties, and results in a family of
benchmark instances for different precision of the ap-
proximation.

Generation and Translation of Benchmarks. One
method for obtaining benchmarks in AIGER format is
based on a translation from LTL specifications, together
with a reduction to a bounded synthesis problem, as used
in Acacia+8 [14,33]. The idea is to 1) translate the nega-
tion of the LTL formula into a universal co-Büchi au-
tomaton, 2) strengthen this automaton into a universal

7 Numbers regarding realizability are to the best of our knowl-
edge. The realizability status has not been verified for all bench-
mark instances.

8 http://lit2.ulb.ac.be/acaciaplus/. Accessed February
2016

k-co-Büchi automaton that accepts a word w if and only
if all the runs on w visit rejecting states at most k times
— such an automaton defines a safety objective and can
be easily made deterministic. 3) Finally, a safety game is
obtained by encoding succinctly this deterministic safety
automaton as an AIGER specification. We thus obtain a
family of benchmark instances, one for each valuation of
k. If the original LTL specification is realizable, then the
resulting benchmark instance will be realizable for suffi-
ciently large k. This translation from LTL to AIGER has
been implemented by Guillermo A. Pérez in the ltl2aig
routine9.

Another successful way of obtaining benchmarks was
to start from Verilog code, and use a toolchain composed
of the vl2mv routine of the VIS system10 [16], followed by
translation to AIGER (and optimization) by ABC11 [17],
and from binary AIGER format to ASCII format by the
aigtoaig routine from the AIGER tool set12. Liveness
properties can be approximated by safety properties, and
we obtain a family of benchmark instances for different
approximations. Such an approximation is explained in
more detail in Section 4.3. This approach will be called
the Verilog toolchain below.

Finally, a number of benchmarks have been obtained
by translation from structured specifications for the gen-
eralized reactivity(1) game solver SLUGS13. The term
“structured” in this context refers to support for con-
straints over (non-negative) integer numbers, which are
automatically compiled into a purely Boolean form. The
purely Boolean generalized reactivity(1) safety specifi-
cation is then translated into a monitor automaton in
AIGER format, which is finally optimized using the ABC
toolset by applying the command sequence rewrite. We
will call this approach the SLUGS toolchain below.

Testing and Classification of Benchmarks. To test
the resulting benchmarks, we fed them to our reference
implementation Aisy14, and compared the produced so-
lution to the expected result. Since our reference imple-
mentation is not as efficient as the participants of the
competition, a significant number of benchmarks was
only solved during the competition, but not in our initial
tests. Those that were not solved were classified into re-
alizable and unrealizable according to informed guesses
of the benchmark authors. During the competition, this
resulted in 3 problem instances being re-classified from
unrealizable to realizable, or vice versa.

9 https://github.com/gaperez64/acacia_ltl2aig. Accessed
February 2016.
10 http://vlsi.colorado.edu/~vis/. Accessed February 2016.
11 http://www.eecs.berkeley.edu/~alanmi/abc/. Accessed
February 2016.
12 http://fmv.jku.at/aiger/. Accessed February 2016.
13 http://github.com/ltlmop/slugs. Accessed February 2016.
14 https://bitbucket.org/art_haali/aisy-classroom. Ac-
cessed February 2016.

https://bitbucket.org/swenjacobs/syntcomp/
https://bitbucket.org/swenjacobs/syntcomp/
http://lit2.ulb.ac.be/acaciaplus/
https://github.com/gaperez64/acacia_ltl2aig
http://vlsi.colorado.edu/~vis/
http://www.eecs.berkeley.edu/~alanmi/abc/
http://fmv.jku.at/aiger/
http://github.com/ltlmop/slugs
https://bitbucket.org/art_haali/aisy-classroom

Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014) 9

4.2 Toy Examples

These benchmarks are based on original Verilog specifi-
cations that have been translated to AIGER using the
Verilog toolchain. The set includes specifications of basic
circuits like adders, bit shifters, multipliers, and coun-
ters. Additionally, it contains some specifications with
typically very simple properties, e.g., that outputs must
match inputs, or that the XOR of inputs and outputs
must satisfy some property. All examples are parame-
terized in the bit-width of the controllable and uncon-
trollable inputs, ranging between 2 and 128 bits on some
examples, and for each example there are two versions,
using the optimizing and non-optimizing translation by
ABC, respectively. Overall, this set contains 138 bench-
marks.

All AIGER files contain the original Verilog code, as
well as the commands used to produce the AIGER file,
in the comments section. This set of benchmarks was
provided by Robert Könighofer.

4.3 Generalized Buffer

The well-known specification of an industrial generalized
buffer was developed by IBM and subsequently used as
a synthesis benchmark for Anzu [45] and other tools. It
is parameterized by the number of senders which send
data to two receivers. The buffer has a handshake proto-
col with each sender and each receiver. A complete Gen-
buf consists of a controller, a FIFO, and a multiplexer.
In this benchmark, the FIFO and multiplexer are con-
sidered as part of the environment, and the controller is
synthesized. As a synthesis case study for Anzu, it has
been explained in detail by Bloem et al. [11]. Robert
Könighofer translated these benchmarks to AIGER, as
explained in the following.

Liveness-to-Safety Translation. For Anzu, the Genbuf
benchmark contains Büchi assumptions {A1, . . . , Am}
that are satisfied if all state sets Ai are visited infinitely
often, and Büchi guarantees {G1, . . . , Gn} requiring that
all Gj are visited infinitely often if all assumptions are
satisfied. Three different translations into safety specifi-
cations were performed. Translation “c” (for counting)
applies the well-known counting construction: A modu-
lar counter i ∈ {0, . . . ,m} stores the index of the next
assumption. If an accepting state s ∈ Ai of this next as-
sumption is visited, the counter is incremented modulo
m + 1. If i has the special value 0, it is always incre-
mented. The same counting construction is applied to
the Büchi guarantees with counter j ∈ {0, . . . , n}. Fi-
nally, a third counter r is used to enforce a minimum
ratio between the progress in satisfying guarantees and
assumptions: Whenever j is incremented, r is reset to
0. Otherwise, if i = 0, then r is incremented. If r ever
exceeds some bound k, then BAD is set. A controller
enforcing that BAD cannot become 1 thus also enforces

that all Gj are visited infinitely often if all Ai are visited
infinitely often. Translation “b” (for bitwise) is similar
but uses one bit per assumption and guarantee instead
of a counter. It thus avoids imposing an (artificial) order
between properties. Translation “f” (for full set) is sim-
ilar to “b” but resets r only if all guarantees have been
seen in a row (rather than only the next one).

Translation to AIGER. Anzu comes with scripts to con-
struct Genbuf benchmark instances with different num-
bers of senders. These scripts were modified to output a
Verilog representation, and from there the Verilog tool-
chain was used to obtain benchmarks in AIGER format.
The final specification is parameterized in 1) the number
of senders which send data, 2) the type (c, b or f) and
the bound k of the liveness-to-safety translation, and
3) whether or not ABC optimizations are used in the
translation. All AIGER files contain the original Verilog
code (which in turn contains the Anzu specification it
was created from), as well as the commands used to pro-
duce the AIGER file, in the comments section. Overall,
this set contains 192 benchmark instances.

4.4 AMBA Bus Controller

This is a specification of an arbiter for the AMBA AHB
bus, based on an industrial specification by ARM. Like
the Genbuf case study, it has been used as a synthesis
benchmark for Anzu [45] and other tools. It is parameter-
ized with the number of masters that can access the bus
and have to be coordinated by the arbiter. The AMBA
AHB bus allows masters to request different kinds of bus
accesses, either as a single transfer or as a burst, where
a burst can consist of either a specified or an unspecified
number of transfers. Besides correct modeling of these
different forms of accesses, the specification requires re-
sponses to all requests (that are not eventually lowered),
as well as mutual exclusion of bus accesses by different
masters. As a synthesis case study for Anzu, it has been
explained in detail by Bloem et al. [10].

The Anzu specification has been translated by Ro-
bert Könighofer to AIGER format using the Verilog
toolchain in the same way as for the Genbuf benchmark.
Instances are parameterized in the number of masters,
and (as for Genbuf) the type (c, b or f) and the bound
k of the liveness-to-safety translation, as well as whether
or not ABC optimizations are used in the translation.
All AIGER files contain the original Verilog code (which
in turn contains the Anzu specification it was created
from), as well as the commands used to produce the
AIGER file, in the comments section. Overall, this set
contains 108 benchmarks.

10 Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014)

4.5 LTL2AIG Benchmarks

This set contains several benchmarks provided in the
Acacia+ tool package [14], translated into AIGER for-
mat using the ltl2aig routine. The set includes:

– 50 benchmarks from the test suite included with the
synthesis tool Lily15 [44], with specifications of traf-
fic lights and arbiters in different complexity (25 orig-
inal examples, each with 2 different choices of k).

– 4 versions of the Genbuf case study, but in a much
more challenging form than the specification men-
tioned in Section 4.316 This version is only speci-
fied for 2 senders and 2 receivers, and for 4 different
choices of k.

– 5 versions of a load balancer case study, originally
presented with synthesis tool Unbeast17 [28].

– 23 benchmarks that use the synthesis tool to obtain
a deterministic Büchi automaton for the given LTL
specification (if possible), and

– 18 benchmarks for a similar conversion from LTL to
deterministic parity automata. The latter two con-
versions are mentioned as applications of synthesis
procedures by Kupferman and Vardi [46].

Overall, this set contains 100 benchmarks.

4.6 Factory Assembly Line

This benchmark models an assembly line with multi-
ple tasks that need to be performed on the objects on
the conveyor belt. The specification models a number of
robot arms (fixed to 2), a number n of objects on the
conveyor belt, and a number m of tasks that may have
to be performed on each object before it leaves the area
that is reachable by the arms. The belt moves after a
fixed number k of time steps, pushing all objects forward
by one place, and the first object moves out of reach of
the arms (while a new object enters at the other end
of the belt). The arms are modeled such that they can-
not occupy the space above the same object on the belt,
and can move by at most one position per time step. In
particular, this means that they cannot pass each other.
Whenever an arm is in the same position as an object
that has unfinished tasks, it can perform one task on the
object in one time step. Usually, the assumption is that
at mostm−1 of them tasks need to be performed on any
object, but there may be a fixed number c of glitches in
an execution of the system, which means that an object
with m open tasks is pushed onto the belt.
15 http://www.iaik.tugraz.at/content/research/
opensource/lily/. Accessed February 2016.
16 We conjecture that this version is more challenging because
it is based on a large LTL specification, which is translated to a
single, very big Büchi automaton in the first step of the ltl2aig
routine. This results in a circuit that is much more complex than
the ones from Section 4.3.
17 http://www.react.uni-saarland.de/tools/unbeast/. Ac-
cessed February 2016.

This specification has been translated by Rüdiger
Ehlers from original benchmarks for the SLUGS GR(1)
synthesis tool, using the SLUGS toolchain. Overall, this
set contains 15 benchmarks, for different values of m (3
to 7), n (3 to 6), k (1 to 2) and c (0 to 11).

4.7 Moving Obstacle Evasion

This benchmark models a controller for a robot that
moves on a quadratic grid of parametric size m, and
has to avoid colliding with a moving obstacle (of size
2×2 grids). In any time step, the robot and the obstacle
can only move by at most one grid in x and y direction.
Additionally, the obstacle can usually only move at most
every second time step. However, as in the assembly line
benchmarks, there may be a fixed number c of glitches in
an execution of the system, which in this case means that
the obstacle moves even though it has already moved in
the immediately preceding time step.

This specification has been translated by Rüdiger
Ehlers from original benchmarks for the SLUGS GR(1)
synthesis tool, using the SLUGS toolchain. Overall, this
set contains 16 benchmarks, for different values of m (8
to 128) and c (0 to 60).

5 Rules

The rules for SYNTCOMP were inspired by similar com-
petitions such as the SAT competition and the HWMCC.
The basic idea is that submitted tools are evaluated on
a previously unknown set of benchmarks, without user
intervention. A simple ranking of tools can be obtained
by checking only the correctness of solutions, and count-
ing the number of problem instances that can be solved
within a given timeout. However, the goal of synthesis
is to obtain implementations that are not only correct,
but also efficient. Therefore, we also considered refined
rankings based on the quality of the produced solutions,
measured by the size of the implementation.

Tracks. The competition was separated into two tracks:
the realizability track which only required a binary an-
swer to the question whether or not there exists a circuit
that satisfies the given specification, and the synthesis
track which was only run on realizable benchmarks, and
asked for a circuit that implements the given specifica-
tion. The motivation for this split was again to have a
low entry-barrier for tool creators, as an efficient realiz-
ability checker can be implemented with less effort than
a full synthesis tool that produces solutions and opti-
mizes them for size. Indeed, 2 out of 5 submitted tools
make use of this split and only supply a realizability
checker, and these two tools solve more problems in the
realizability track than any of the full synthesis tools.

Subtracks. Each track was divided into a sequential
subtrack, where tools can use only one core of the CPU,

http://www.iaik.tugraz.at/content/research/opensource/lily/
http://www.iaik.tugraz.at/content/research/opensource/lily/
http://www.react.uni-saarland.de/tools/unbeast/

Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014) 11

and a parallel subtrack, allowing tools to use multiple
cores in parallel. The decision to have both sequential
and parallel execution modes was based on the expec-
tation that parallelization would often be trivial—i.e.,
a number of different but largely independent strategies
running in parallel.18 Therefore, we also wanted to eval-
uate tools in sequential execution mode in order to mea-
sure and identify the single best strategy.

5.1 Entrants

We asked for synthesis tools to be supplied in source
code, licensed for research purposes, and we offered to
discuss possible solutions if this restriction was a prob-
lem to any prospective participant. This was not the
case for any of the research groups that contacted us
regarding the competition. The organizers reserved the
right to submit their own tools and did so in the form of
Basil, implemented by R. Ehlers, and Demiurge, imple-
mented in part in the research group of R. Bloem. We
encouraged participants to visit SYNT and CAV for the
presentation of the SYNTCOMP results, but this was
not a requirement for participation.

We allowed up to 3 submissions per author and sub-
track, where submissions are considered to be different
if source code, compilation options or command line ar-
guments are different. This limit was chosen to allow
some flexibility for the tool creators, while avoiding the
flooding of the competition with too many different con-
figurations of the same tool. All tools must support the
input and output format of SYNTCOMP, as defined in
Section 3. Additionally, each entrant to SYNTCOMP
was required to include a short system description.

The organizers commited to making reasonable ef-
forts to install each tool but reserved the right to reject
entrants where installation problems persisted. This was
not the case for any of the entrants. Furthermore, in
case of crashes or wrong results we allowed submission
of bugfixes if possible within time limits. In one case, a
bugfix was submitted that resolved a number of solver
crashes that only appeared during the competition runs.

5.2 Ranking

In both the realizability and the synthesis track, com-
petition entrants were ranked with respect to the num-
ber of solved problems. Additionally, we consider a more
fine-grained relative ranking that distributes points for
each benchmark according to the relative performance
of tools, measured either in the time needed to find a
solution, or the size of the solution. A drawback of this

18 In particular, non-trivial parallelization is difficult for BDD-
based tools, since none of the existing parallel BDD packages sup-
ports all features needed for the optimizations mentioned in Sec-
tion 2.3.

relative ranking is that it does not allow easy compari-
son to tools that did not participate. As an alternative
that resolves this problem, we additionally give a quality
ranking for the synthesis track that compares the size of
the provided solution to a reference size.19

For all rankings, a timeout (or no answer) gives 0
points. A punishment for wrong answers was not neces-
sary, since the full set of benchmarks was made available
to the participants one month before the submission of
solvers.

Correctness and Ranking in Realizability Track.
For the realizability track, the organizers and benchmark
authors took responsibility for determining in advance
whether specifications are realizable or unrealizable, by
using knowledge about how the benchmarks were gener-
ated. When in doubt, a majority vote between all tools
that solved a given benchmark was used to determine
the correct outcome.20

In addition to a ranking based on the number of
solved problem instances, tools were evaluated with a
relative ranking based on the time needed to come to
the solution, where the tool with the smallest time earns
the highest rank (see below). For the sequential subtrack,
tools were ranked with respect to CPU time, while for
the parallel subtrack we ranked tools with respect to
wall-clock time.

Correctness and Ranking in Synthesis Track. In
the synthesis track, correctness of solutions was assessed
by checking both syntactical and semantical correctness.
Syntactical correctness means conformance to our out-
put format defined in Section 3, which was checked by
a separate syntax checker. Semantical correctness was
tested by a model checker (iimc21, based on the IC3 al-
gorithm [15]), which had to terminate within a separate
time bound for the result to be considered correct. As
in the realizability track, there is a ranking with respect
to the number of solved problem instances, as well as a
relative ranking. The latter is in this case based on the
size of solutions, given by the number of AND-gates in
the resulting circuit. In addition, we provide a quality
ranking that awards points for every solution, based on
a comparison of the solution size to a reference size (see
below).

Relative Ranking. For every benchmark, all tools that
provide a correct solution are ranked with respect to the
metric (time or size), and each tool obtains points based
on its rank. In detail: if k benchmarks are used in the
19 The quality ranking was devised for the second SYNTCOMP
and was applied to the results of the first competition only after
the presentation of results at SYNT and CAV 2014.
20 This rule only had to be used in one instance, where a bench-
mark was solved by only one tool, and was reported to be realizable
although unrealizable was the expected outcome. In our analysis it
turned out that the tool was correct, and the initial classification
as unrealizable was wrong.
21 http://ecee.colorado.edu/wpmu/iimc/. Accessed February
2016.

http://ecee.colorado.edu/wpmu/iimc/

12 Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014)

track, then 1000/k = p points are awarded per bench-
mark. If n tools solve the benchmark, then the points
for that benchmark are divided into Σn

i=1i = f frac-
tions, and the tool which is at rank m will get n−m+1

f ·p
points for this benchmark.

Quality Ranking. In the quality ranking, solutions are
awarded points depending on the size sizenew of the so-
lution and a reference size sizeref . The number of points
for a solution is

2− log10

(
sizenew
sizeref

)
.

That is, a solution that is of size sizeref gets 2 points; a
solution that is bigger by a factor of 10 gets 1 point; a
solution that is bigger by a factor of 100 (or more) gets 0
points; and similarly for solutions that are smaller than
sizeref .

Since for the first competition we do not have refer-
ence solutions for any of the problem instances, we use
the smallest size of any of the solutions of this competi-
tion as the reference size. In future competitions, or for
comparison of tools that did not participate, the size of
the smallest solution that has been provided in any of
the competitions before can be used.

6 Participants

Five systems were entered into the first SYNTCOMP. In
the following, we give a brief description of the methods
implemented in each of these systems. For the BDD-
based tools, Table 1 shows which of the optimizations
from Section 2.3 are implemented in which tool.

6.1 AbsSynthe: an abstract synthesis tool

AbsSynthe was submitted by R. Brenguier, G. A. Pérez,
J.-F. Raskin, and O. Sankur from Université Libre de
Bruxelles. AbsSynthe implements a BDD-based synthe-
sis approach and competed in all subtracks.

Synthesis algorithms. AbsSynthe implements differ-
ent BDD-based synthesis algorithms, with and without
abstraction, described in more detail in [18]. All algo-
rithms use the BDD package CUDD [60], with automatic
BDD reordering using the sifting heuristic.

The concrete algorithm with partitioned transition
relation (C-TL) implements BDD-based synthesis with
partitioned transition relation and direct substitution of
state variables with BDDs. In addition, when comput-
ing UPRE(S(L′)), then the transition functions fl of all
latches are first restricted to ¬S(L), effectively only com-
puting the uncontrollable predecessors which are not al-
ready in S(L). These new states are then joined to S(L),
which gives the same result as the standard UPRE com-
putation.

The basic abstract algorithm (A) implements synthe-
sis with a precomputed (monolithic) abstract transition
relation, and some additional optimizations.

The alternative abstract algorithm (A-TL) avoids us-
ing a precomputed transition relation by implementing
abstract operators for post-state computation.

AbsSynthe was intended to compete in these differ-
ent configurations. However, due to a miscommunica-
tion between tool authors and competition organizers,
the necessary command line parameters were not used,
such that only one configuration participated, namely
(C-TL). Unfortunately, this error was discovered too late
to run the additional configurations before the presenta-
tion of results at CAV 2014.

However, as mentioned in [18], the abstraction-based
methods overall performed worse than the concrete al-
gorithm (C-TL), and thus the fastest configuration did
participate in the competition.

Strategy extraction. Strategy extraction in AbsSyn-
the uses the co-factor-based approach described in Sec-
tion 2.3, including the additional forward reachability
check. When extracting the circuit, every AIG node con-
structed from the BDD representation is cached in order
to avoid duplicating parts of the circuit.

Implementation, availability. AbsSynthe is written
mostly in Python, and depends only on a simple AIG
library (fetched from the AIGER toolbox22) and the
BDD package CUDD23. The source code is available at
https://github.com/gaperez64/AbsSynthe.

6.2 Basil: BDD-based safety synthesis tool

Basil was submitted by R. Ehlers from the University
of Bremen, and implements a BDD-based synthesis ap-
proach. Basil competed in all subtracks.

Synthesis algorithm. Basil implements a BDD-based
synthesis algorithm, based on the BDD package CUDD.
It uses automatic reordering of BDDs with the sifting
heuristic, reconfigured in order to optimize more greed-
ily. In contrast to all other BDD-based tools in the com-
petition, it does not use a partitioned transition relation.
It does however use a technique similar to direct substi-
tution, regarding latches that are always updated by the
value of an input variable: BDD variables that represent
such inputs are double-booked as both an input and a
post-state variable of the latch, and therefore need not
be explicitly encoded into the transition relation. Addi-
tionally, when building the transition relation it eagerly
deletes BDDs that are only used as intermediate values
as soon as they are not needed anymore. This is the case

22 http://fmv.jku.at/aiger/. Accessed February 2016.
23 http://vlsi.colorado.edu/~fabio/CUDD/. Accessed Febru-
ary 2016.

https://github.com/gaperez64/AbsSynthe
http://fmv.jku.at/aiger/
http://vlsi.colorado.edu/~fabio/CUDD/

Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014) 13

Table 1. Optimizations implemented in BDD-based Tools.

Technique AbsSynthe Basil Realizer Simple BDD Solver
automatic reordering x x x x

eager deallocation of BDDs x x
direct substitution x (x) x x

partitioned transition relation x x x
simultaneous conjunction and abstraction x

co-factor based extraction of winning strategies x x N/A N/A
forward reachability analysis x x N/A N/A

ABC minimization x N/A N/A
additional optimizations (see tool descriptions) x x x x

if a gate A is not used as a controllable input or an in-
put to a latch, and all nodes that depend on A have been
processed.

Strategy extraction. Basil computes strategies with
the co-factor-based approach from Section 2.3, including
forward reachability analysis and ABC minimization.

As an additional optimization, during strategy ex-
traction the output bit BDDs are reduced in size by ap-
plying LICompaction [38]: A joint BDD for all output bit
BDDs is built and then, in a round-robin fashion over the
outputs, the size of the joint BDD is reduced by chang-
ing a part of it that describes the behavior of a single
output bit in a way that makes the overall BDD smaller,
but yields behavior that is contained in the most general
strategy for winning the game. In order to minimize the
care set for this operation, a reachable-state computa-
tion is performed before every step. When no further size
reduction is found to be possible, or some timeout has
been reached, optimization by LICompaction is aborted.

Implementation, availability. Basil is implemented
in C++ and depends on the BDD package CUDD, as
well as (optionally) ABC24 for strategy minimization. It
is currently not publicly available.

6.3 Demiurge

Demiurge was submitted by R. Könighofer from Graz
University of Technology and M. Seidl from Johannes-
Kepler-University Linz. Demiurge implements incremen-
tal SAT- and QBF-based synthesis as described in Sec-
tion 2.4, as well as template-based synthesis with QBF
solving as described in Section 2.5. Demiurge competed
in all subtracks.

Synthesis algorithms. Demiurge implements different
synthesis algorithms in different back-ends, described in
more detail in [13].

The learning-based back-end uses the incremental
synthesis approach to compute a winning region based
on two competing SAT solvers to compute and generalize
states to be removed from the winning region (algorithm

24 http://www.eecs.berkeley.edu/~alanmi/abc/. Accessed
February 2016.

LearnSat from [13] with optimization RG enabled, but
optimization RC disabled). Minisat version 2.2.0 is used
as underlying SAT solver.

The parallel back-end implements the same method
with three threads refining the winning region in paral-
lel. Two threads perform the work of the learning-based
back-end, one using Minisat 2.2.0 and the other using Lin-
geling ats. The third thread generalizes existing clauses
of the winning region further by trying to drop more lit-
erals. Using different solvers in the threads is beneficial
because the solvers can complement each other, some-
times yielding a super-linear speedup [13].

The template-based back-end uses a QBF solver to
compute a winning region as instantiation of a tem-
plate for a CNF formula over the state variables. For
SYNTCOMP, DepQBF 3.02 is used as QBF solver via
its API. Bloqqer, extended to preserve satisfying assign-
ments [58], is used as QBF preprocessor.

Demiurge contains more back-ends that are either ex-
perimental or did not turn out to be particularly compet-
itive, and therefore did not enter the competition. This
includes a re-implementation of the technique of Mor-
genstern et al. [51], and an approach based on a reduc-
tion to Effectively Propositional Logic (EPR). Details
can be found in [13].

Strategy extraction. Demiurge provides several meth-
ods for computing strategies from the winning region.
The algorithm used in the competition uses a compu-
tational learning approach as proposed in [30], but im-
plemented with incremental SAT solving or incremental
QBF solving instead of BDDs. In terms of [9], it uses
the SAT-based learning method without the dependency
optimization, with Lingeling ats as SAT solver. ABC min-
imization is used in a post-processing step.

Implementation, availability. Demiurge is implemen-
ted in C++, and depends on a number of underlying
reasoning engines, some of them mentioned above. Be-
cause of its modular architecture, Demiurge is easily ex-
tendable with new algorithms and optimizations (cf. [9]),
thus providing a framework for implementing new syn-
thesis algorithms and reducing the entry barrier for new
research on SAT- and QBF-based synthesis algorithms
and optimizations.

http://www.eecs.berkeley.edu/~alanmi/abc/

14 Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014)

Demiurge is available under the GNU LGPL license
(version 3) at http://www.iaik.tugraz.at/content/
research/design_verification/demiurge/.

6.4 REALIZER– CUDD Based Safety Game
Solver

Realizer was submitted by L. Tentrup from Saarland
University, Saarbrücken. Realizer implements BDD-
based realizability checking, and competed in both re-
alizability subtracks. It does not support extraction of
strategies.

Synthesis algorithms. Realizer is based on BDD pack-
age CUDD, and uses automatic reordering of BDDs with
the lazy sift reordering scheme. When building the BDDs
that represent the transition relation, it uses a tempo-
rary hash table to save the BDDs for AND gates in the
AIG. Before starting the fix-point algorithm, it builds
the basic data structures used in the fixed point calcula-
tion, like the arrays mapping the current state variable
to the next (primed) state variable or the BDD cubes
used for the existential and universal abstraction.

The actual fix-point algorithm is implemented in two
variants, differing only in the way they handle the forced
predecessor function: one variant uses a monolithic tran-
sition relation, while the other uses a partitioned transi-
tion relation. Both variants use direct substitution.

The variant with partitioned transition relation over-
all performed better in preliminary experiments, so only
this one was entered into the competition in the sequen-
tial realizability track. Since on some examples the other
variant performed better, the parallel version uses both
variants running (independently) in parallel.25

Implementation, availability. Realizer is written in
Python and uses the BDD library CUDD in version 2.4.2
with the corresponding Python bindings PyCUDD in
version 2.0.2. It is currently not publicly available.

6.5 Simple BDD Solver

Simple BDD Solver was submitted by L. Ryzhyk from
NICTA, Sydney and the Carnegie Mellon University,
Pittsburgh, and A. Walker from NICTA, Sydney. Simple
BDD Solver implements BDD-based realizability check-
ing, and only competed in the sequential realizability
subtrack. It does not support extraction of strategies.

Synthesis algorithm(s). Simple BDD Solver is a sub-
stantial simplification of the solver that was developed
for the Termite project26, adapted to safety games given

25 Analysis of results and subsequent inspection of the source
code by the tool author showed that due to a bug the parallel
version did not work as intended, and instead used two threads
with identical strategy. As can be seen in the results section, this
lead to a decreased performance overall.
26 http://termite2.org. Accessed February 2016.

in the AIGER format. It uses the BDD package CUDD,
with dynamic variable reordering using the sifting algo-
rithm, and eager deallocation of BDDs. Furthermore, it
uses a partitioned transition relation, direct substitution,
and simultaneous conjunction and abstraction.

Additionally, it uses an alternative form for the fix-
point computation of UPRE that avoids creating the
BAD latch and simplifies the quantification structure:

The fixpoint formula (1) in Section 2.3 is equivalent
to

µS(L). ∃Xu∀Xc∃L′.(
S(L′) ∧ T (L,Xu, Xc, L

′)
)
∨ BAD′.

To avoid introducing the latch for BAD, we substitute
BAD′ with the update function for BAD - an expression
¬SAFE(L,Xu, Xc) over latches and inputs. This results
in:

µS(L). ∃Xu∀Xc∃L′.(
S(L′) ∧ T (L,Xu, Xc, L

′)
)
∨ ¬SAFE(L,Xu, Xc).

Then, quantifiers are re-arranged to

µS(L). ∃Xu∀Xc.(
∃L′. S(L′) ∧ T (L,Xu, Xc, L

′)
)
∨ ¬SAFE(L,Xu, Xc),

with the safety condition outside of the innermost
existential quantification. With this formula for the fix-
point, simultaneous conjunction and abstraction can be
used on the left-hand side of the disjunction, and we
avoid to build the potentially large BDD of the conjunc-
tion in the left-hand side at every iteration.

Furthermore, the tool implements a variant of the
fixpoint algorithm with an abstraction-refinement loop
inspired by [26]. Since this variant has not been found to
be competitive on the set of competition benchmarks, it
has not been entered into the competition.

Implementation, availability. Simple BDD solver is
written in the Haskell functional programming language.
It uses the CUDD package for BDD manipulation and
the Attoparsec27 Haskell package for fast parsing. Al-
together, the solver, AIGER parser, compiler and com-
mand line argument parser are just over 300 lines of
code. The code is available online at: https://github.
com/adamwalker/syntcomp.

7 Execution

SYNTCOMP 2014 used a compute cluster of identi-
cal machines with octo-core Intel Xeon processors (2.0
GHz) and 64 GB RAM, generously provided by Graz

27 https://hackage.haskell.org/package/attoparsec. Ac-
cessed February 2016.

http://www.iaik.tugraz.at/content/research/design_verification/demiurge/
http://www.iaik.tugraz.at/content/research/design_verification/demiurge/
http://termite2.org
https://github.com/adamwalker/syntcomp
https://github.com/adamwalker/syntcomp
https://hackage.haskell.org/package/attoparsec

Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014) 15

University of Technology. The machines are running a
GNU/Linux system, and submitted solvers were com-
piled using GCC version 4.7. Each node has a local 400
GB hard drive that can be used as temporary storage.

The competition was organized on the EDACC plat-
form [4] developed for the SAT Competitions [43].
EDACC directly supports the definition of subtracks
with different benchmark sets, different solver configu-
rations, verification of outputs, and automatic distribu-
tion of jobs to compute nodes. During the competition,
a complete node was reserved for each job, i.e., one syn-
thesis tool (configuration) running one benchmark. This
ensures a very high comparability and reproducibility of
our results. Olivier Roussel’s runsolver [56] was used to
run each job and to measure CPU time and Wall time,
as well as enforcing timeouts. As all nodes are identical
and no other tasks were run in parallel, no other limits
than a timeout per benchmark (CPU time for sequential
subtracks, wall time for parallel subtracks) was set. The
timeout for each task in any subtrack was 5000 seconds
(CPU time or wall time, respectively). The queueing sys-
tem in use is TORQUE28.

Some solvers did not conform completely with the
output format specified by the competition, e.g. because
extra information was displayed in addition to the speci-
fied output. For these solvers, small wrapper scripts were
used to execute them, filtering the outputs as to conform
to the specified format.

Validity of results. Beyer et al. [7] recently noted that
runsolver, along with a number of other benchmarking
tools, has certain deficits that endanger the validity of re-
sults. In particular, the CPU time of child processes may
not be measured correctly. First, note that CPU time is
only relevant for our results in the sequential subtracks,
where tools are restricted to a single CPU core. Further-
more, for the participants of SYNTCOMP we note that
the only child processes (if any) are the reasoning en-
gines for BDDs and SAT or QBF formulas. Since these
reasoning engines take up almost all of the CPU time
in solving synthesis tasks, a comparison of CPU time to
the recorded wall time would most probably reveal mea-
surements that exclude child processes. This was not the
case for our results.

8 Experimental Results and Analysis

We present the results of SYNTCOMP 2014, sepa-
rated into realizability and synthesis tracks, followed
by some observations on the state of the art. 5 tools
entered the competition and ran in 8 different config-
urations in the 4 tracks of the competition.29 All of

28 http://www.adaptivecomputing.com/products/
open-source/torque/. Accessed February 2016.
29 As mentioned in Section 6.1, AbsSynthe was supposed to com-
pete in different configurations, but due to a miscommunication

the results can be viewed online in our EDACC sys-
tem at https://syntcompdb.iaik.tugraz.at/2014/
experiments/. Furthermore, the full experimental data,
including problem instances, executable code of the
solvers, logfiles of executions, solutions produced by
solvers, and executable code for verifying the solu-
tions is available in directory ExperimentalData2014 of
our public Git repository at https://bitbucket.org/
swenjacobs/syntcomp/.

8.1 Realizability Track

In the realizability track, tools were run on the full set of
569 benchmarks. All 5 tools that entered SYNTCOMP
competed with at least one configuration in the sequen-
tial subtrack, and 4 of them also competed in the parallel
subtrack.

Sequential Subtrack. The sequential realizability
track had 6 participants: AbsSynthe, Basil, Realizer
and Simple BDD Solver competed with one configura-
tion each, whereas Demiurge competed with two different
configurations. Table 2 contains the number of instances
solved within the timeout per tool, the number of in-
stances solved uniquely by a solver, and the accumulated
points per tool according to our relative ranking scheme.

No tool could solve all 569 benchmarks, and 13
benchmarks were not solved by any of the tools within
the timeout. 12 benchmarks were solved uniquely by one
tool:

– Basil: 4 versions of the factory assembly benchmarks
(size 5x5 and 7x5, each with 10 and 11 errors)

– Realizer: gb_s2_r2_1_UNREAL30

– Demiurge (templ): mult1x with x ∈ {2, 3, 4, 5, 6},
stay18n and stay20n

Table 3 gives an overview of benchmark instances that
were solved uniquely or not solved at all, for all subtracks
of the competition.

Furthermore, Figure 2 gives an overview of solved in-
stances by participant and benchmark classes (see Sec-
tion 4), and Figure 3 a cactus plot for the time needed
by each tool to solve the benchmarks.

Analysis. Table 2 and Figure 2 show that the BDD-
based tools AbsSynthe, Basil, Realizer and Simple BDD
Solver are very close to each other when only compar-
ing the number of instances solved. Furthermore, for the
Amba and Genbuf benchmarks, some tools solve all in-
stances in the benchmark set, i.e., we would need more
difficult instances to distinguish which tool is better for
these classes.

was always started in the same configuration. The results pre-
sented here for the relative ranking differ from those presented at
CAV 2014 in that only one of the three identical configurations of
AbsSynthe is counted in the sequential tracks.
30 This benchmark was found to be realizable by the tool, al-
though it was classified as unrealizable by the benchmark authors.
Our analysis confirmed it to be realizable.

http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
https://syntcompdb.iaik.tugraz.at/2014/experiments/
https://syntcompdb.iaik.tugraz.at/2014/experiments/
https://bitbucket.org/swenjacobs/syntcomp/
https://bitbucket.org/swenjacobs/syntcomp/

16 Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

Amba Factory Assembly Genbuf Moving Obstacle LTL2AIG Toy Examples

Total AbsSynthe Basil Demiurge (learn) Demiurge (templ) Realizer Simple BDD Solver

Fig. 2. Sequential Realizability Track, Solved Instances by Category

0.001

0.01

0.1

1

10

100

1000

0 100 200 300 400 500 600

Ti
m

e
 (

s)

Benchmarks solved

AbsSynthe Basil Demiurge (learn) Demiurge (templ) Realizer Simple BDD Solver

Fig. 3. Sequential Realizability Track, Cactus Plot

Table 2. Results of the Sequential Realizability Track

Tool Solved Unique Relative
Simple BDD Solver 542 0 262

Realizer 539 1 229
AbsSynthe 536 0 144

Basil 520 4 209
Demiurge (learn) 359 0 209
Demiurge (templ) 121 7 90

The best result in each column is in bold.

Regarding the SAT- and QBF-based synthesis ap-
proaches, Demiurge (learn) solves about as many of the

LTL2AIG benchmarks as the best BDD-based tools, and
almost as many of the Toy Examples. For AMBA and
Genbuf Benchmarks, Demiurge (learn) solves only about
half as many benchmarks, and for the Moving Obstacle
and Factory Assembly benchmarks can only solve one
in each case. Finally, Demiurge (templ) can solve a very
good number of the Toy Examples, and even solves 7 of
them uniquely. However, it solves only very few of the
LTL2AIG benchmarks, and none of the others.

As can be seen in Figure 3, most tools have a steep
degradation with higher complexity of benchmarks, i.e.,
between 90% and 95% of the benchmarks that can be

Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014) 17

Table 3. Benchmark instances that were solved uniquely or not solved at all in at least one subtrack. “Yes” means solved by more than
one tool, “Yes∗” means uniquely solved. “-” means that this benchmark instance was not tested.

Solved in Solved in Solved in Solved in
Benchmark Seq. Realizability Par. Realizability Seq. Synthesis Par. Synthesis
amba8c7y Yes Yes No No
amba9c5y Yes Yes Yes Yes∗

amba10c5y Yes Yes Yes Yes∗

cnt30n No No - -
cnt30y No No No No

factory_assembly_5x5_2_10errors Yes∗ Yes∗ No No
factory_assembly_5x5_2_11errors Yes∗ Yes∗ No No
factory_assembly_7x5_2_10errors Yes∗ Yes∗ No No
factory_assembly_7x5_2_11errors Yes∗ Yes∗ No No

gb_s2_r2_1_UNREAL Yes∗ No - -
gb_s2_r2_2_REAL No No No No
gb_s2_r2_3_REAL No No No No
gb_s2_r2_4_REAL No No No No

moving_obstacle_24x24_7glitches Yes Yes No No
moving_obstacle_32x32_11glitches Yes Yes No No
moving_obstacle_48x48_19glitches Yes Yes No No
moving_obstacle_64x64_27glitches Yes Yes No No
moving_obstacle_96x96_43glitches Yes Yes No No

moving_obstacle_128x128_59glitches No No - -
moving_obstacle_128x128_60glitches No No - -

mult11 Yes Yes∗ - -
mult12 Yes∗ No No No
mult13 Yes∗ No - -
mult14 Yes∗ No - -
mult15 Yes∗ No - -
mult16 Yes∗ No No No

stay16y Yes Yes∗ Yes Yes∗

stay18n Yes∗ No - -
stay18y No No - -
stay20n Yes∗ No - -
stay20y No No - -
stay22n No No - -
stay22y No No - -
stay24n No No - -
stay24y No No - -

solved within the timeout of 5000 seconds can actually
be solved very quickly, i.e., in less than 600 seconds.

The uniquely solved benchmarks also show that there
are significant differences between the algorithms of dif-
ferent tools. In particular, the template-based variant
of Demiurge, while not very successful overall, can de-
termine realizability for a relatively large number of Toy
Examples that cannot be solved by the other approaches.

Regarding the relative ranking, in Table 2 we note
that Demiurge (learn) has the same score as Basil (and
higher than AbsSynthe), even though it can only solve
359 problems, compared to 520 for Basil and 536 for
AbsSynthe. This is because this ranking rewards Demi-
urge for being one of the fastest tools on many of the
small problem instances.

Parallel Subtrack. The parallel realizability subtrack
had 4 participants: parallel versions of Demiurge and Re-

alizer31, and sequential versions of AbsSynthe and Ba-
sil. The results are summarized in Table 4. Again, no
tool could solve all 569 benchmarks. Table 3 shows 21
benchmarks that were not solved by any of the tools
within the timeout, and 6 benchmarks that were solved
uniquely by one tool. The successful tools are:

– Basil: 4 versions of the factory assembly benchmarks
(the same as before)

– AbsSynthe: mult11 and stay16y

We note that Realizer could not solve the problems that
it uniquely solved in sequential execution mode. Further-
more, Demiurge (templ) did not compete in the parallel
subtrack, therefore its uniquely solved problems from the
sequential subtrack are unsolved here.

31 Due to a bug, the parallel version of Realizer performed worse
than the sequential version, as mentioned in Section 6.

18 Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014)

Table 4. Results of the Parallel Realizability Track

Tool Solved Unique Relative
Realizer 538 0 279

AbsSynthe 536 2 219
Basil 520 4 331

Demiurge (parallel) 324 0 133
The best result in each column is in bold.

A cactus plot for the number of benchmarks that
can be solved by each tool within the timeout is given
in Figure 4. We do not give a detailed analysis of the
number of solved instances by category, since it is very
similar to the analysis in Figure 2.

Analysis. Figure 4 shows the same steep degradation of
runtime with increasing complexity as in the sequential
case. Concerning the effectiveness of parallel versus se-
quential implementations, this subtrack shows that cur-
rently none of the implementations benefits from using
parallelism. To the contrary, the parallel implementa-
tions of Demiurge (learn) and Realizer were not able to
solve (in 5000s Wall time) the problems that their se-
quential implementations solved uniquely in the sequen-
tial subtrack (in 5000s CPU time), and AbsSynthe and
Basil are sequential implementations.

Regarding the relative ranking based on Wall time,
we note another weakness of the chosen ranking system:
this ranking heavily favors implementations in C++ that
have a quick startup time. Basil solves 150 problems
in less than 0.36s Wall time, which is the minimal time
needed to solve any single problem for the Python-based
implementations AbsSynthe and Realizer. That is, the
relative ranking scheme and our benchmark selection fa-
vors tools that can solve easy benchmarks very quickly,
and in particular the tools implemented in C++, as they
make very efficient use of Wall time.

Summing up, we see that in the realizability tracks
the BDD-based tools in general outperform the SAT-
and QBF-based approaches, except for a small subset of
the benchmarks. Between the BDD-based approaches,
the differences we could detect are rather small — the
percentage of benchmarks that can be solved by the
BDD-based implementations ranges only from 91% to
95%. None of the tools benefits from parallelism.

8.2 Synthesis Track

In the synthesis track, tools were evaluated with respect
to the relative and quality rankings (see Section 5.2),
based on the size of solutions. Since these rankings are
only defined on realizable specifications, we excluded
all unrealizable specifications. Furthermore, we excluded
most of the problems that could not be solved by any
tool in the realizability track, since synthesis in general
is harder than realizability checking. Out of the remain-
ing 382 benchmarks, we chose 157 benchmarks with the

Table 5. Results of the Sequential Synthesis Track

Tool Solved Relative Quality MCTO
AbsSynthe 143 329 265 6

Demiurge (learn) 121 379 240 0
Basil 117 218 219 5

Demiurge (templ) 31 77 57 0
The best result in each column is in bold.

goal to ensure a good coverage of different benchmark
classes, and a good distribution over benchmarks of dif-
ferent difficulty. Only 3 out of the 5 tools that entered
SYNTCOMP competed in the synthesis track: AbsSyn-
the, Basil and Demiurge.

Sequential Subtrack. The sequential synthesis sub-
track had 4 participants: AbsSynthe and Basil com-
peted with one configuration each, and Demiurge with
two different configurations. Table 5 shows the number
of solved instances, and the accumulated points per tool
in the relative and quality rankings. Note that a prob-
lem only counts as solved if the solution is successfully
model checked. The number of model checking timeouts
(MCTO) is also given in the table.

No tool could solve all 157 benchmarks. No bench-
mark was solved uniquely by one tool, and 14 bench-
marks were solved by none of the tools (see Table 3).
AbsSynthe solved the highest number of problems and
earns the highest score in the quality ranking. Demiurge
(learn) earns the highest score in our relative ranking,
even though it solves less problems than AbsSynthe.

Both AbsSynthe and Basil produced a small num-
ber of solutions that could not be model checked within
the separate 3600s timeout. While counting these addi-
tional solutions would have changed the scores of these
tools, it would not have changed the order of tools in
any of the rankings. Figures 5 and 6 give an overview
of the size of produced implementations for a subset of
the benchmarks, showing significant differences on im-
plementation sizes for some instances, in particular from
the AMBA and Genbuf classes.

Analysis. Regarding the relative and quality rankings,
we note that Demiurge (learn) profits from taking solu-
tion sizes into account. Figure 5 shows that for those
instances of the AMBA and GenBuf benchmarks that
Demiurge (learn) can solve, it provides implementations
that are often by an order of magnitude smaller than
those of the other tools. Figure 6 shows a number of
benchmarks where the implementation sizes are equal or
very similar. Most of the time, the solutions of Demiurge
(learn) are smaller than those of AbsSynthe and Basil,
which is why it scores higher than AbsSynthe and much
higher than Basil in the relative ranking, even though it
solves less problems than AbsSynthe, and about as many
as Basil. In the quality ranking, the relative difference
between Demiurge (learn) and AbsSynthe is significantly

Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014) 19

0.01

0.1

1

10

100

1000

0 100 200 300 400 500 600

Ti
m

e
 (

s)

Benchmarks solved

AbsSynthe Basil Demiurge (parallel) Realizer (parallel)

Fig. 4. Parallel Realizability Track, Cactus Plot

1 10 100 1000 10000 100000 1000000 10000000

amba2c7y.aag

amba3c5y.aag

amba4c7y.aag

amba5c5y.aag

amba6c5y.aag

amba7c5y.aag

amba8c7y.aag

amba9c5y.aag

amba10c5y.aag

genbuf2c3y.aag

genbuf4c3y.aag

genbuf6c3y.aag

genbuf8c3y.aag

genbuf9c3y.aag

genbuf12c3y.aag

genbuf16c3y.aag

SIZE (# AND GATES)

B
EN

C
H

M
A

R
K

AbsSynthe Basil Demiurge (learn) Demiurge (parallel)

Fig. 5. Comparison of implementation sizes for a subset of the AMBA and GenBuf benchmarks

20 Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014)

1 10 100 1000 10000 100000

add2y.aag

add4y.aag

add6y.aag

add8y.aag

add10y.aag

add12y.aag

add14y.aag

add16y.aag

add18y.aag

add20y.aag

bs8y.aag

bs16y.aag

bs32y.aag

bs64y.aag

bs128y.aag

cnt2y.aag

cnt4y.aag

cnt8y.aag

cnt15y.aag

mult2.aag

mult8.aag

mv2y.aag

mv4y.aag

mv8y.aag

mv12y.aag

mv16y.aag

mvs2y.aag

mvs4y.aag

mvs8y.aag

mvs16y.aag

mvs24y.aag

stay2y.aag

stay4y.aag

stay8y.aag

stay12y.aag

stay16y.aag

SIZE (# AND GATES)

B
EN

C
H

M
A

R
K

AbsSynthe Basil Demiurge (learn) Demiurge (parallel) Demiurge (templ)

Fig. 6. Comparison of implementation sizes for a subset of the toy example benchmarks

smaller than in the number of solved instances (9.5%
versus 15.5% difference).

Furthermore, we note that the benchmark set con-
tains relatively many problems that are easy to solve.
For example, AbsSynthe can solve 75 of the 157 prob-
lems in less than 0.5s CPU time.

Comparing the BDD-based tools, AbsSynthe solves
a number of problems that Basil cannot solve, and pro-
vides smaller solutions in many cases.

Parallel Subtrack. The parallel synthesis subtrack had
3 participants: one configuration each of AbsSynthe, Ba-
sil, and Demiurge. Demiurge (parallel) was the only tool
to use parallelism in the synthesis track. The results are
summarized in Table 6. No tool could solve all 157 bench-

Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014) 21

Table 6. Results of the Parallel Synthesis Track

Tool Solved Relative Quality MCTO
AbsSynthe 143 352 266 6

Demiurge (parallel) 119 393 237 0
Basil 117 235 196 5
The best result in each column is in bold.

marks, 3 benchmarks were solved uniquely by one tool,
and 14 benchmarks were solved by none of the tools.

The benchmarks solved uniquely by one tool are:

– AbsSynthe: amba9c5y, amba10c5y, and stay16y.

Like in the sequential subtrack, both AbsSynthe and
Basil produced a small number of solutions that could
not be model checked. Implementation sizes for Demiurge
(parallel) are included in Figures 5 and 6, showing that
in some cases the implementations are even smaller than
those obtained from Demiurge (learn), in particular for
the AMBA benchmarks.

Analysis. Like in the sequential synthesis subtrack, Demi-
urge profits from providing small solutions, even though
it solves less problems than its competitors. Further-
more, we note that Demiurge in this case profits from
parallelism to some extent. While it solved 2 problems
less than the sequential Demiurge (learn), the solutions
provided by Demiurge (parallel) were in some cases even
smaller than those provided by the sequential version.

8.3 Observations on the State of the Art

BDD-based Synthesis. The standard BDD-based fix-
point algorithm for solving safety games is currently the
most efficient way for realizability checking based on
monitor circuits. Implementations of the algorithm build
on existing BDD packages, including operations for com-
position, abstraction, and dynamic reordering of BDDs.
Based on these complex BDD operations, a competitive
implementation can be fairly simple, as can be seen for
example in Simple BDD Solver, which only consists of
about 300 lines of code. A few optimizations seem to be
crucial, like automatic reordering, partitioned transition
relations, and direct substitution. For other optimiza-
tions, like eager deallocation of BDDs or simultaneous
conjunction and abstraction, we have mixed results: the
tool authors that implemented them report increased ef-
ficiency, but we also have competitive tools that do not
implement them.

A drawback of BDD-based synthesis becomes appar-
ent when comparing the size of solutions to those of
Demiurge (learn): in many cases, the produced imple-
mentations are much larger than necessary.

As can be expected, a deeper analysis of the run-
time behavior of BDD-based tools shows that most of
the time is spent manipulating BDDs, in particular in

the automatic reordering operations. Therefore, it can
be expected that the performance of BDD-based imple-
mentations heavily depends on the performance of the
used BDD package. Since all of the tools in SYNTCOMP
2014 use the same BDD package, the results of the com-
petition do not shed light on this issue, however.

Template-based Synthesis. The template-based al-
gorithm implemented in Demiurge (templ) only solves a
small subset of the benchmark set — a closer analysis
shows that it only performs well if a simple CNF rep-
resentation of the winning region exists, which applies
only to few SYNTCOMP benchmarks. Hence, its per-
formance on average is rather poor. However, this ap-
proach solves large instances of the mult, cnt and stay
benchmarks much faster than the competition, or solves
them uniquely.

Learning-based Synthesis. The learning-based algo-
rithm implemented in Demiurge (learn) solves far more
benchmarks than the template-based algorithm: 62% of
the benchmarks instead of 21% in the sequential realiz-
ability track. Still, the approach cannot really compete
with the BDD-based tools, which solve more than 90%.
In the parallel realizability track, the situation is similar.

In the synthesis tracks, which are restricted to re-
alizable problems and have rankings that take into ac-
count the size of solutions, Demiurge (learn) performed
much better. Here, it solves 77% of the benchmarks,
compared to 78% for Basil and 95% for AbsSynthe (be-
fore model checking). Additionally, the learning-based
algorithm produces circuits that are sometimes several
orders of magnitude smaller than those produced by
the BDD-based tools. This is also highlighted by the
fact that all solutions of Demiurge (learn) are success-
fully model checked, while both AbsSynthe and Basil
produce a number of solutions that can not be verified
within the timeout.

Parallel Subtracks. The submitted tools in general do
not use parallelization very efficiently. The parallel ver-
sion of Realizer performs worse than the sequential ver-
sion due to a bug. For the parallel version of Demiurge,
the result is double-edged: on the one hand, the parallel
version solves 2 problems less than the sequential ver-
sion, on the other hand the solutions provided are often
even smaller than the ones produced by the sequential
version.

For BDD-based tools, the lack of efficient parallel
implementations correlates with the lack of efficient par-
allelized operations in BDD packages. While there have
been recent efforts to parallelize BDD operations [64,65],
this package does not support the important automatic
reordering of BDDs, which makes it hard to integrate
into a technique that heavily relies on reordering.

22 Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014)

9 Conclusions and Future Plans

SYNTCOMP 2014 was a big success, making the first
step towards establishing the competition as a regu-
lar event and its benchmark format as a standard lan-
guage in the synthesis community. A number of synthesis
tools have been developed specifically for the competi-
tion (AbsSynthe, Basil, Realizer), while others are new
versions or modifications of existing tools (Demiurge,
Simple BDD Solver). Recently, the competition format
has also been adopted by tool developers that have thus
far not participated in SYNTCOMP [22]. Furthermore,
the competition has sparked a lively discussion on the
implementation of efficient synthesis techniques, in par-
ticular making tool developers aware of the range of opti-
mizations used in BDD-based synthesis algorithms, and
alternative SAT- and QBF-based approaches that are
competitive at least on some classes of benchmarks.

At the time of this writing, SYNTCOMP 2015 has al-
ready been held [41]. For the second iteration of the com-
petition, we have expanded the benchmark set to more
challenging benchmarks, and to a wider range of differ-
ent benchmark classes. Additionally, following ideas of
Sutcliffe and Suttner [61] we have developed a classifica-
tion scheme for benchmarks in terms of difficulty, based
on the results of SYNTCOMP 2014. Using this classifi-
cation, in SYNTCOMP 2015 we selected benchmarks to
balance the weight of benchmark instances from different
classes and different difficulties.

Finally, recall that SYNTCOMP 2014 (and 2015) was
restricted to the synthesis of finite-state systems from
pure safety specifications in AIGER format. On the one
hand, this resulted in a low entry-barrier for the com-
petition and revived interest in the synthesis from pure
safety specifications, as witnessed by several new tools
and research papers related to the competition [9,13,18].
On the other hand, many of the existing synthesis tools
did not participate because their strengths are in differ-
ent kinds of synthesis tasks, for example in the synthesis
from specifications in richer specification languages such
as GR(1) or LTL. Thus, many interesting synthesis ap-
proaches are currently not covered by the competition.
For SYNTCOMP 2016, we plan to extend the competi-
tion to a specification format that includes both GR(1)
and LTL specifications [42].

Acknowledgements. We thank the anonymous reviewers for
their detailed and insightful comments on drafts of this arti-
cle. We thank Armin Biere for his advice on running a com-
petition, and Ayrat Khalimov for supplying the reference im-
plementation Aisy for the competition.

The organization of SYNTCOMP 2014 was supported
by the Austrian Science Fund (FWF) through projects RiSE
(S11406-N23) and QUAINT (I774-N23), by the German
Research Foundation (DFG) as part of the Transregional
Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS) and
through project “Automatic Synthesis of Distributed and Pa-

rameterized Systems” (JA 2357/2-1), as well as by the Insti-
tutional Strategy of the University of Bremen, funded by the
German Excellence Initiative. The development of AbsSyn-
the was supported by an F.R.S.-FNRS fellowship, and the
ERC inVEST (279499) project. The development of Basil
was supported by the Institutional Strategy of the Univer-
sity of Bremen, funded by the German Excellence Initia-
tive. The development of Demiurge was supported by the
FWF through projects RiSE (S11406-N23, S11408-N23) and
QUAINT (I774-N23). The development of Realizer was sup-
ported by the DFG as part of SFB/TR 14 AVACS. The de-
velopment of Simple BDD Solver was supported by a gift
from the Intel Corporation, and NICTA is funded by the
Australian Government through the Department of Commu-
nications and the Australian Research Council through the
ICT Centre of Excellence Program.

References

1. R. Alur, R. Bodík, E. Dallal, D. Fisman, P. Garg, G. Ju-
niwal, H. Kress-Gazit, P. Madhusudan, M. M. K. Mar-
tin, M. Raghothaman, S. Saha, S. A. Seshia, R. Singh,
A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-
guided synthesis. In Dependable Software Systems En-
gineering, volume 40 of NATO Science for Peace and
Security Series, D: Information and Communication Se-
curity, pages 1–25. IOS Press, 2015.

2. R. Alur, P. Madhusudan, and W. Nam. Symbolic compu-
tational techniques for solving games. STTT, 7(2):118–
128, 2005.

3. A. Aziz, S. Tasiran, and R. K. Brayton. BDD variable
ordering for interacting finite state machines. In DAC,
pages 283–288, 1994.

4. A. Balint, D. Diepold, D. Gall, S. Gerber, G. Kapler, and
R. Retz. EDACC - an advanced platform for the exper-
iment design, administration and analysis of empirical
algorithms. In LION 5. Selected Papers, volume 6683 of
LNCS, pages 586–599. Springer, 2011.

5. C. W. Barrett, L. M. de Moura, and A. Stump. De-
sign and results of the first satisfiability modulo theories
competition (SMT-COMP 2005). J. Autom. Reasoning,
35(4):373–390, 2005.

6. D. Beyer. Competition on software verification - (SV-
COMP). In TACAS, volume 7214 of LNCS, pages 504–
524. Springer, 2012.

7. D. Beyer, S. Löwe, and P. Wendler. Benchmarking and
resource measurement. In SPIN 2015, volume 9232 of
LNCS, pages 160–178. Springer, 2015.

8. R. Bloem, A. Cimatti, K. Greimel, G. Hofferek,
R. Könighofer, M. Roveri, V. Schuppan, and R. Seeber.
RATSY - A new requirements analysis tool with syn-
thesis. In CAV, volume 6174 of LNCS, pages 425–429.
Springer, 2010.

9. R. Bloem, U. Egly, P. Klampfl, R. Könighofer, and
F. Lonsing. SAT-based methods for circuit synthesis.
In FMCAD’14, pages 31–34. IEEE, 2014.

10. R. Bloem, S. J. Galler, B. Jobstmann, N. Piterman,
A. Pnueli, and M. Weiglhofer. Automatic hardware syn-
thesis from specifications: a case study. In DATE, pages
1188–1193. ACM, 2007.

Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014) 23

11. R. Bloem, S. J. Galler, B. Jobstmann, N. Piterman,
A. Pnueli, and M. Weiglhofer. Specify, compile, run:
Hardware from PSL. Electr. Notes Theor. Comput. Sci.,
190(4):3–16, 2007.

12. R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and
Y. Sa’ar. Synthesis of reactive(1) designs. J. Comput.
Syst. Sci., 78(3):911–938, 2012.

13. R. Bloem, R. Könighofer, and M. Seidl. SAT-based syn-
thesis methods for safety specs. In VMCAI, volume 8318
of LNCS, pages 1–20. Springer, 2014.

14. A. Bohy, V. Bruyère, E. Filiot, N. Jin, and J.-F. Raskin.
Acacia+, a tool for LTL synthesis. In CAV, volume 7358
of LNCS, pages 652–657. Springer, 2012.

15. A. R. Bradley. SAT-based model checking without un-
rolling. In VMCAI, volume 6538 of LNCS, pages 70–87.
Springer, 2011.

16. R. K. Brayton, G. D. Hachtel, A. L. Sangiovanni-
Vincentelli, F. Somenzi, A. Aziz, S. Cheng, S. A. Ed-
wards, S. P. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer,
R. K. Ranjan, S. Sarwary, T. R. Shiple, G. Swamy, and
T. Villa. VIS: A system for verification and synthesis.
In CAV, volume 1102 of LNCS, pages 428–432. Springer,
1996.

17. R. K. Brayton and A. Mishchenko. ABC: An academic
industrial-strength verification tool. In CAV, volume
6174 of LNCS, pages 24–40. Springer, 2010.

18. R. Brenguier, G. A. Pérez, J.-F. Raskin, and O. Sankur.
AbsSynthe: abstract synthesis from succinct safety spec-
ifications. In SYNT, volume 157 of EPTCS, pages 100–
116. Open Publishing Association, 2014.

19. R. E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEE Trans. Computers, 35(8):677–
691, 1986.

20. J. Büchi and L. Landweber. Solving sequential condi-
tions by finite-state strategies. Trans. Amer. Math. Soc.,
138:295–311, 1969.

21. J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic
model checking with partitioned transistion relations. In
VLSI, pages 49–58, 1991.

22. T. Chiang and J. R. Jiang. Property-directed synthesis
of reactive systems from safety specifications. In ICCAD,
pages 794–801. ACM, 2015.

23. A. Church. Logic, arithmetic and automata. In Pro-
ceedings of the international congress of mathematicians,
pages 23–35, 1962.

24. O. Coudert and J. C. Madre. A unified framework for
the formal verification of sequential circuits. In ICCAD,
pages 126–129, 1990.

25. P. Cousot and R. Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In POPL,
pages 238–252. ACM, 1977.

26. L. de Alfaro and P. Roy. Solving games via three-valued
abstraction refinement. In CONCUR, volume 4703 of
LNCS, pages 74–89. Springer, 2007.

27. R. Ehlers. Experimental aspects of synthesis. In iWIGP,
volume 50 of EPTCS, pages 1–16, 2011.

28. R. Ehlers. Unbeast: Symbolic bounded synthesis. In
TACAS, volume 6605 of LNCS, pages 272–275. Springer,
2011.

29. R. Ehlers. Symbolic bounded synthesis. Formal Methods
in System Design, 40(2):232–262, 2012.

30. R. Ehlers, R. Könighofer, and G. Hofferek. Symbolically
synthesizing small circuits. In FMCAD’12, pages 91–100.
IEEE, 2012.

31. E. A. Emerson and E. M. Clarke. Using branching time
temporal logic to synthesize synchronization skeletons.
Sci. Comput. Program., 2(3):241–266, 1982.

32. E. Filiot, N. Jin, and J. Raskin. Exploiting structure in
LTL synthesis. STTT, 15(5-6):541–561, 2013.

33. E. Filiot, N. Jin, and J.-F. Raskin. Antichains and com-
positional algorithms for LTL synthesis. Formal Methods
in System Design, 39(3):261–296, 2011.

34. B. Finkbeiner and S. Jacobs. Lazy synthesis. In VMCAI,
volume 7148 of LNCS, pages 219–234. Springer, 2012.

35. B. Finkbeiner and S. Schewe. Bounded synthesis. STTT,
15(5-6):519–539, 2013.

36. S. Graf and H. Saïdi. Construction of abstract state
graphs with PVS. In CAV, volume 1254 of LNCS, pages
72–83. Springer, 1997.

37. T. A. Henzinger, R. Jhala, and R. Majumdar.
Counterexample-guided control. In ICALP, volume 2719
of LNCS, pages 886–902. Springer, 2003.

38. Y. Hong, P. A. Beerel, J. R. Burch, and K. L. McMil-
lan. Sibling-substitution-based BDD minimization using
don’t cares. IEEE Trans. on CAD of Integrated Circuits
and Systems, 19(1):44–55, 2000.

39. S. Jacobs. Extended AIGER format for synthesis. CoRR,
abs/1405.5793, 2014.

40. S. Jacobs, R. Bloem, R. Brenguier, R. Ehlers, T. Hell,
R. Könighofer, G. A. Pérez, J. Raskin, L. Ryzhyk,
O. Sankur, M. Seidl, L. Tentrup, and A. Walker. The
first reactive synthesis competition (SYNTCOMP 2014).
CoRR, abs/1506.08726, 2015.

41. S. Jacobs, R. Bloem, R. Brenguier, R. Könighofer, G. A.
Pérez, J.-F. Raskin, L. Ryzhyk, O. Sankur, M. Seidl,
L. Tentrup, and A. Walker. The second reactive synthesis
competition (SYNTCOMP 2015). In SYNT, volume 202
of EPTCS, pages 27–57. Open Publishing Association,
2016.

42. S. Jacobs and F. Klein. A high-level LTL synthesis for-
mat: TLSF v1.0. CoRR, abs/1601.05228, 2016.

43. M. Järvisalo, D. L. Berre, O. Roussel, and L. Simon.
The international SAT solver competitions. AI Maga-
zine, 33(1), 2012.

44. B. Jobstmann and R. Bloem. Optimizations for LTL
synthesis. In FMCAD, pages 117–124. IEEE Computer
Society, 2006.

45. B. Jobstmann, S. J. Galler, M. Weiglhofer, and R. Bloem.
Anzu: A tool for property synthesis. In CAV, volume
4590 of LNCS, pages 258–262. Springer, 2007.

46. O. Kupferman and M. Y. Vardi. Safraless decision proce-
dures. In FOCS, pages 531–542. IEEE Computer Society,
2005.

47. R. P. Kurshan. Automata-theoretic verification of co-
ordinating processes. In Analysis and Optimization of
Systems: Discrete Event Systems, pages 16–28. Springer,
1994.

48. C. Lecoutre, O. Roussel, and M. R. C. van Dongen. Pro-
moting robust black-box solvers through competitions.
Constraints, 15(3):317–326, 2010.

49. A. Mishchenko, S. Chatterjee, and R. K. Brayton. Dag-
aware AIG rewriting a fresh look at combinational logic
synthesis. In DAC, pages 532–535. ACM, 2006.

24 Swen Jacobs et al.: The First Reactive Synthesis Competition (SYNTCOMP 2014)

50. A. Mishchenko, S. Chatterjee, R. Jiang, and R. Brayton.
FRAIGs: A unifying representation for logic synthesis
and verification. Technical report, EECS Dept., U. C.
Berkeley, 2005.

51. A. Morgenstern, M. Gesell, and K. Schneider. Solving
games using incremental induction. In IFM’13, LNCS
7940, pages 177–191. Springer, 2013.

52. A. Niemetz, M. Preiner, F. Lonsing, M. Seidl, and
A. Biere. Resolution-based certificate extraction for
QBF. In SAT’12, LNCS 7317, pages 430–435. Springer,
2012.

53. A. Pnueli and R. Rosner. On the synthesis of a reactive
module. In POPL, pages 179–190. ACM Press, 1989.

54. M. O. Rabin. Decidability of second-order theories and
automata on infinite trees. Trans. Amer. Math. Soc.,
141:1–35, 1969.

55. R. K. Ranjan, A. Aziz, R. K. Brayton, B. Plessier, and
C. Pixley. Efficient bdd algorithms for fsm synthesis and
verification. In International Workshop on Logic Synthe-
sis, 1995.

56. O. Roussel. Controlling a solver execution with the run-
solver tool. JSAT, 7(4):139–144, 2011.

57. R. Rudell. Dynamic variable ordering for ordered binary
decision diagrams. In ICCAD, pages 42–47. IEEE Com-
puter Society, 1993.

58. M. Seidl and R. Könighofer. Partial witnesses from pre-
processed quantified boolean formulas. In DATE’14,
pages 1–6. IEEE, 2014.

59. S. Sohail and F. Somenzi. Safety first: a two-stage al-
gorithm for the synthesis of reactive systems. STTT,
15(5-6):433–454, 2013.

60. F. Somenzi. Binary decision diagrams. In Calculational
system design, volume 173, page 303. IOS Press, 1999.

61. G. Sutcliffe and C. B. Suttner. Evaluating general pur-
pose automated theorem proving systems. Artif. Intell.,
131(1-2):39–54, 2001.

62. G. Sutcliffe and C. B. Suttner. The state of CASC. AI
Commun., 19(1):35–48, 2006.

63. W. Thomas. On the synthesis of strategies in infinite
games. In STACS, pages 1–13, 1995.

64. T. van Dijk, A. Laarman, and J. van de Pol. Multi-core
BDD operations for symbolic reachability. Electr. Notes
Theor. Comput. Sci., 296:127–143, 2013.

65. T. van Dijk and J. van de Pol. Sylvan: Multi-core decision
diagrams. In TACAS 2015, volume 9035 of LNCS, pages
677–691. Springer, 2015.

	1 Introduction
	2 Problem Description and Synthesis Approaches
	3 Benchmark Format
	4 Benchmarks
	5 Rules
	6 Participants
	7 Execution
	8 Experimental Results and Analysis
	9 Conclusions and Future Plans

