
A High-Level Modeling Language for the Efficient Design,
Implementation, and Testing of Android Applications

John Abou-Jaoudeh1, Kinan Dak-Al-Bab1, Mostafa El-Katerji1, Yliès Falcone2, Mohamad Jaber1

1 American University of Beirut, Beirut, Lebanon
e-mail: {jia03,kmd14,mme85}@mail.aub.edu, mj54@aub.edu.lb

2 Laboratoire d’Informatique de Grenoble, Université Grenoble-Alpes, Grenoble, France
e-mail: Ylies.Falcone@ujf-grenoble.fr

Abstract. Developing mobile applications remains dif-
ficult, time consuming, and error-prone, in spite of the
number of existing platforms and tools. In this paper, we
define MoDroid, a high-level modeling language to ease
the development of Android applications. MoDroid al-
lows developing models representing the core of applica-
tions. MoDroid provides Android programmers with the
following advantages: (1) Models are built using high-
level primitives that abstract away several implementa-
tion details; (2) It allows the definition of interfaces be-
tween models to automatically compose them; (3) Java
native android can be automatically generated along
with the required permissions; (4) It supports efficient
model-based testing that operates on models. MoDroid
is fully implemented and was used to develop several
non-trivial Android applications.

1 Introduction

Android is the most popular platform for mobile devices,
with over 84% of market share at the end of 2014. Yet,
creating a correct and efficient Android application re-
mains a difficult endeavor for several reasons that can
be categorized under design or testing issues.

Issues when designing an Android application.
First, the programming model in Android involves
different components (e.g., Activity, Service,
BroadcastReceiver, ContentProvider, etc.), with a
complex interaction model between these components
(e.g., Handler, Intent, etc.). Second, to separate the
internal representation of information from its presen-
tation to the user, most of the frameworks supporting
the development process use the Model-View-Controller
(MVC) design pattern to split an application into
three interconnected parts. However, as applications

become more complex, the MVC pattern must be
augmented with a new paradigm that guides developers
on how to split the core of an application into different
interconnected parts. Such paradigm shall facilitate and
encourage the concurrent development of an application
by several developers. Third, Android provides a protec-
tion mechanism to devise-specific features (e.g., GPS,
camera, vibrator, internet, SMS, address book, SD card,
etc.) by offering a specific set of programmatic APIs
to access them. Then, the application configuration file
(AndroidManifest.xml) must explicitly include access
permissions for all features that are used within the
application. At installation, the application is given
permission to the corresponding features (from the
configuration file) and the user will be aware about the
required permissions. If an application calls an API
to access a specific feature that requires a permission
access and the configuration file does not contain that
access permission, a runtime exceptions will be raised
at the start-up of the application. Clearly, users prefer
applications with minimum set of permissions. This
protection mechanism is often error-prone and in most
of the cases developers end up using permissions they
do not require in their code, or the opposite [4].

Issues when testing an Android application. On the
other hand, ensuring that applications are performing
as required has become more challenging given the daily
dynamic change in the domain of mobile technology.
Application users mainly face problems of the follow-
ing kind: incorrect behavior, crashes, and Application
becoming Not Responsive (ANR), etc. Keeping in mind
the complexity of mobile application development, and
the inability to eliminate bugs and errors, an essential
component of mobile development is testing. The process
of Mobile Application Testing is used to detect the errors
that might have occurred during the development of the
application, to ensure that user expectations are met,

ar
X

iv
:1

50
8.

02
15

3v
1

 [
cs

.S
E

]
 1

0
A

ug
 2

01
5

2 John Abou-Jaoudeh et al.: A High-Level Modeling Language of Android Applications

and to make sure that applications have been executed
properly. This is essential to be done by application de-
velopers who aim to keep their customers satisfied, and
entertained by the final product.

Contributions. The challenges of programming mobile
applications have prompted us to reconsider the best
practices of their design development. For this purpose,
a framework with the following features is desirable: (1)
the framework should abstract away different implemen-
tation details; (2) decompose the development process
into different stages; and (3) include automated code ma-
nipulation and generation. To do so, we define a Meta-
Model for the development of mobile android applica-
tions. Meta-modeling drastically improves flexibility of
development, hence allows us to manage applications
more easily.

The Meta-Model consists of a set of modules that
represent Graphical User Interfaces (GUIs) and their re-
spective handlers in an abstract and a simpler way than
Native Java Android. We implement the Meta-Model
along with several modules in MoDroid to tackle the
aforementioned problems. MoDroid contains the follow-
ing modules:

1. A composition module takes as input Android Java
models and the connections between them. The com-
position module allows to easily parallelize the devel-
opment process.

2. A permission analysis automatically discovers the re-
quired permissions of an application.

3. A code generator automatically generates native An-
droid Java code given an android Java model.

4. An activity-builder module automatically builds an
activity in the Android Java model given an XML file
representing that activity.

5. An efficient model-based testing that allows to eas-
ily write test cases using high-level primitives and to
efficiently execute them.

Our framework facilitates and speeds-up the develop-
ment process. It transforms an Android application into
an Android Java model that is compliant to the Meta-
Model and contains all the necessary information about
the application. The current version of our Meta-Model
covers a subset of Android API that includes all the
main constructs and functionalities. Consequently, it is
designed with backward compatibility in mind so that
developers can write native Android code within the
model to use features currently not covered within the
Meta-Model.

Paper organization. The rest of this paper is struc-
tured as follows. Section 2 presents the Meta-Model.
The following sections present the components associ-
ated to the Meta-Model: model composition is presented
in Sec. 3; and automatic permissions detection is pre-
sented in Sec. 4; model-based testing framework is pre-
sented in Sec. 5; and automatic code generation (from

high-level model to native android) is presented in Sec. 6.
Sections 7 and 8 describes MoDroid, a full implementa-
tion of our framework and some benchmarks. Section 9
discusses related work. Section 10 draws some conclu-
sions and perspectives.

2 The Android Meta-Model

The Meta-Model consists of a set of modules used to
model the core of an Android application. The Meta-
Model allows to model an Android application as a Java
object. The modeling process abstracts away implemen-
tation details. Moreover, the resulting object model can
be easily and efficiently manipulated by applying model
transformation and composition as described in the re-
mainder of this paper.

The Meta-Model consists of a hierarchy of classes.
The top element of the hierarchy is the project:
LibModel. Each instance of this type represents an in-
dependent application. A LibModel consists of a set of
activities mapped to names, global variables, and meta-
information related to the project.

An activity LibActivity is the android equivalent
of a window or frame. The developer can create in-
stances of LibActivity, fill it up with GUI elements,
and then add it to a LibModel. A LibActivity can con-
tain GUI elements (e.g., layout, button, etc.), packaging
information, and activity scope variables. The developer
can also provide methods for handling events related to
the activity’s life cycle: onCreate, onStop, etc. More-
over, LibActivity has a constructor that takes an XML
file as argument containing a view description of the ac-
tivity and automatically instantiates the corresponding
object. That is, we can still benefit from MVC design
pattern supported for native android development.

GUI elements, also called views, are the building
blocks of an application. All GUI elements inherit their
basic attributes from LibView, an abstract class that
contains the basic attributes and methods for the ma-
nipulation of appearance of an element such as width,
height, padding, etc. Views are categorized into Con-
trols, and Layouts. A view can be either added to an
Activity or to a layout. The controls currently pro-
vided by the Meta-Model, prefixed with Lib, are the
following: Button, ImageButton, TextView (equivalent
to a Label), TextField, ToggleButton (on/off but-
ton), Spinner (similar to drop-down list), RadioButton,
CheckBox, etc.

Layouts are special views that can contain other
views. They control the position of the view within
the activity. A layout is treated as a View. It has
its own attributes such as width, height, and oth-
ers. It can be added to activities, or to other lay-
outs. The layouts provided by the Meta-Model, prefixed
with Lib, are the following: LinearLayout (views are
placed in order in a line; can be horizontal, or vertical),

John Abou-Jaoudeh et al.: A High-Level Modeling Language of Android Applications 3

Fig. 1. Basic elements of the Meta-Model

RadioGroup (a LinearLayout that acts as a RadioButton
group as well), FrameLayout (displays all views in the
same position above each other), RelativeLayout (con-
trols the position of views by using them as anchors),
and TableLayout (organizes the views into rows and
columns).

These views cover all the basic elements of Android
applications. Moreover, it is possible to extend the Meta-
Model by adding more views in an easy and modular
way. Figure 1 depicts the basic elements of the Meta-
Model. Hereafter, we show a step-by-step how to build
a simple health application using our paradigm. The
health application consists of two basic modules: (1)
Body Mass Index (BMI); and (2) Menu Planner/Meal
Planner. The BMI module is composed of two activi-
ties. The first activity manages user inputs (weight and
height) and computes the BMI. Then, it sends the com-
puted value to the second activity. If the user does not
enter a value and clicks on compute, the phone vibrates
signaling an error. Moreover, the user inputs are stored
in the activity scope variables. The second activity is
where the BMI value is displayed. From this activity, a
user may either navigate back to activity one or navigate
to Menu Planner/Meal Planner module. Listing 1 shows
a snapshot of the code of BMI module.

2.1 Handlers

Some views have special events that trigger specific
handlers (e.g., on button click). A developer can ei-
ther write a method which handles the event or use
some pre-defined shortcuts. The code within the han-
dlers can use functionalities of the Meta-Model or can

directly use native Android code. Views can be ac-
cessed within handlers by passing them as parameters
of the handler method. A handler can be used for the
communication between activities. For example, when
a button is clicked or some text filed gets modified,
one common functionality is to go to another activ-
ity. For a given view, one specifies its handler method
by calling setOnClickHandler. The Meta-Model sim-
plifies control transfer by using high-level shortcut. For
instance, within a handler, startActivity method redi-
rects to another activity by taking the name of the
activity and any view objects as parameters. Another
shortcut is to directly specify the next activity in the
setOnClickHandler.

Data parameters can be sent with a control trans-
fer to communicate between activities. These param-
eters can be passed either as parameters (1) to
startActivity along with the next activity; or (2) di-
rectly to setOnClickHandler.

Listing 2 shows the code of the button from the first
activity where its handler computes the BMI value and
send it to the second activity. Note that, if the user does
not enter a value and clicks on compute, the phone vi-
brates signaling an error.

These parameters can be accessed in the main
method by using a special formatted string (@param {i}
to get the ith parameter). Within a handler,
these parameters can be also accessed by calling
LibActivity.getParameter(i) to get the ith param-
eter. Listing 3 shows a snapshot of the code that sets
some of the views of the second activity. It sets the the
value of a text view to the passed parameter that comes
from the first activity. Also, it uses a shortcut to set the
handler of the button that redirects to the first activity.

2.2 Resource Management

One of the most effort consuming task in developing An-
droid applications is resource management: images, ap-
plication icons, and other types of resources. These re-
sources are copied to specific folders within the resource
folder. In our Meta-Model, resources are automatically
added and generated into their corresponding folders.
For example, to use an image, the developer only needs
to add the path of the image/icon to be used. Listing 4
shows an example that specifies the icon of an applica-
tion, displays an image, and create a buttong with an
image displayed.

3 Projects Composition

Decomposing projects into smaller parts is a key concept
in software engineering. Using the Meta-Model, it is pos-
sible to develop several models and automatically com-
pose them according to a user-provided configuration.

4 John Abou-Jaoudeh et al.: A High-Level Modeling Language of Android Applications

Listing 1. Snapshot of the code of BMI module.

1 LibModel bmiModel = new LibModel("bmiModel", "health.app", "John");

2 LibActivity userInputActivity = new LibActivity();

3 LibActivity resultActivity = new LibActivity();

4 bmiModel.addActivity(userInputActivity, "userInputActivity");

5 bmiModel.addActivity(resultActivity, "resultActivity");

6 setUserInputActivityLayout(userInputActivityLayout);

7 setResultActivityLayout(resultActivityLayout);

8 ...

Listing 2. Example of a handler with data transfer.

1 calculateButton.setOnClickHandler("Handler:health.BMI.calculate", height, weight);

2

3 // package health.BMI

4 public void calculate(LibView ht, LibView wt) {

5 if(!ht.getText().equals("") && !wt.getText().equals("")) {

6 double val = computeBMI (ht, wt);

7 LibModel.startActivity("resultActivity", val);

8 }

9 else {

10 Vibrator v = (Vibrator) getSystemService(Context.VIBRATOR_SERVICE);

11 if(v.hasVibrator()) v.vibrate(500);

12 }

13 }

Listing 3. Example of shortcut handler and data access.

1 bmiValueText.setText("@param_0");

2 ...

3 goBackButton.setOnClickHandler("GoToActivity:userInputActivity");

The composition operation takes as input a configura-
tion file that specifies the links between the interfaces of
models. Each link specifies some control and data trans-
fer that have to occur upon the occurrence of an event
in the models: the activity from another project that has
to be executed and the parameters that have to be sent.

Principles. Given n models m1,m2, . . . ,mn, where mi

consists of ai1, a
i
2, . . . , a

i
Ii

activities. Recall that each ac-
tivity has views that may have handlers. Each handler
runs some code that may transfer the control to another
activity that can be an identified activity in the model or
a symbolic activity (i.e., an activity which is identified by
a symbolic value). Symbolic activities within a handler
are specified by using method goToUnknown that takes
an identifier and a set of objects (to be passed to the
other activity) as parameters. A model that has a han-
dler that transfers to a symbolic activity is considered
as a partial model.

If a handler only redirects to a symbolic activity, it is
possible to use pre-defined high-level shortcut to do so.
At an abstract level, the composition module relies on

two functions: interface that returns the symbolic activ-
ities in a model, and, configuration that associates (con-
crete) activities to symbolic activities. The definition of
function interface is obtained by an automatic analysis
of models (see Sec. 7). Function configuration is defined
by the user through a configuration file. A configuration
file is of the form depicted in Listing 5. It first contains
the new project name, package, author and main activ-
ity. Then, it defines the mapping between identifiers and
activities of different models.

Let mi be a partial model with some of its
handlers associated to symbolic activities id i

1, id
i
2

(interface(mi) = {id i
1, id

i
2}). Let ajk be an activity of

model mj , one can have configuration(id i
1) = ajk, which

means that identifier id i
1 of model mi is mapped to ac-

tivity akj of model mj .

Example. Figure 2 is an example of two partial models
M1 and M2. The handler of button button2, a handler of
activity A2 and the handler of button button3 redirect
to symbolic activities though interfaces I1, I2 and I3,

John Abou-Jaoudeh et al.: A High-Level Modeling Language of Android Applications 5

Listing 4. Example of resource management.

1 ...

2 model.setIcon("images/application.jpg"); // sets the application icon

3 // Create a label to display the given image.

4 LibImageView imageView = new LibImageView("images/image.jpg", ...);

5

6 // Create a button with an image displayed on it.

7 LibImageButton imageButton = new LibImageButton("images/button.jpg", ...);

Listing 5. General shape of a configuration file.

1 <New Project Name>

2 <New Project Package>

3 <New Project Author>

4 <Model>.<Activity>; //indicates the main activity of the composed project

5 <Model>.<Unknown ID> -> <Model>.<Activity Name>; // mapping

6 <Model>.<Unknown ID> -> <Model>.<Activity Name>; // mapping

7 <Model>.<Unknown ID> -> <Model>.<Activity Name>; // mapping

8 ...

M1 M2

M

A1

A2

A3

A4

A5

A1

A2

A3

A4

A5

button1

text

...

button2

?I1

?I2 button3

button4

?I3

button1

text

...

button2

button3

button4

Connections

M1.I1 → M2.A5
M1.I2 → M2.A4
M2.I3 → M1.A1

Fig. 2. Example of models composition.

respectively. The configuration file connects I1, I2 and
I3 to activities A5, A4 and A1, respectively.

Listing 6 shows a snapshot of the shortcut handler
of the button from the second activity (result activ-
ity) of the health application that redirects to a sym-
bolic activity of a different model through the interface
menuPlannerInterface.

Finally, models can be composed to build the final
project by using LibModel’s constructors that takes a
configuration file and a set of models. The composition of
BMI and Menu Planner modules is depicted in Listing 7.

Listing 8 shows the configuration file that connects
(1) the menu planner interface of BMI calculator model
to user information activity of the menu planner model;

and (2) the BMI calculator interface of menu planner
model to user input activity of BMI calculator model.

Note that, a set of models can be composed succes-
sively to build the final model. Listing 9 shows an exam-
ple of successively composing three models.

Although mobile applications almost certainly har-
bors undetected errors, using models composition ap-
proach, it is possible to directly apply software testing
paradigm to reduce and locate them: unit and integra-
tion testing. This can be done by testing partial models
separately (unit testing) to find local errors and then test
the complete model (integration testing) to find interface
errors.

4 Permission Auto-detection and Generation

Manually managing permissions in the configuration
file is time consuming. It often entails several com-
pilation attempts of the application to narrow the
proper set of required permissions. Consequently, most
of the developers add permissions more than it is
needed which contradicts with the users’ preferences.
For example, to use the phone’s vibrator, one needs
to retrieve the vibrator object using the method
getSystemService(Context.VIBRATOR SERVICE),
then call one of the following methods:
hasVibrator(), vibrate(), or cancel(). Note
that, method hasVibrator() returns a boolean
and does not require the vibrate permission
(android.permission.vibrate), while cancel()

and vibrate() do. Listing10 shows an example of
native Android Java code that calls hasVibrator()

but does not require permission access which is
actually not needed. Intuitively, developers may

6 John Abou-Jaoudeh et al.: A High-Level Modeling Language of Android Applications

Listing 6. Example of unknown shortcut handler.

1 menuPlannerButton.setOnClickHandler("GoToActivity:Unknowns(menuPlannerInterface)");

Listing 7. Composition of BMI and Menu Planner modules.

1 LibModel healthAppModel = new LibModel("config.txt", bmiCalculatorModel, menuPlannerModel);

Listing 8. Configuration file connecting BMI and Menu Planner models.

1 Health App // project name

2 health.app // project package

3 John // project author

4 bmiCalculatorModel.userInputActivity // main activity of the composed model

5 // connections/mapping

6 bmiCalculatorModel.menuPlannerInterface -> menuPlannerModel.userInformationActivity

7 menuPlannerModel.bmiCalculatorInterface -> bmiCalculatorModel.userInputActivity

assume that method hasVibrator(), or/and class
method getSystemService() requires permission
android.permission.VIBRATE and adds it to the
manifest configuration file. Note that, if one replaces
line 8 with v.vibrate(500), the permission access
would be required only for mobiles that have a vibrator.
Consequently, code modifications require a manual
reconsideration of the required permissions. In our

Listing 10. Example of native Android Java code that does not
require permission.

1 @Override

2 protected void onCreate(Bundle savedInstanceState) {

3 super.onCreate(savedInstanceState);

4 setContentView(R.layout.activity_main);

5

6 Vibrator v = (Vibrator)

7 getSystemService(Context.VIBRATOR_SERVICE);

8

9 if(v.hasVibrator()) {

10 Toast.makeText(this, text, duration).show();

11 }

12 }

case, APIs to access devise-specific features are called
within handlers of listener GUI elements. Note that
some external libraries may call some of these APIs.
Our permission detection/generation module must take
into account: (1) modification (add/remove/update) of
permissions; (2) modification (add/remove/update) of
APIs; (3) modification (add/remove/update) of external
library that may call those APIs. In other words, any of
these modifications should not drastically affect the code
that automatically detects and generates permissions.

For this, we define a set of templates that represent
all the APIs that requires a permission. For instance,
object initializations (constructors), method calls
(method name, parameter types, calling object’s type),
etc. This gives us maintainability for future permission
modification as well as ease to extend our supported
set of permissions. We define two types of templates
permissions.xml and permissionExternals.xml that
contain templates for native APIs and external library
APIs, respectively, that require permission access. The
template file is of the form depicted in Listing 11. The
template depicted in Listing 11 defines all the API calls
shown in 12 that require permission PERMISSION 1:

For example, the template for permission
android.permissions.VIBRATE is depicted in
Listing13. From the template of permission
android.permissions.VIBRATE, we can deduce
that permission android.permissions.VIBRATE is
required whenever one of the lines of code in Listing14
is detected.

5 Model-based Testing

In order to integrate efficient model-based testing in our
framework, we extend our model to be executable. That
is, each model can be represented as a state consisting
of the current activity, the value of the views, the value
of the activities scope variables and global variables. We
implement all the functionalities to perform operations
on a given model. For example: (1) modify or get the
value of a view; (2) perform click/event. In order to per-
form a click, we use Java reflection to execute the han-
dler of a corresponding view (e.g., button). Performing
operations modify the state of the model accordingly.

John Abou-Jaoudeh et al.: A High-Level Modeling Language of Android Applications 7

Listing 9. Successive composition of models.

1 LibModel model12 = new LibModel("config1.txt", model1, model2);

2 LibModel model123 = new LibModel("config2.txt", model12, model3);

Listing 11. General shape of a template file for a given permission.

<permission name="PERMISSION_1">

<class name="Class_1">

<method name="method_1">

<parameters>

<parameter type="param1" />

</parameters>

</method>

<method name="method_2">

<parameters>

<parameter type=" " />

</parameters>

</method>

<method name="method_3">

<parameters>

<parameter type="param2" />

<parameter type="param3" />

</parameters>

<parameters>

<parameter type="param4" />

</parameters>

</method>

</class>

<class name="Class_2">

<method name="method_4" />

<method name="method_5" />

</class>

<class name="Class_3" />

</permission>

Listing 12. API calls requiring permission PERMISSION 1.

2 (Class_1).method_1(param1);

4 (Class_1).method_2();

6 (Class_1).method_3(param2, param3);

8 (Class_1).method_3(param4);

10 (Class_2).method_4(...);

12 (Class_2).method_5(...);

14 Class_3 var = new Class_3(...);

Listing 13. Template for permission
android.permissions.VIBRATE.

<permission name="android.permissions.VIBRATE">

<class name="Vibrator">

<method name="vibrate" />

<method name="cancel">

<parameters>

<parameter type=" " />

</parameters>

</method>

</class>

</permission>

Listing 14. API calls requiring permission
android.permissions.VIBRATE.

1 // v is an object of type Vibrator

2 // E.g., Vibrator v = (Vibrator)

3 // getSystemService(Context.VIBRATOR_SERVICE);

4

5

6 // vibrate(long milliseconds) method

7 v.vibrate(500);

8

9 // vibrate(long[] pattern, int repeat) method

10 v.vibrate({{12}, {23}, {12}}, 50);

11

12 // cancel() method

13 v.cancel();

The model-based testing framework consists of a
module LibTest that allows to perform high-level op-
erations on the model under test (e.g., setText, click,
etc.). LibTest takes a model under testing as input with
an optional entry point (i.e., name of an activity) and a
set of test cases to be performed.

Recall that, it is possible to test partial models sep-
arately (unit testing) to find local errors and then test
the composed model (integration testing) to find inter-
face errors.

Listing 15 shows an example of some test cases of
BMI calculator model. It mainly tests the redirection of
activities and the computation of BMI. It consists of the
following steps:

1. Create a LibTest instance that takes the model as
input. Note that, it is possible to give an activity
entry point of the model.

2. Set the weight and the height values and check if the
values have been set properly.

8 John Abou-Jaoudeh et al.: A High-Level Modeling Language of Android Applications

3. Perform click on calculateButton button and check
if (1) the next activity is the result activity; and (2)
the BMI was correctly computed.

Note that, if one performs an operation on a view that
does not exist in the current activity, an exception is
thrown.

6 Code Generation

Finally, given an Android model we implement a mod-
ule that generates equivalent native Android code (along
with its resources, manifest configuration file, etc.). This
is done by calling generate(path) method on a given
model. The generated code preserves the order of state-
ments and comments. This allows to easily integrate
other functionalities to the generated code.

An example of code generation is depicted in List-
ing 16.

Listing 16. Example of code generation.

1 public class Application {

2 public static void main(String[] args) ... {

3 ...

4 healthAppModel.generate("gen/");

5 }

6 }

6.1 Cloud-based Compilation

Android SDK (Software Development Kit) is a set of
components that include libraries, a debugger, a handset
emulator, and others. Its main role in development is
to generate native Android application executable files
(.apk). Android SDK is a heavy module that requires
memory, and time.

For this, we have developed a web service, and placed
it online to generate an application’s executable without
installing the SDK. We have configured a server on the
cloud with: (1) all the updated Android SDK libraries;
(2) ant-apache which is a command based tool to cre-
ate, and update an application given its source code; (3)
compiled version of MoDroid. The web service takes as
parameter a model of an Android application developed
using MoDroid. The server compiles an application and
generates an executable file (.apk) ready to be installed
on Android devices, and shared on Google Play Store.
As a plus, in order to efficiently test an application on
different real devices, the web service, can send the gen-
erated executable to a list of email addresses (application
beta testers).

Figure 3 illustrates the process of uploading a MoD-
roid Android Java code, and receiving an executable na-
tive Android code compiled by our server.

Fig. 3. Cloud-based Compilation

7 Tool-set - MoDroid

MoDroid1 implements the Meta-Model and its sup-
ported tools: models composition, permission detection,
testing and code generation. The tool is packed and com-
piled into a single jar file. The jar file must be imported
as a library to the project being developed.

To promote extensibility and modularity of MoDroid
we implement a visitor pattern that traverses the tree
structure (GUI element, handlers, etc.) of an Android
model. The pattern takes as input an interface that de-
clares methods to be executed depending on the node
that was localized. We have developed several implemen-
tation of that interface:

1. Implementation to detect unknown interfaces (sym-
bolic activities) used in models composition.

2. Implementation that takes templates representing all
the APIs that require permissions and detect the re-
quired permissions accordingly.

Model

visitor()permission()templates AndroidManifest

3. Implementation to make the model executable by
performing operations on a view (e.g., LibText) that
are used by model-based testing module.

[Partial] Model

visitor()testing() verdicttestcases()

4. Implementation to generate equivalent native An-
droid code (along with its resources, manifest con-
figuration file, etc.) from an Android model. Code
generation module uses antlr and template engine
library StringTemplate [14] for parsing handlers and
generating native Java Android from an Android
model.

1 http://ujf-aub.bitbucket.org/modroid/

John Abou-Jaoudeh et al.: A High-Level Modeling Language of Android Applications 9

Listing 15. Example of test cases.

1 @Test

2 public void testcase1(LibModel bmiModel) {

3 try {

4 LibTest test = new LibTest(bmiModel);

5 test.setText("height", "175");

6 assertEquals("Incorrect Height", "175", test.getText("height"));

7

8 test.setText("weight", "70");

9 assertEquals("Incorrect Weight", "70", test.getText("weight"));

10

11 test.click("calculateButton");

12

13 assertEquals("Incorrect Activity", "resultActivity", test.getCurrentActivityName());

14 assertEquals("Incorrect Value", "22.9", test.getText("value"));

15 } catch (ElementNotFoundException e) {

16 fail("Element Not Found: " + e);

17 }

18 }

M1 M2

M

A1

A2

A3

A4

A5

A1

A2

A3

A4

A5

button1

text

...

button2

?I1

?I2 button3

button4

?I3

button1

text

...

button2

button3

button4

Connections

M1.I1 → M2.A5
M1.I2 → M2.A4
M2.I3 → M1.A1

visitor()permission()

codegeneration()

testing()testcases()

Java

Native

Android

templates

templates

Fig. 4. Development design-flow in MoDroid.

Model

visitor()codegeneration()
Java

Native

Android

templates

Figure 4 shows the development design-flow which is
based on MoDroid.

First, models are built and tested separately using
high-level primitives provided by MoDroid. Recall that,
it is also possible to build models without their handlers
(e.g., only GUI layouts) from an XML file and then han-
dlers can be programmatically integrated. That is, using

the Meta-Model, one can still benefit from MVC design
pattern supported for native Android development.

Second, given a configuration file describing the map-
ping between models, we generate and test the final
model of the application. It is worth mentioning that,
we can build several applications given different map-
pings without any modifications of the models. Finally,
a native Java Android code is generated including all the
permissions that are required by the core of the appli-
cation. Developers may edit the generated code to add
any extra functionalities.

8 Experimental Results

We have developed several applications using both na-
tive Java Android and MoDroid. Both versions of the
code have the same design and perform exactly the same
functions. Table 1 compares the number of lines of code
between native Java android, MoDroid, and automati-
cally generated code.

It is clear that building an Android model drastically
reduces the number of lines of code. Moreover, it is much
less time consuming w.r.t. writing native Java Android.
We notice an overhead of ca. 25% in the automatically
generated code. This overhead is mainly due to the code
generation of handlers. In fact we duplicate handlers of
different views which can be technically eliminated by
creating only one method for the same handler code of
different views.

Moreover, we have conducted other benchmarks to
compare the performance of our model-based testing
framework and the following tools that are currently
widely used: Robolectric, Robotium, and Espresso on
both an Emulator and a real device.

10 John Abou-Jaoudeh et al.: A High-Level Modeling Language of Android Applications

Application Name MoDroid Generated Native
Written Code
Reduction

Overhead Code
Generated

Breadcrumb Viewer 63 329 276 77% 17%

Guessing Game 158 340 246 35% 27%

Scientific Calculator 180 377 282 36% 25%

Volleyball Statistics 137 702 510 73% 27%

Table 1. Code comparison.

Robotium and Espresso perform actions on an emu-
lator or on a real device; whereas Robolectric and MoD-
roid testing do not need an emulator nor a real device.
Taking this factor into consideration, we would expect
our testing framework and Robolectric to have a better
performance.

The first benchmark was performed on the scientific
calculator application that we developed using MoDroid.
The test actions were simply to click on values and op-
erations; then to check the output of the calculator.

Table 2 shows a comparison of the time taken to per-
form test cases that require 10, 25, 50 up to 1 million op-
erations by all the tools. Operations consist of perform-
ing clicks and text value modifications and searches.

As expected, Robolectric and MoDroid drastically
outperform Robotium and Espresso. The results were
close between Robolectric and MoDroid if we take into
account the initialization phase required by Robolectric.
The time taken to perform test cases requiring one mil-
lion operations with Robolectric is 27 seconds as opposed
to 7.7 seconds using MoDroid.

The second benchmark was performed on a Volley-
ball Statistics application developed using MoDroid. It
is composed of two activities. The first activity is the
splash screen which contains a button to navigate to the
second activity where statistics are done. The second
Activity is composed of two teams and the players for
each team. Each player has two buttons to increment
and decrement the points scored by this player. This ap-
plication can be used by coaches, statistics frameworks,
and so on.

We test this application by randomly selecting a
player and performing operations. We also test the nav-
igation between activities.

Table 3 shows a comparison of the time taken to per-
form test cases requiring 10, 25, 50 up to 1 million op-
erations by all the tools. Similar to the first benchmark,
Robolectric and MoDroid outperform other tools. More-
over, the time taken by test cases that require one million
operations with Robolectric is 118 seconds as opposed to
12 seconds using MoDroid.

9 Related Work

9.1 Android Mobile Development

This paper advocates the use of modeling to improve
the development of Android applications. Modeling pars
of an application simplifies and accelerates the develop-
ment process and frees the developer from writing repet-
itive code.

The use of models in the development of Java appli-
cations has received a lot of attention, and several tools
are available. For instance, Eclipse Modeling Frame-
work (EMF) [17] is a powerful modeling tool based on
two metamodels Ecore, and Genmodel. EMF stores the
model information using XMI (XML Metadata Inter-
change), and creates its meta-model via UML, Java an-
notations, XML Schema, and XMI. Similarly, Xcore [6],
another tool from Eclipse, is a textual syntax for Ecore.
Both EMF and Xcode are powerful tools when it comes
to modeling Java applications. However, to the best of
our knowledge they have not been used to develop An-
droid applications.

Mobile development frameworks are usually catego-
rized into native, cross-platform, and web based. A na-
tive mobile development framework generates creates
applications in native code. Each of those categories has
its advantages, and disadvantages. For example, native
has the best performance, while web based allows for
the fastest development. We compare our approach with
some of the frameworks in those categories:

– native: App Inventor 2 [12] is a GUI-based tool
which supports the rapid development for simple ap-
plications. However, when it comes to complex ap-
plications, App Inventor 2 sets a lot of limits on the
developer, and the application itself since users can-
not write their own code, and are only limited to
what is provided by the GUI.

– hybrid: PhoneGap [18] and Cordova [2] are two
commonly used cross platform mobile development
frameworks [13]. They allow the developer to gen-
erate mobile applications that work on almost all
devices by using HTML, CSS, JavaScript. Using
JavaScript to interact with the phone’s features pre-
vents from using native code since JavaScript is
slower in processing data. Moreover, these frame-
works lack the ability for background processing,

John Abou-Jaoudeh et al.: A High-Level Modeling Language of Android Applications 11

```````````Platform

Operations (#)
10 25 50 75 100 150 1000 10000 100000 1000000

Robotium 36 88 180 268 360 541 3605.4 > 10 hours > 10 hours > 10 hours

Espresso Emulator 1.8 4.3 8.1 12 15.6 23.1 159.3 1645.5 16411.7 > 10 hours

Espresso Sony Z2 0.9 2.4 4.5 6.8 8.9 13.4 88.6 918.9 9189 > 10 hours

Robolectric 4.4 4.5 4.7 4.9 5.1 5.4 5.6 5.9 6.9 27

MoDroid 0.021 0.031 0.038 0.039 0.04 0.05 0.14 0.4 1.118 7.7

Table 2. Testing Time (in seconds).

```````````Platform

Operations (#)
10 25 50 75 100 150 1000 10000 100000 1000000

Robotium 5.2 12.8 25.8 37.1 49.9 73.5 486.1 4861.1 > 10 hours > 10 hours

Espresso Emulator 3.1 7.6 15.5 22.5 29.9 43.6 290.9 2845.1 28760.2 > 10 hours

Espresso Sony Z2 1.1 2.6 5.5 7.7 10.3 15.3 111.9 1148.5 11275.2 > 10 hours

Robolectric 4.81 4.94 5.1 5.3 5.64 5.95 6.3 8.88 18.94 118.84

MoDroid 0.01 0.02 0.03 0.04 0.06 0.07 0.19 0.62 1.78 12.14

Table 3. Testing Time (in seconds).

which might be important in several applications.
Furthermore, performance issues were reported due
to the lack of hardware CSS acceleration of An-
droid [19].

– web-based: jQuery mobile [10] is one of the most
used web based mobile development frameworks. It
allows for extremely rapid development of responsive
web sites, and applications which can be accessed
via all smartphone, tablet, and desktop devices.
Two main disadvantages arise when using web based
frameworks: poor performance [16], and loosing the
ability to use smartphone features.

Finally, none of the above Android development frame-
works allows for the composition and decomposition of
applications. MoDroid allows for this, as shown in Sec-
tion 3. Moreover, it allows for permission auto-detection
and generation as specified in Section 4. The main ad-
vantage is that any unneeded permission will not be in-
cluded in the Android Manifest file allowing the appli-
cation to be available for more devices, and most im-
portantly protecting the user’s privacy when using addi-
tional unneeded permissions [5] [3].

9.2 Testing Android Applications

On the other hand, testing of android applications be-
come more challenging. In general, android testing tools
can be divided into two main categories: GUI based test-
ing and non-GUI based testing.

GUI based testing: This category requires testing on
an emulator or on a real android device. Google present
several tools some of which fall under this category. First
is Instrumentation [7], a set of classes and methods which

control Android components and how Android loads ap-
plications. These classes allow the developer to test any
component at any given time in its lifecycle. Develop-
ing a test case with this tool is time consuming and
very complex. This lead Google to develop another tool
Espresso [9]. Espresso is built over Instrumentation and
its main goal is to simplify testing techniques.

Another commonly used tool is Robotium [15]. This
tool is well documented and could be easily configured.
In addition to the above, developing test cases is simple;
all action calls are being done on a single object solo.
The main disadvantage one would face using this tool is
the speed of running test cases.

Other tools under this category parse applications
and automatically generate test cases, e.g., Monkey [8],
Android GUITAR [1] and ORBIT [20].

Whether on an emulator or on a real android device,
running an enormous number of test cases would require
a huge amount of time (see Section 8). This would make
GUI based testing tools fall a lot behind non-GUI based
testing tools. On the other hand, GUI based testing is
more expressive and would be useful to test hardware
devises (e.g., camera, sensors, etc.).

Non-GUI based testing: Robolectric [11] allows de-
velopers to test Android applications without the use of
an Android emulator or device. Robolectric presents the
user with several objects and methods to imitate an an-
droid application’s lifecycle. The main advantage is the
speed of running test cases. We would be able to perform
thousands of operations by the time GUI based testing
is able to perform just tens. Configuring this tool as well
as writing test cases are complicated and time consum-
ing. Moreover, it is dependent of several other libraries.
In addition, developing test cases is complicated. For in-
stance, Listing 17 is a sample code to access the value

12 John Abou-Jaoudeh et al.: A High-Level Modeling Language of Android Applications

of a TextView using Robolectric. Our framework falls

Listing 17. Sample code to access the value of a TextView using
Robolectric.

1 ActivityClassName activity = Robolectric.

2 buildActivity(ActivityClassName.class).

3 create().start().visible().get();

4

5 TextView results = (TextView) activity2.

6 findViewById(viewID);

7

8 results.getText();

under the category of non-GUI based testing. We target
ease of configuration, simplicity and performance.

10 Conclusion and Future Work

This paper proposes a new way to develop Android ap-
plications. It proposes a compromise between expressive-
ness and ease of development: at the price of slightly re-
duced expressiveness, MoDroid facilitates and speeds up
the development process. Yet, using our framework does
not prevent developers from building applications using
the full range of features of Android because, after auto-
matically generating the base of the application, expert
developers can still use Android features by completing
the generated code template. Moreover, our framework
introduces several interesting features for developers: de-
composition of applications for parallel development, au-
tomatic detection of permissions and generation of Man-
ifest, efficient model-based testing of applications, and
automatic code generation of some parts of applications.

In the near future, we plan to add several features in
the road-map of MoDroid. First, we plan to add emula-
tors for hardware components such as the GPS and cam-
era. For instance, this should allow the user to pre-define
GPS locations to be passed to the application. Moreover,
we plan to extend MoDroid to support a high-level de-
scription of multi-tasking, services, broadcast receivers,
etc. Additionally, we plan to make automatic permission
detection compatible with the permissions model of the
latest version of Android (Android M). Finally, we plan
to make MoDroid compatible with existing tools for au-
tomatic test generation for Android.

References

1. Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tra-
montana, Bryan Dzung Ta, and Atif M. Memon. Mo-
biguitar – a tool for automated model-based testing of
mobile apps. IEEE Software, NN(N):NN–NN, 2014.

2. Apache. Cordova, http://cordova.apache.org/, 2011.

3. Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and
David Lie. Pscout: analyzing the android permission
specification. In Proceedings of the 2012 ACM confer-
ence on Computer and communications security, pages
217–228. ACM, 2012.

4. Alexandre Bartel, Jacques Klein, Yves Le Traon, and
Martin Monperrus. Automatically securing permission-
based software by reducing the attack surface: An appli-
cation to android. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engi-
neering, pages 274–277. ACM, 2012.

5. Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Ap-
poscopy: Semantics-based detection of android malware
through static analysis. In SIGSOFT FSE, 2014.

6. Eclipse Foundation. Xcore is an extended concrete syn-
tax for ecore that, in combination with xbase, transforms
it into a fully fledged programming language with high
quality tools reminiscent of the java development tools.,
2011.

7. Google. Testing instrumentation, 2007.
8. Google. Application exerciser monkey, 2010.
9. Google. Espresso, 2013.

10. jQuery Team. Jquery mobile, http://www.

jquerymobile.com/, 2010.
11. Pivotal Labs. Robolectric, 2010.
12. Edward Mitchell. App Inventor 2: Tutorial: The fast

and easy way to create Android apps, volume 1. Edward
Mitchell, 2014.

13. Manuel Palmieri, Inderjeet Singh, and Antonio Cicchetti.
Comparison of cross-platform mobile development tools.
In 16th International Conference on Intelligence in Next
Generation Networks, ICIN 2012, Berlin, Germany, Oc-
tober 8-11, 2012, pages 179–186, 2012.

14. Terence Parr. String template, 2000.
15. Renas Reda. Robotium, 2009.
16. Florian Rösler, André Nitze, and Andreas Schmi-

etendorf. Towards a mobile application performance
benchmark. In ICIW 2014, The Ninth International
Conference on Internet and Web Applications and Ser-
vices, pages 55–59, 2014.

17. Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo
Paternostro. EMF: eclipse modeling framework. Pearson
Education, 2003.

18. Adobe Systems. Phonegap, http://www.phonegap.com/,
2009.

19. Florian Wolf and KARSTEN HUFFSTADT. Mobile en-
terprise application development-a cross-platform frame-
work. FHWS Science Journal, page 33, 2013.

20. Wei Yang, Mukul R. Prasad, and Tao Xie. A grey-box
approach for automated gui-model generation of mo-
bile applications. In Fundamental Approaches to Soft-
ware Engineering - 16th International Conference, FASE
2013, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2013, Rome,
Italy, March 16-24, 2013. Proceedings, pages 250–265,
2013.

