
Mining Parametric Temporal Logic Properties
in Model Based Design for Cyber-Physical Systems

Extended Version

Bardh Hoxha, Adel Dokhanchi, Georgios Fainekos

Arizona State University
e-mail: {bhoxha,adokhanc,fainekos}@asu.edu

Received: date / Revised version: date

Abstract. One of the advantages of adopting a Model
Based Development (MBD) process is that it enables
testing and verification at early stages of development.
However, it is often desirable to not only verify/falsify
certain formal system specifications, but also to auto-
matically explore the properties that the system satisfies.
In this work, we present a framework that enables prop-
erty exploration for Cyber-Physical Systems. Namely,
given a parametric specification with multiple param-
eters, our solution can automatically infer the ranges
of parameters for which the property does not hold on
the system. In this paper, we consider parametric spec-
ifications in Metric or Signal Temporal Logic (MTL or
STL). Using robust semantics for MTL, the parameter
mining problem can be converted into a Pareto optimiza-
tion problem for which we can provide an approximate
solution by utilizing stochastic optimization methods.
We include algorithms for the exploration and visualiza-
tion of multi-parametric specifications. The framework is
demonstrated on an industrial size, high-fidelity engine
model as well as examples from related literature.

Key words: Metric Temporal Logic, Signal Temporal
Logic, Verification, Testing, Robustness, Multiple Para-
metric Specification Mining, Cyber-Physical Systems

1 Introduction

Testing, verification and validation of Cyber-Physical
Systems (CPS) is a challenging problem. Prime examples
of such systems are aircraft, cars and medical devices
which are also safety-critical systems. The complexity
in these systems arises mostly from the complex inter-
actions between the numerous components (e.g. soft-
ware enabled controllers) and the physical environment

(plant). Many accidents [1,2] and recalls in the industry
have reinforced the need for better methodologies in this
area. In addition, general trends indicate that software
complexity in CPS is going to increase in the future [3].

A recent shift in system development, aimed to alle-
viate some of the challenges, is the Model Based Design
(MBD) paradigm. One of the benefits of MBD is that a
significant amount of testing and verification of the sys-
tem can be conducted in various stages of model devel-
opment. This is different from the traditional approach,
where most of the analysis is conducted on a prototype
of the system. Due to the importance of the problem,
there has been a substantial level of research on test-
ing and verification of models of embedded and hybrid
systems (see [4,5] for an overview).

In [6,7], the authors propose an approach to support
the testing and verification process in MBD. The papers
provide a new method for testing embedded and hybrid
systems against formal requirements which are defined
in Metric Temporal Logic (MTL) [8]. MTL formulas are
interpreted over trajectories/behaviors of the system. In
this context, MTL specifications are equivalent to Signal
Temporal Logic (STL) [9] specifications. Given a system
and an MTL specification, the method searches for op-
erating conditions such that the MTL specification is
not satisfied or, in other words, falsified. The authors
utilize the concept of system robustness of MTL spec-
ifications [10,11] to turn the falsification problem into
an optimization problem. The notion of the robustness
metric enables system developers to measure by how far
a system behavior is from failing to satisfy a require-
ment. This allows for the development of an automatic
test case generator, which uses a stochastic optimization
engine to find operating conditions that falsify the sys-
tem in terms of the MTL specifications. The resulting
optimization problem may be both non-linear and non-
convex. To solve the problem, in [12,13,6], the authors
present stochastic optimization techniques that solve the

ar
X

iv
:1

51
2.

07
95

6v
4

 [
cs

.L
O

]
 2

4
A

ug
 2

01
6

2 Hoxha et al.:: Mining Parametric Temporal Logic Properties in MBD for CPS

falsification problem with very good performance in both
accuracy and number of simulations required.

In [14], the authors utilize this notion of robustness
to explore and determine system properties. In more de-
tail, given a parameterized MTL specification [15], where
there is an unknown state and/or timing parameter, the
authors find the range of values for the parameter such
that the system is not satisfied.

In this work, we extend and generalize the work in
[14] to enable multiple parameter mining and analysis
of parametric MTL specifications. We improve the effi-
ciency of the previous algorithm in [14] and present a
parameter mining framework for MBD. Such an explo-
ration framework would be of great value to the practi-
tioner. The benefits are twofold. One, it allows for the
analysis and development of specifications. In many cases,
system requirements are not well formalized by the ini-
tial system design stages. Two, it allows for the analy-
sis and exploration of system behavior. If a specification
can be falsified, then it is natural to inquire for the range
of parameter values that cause falsification. That is, in
many cases, the system design may not be modified, but
the guarantees provided should be updated.

The extension to multiple parameter mining of MTL
specifications allows practitioners to use this method
with more complex specifications. However, as the num-
ber of parameters in the specification increases, so does
the complexity of the resulting optimization problem.
In the case of single parameter mining, the solution of
the problem is a one dimensional range. On the other
hand, with multiple parameters, finding a solution to
the problem becomes more challenging since the opti-
mization problem is converted to a multi-objective op-
timization problem where the goal is to determine the
Pareto front [16]. To solve this problem, we present a
method for effective one-sided exploration of the Pareto
front and provide a visualization method for the analysis
of parameters. The algorithms presented in this work are
incorporated in the testing and verification toolbox S-
TaLiRo [17,18]. For an overview of the toolbox see [19].
Finally, we demonstrate our framework on a challenge
problem from the industry on an industrial scale model
and present experimental results on several benchmark
problems. Even though our examples and case study
are from the automotive domain, our results can be ap-
plied to any application domain where Model Based De-
sign (MBD) and temporal logic requirements are uti-
lized, e.g., medical devices [20,21,22,23].

Summary of Contributions:

– We extend and generalize the parameter mining prob-
lem presented in [14].

– We provide an efficient solution to the problem of
multiple parameter mining.

– We present two algorithms to explore the Pareto front
of parametric MTL with multiple parameters.

– We illustrate our method with an industrial size case
study of a high-fidelity engine model.

– The algorithms presented in this work are publicly
available through our toolbox S-TaLiRo [18].

2 Problem Formulation

2.1 Preliminaries

In the rest of the paper, we take a general approach to
modeling real-time embedded systems that interact with
physical systems that have non-trivial dynamics. A ma-
jor source of complexity in the analysis of these systems
arises from the interaction between the embedded sys-
tem and the physical world.

We fix N ⊆ N, where N is the set of natural numbers,
to be a finite set of indexes for the finite representation
of a system behavior. In the following, given two sets
A and B, BA denotes the set of all functions from A
to B. That is, for any f ∈ BA we have f : A → B.
We consider a system Σ as a mapping from a compact
set of initial operating conditions X0 and input signals
U ⊆ UN to output signals Y N and timing (or sampling)
functions T ⊆ RN+ . Here, U is a compact set of possible
input values at each point in time (input space), Y is
the set of output values (output space), R is the set of
real numbers and R+ the set of positive reals.

We impose three assumptions/restrictions on the sys-
tems that we consider:

1. The input signals (if any) must be parameterizable
using a finite number of parameters. That is, there
exists a function U such that for any u ∈ U, there
exist two parameter vectors λ = [λ1 . . . λm]ᵀ ∈ Λ,
where Λ is a compact set, and t = [t1 . . . tm]ᵀ ∈
Rm+ such that m is typically much smaller than the
maximum number of indices in N and for all i ∈ N ,
u(i) = U(λ, t)(i).

2. The output space Y must be equipped with a general-
ized metric d which contains a subspace Z equipped
with a metric d [7].

3. For a specific initial condition x0 and input signal
u, there must exist a unique output signal y defined
over the time domain R. That is, the system Σ is
deterministic.

Further details on the necessity and implications of the
aforementioned assumptions can be found in [7]. As-
sumption 3 can also be relaxed as shown in [24].

Under Assumption 3, a system Σ can be viewed as
a function ∆Σ : X0 ×U → Y N × T which takes as an
input an initial condition x0 ∈ X0 and an input signal
u ∈ U and it produces as output a signal y : N → Y
(also referred to as trajectory) and a timing function
τ : N → R+. The only restriction on the timing func-
tion τ is that it must be a monotonic function, i.e.,
τ(i) < τ(j) for i < j. The pair µ = (y, τ) is usually
referred to as a timed state sequence, which is a widely

Hoxha et al.:: Mining Parametric Temporal Logic Properties in MBD for CPS 3

0 5 10 15 20 25 30
0

50

100
Throttle

0 5 10 15 20 25 30
0

5000
RPM

0 5 10 15 20 25 30
0

100

200
Speed

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

x1

x 2

Fig. 1. Left: Example 1 (AT): Throttle: A piecewise constant input signal u parameterized with Λ ∈ [0, 100]6 and t = [0, 5, 10, 15, 20, 25].
RPM, Speed: The corresponding output signals that falsify the specification “The vehicle speed v is always under 120km/h or the engine
speed ω is always below 4500RPM.” Right: Example 2 (HS): Simulated trajectories of the hybrid system containing a trajectory that
falsifies the specification “A trajectory should never pass set [−1.6,−1.4]2 or set [3.4, 3.6] × [−1.6,−1.4]”. The green square indicates
the set of possible initial conditions and the red squares indicate the bad regions which the system should not enter. The yellow region
indicates the set of initial conditions where the location on the hybrid system changes.

accepted model for reasoning about real time systems
[25]. A timed state sequence can represent a computer
simulated trajectory of a CPS or the sampling process
that takes place when we digitally monitor physical sys-
tems. We remark that a timed state sequence can rep-
resent both the internal state of the software/hardware
(usually through an abstraction) and the state of the
physical system. The set of all timed state sequences of
a system Σ will be denoted by L(Σ). That is,

L(Σ) = {(y, τ) | ∃x0 ∈ X0 .∃u ∈ U . (y, τ) = ∆Σ(x0, u)}.

Our high-level goal is to explore and infer properties
that the system Σ satisfies. We do so by observing the
system response (output signals) to particular input sig-
nals and initial conditions. We assume that the system
designer has partial understanding about the properties
that the system satisfies (or does not satisfy) and would
like to be able to precisely determine these properties. In
particular, we assume that the system developer can for-
malize the system properties in Metric Temporal Logic
(MTL) [8], where some parameters are unknown. Such
parameters could be unknown threshold values for the
continuous state variables of the hybrid system or some
unknown real time constraints.

MTL enables the formalization of complex require-
ments with respect to both state and time. In addition
to propositional logic operators such as conjunction (∧),
disjunction(∨) and negation(¬), MTL supports tempo-
ral operators such as next(X), until (U), release (R), al-
ways (2) and eventually (3). Among others, MTL can
be utilized to express specifications such as:

– Safety (2φ) : φ should always hold from this moment
on.

– Liveness (3φ): φ should hold at some point in the
future (or now).

– Coverage (3φ1∧3φ2 ...∧3φn): φ1 through φn should
hold at some point in the future (or now), not neces-
sarily in order or at the same time.

– Stabilization (32φ): At some point in the future (or
now), φ should always hold.

– Recurrence (23φ) : At every point time, φ should
hold at some point in the future (or now).

Another popular formalism for the definition of for-
mal requirements is Signal Temporal Logic (STL) [9].
Since MTL formulas are interpreted over behaviors of
the CPS, the results provided in this paper can be di-
rectly applied over STL formulas as well. To enable of
elicitation of formal requirements for CPS, tools such as
ViSpec [26] may be utilized.

Throughout the paper, we will consider two running
examples. The first example consists of an automatic
transmission model, and the second, consists of a hybrid
non-linear time varying system.

Example 1 (AT) We consider a slightly modified ver-
sion of the Automatic Transmission model provided by
Mathworks as a Simulink demo1. Further details on this
example can be found in [27,7]. The only input u to the
system is the throttle schedule, while the brake schedule is
set simply to 0 for the duration of the simulation which is
T = 30 sec. The physical system has two continuous-time
state variables which are also its outputs: the speed of
the engine ω (RPM) and the speed of the vehicle v, i.e.,
Y = R2 and y(t) = [ω(t) v(t)]ᵀ for all t ∈ [0, 30]. Ini-
tially, the vehicle is at rest at time 0, i.e., X0 = {[0 0]ᵀ}
and x0 = y(0) = [0 0]ᵀ. Therefore, the output trajecto-
ries depend only on the input signal u which models the
throttle, i.e., (y, τ) = ∆Σ(u). The throttle at each point

1 Available at: http://www.mathworks.com/help/simulink/

examples/modeling-an-automatic-transmission-controller.

html

http://www.mathworks.com/help/simulink/examples/modeling-an-automatic-transmission-controller.html
http://www.mathworks.com/help/simulink/examples/modeling-an-automatic-transmission-controller.html
http://www.mathworks.com/help/simulink/examples/modeling-an-automatic-transmission-controller.html

4 Hoxha et al.:: Mining Parametric Temporal Logic Properties in MBD for CPS

S0

ẋ1 = x1(t)− x2(t) + 0.1t
ẋ2 = −x1(t) sin(2πx1(t))+

x2 cos(2πx2(t)) + 0.1t

S1

ẋ1 = x1(t)
ẋ2 = −x1(t) + x2(t)

x0 ∈ [−1, 1]2\XU
x ∈ XU

x0 ∈ XU

Fig. 2. Example 2: Hybid non-linear system with XU =
[0.85, 0.95]2 and initial condition x0 ∈ [−1, 1]× [−1, 1].

in time can take any value between 0 (fully closed) to 100
(fully open). Namely, u(i) ∈ U = [0, 100] for each i ∈ N .
The model also contains a Stateflow chart with two con-
currently executing Finite State Machines (FSM) with 4
and 3 states, respectively. The FSM models the logic that
controls the switching between the gears in the transmis-
sion system. We remark that the system is deterministic,
i.e., under the same input u, we will observe the same
output y. In our previous work [7,17,12], on such mod-
els, we demonstrated how to falsify requirements like:
“The vehicle speed v is always under 120km/h or the
engine speed ω is always below 4500RPM.” A falsifying
system trajectory appears in Fig. 1. A falsifying system
trajectory appears in Fig. 1 (Left).

Example 2 (HS) We consider the hybid time-varying
non-linear system presented in Fig. 2. The output of the
system is the state of the system, i.e. y(t) = x(t). Inter-
esting requirements on this system would be “A trajec-
tory of the system should never pass through the sets
[−1.6,−1.4]2 or [3.4, 3.6] × [−1.6,−1.4]”. A falsifying
system trajectory appears in Fig. 1 (Right). N

2.2 Parameter Mining

In this work, we provide answers to queries like “What
is the shortest time that ω can exceed 3250 RPM” or
“For how long can ω be below 4500 RPM”. We can also
answer queries about the relationships between parame-
ters with regard to system falsification. For example, for
the specification “Always the vehicle speed v and engine
speed ω need to be less than parameters θ1, θ2, respec-
tively” we could ask “If I increase/decrease θ1 by a spe-
cific amount, how much do I have to increase/decrease
θ2 so that I satisfy the specification?”.

Formally, we extend and generalize the problem of
single parameter mining presented in [14]. There the
problem is defined as follows.

Problem 1 (MTL 1-Parameter Mining) Given an
MTL formula φ[θ] with a single unknown parameter θ ∈
Θ = [θm, θM] and a system Σ, find an optimal range
Θ∗ = [θ∗m, θ

∗
M] such that for any ζ ∈ Θ∗, φ[ζ] does not

hold on Σ, i.e., Σ 6|= φ[ζ].

The extension in the present work is in regards to
the number of parameters that can appear in the speci-
fication. Formally, it is defined as follows:

System
Simulator

Temporal Logic
Robustness

Stochastic
Optimization

robustness ε

output signal y

initial
conditions x0 &
input signal u

Cost
Function

System Σ PMTL
Specification

PMTL
Monotonicity

output: parameter
falsification domain Ψ

inputs:

est.
parameters

Fig. 3. Overview of the solution to Problem 2, the PMTL param-
eter mining problem for CPS.

Problem 2 (MTL m-Parameter Mining) Given an
MTL formula φ[θ] with a vector of m unknown param-
eters θ ∈ Θ = [θ,θ] and a system Σ, find the set Ψ =
{θ∗ ∈ Θ | Σ 6|= φ[θ∗]}.

That is, the solution to Problem 2 is the set Ψ such
that for any parameter θ∗ in Ψ the specification φ[θ∗]
does not hold on system Σ. In the rest of the paper,
we refer to Ψ as the parameter falsification domain. An
approximate solution for Problem 1 was presented in
[14] for the case where θ is a scalar. In [14], the solution
to the problem returned a parameter with which the
falsifying set can be inferred since the parameter range is
one dimensional. Here, we provide a solution to Problem
2. In the multiple parameter setting, we have a set of
possible solutions which we need to explore. That is, the
solution to the multi-parameter mining problem is in the
form of a Pareto front [16].

We note that the original observation that the falsifi-
cation domain problem over a single system output trace
has the structure of a Pareto front is made in [15]. In this
work, we observe that the falsification domain problem
over all system output traces also has the structure of a
Pareto front. Other methods for Pareto front computa-
tion have been studied in [28,29]. However, the nature
of the problem is significantly different in our case. Here,
due to the undecidability of the problem [30], we can only
guarantee that a parameter falsifies the specification. It
is not the case that we can guarantee that a parameter
value satisfies the specification. Therefore, the parame-
ter falsification domain is generated strictly by utilizing
falsifying behavior.

Ideally, by solving Problem 2, we would also like to
have the property that for any ζ ∈ Θ − Ψ , φ[ζ] holds
on Σ, i.e., Σ |= φ[ζ]. However, even for a given ζ, the
problem of algorithmically computing whether Σ |= φ[ζ]
is undecidable for the classes of systems that we consider
in this work [30].

An overview of our proposed solution to Problem 2
appears in Fig. 3. Given a model and a MTL specifica-

Hoxha et al.:: Mining Parametric Temporal Logic Properties in MBD for CPS 5

tion with one or more parameters, the sampler produces
a point x0 from the set of initial conditions, input signal
u and vector of mined parameters θ for the Parametric
MTL specification. The initial conditions and input sig-
nal are passed to the system simulator which returns an
execution trace (output trajectory and timing function).
The trace, in conjunction with the mined parameters, is
then analyzed by the MTL robustness analyzer which re-
turns a robustness value. The robustness score computed
is used by the stochastic sampler to decide on next initial
conditions, inputs, and estimated parameters to utilize.
The process terminates after a maximum number of tests
or when no improvement on the mined parameters has
been made after a number of tests. As the number of
parameters increases, so does the computational com-
plexity of the problem. For formulas with more than one
parameter, we present an efficient approach in Section 6
to explore the parameter falsification domain.

3 Robustness of Metric Temporal Logic
Formulas

Metric Temporal Logic [8] enables reasoning over quan-
titative temporal properties of boolean signals. In the
following, we present MTL in Negation Normal Form
(NNF) since this is needed for the presentation of the
new results in Section 5. We denote the extended real
number line by R = R ∪ {±∞}.

Definition 1 (Syntax of MTL in NNF) Let R be the
set of truth degree constants, AP be the set of atomic
propositions and I be a non-empty non-singular interval
of R≥0. The set MTL of all well-formed formulas (wff)
is inductively defined using the following rules:

– Terms: True (>), false (⊥), all constants r ∈ R and
atomic propositions p, ¬p for p ∈ AP are terms.

– Formulas: if φ1 and φ2 are terms or formulas, then
φ1 ∨ φ2, φ1 ∧ φ2, φ1 UIφ2 and φ1RIφ2 are formulas.

The atomic propositions in our case label subsets of
the output space Y . Each atomic proposition is a short-
hand for an arithmetic expression of the form p ≡ g(y) ≤
c, where g : Y → R and c ∈ R. We define an observation
map O : AP → P(Y) such that for each p ∈ AP the
corresponding set is O(p) = {y | g(y) ≤ c} ⊆ Y .

In the above definition, UI is the timed until oper-
ator and RI the timed release operator. The subscript
I imposes timing constraints on the temporal operators.
The interval I can be open, half-open or closed, bounded
or unbounded, but it must be non-empty (I 6= ∅) (and,
practically speaking, non-singular (I 6= {t})). In the case
where I = [0,+∞), we remove the subscript I from the
temporal operators, i.e., we just write U and R. Also,
we can define eventually (3Iφ ≡ >UIφ) and always
(2Iφ ≡ ⊥RIφ).

Before proceeding to the actual definition of the ro-
bust semantics, we introduce some auxiliary notation. A

metric space is a pair (X, d) such that the topology of
the set X is induced by a metric d. Using a metric d,
we can define the distance of a point x ∈ X from a set
S ⊆ X. Intuitively, this distance is the shortest distance
from x to all the points in S. In a similar way, the depth
of a point x in a set S is defined to be the shortest dis-
tance of x from the boundary of S. Both the notions of
distance and depth play a fundamental role in the defini-
tion of the robustness degree. The metrics and distances
utilized in this work are covered in more detail in [11,7].

Definition 2 (Signed Distance) Let x ∈ X be a point,
S ⊆ X be a set and d be a metric on X. Then, we define
the Signed Distance from x to S to be

Distd(x, S) :=

−distd(x, S) := − inf{d(x, y) | y ∈ S}

if x 6∈ S
depthd(x, S) := distd(x,X\S)

if x ∈ S

We utilize the extended definition of the supremum and
infimum, i.e., sup ∅ := −∞ and inf ∅ := +∞.

We define the binary relation � on parameter vectors
θ,θ′ such that θ � θ′ ⇐⇒ ∀i, θi ≤ θ′i, where i is the ith

entry of the vector. MTL formulas are interpreted over
timed state sequences µ. In the past [10,11], we proposed
multi-valued semantics for the MTL where the valuation
function on the predicates takes values over the totally
ordered set R according to a metric d operating on the
output space Y . We let the valuation function be the
depth (or the distance) of the current point of the signal
y(i) in a set O(p) labeled by the atomic proposition p.
Intuitively, this distance represents how robust is the
point y(i) within set O(p). While positive values indicate
satisfaction, negative values indicate that the trajectory
falsifies the MTL specification. If this metric is zero, then
even the smallest perturbation of the point can drive
it inside or outside the set O(p), dramatically affecting
membership.This is called a robustness estimate and is
formally defined in Definition 3.

For the purposes of the following discussion, we use
the notation [[φ]] to denote the robustness estimate with
which the timed state sequence µ satisfies the specifi-
cation φ. Formally, the valuation function for a given
formula φ is [[φ]] : Y N × T × N → R. In the definition
below, we also use the following notation : for Q ⊆ R,
the preimage of Q under τ is defined as : τ−1(Q) := {i ∈
N | τ(i) ∈ Q}.

Definition 3 (Robustness Estimate [11]) Let µ =
(y, τ) ∈ L(Σ), r ∈ R and i, j, k ∈ N , then the robust-
ness estimate of any formula MTL φ with respect to µ
is recursively defined as follows

[[>]](µ, i) := +∞ [[⊥]](µ, i) := −∞

6 Hoxha et al.:: Mining Parametric Temporal Logic Properties in MBD for CPS

0
20

40
60

01020304050
-60

-50

-40

-30

-20

-10

0

10

20

30

u1u2

R
ob

us
tn

es
s

-1

0

1

-1-0.500.51
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

x
1x

2

R
ob
us
te
ns
s

Fig. 4. Robustness estimate landscape for system specifications. Left: Example 1 (AT): φAT = ¬(3[0,30](v > 100) ∧ 2(ω ≤ 4500)) ∧
¬3[10,40]2[0,5](60 < v ≤ 80) ∧ ¬3[50,60]2[0,3](v ≤ 60). The input signal to the system is generated by linearly interpolating control

points u1, u2 at time 0 and 60, respectively, for the throttle input u. That is, u(t) = 60−t
60

u1 + t
60
u2.; Right: Example 2 (HS):

φHS = 2[0,2]¬a ∧ 2[0,2]¬b, where O(a) = [−1.6,−1.4]2 and O(b) = [3.4, 3.6]× [−1.6,−1.4]. Here x1 and x2 are initial conditions for the
hybrid system.

[[p]](µ, i) := Distd(y(i),O(p))

[[¬p]](µ, i) := −Distd(y(i),O(p))

[[φ1 ∨ φ2]](µ, i) := max([[φ1]](µ, i), [[φ2]](µ, i))

[[φ1 ∧ φ2]](µ, i) := min([[φ1]](µ, i), [[φ2]](µ, i))

[[φ1 UIφ2]](µ, i) :=

sup
j∈τ−1(τ(i)+I)

(
min([[φ2]](µ, j), inf

i≤k<j
[[φ1]](µ, k))

)
[[φ1RIφ2]](µ, i) :=

inf
j∈τ−1(τ(i)+I)

(
max([[φ2]](µ, j), sup

i≤k<j
[[φ1]](µ, k))

)

Recall that we use the extended definition of supremum
and infimum. When i = 0, then we write [[φ]](µ).

The robustness of an MTL formula with respect to
a timed state sequence can be computed using several
existing algorithms [11,31,32].

If we consider the robustness estimate over systems,
the resulting robustness landscape can be both non-linear
and non-convex. In Fig. 4 we present the robustness
landscape for the two running examples, namely Exam-
ples 1 (AT) and 2 (HS), on two specifications.

4 Parametric Metric Temporal Logic over
Signals

In many cases, it is important to be able to describe an
MTL specification with unknown parameters and then,
infer the parameters that make the specification false.
In [15], Asarin et al. introduced Parametric Signal Tem-
poral Logic (PSTL) and presented two algorithms for
computing approximations for parameters over a given
signal. Here, we review some of the results in [15] while
adapting them in the notation and formalism that we
use in this paper.

Definition 4 (Syntax of Parametric MTL) Let θ be
a vector of parameters. The set of all well formed Para-
metric MTL (PMTL) formulas is the set of all well formed
MTL formulas where for all i, θi either appears in an
arithmetic expression, i.e., p[θi] ≡ g(y) ≤ θi, or in the
timing constraint of a temporal operator, i.e., I[θi].

We will denote a PMTL formula φ with parameters
θ by φ[θ]. Given a vector of parameters θ ∈ Θ, then the
formula φ[θ] is an MTL formula. There is an implicit
mapping from the vector of parameters θ to the corre-
sponding arithmetic expressions and temporal operators
in the MTL formula.

Since the valuation function of an MTL formula is
a composition of minimum and maximum operations
quantified over time intervals, a formula φ[θ], when θ
is a scalar, is always monotonic with respect to θ un-
der certain conditions. Similarly, when θ is a vector,
then the valuation function is monotonic with respect
to a priority function f(θ). In general, determining the
monotonicity of PMTL formulas is undecidable [33]. The
priority function will enable the system engineer to pri-
oritize the optimization of some parameters over others
by defining specific weights, or setting an optimization
strategy such as optimizing the minimum, maximum, or
norm of all parameters. The priority function will be
defined in detail in the next section.

In the following, we present monotonicity results for
single and multiple parameter PMTL formulas. We note
that the monotonicity results apply to a subset of PMTL.

4.1 Single parameter PMTL formulas

The first example presented shows how monotonicity ap-
pears in the timing requirements of PMTL formulas.

Hoxha et al.:: Mining Parametric Temporal Logic Properties in MBD for CPS 7

0 5 10 15 20 25 30
1000

1500

2000

2500

3000

3500

t

ω
(t

)

0 5 10 15 20 25 30
−1000

0

1000

2000

3000

θ

R
ob

us
te

ns
s

Fig. 5. Example 3. Left: Engine speed ω(t) for constant throttle u(t) = 50. Right: The robustness estimate of the specification 2[0,θ](ω ≤
3250) with respect to θ.

Example 3 (AT) Consider the PMTL formula φ[θ] =
2[0,θ]p where p ≡ (ω ≤ 3250). Given a timed state se-
quence µ = (y, τ) with τ(0) = 0, for θ1 ≤ θ2, we have:

[0, θ1] ⊆ [0, θ2] =⇒ τ−1([0, θ1]) ⊆ τ−1([0, θ2]).

Therefore, by Definitions (2) and (3) we have

[[φ[θ1]]](µ) = inf
i∈τ−1([0,θ1])

(−Distd(y(i),O(p)))

≥ inf
i∈τ−1([0,θ2])

(−Distd(y(i),O(p))) = [[φ[θ2]]](µ).

That is, the function [[φ[θ]]](µ) is non-increasing with θ.
Intuitively, this relationship holds since by extending the
value of θ in φ[θ], it becomes just as or more difficult to
satisfy the specification. See Fig. 5 for an example using
an output trajectory from the system in Example 1. N

The aforementioned example is formalized by the fol-
lowing monotonicity results.

Lemma 1 (Extended from [14]) Consider a PMTL
formula φ[θ] such that it contains one or more subfor-
mulas φ1OpI[θ]φ2 where Op ∈ {U ,R}. Then, given a

timed state sequence µ = (y, τ), for θ1, θ2 ∈ R≥0, such
that θ1 ≤ θ2, and for i ∈ N , we have:

1. if for all such subformulas, we have (i) Op = U and
sup I(θ) = θ or (ii) Op = R and inf I(θ) = θ,
then [[φ[θ1]]](µ, i) ≤ [[φ[θ2]]](µ, i), i.e., the function
[[φ[θ]]](µ, i) is non-decreasing with respect to θ.

2. if for all such subformulas, we have (i) Op = R and
sup I(θ) = θ or (ii) Op = U and inf I(θ) = θ,
then [[φ[θ1]]](µ, i) ≥ [[φ[θ2]]](µ, i), i.e., the function
[[φ[θ]]](µ, i) is non-increasing with respect to θ.

Proof (sketch). Without loss of generality, we will prove
only case (i) of Lemma 1.1. Case (ii) is symmetric with
respect to the temporal operator and Lemma 1.2 is sym-
metric in terms of monotonicity. The proof is by induc-
tion on the structure of the formula and it is similar to
the proofs that appeared in [11].

For completeness of the presentation, we consider the
case [[φ1 U〈α,θ〉φ2]](µ, i), where 〈∈ {[, (} and 〉 ∈ {],)}.
The other cases are either similar or they are based on

the monotonicity of the max and min operators. We re-
mark that the max and min operators preserve mono-
tonicity. Let θ1 ≤ θ2, then we want to show that:

[[φ1 U〈α,θ1〉φ2]](µ, i) ≤ [[φ1 U〈α,θ2〉φ2]](µ, i) (1)

To show that (1) holds, we utilize the robust seman-
tics for MTL given in Definition 3 and observe that:

[[φ1 U〈α,θ2〉φ2]](µ, i) =

sup
j∈τ−1(τ(i)+〈α,θ2〉)

(
min([[φ2]](µ, j), inf

i≤k<j
[[φ1]](µ, k))

)
=

max

(
sup

j∈τ−1(τ(i)+〈α,θ1〉)

(
min([[φ2]](µ, j), inf

i≤k<j
[[φ1]](µ, k))

)
,

sup
j∈τ−1(τ(i)+〈θ1,θ2〉)

(
min([[φ2]](µ, j), inf

i≤k<j
[[φ1]](µ, k))

))
=

max
(

[[φ1 U〈α,θ1〉φ2]](µ, i), [[φ1 U〈θ1,θ2〉φ2]](µ, i)
)
≥

[[φ1 U〈α,θ1〉φ2]](µ, i)

where 〈 ∈ {[, (} such that 〈α, θ1〉 ∩ 〈θ1, θ2〉 = ∅ and
〈α, θ1〉 ∪ 〈θ1, θ2〉 = 〈α, θ2〉. ut

Note that Lemma 1 allows for the repetition of a pa-
rameter in a PMTL formula. For example, consider the
specification φ = 2[θ,5]a ∧3[0,θ]b ≡ ⊥R[θ,5]a ∧ >U[0,θ]b.
In this case, φ satisfies the conditions in Lemma 1. Thus,
from Lemma 1 we know that for two values θ1 and θ2
where θ1 ≤ θ2:

[[2[θ1,5]a ∧3[0,θ1]b]](µ, i) ≤ [[2[θ2,5]a ∧3[0,θ2]b]](µ, i)

In the following, we derive similar results for the case
where the parameter appears in the numerical expression
of the atomic proposition.

Lemma 2 (Extended from [14]) Consider a PMTL
formula φ[θ] with a single parameter θ such that it con-
tains parametric atomic propositions p1[θ]...pn[θ] in one
or more subformulas. Then, given a timed state sequence
µ = (y, τ), for θ1, θ2 ∈ R≥0, such that θ1 ≤ θ2, and for
i ∈ N , we have:

– if ∀j.pj [θ] ≡ gj(x) ≤ θ, then [[φ[θ1]]](µ, i) ≤ [[φ[θ2]]](µ, i),
i.e., the function [[φ[θ]]](µ, i) is non-decreasing with
respect to θ, and

8 Hoxha et al.:: Mining Parametric Temporal Logic Properties in MBD for CPS

0 1000 2000 3000 4000 5000 6000 7000

0
20

40
60

−1000

0

1000

2000

3000

4000

Engine Speed Parameter

Timing Parameter

R
ob

us
tn

es
s

V
al

ue

(28s, 3360rpm)

0 1000 2000 3000 4000 5000 6000 7000
0

100

200
−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

500

Engine Speed Parameter

Vehicle Speed Parameter

R
ob

us
tn

es
s

V
al

ue

(101mph, 3350rpm)

Fig. 6. Left: Example 4: Robustness estimate landscape for varying parameters for engine and vehicle speed for constant throttle
u(t) = 50. Right: Example 5: Robustness landscape for varying parameters for timing parameter and engine speed for constant throttle
u(t) = 50. In both figures, the contour line shows the intersection of the robustness landscape with the zero level set.

– if ∀j.pj [θ] ≡ gj(x) ≥ θ, then [[φ[θ1]]](µ, i) ≥ [[φ[θ2]]](µ, i),
i.e., the function [[φ[θ]]](µ, i) is non-increasing with
respect to θ.

Proof (sketch). The proof is by induction on the struc-
ture of the formula and it is similar to the proofs that
appeared in [11]. For completeness of the presentation,
we consider the base case [[p[θ]]](µ, i). Let θ1 ≤ θ2, then
O(p[θ1]) ⊆ O(p[θ2]). We will only present the case for
which y(i) 6∈ O(p[θ2]). We have:

O(pj [θ1]) ⊆ O(pj [θ2]) =⇒
distd(y(i),O(pj [θ1])) ≥ distd(y(i),O(pj [θ2])) =⇒
Distd(y(i),O(pj [θ1])) ≤ Distd(y(i),O(pj [θ2])) =⇒

[[pj [θ1]]](µ, i) ≤ [[pj [θ2]]](µ, i) ut

4.2 Multiple parameter PMTL formulas

Next, we extend the result for multiple parameters.

Example 4 (AT) Consider the PMTL formula φ[θ] =
¬(3[0,θ1] q ∧ 2p[θ2]) where θ = [θ1, θ2]ᵀ, p[θ2] ≡ (ω ≤
θ2) and q ≡ (v ≥ 100). Given a timed state sequence
µ = (y, τ) with τ(0) = 0, for two vectors of parameters
θ,θ′ ∈ R2 where θ � θ′, we have: for all i,

θ2 ≤ θ′2 =⇒ O(p[θ2]) ⊆ O(p[θ′2]) =⇒
Distd(y(i),O(p[θ2])) ≤ Distd(y(i),O(p[θ′2])) =⇒
−Distd(y(i),O(p[θ2])) ≥ −Distd(y(i),O(p[θ′2])) (2)

θ1 ≤ θ′1 =⇒ [0, θ1] ⊆ [0, θ′1] =⇒
τ−1([0, θ1]) ⊆ τ−1([0, θ′1]) (3)

Therefore, by (2) and (3) we obtain:

[[φ[θ]]](µ) = inf
i∈τ−1([0,θ1])

(−Distd(y(i),O(p[θ2])))

(2)

≥ inf
i∈τ−1([0,θ1])

(−Distd(y(i),O(p[θ′2])))

(3)

≥ inf
i∈τ−1([0,θ′1])

(−Distd(y(i),O(p[θ′2]))) = [[φ[θ′]]](µ)

That is, the function [[φ[θ]]](µ) is non-increasing for all
θ for which the relation � holds. N

Example 5 (AT) Consider the PMTL formula φ[θ] =
�(p[θ1] ∧q[θ2]) where p[θ1] ≡ (v ≤ θ1) and q[θ2] ≡ (ω ≤
θ2). Given a timed state sequence µ = (y, τ) with τ(0) =
0, for two vectors of parameters θ,θ′ where θ � θ′, we
have:

O(p[θ1]) ⊆ O(p[θ′1]) =⇒
Distd(O(p[θ1])) ≤ Distd(O(p[θ′1])) =⇒

[[p[θ1]]](µ, i) ≤ [[p[θ′1]]](µ, i)

and

O(q[θ2]) ⊆ O(q[θ′2]) =⇒
Distd(O(p[θ2])) ≤ Distd(O(p[θ′2])) =⇒

[[q[θ2]]](µ, i) ≤ [[q[θ′2]]](µ, i)

Therefore, [[φ[θ]]](µ) ≤ [[φ[θ′]]](µ). That is, the function
[[φ[θ]]](µ) is non-decreasing for all θ for which the rela-
tion � holds. Figure 6 presents the robustness landscape
of two parameters over constant input. N

Now we may state the main monotonicity theorem
for multiple parameters. We remark that for convenience
we define the parametric subformulas over all the possi-
ble parameters even though only some of them are used
in each subformula.

Theorem 1. Consider a PMTL formula ψ[θ], where θ
is a vector of parameters, such that ψ[θ] contains tempo-
ral subformulas φ[θ] = φ1[θ]OpI[θs]φ2[θ], Op ∈ {U ,R},
or propositional subformulas φ[θ] = p[θ]. Then, given a
timed state sequence µ = (y, τ), for θ, θ′ ∈ Rn≥0, such
that θ � θ′, where 1 ≤ j ≤ n, and for i ∈ N , we have:

– if for all such subformulas (i) Op = U and sup I(θs) =
θs or (ii) Op = R and inf I(θs) = θs or (iii) p[θ] ≡
g(x) ≤ θ, then [[φ[θ]]](µ, i) ≤ [[φ[θ′]]](µ, i), i.e., func-
tion [[φ[θ]]](µ, i) is non-decreasing with respect to θ,

– if for all such subformulas (i) Op = R and sup I(θs) =
θs or (ii) Op = U and inf I(θs) = θs or (iii) p[θ] ≡
g(x) ≥ θ, then [[φ[θ]]](µ, i) ≥ [[φ[θ′]]](µ, i), i.e., func-
tion [[φ[θ]]](µ, i) is non-increasing with respect to θ.

Proof (sketch). The proof is by induction on the struc-
ture of the formula. The base case is given by Lemmas
1 and 2.

Hoxha et al.:: Mining Parametric Temporal Logic Properties in MBD for CPS 9

Consider the first case where φ[θ] = φ1[θ]UI[θs]φ2[θ].

Let θ,θ′ ∈ Rn≥0, where θ � θ′. Let i, j, k ∈ N . Then
I[θs] ⊆ I[θ′s] and, for all j, by the induction hypothesis
we have

min([[φ2[θ]]](µ, j)) ≤ min([[φ2[θ′]]](µ, j)) (4)

For all k, by the induction hypothesis we have:

inf
i≤k<j

([[φ1[θ]]](µ, k))
)
≤ inf
i≤k<j

([[φ1[θ′]]](µ, k))
)

(5)

Then by (4) and (5) we have

[[φ[θ]]](µ, i) = [[φ1[θ]UI[θs]φ2[θ]]](µ, i) =

sup
j∈τ−1(τ(i)+I[θs])

(
min([[φ2[θ]]](µ, j), inf

i≤k<j
[[φ1[θ]]](µ, k))

)
≤

sup
j∈τ−1(τ(i)+I[θ′s])

(
min([[φ2[θ′]]](µ, j), inf

i≤k<j
[[φ1[θ′]]](µ, k))

)
=

[[φ1[θ′]UI[θ′s]φ2[θ′]]](µ, i) = [[φ[θ′]]](µ, i)

Therefore,

[[φ[θ]]](µ, i) ≤ [[φ[θ′]]](µ, i) ut

In this section, we have presented several cases where
we can syntactically determine the monotonicity of the
PMTL formula with respect to its parameters. However,
we remark that in general, determining the monotonicity
of PMTL formulas is undecidable [33].

5 Temporal Logic Parameter Bound
Computation

The notion of robustness of temporal logics will enable
us to pose the parameter mining problem as an optimiza-
tion problem. In order to solve the resulting optimization
problem, falsification methods and S-TaLiRo [18] can
be utilized to estimate the solution for Problem 2.

As described in the previous section, the parametric
robustness functions that we are considering are mono-
tonic with respect to the search parameters. Therefore,
if we are searching for a parameter vector over an in-
terval Θ = [θ,θ], where Θ is a hypercube and θ =
[θ1, θ2, ..., θn]ᵀ and θ = [θ1, θ2, ..., θn]ᵀ, we are either try-
ing to minimize or maximize a function f of θ such that
for all θ ∈ Θ∗, we have [[φ[θ]]](Σ) ≤ 0.

Example 6 (AT) Let us consider again the automotive
transmission example and the specification φ[θ] = 2[0,θ]p
where p ≡ (ω ≤ 4500). The specification robustness
[[φ[θ]]](∆Σ(u)) as a function of θ and the input u ap-
pears in Fig. 7 for constant input signals. The creation
of the graph required 100× 30 = 3, 000 simulations. The
contour under the surface indicates the zero level set of
the robustness surface, i.e., the θ and u values for which
we get [[φ[θ]]](∆Σ(u)) = 0. From the graph, we can in-
fer that θ∗ ≈ 2.8 and that for any θ ∈ [2.8, 30], we have

0
10

20

30

0
20

40
60

80
100

−1000

0

1000

2000

3000

4000

θ
u

R
ob
us
te
ns
s

2.8

Fig. 7. Example 6: Specification robustness estimate as a function
of parameter θ and input u for specification φ[θ] = 2[0,θ](ω ≤
4500).

[[φ[θ]]](Σ) ≤ 0. The approximate value of θ∗ is an esti-
mate based on the granularity of the grid that we used to
plot the surface. N

In summary, in order to solve Problem 2, we would
have to solve the following optimization problem:

optimize f(θ) (6)

subject to θ ∈ Θ and

[[φ[θ]]](Σ) = min
µ∈Lτ (Σ)

[[φ[θ]]](µ) ≤ 0

Where f : Rn → R is a either a non-increasing (≥) or
a non-decreasing (≤) function. For two vector parameter
values θ, θ′, if θ � θ′ and θ ≥ 0 then f(θ) ./ f(θ′),
where ./ ∈ {≥,≤} depending on the monotonicity.

The function [[φ[θ]]](Σ) can not be computed using
reachability analysis algorithms nor is known in closed
form for the systems we are considering. Therefore, we
will have to compute an under-approximation of Θ∗. Our
focus will be to formulate an optimization problem that
can be solved using stochastic search methods. In partic-
ular, we will reformulate the optimization problem (6)
into a new one where the constraints due to the specifi-
cation are incorporated into the cost function:

optimizeθ∈Θ

f(θ) +

γ ± [[φ[θ]]](Σ)
if [[φ[θ]]](Σ) ≥ 0

0 otherwise

 (7)

where the sign (±) and the parameter γ depend on
whether the problem is a maximization or a minimiza-
tion problem. The parameter γ must be properly chosen
so that the solution of problem (7) is in Θ if and only
if [[φ[θ]]](Σ) ≤ 0. Therefore, if the problem in Eq. (6) is
feasible, then the optimal points of equations (6) and (7)
are the same.

5.1 Non-increasing Robustness Functions

In the case of non-increasing robustness functions [[φ[θ]]](Σ)
with respect to the search vector variable θ, the opti-
mization problem is a minimization problem. Without
loss of generality, let us consider the case for single pa-
rameter specifications. Assume that [[φ[θ]]](Σ) ≤ 0. Since

10 Hoxha et al.:: Mining Parametric Temporal Logic Properties in MBD for CPS

 𝜃

𝜃

𝜃∗

𝜃′

𝜃

𝜃1

𝜃2 𝜃

𝜃

𝜃∗

𝜃′

𝜃

𝜃1

𝜃2 𝜃

𝜃

𝜃∗

𝜃′

𝜃

𝜃1

𝜃2

Fig. 8. Illustration of the arrangement of parameters for non-
increasing (Left) and non-decreasing (Right) robustness func-
tions for a two parameter specification. The green (red) region
represents parameter valuations for which we have a positive (neg-
ative) robustness value over all system behaviors.

θ ≤ θ, we have [[φ[θ]]](Σ) ≥ [[φ[θ]]](Σ), we need to find the
minimum θ such that we still have [[φ[θ]]](Σ) ≤ 0. That
θ value will be the desired θ∗ since for all θ′ ∈ [θ∗, θ], we
will have [[φ[θ′]]](Σ) ≤ 0.

We will reformulate the problem of Eq. (7) so that we
do not have to solve two separate optimization problems.
From (7), we have:

min
θ∈Θ

f(θ) +

γ + minµ∈Lτ (Σ)[[φ[θ]]](µ)
if minµ∈Lτ (Σ)[[φ[θ]]](µ) ≥ 0

0 otherwise

 =

= min
θ∈Θ

f(θ) + min
µ∈Lτ (Σ)

γ + [[φ[θ]]](µ)
if [[φ[θ]]](µ) ≥ 0

0 otherwise

 =

= min
θ∈Θ

min
µ∈Lτ (Σ)

f(θ) +

γ + [[φ[θ]]](µ)
if [[φ[θ]]](µ) ≥ 0

0 otherwise

 (8)

The previous discussion is formalized as follows.

Proposition 1 Let θ∗ be a set of parameters and µ∗

be the system trajectory returned by an optimization al-
gorithm that is applied to the problem in Eq. (8). If
[[φ[θ∗]]](µ∗) ≤ 0, then for all θ � θ∗, [[φ[θ]]](Σ) ≤ 0.

Proof. If [[φ[θ∗]]](µ∗) ≤ 0, then [[φ[θ∗]]](Σ) ≤ 0. Since
[[φ[θ]]](Σ) is non-increasing with respect to θ, then for
all θ � θ∗, we also have [[φ[θ]]](Σ) ≤ 0. ut

Proposition 2 If f(θ) = ‖θ‖, and the robustness func-
tion is non-increasing, then γ = ‖θ‖ is a valid choice for
parameter γ. Here, ‖ · ‖ denotes the euclidean norm.

Proof. The interesting case to prove here is when we
have θ such that [[φ[θ]]](Σ) ≥ 0 and we have θ′ such
that [[φ[θ′]]](Σ) < 0. See Fig. 8 (Left) for an illustration
of the arrangement of parameter valuations for a two
parameter specification.

In this case

γ = ‖θ‖ ≥ ‖θ′‖ ≥ ‖θ‖
and

[[φ[θ]]](Σ) ≥ 0 =⇒
‖θ‖+ γ + [[φ[θ]]](Σ) ≥ ‖θ′‖

Therefore, if the problem in Eq. (6) is feasible, then the
optimum of equations (6) and (7) is the same. ut

Fig. 9. Example 2: Specification falsification for φ[θ] = 2[0,θ1]¬a
where O(a) = [1.5, θ2]× [1, θ3] with mined parameters θ1 = 3.417,
θ2 = 1.7, and θ3 = 1.078.

Example 7 (AT) Using Eq. (8) as a cost function, we
can now compute a parameter for Example 6 using S-
TaLiRo [17,18]. In particular, using Simulated Anneal-
ing as a stochastic optimization function, S-TaLiRo re-
turns θ∗ ≈ 2.45 as optimal parameter for constant input
u(t) = 99.81. The corresponding temporal logic robust-
ness for the specification 2[0,2.45](ω ≤ 4500) is −0.0445.
The number of tests performed for this example was 500
and, potentially, the accuracy of estimating θ∗ can be
improved if we increase the maximum number of tests.
However, based on 100 tests the algorithm converges to
a good solution within 200 tests. N

Example 8 (HS) Let us consider the specification φ[θ]
= 2[0,θ1]¬a where O(a) = [1.5, θ2] × [1, θ3] on our hy-
brid system running example. Here, the bounds for the
timing parameter are θ1 ∈ [0, 5] and the bounds for the
state parameters are θ2 ∈ [1.5, 2.1] and θ3 ∈ [1.1, 1.6].
The ranges for the parameters are chosen based on prior
knowledge and experience about the system. The param-
eter mining algorithm from S-TaLiRo returns θ∗1 =
3.417, θ∗2 = 1.7, and θ∗3 = 1.078 after running 1000
tests on the system. The generated trajectories by the pa-
rameter mining algorithm are presented in Fig. 9. The
returned parameters guarantee that the system does not
satisfy the specification for all parameters θ where θ∗ �
θ. N

5.2 Non-decreasing Robustness Functions

The case of non-decreasing robustness functions is sym-
metric to the case of non-increasing robustness functions.
In particular, the optimization problem is a maximiza-
tion problem. We will reformulate the problem of Eq. (7)
so that we do not have to solve two separate optimization
problems. From (7), we have:

max
θ∈Θ

f(θ) +

γ −maxµ∈Lτ (Σ)[[φ[θ]]](µ)
if maxµ∈Lτ (Σ)[[φ[θ]]](µ) ≥ 0

0 otherwise

 =

= max
θ∈Θ

f(θ) + max
µ∈Lτ (Σ)

γ − [[φ[θ]]](µ)
if − [[φ[θ]]](µ) ≤ 0

0 otherwise

 =

Hoxha et al.:: Mining Parametric Temporal Logic Properties in MBD for CPS 11

0
10

20
30

0
20

40
60

80
100

−1000

0

1000

2000

3000

4000

θ
u

R
ob
us
te
ns
s

13.8 0 10 20 30 40 50 60 70 80 90 100
−500

0

500

1000

1500

2000

2500

3000

3500

4000

u

R
ob

us
te

ns
s

Fig. 10. Example 9. Left: Specification robustness as a function of the parameter θ and the input u. Right: The robustness function
[[2[12.59,30](ω ≤ 4500)]](∆Σ(u)).

= max
θ∈Θ

max
µ∈Lτ (Σ)

f(θ) +

γ − [[φ[θ]]](µ)
if [[φ[θ]]](µ) ≥ 0

0 otherwise

 (9)

The previous discussion is formalized in the following
result.

Proposition 3 Let θ∗ be a set of parameters and µ∗

be the system trajectory returned by an optimization al-
gorithm that is applied to the problem in Eq. (9). If
[[φ[θ∗](µ∗) ≤ 0, then for all θ � θ∗, we have [[φ[θ]]](Σ) ≤
0.

Proof. If [[φ[θ∗]]](µ∗) ≤ 0, then [[φ[θ∗]]](Σ) ≤ 0. Since
[[φ[θ]]](Σ) is non-decreasing with respect to θ, then for
all θ � θ∗, we also have [[φ[θ]]](Σ) ≤ 0. ut

Proposition 4 If f(θ) = ‖θ‖ and the robustness func-
tion is non-decreasing, then γ = −‖θ‖ is a valid choice
for parameter γ.

Proof. The interesting case to prove here is when we
have θ such that [[φ[θ]]](Σ) < 0 and we have θ′ such
that [[φ[θ′]]](Σ) ≥ 0. See Fig. 8 (Right) for an illustration
of the arrangement of parameter valuations for a two
parameter specification. In this case

γ = −‖θ‖, [[φ[θ′]]](Σ) ≥ 0 and
‖θ‖ ≥ ‖θ′‖ ≥ ‖θ‖ =⇒

‖θ‖ ≥ ‖θ′‖+ γ − [[φ[θ′]]](Σ)

Therefore, if the problem in Eq. (6) is feasible, then the
optimum of equations (6) and (7) is the same. ut

Example 9 (AT) Let us consider the specification φ[θ]
= 2[θ,30] (ω ≤ 4500) on our running example. The speci-
fication robustness [[φ[θ]]](∆Σ(u)) as a function of θ and
the input u appears in Fig. 10 for constant input sig-
nals. The creation of the graph required 100×30 = 3, 000
tests. The contour under the surface indicates the zero
level set of the robustness surface, i.e., the θ and u values
for which we get [[φ[θ]]](∆Σ(u)) = 0. We remark that the
contour is actually an approximation of the zero level set
computed by a linear interpolation using the neighboring
points on the grid. From the graph, we could infer that
θ∗ ≈ 13.8 and that for any θ ∈ [0, 13.8], we would have

[[φ[θ]]](Σ) ≤ 0. Again, the approximate value of θ∗ is a
rough estimate based on the granularity of the grid.

Using Eq. (9) as a cost function, we can now com-
pute a parameter for Example 9 using our toolbox S-
TaLiRo [17,18]. S-TaLiRo returns θ∗ ≈ 12.59 as op-
timal parameter for constant input u(t) = 90.88 within
250 tests. The temporal logic robustness for the specifi-
cation 2[12.59,30](ω ≤ 4500) with respect to the input u
appears in Fig. 10 (Right). N

6 Parameter Falsification Domain

We utilize the solution of Problem 2 and exploit the ro-
bustness landscape of a specific class of temporal logic
formulas to present two algorithms to estimate Ψ =
{θ∗ ∈ Θ | Σ 6|= φ[θ∗]} for Problem 2. In fact, we can
reduce this problem to finding the set Θbd = Ψ ∩ {θ∗ ∈
Θ | [[φ[θ∗]]](Σ) = 0} since the robustness landscape is
monotonic. Here, Θbd represents the intersection of the
robustness function with the zero level set. As a pre-
processing step, the PMTL parameters are normalized
in the range [0, 1] to avoid bias during the optimization
process. It is important to note, that due to the un-
decidable nature of the problem, we cannot determine
satisfying parameter values. Therefore, we generate the
parameter falsification domain by finding only falsifying
parameter values.

The first method approximates Θbd by modifying the
priority function f and thereby slightly shifting the min-
imum or maximum of the objective function in Eq. 8 or
Eq. 9, respectively. The magnitude of the shift depends
on the shape of the robustness landscape of the model
and specification.

As shown in Algorithm 1, the set Ψ is explored iter-
atively. For every iteration, we draw a random vector ω
with dimension equal to the dimension of Θ. The ran-
dom vector is used as parameter weights for the priority
function f(θ). Namely, f(θ) =

∑
wiθi. We run parame-

ter mining, which returns an approximation for Eq. (7).
In case φ[θ] is non-decreasing (or non-increasing), the
optimization algorithm opt is a maximization (or mini-
mization) algorithm. We utilize the values mined and the
corresponding robustness value to expand Ψ and reduce

12 Hoxha et al.:: Mining Parametric Temporal Logic Properties in MBD for CPS

0 20 40 60
3000

4000

5000

6000

7000

8000
n=1

0 20 40 60
3000

4000

5000

6000

7000

8000
n=2

0 20 40 60
3000

4000

5000

6000

7000

8000
n=50

0 20 40 60
3000

4000

5000

6000

7000

8000
n=100

Fig. 11. Illustration of the iterative process for Algorithm 1. Specification: φ[θ] = ¬(3[0,θ1]q ∧ 2p[θ2]) where p[θ2] ≡ (ω ≤ θ2) and
q ≡ (v ≥ 100). Model: Automatic Transmission as described in Example 1. The red colored set represents set Ψ = {θ ∈ Θ | Σ 6|= φ[θ]} i.e.
the set of parameter values such that the system does not satisfy the specification. In each iteration of the algorithm, set Ψ gets expanded
by the optimal falsifying parameter which is guided by the robustness landscape and the random weight in the priority function.

the unknown parameter range for the next iteration. We
present the iterative process in Fig. 11.

We define a PMTL specification monotonicity func-
tion M : PMTL → {−1, 0, 1} where

M(φ[θ]) =

1 if φ[θ] is non-decreasing;
−1 if φ[θ] is non-increasing;
0 otherwise.

A monotonicity computation algorithm is presented
in [15] and generalized in [33].

Algorithm 1 Robustness Guided Parameter Falsifica-
tion Domain Algorithm RGDA(opt, Γ , Θ, φ, Σ, n, t)

Input: Stochastic optimization algorithm opt, search space
Γ , parameter range Θ, specification φ, system Σ, number of
iterations n and tests t
Output: Parameter falsification domain Ψ
Internal Variables: Parameter weights ω, parameters
mined θ∗ and robustness value γ

1: 〈Ψ , ω, θ∗, γ〉 ← 〈∅, ∅, ∅, ∅〉
2: for i = 0 to n do
3: ω ← RandomVector([0, 1], dimension(Θ))
4: [θ∗, γ]← opt(Γ,Θ, φ,Σ, t,ω,M(φ[θ∗])) . run

parameter mining and robustness computation
5: if (γ ≤ 0) then
6: if (M(φ[θ∗]) = 1) then
7: Ψ ← Ψ ∪ {θ ∈ Θ | ∀i (0 ≤ θi ≤ θ∗i)} . expand

the falsification domain Ψ
8: else if (M(φ[θ∗]) = −1) then
9: Ψ ← Ψ ∪ {θ ∈ Θ | ∀i (θi ≥ θ∗i ≥ 0)}

10: end if
11: end if
12: end for
13: return Ψ

Algorithm 2 explores the set Θbd by iteratively ex-
panding the set of falsifying parameters, namely, the set
Ψ . However in this case, the search is finely structured
and does not depend on randomized weights. For presen-
tation purposes, let us consider the case for specifications
with non-decreasing monotonicity. Given a normalized
parameter range with dimension η, in each iteration of
the algorithm, we solve the following optimization prob-

lem:

maximize c (10)

subject to c ∗ b + p ∈ Θ and

Σ 6|= φ[c ∗ b + p]

where p is the starting point of the optimization problem
in each iteration and b is the bias vector which enables
to prioritize specific parameters in the search. Namely,
the choice of b directs the expansion of the parameter
falsification domain along a specific direction. We refer to
the solution of Eq. 10 in the ith iteration of the algorithm
as marker(i). Initially, for the first iteration, the value
of p is set to 0 or 1 depending on the monotonicity
of the specification. The returned marker(1) from Eq.
10 is then utilized to update Ψ , the set of parameters
for which the system does not satisfy the specification.
Next, we generate at most 2η − 2 initial position vectors
induced by the returned marker(1).

Consider the example presented in Fig. 12 where we
have marker(1) = [136; 7268]. That value is utilized to
update Ψ and generate two new initial position vectors
at [0; 7268] and [136; 0]. In the next iteration of the algo-
rithm, the search is initialized in one of the newly gen-
erated initial position vectors. Namely, the search starts
in [0; 7268] or [136; 0] (see Fig. 12, Left). The initial po-
sition vector not utilized is stored in a list and used in
future iterations. In the second iteration, [136; 0] is used
as the initial position vector. We return the solution to
Eq. 10 with marker(2) = [143; 4425] which generates
the initial position vectors [143; 0] and [136; 4425] (Fig.
12, Middle). Similarly, marker(3) is generated in Fig.
12 (Right). In this example, the directional vector b, in
each iteration, directs towards the bounds of the parame-
ter range, namely (160, 8000). The algorithm terminates
when one of the following conditions is met: 1) The dis-
tance between markers is less than some value ε, or
2) no new markers are generated from the current set
of initial position vectors, or 3) a maximum number of
iterations is exceeded.

7 Experiments and a Case Study

The algorithms and examples presented in this work are
implemented and publicly available through the Matlab
toolbox S-TaLiRo [17,18].

Hoxha et al.:: Mining Parametric Temporal Logic Properties in MBD for CPS 13

0 20 40 60 80 100 120 140 160

3000

4000

5000

6000

7000

8000
i =1

θ* = [136;7268]

b

0 20 40 60 80 100 120 140 160

3000

4000

5000

6000

7000

8000
i =2

θ*= [143;4425]

0 20 40 60 80 100 120 140 160

3000

4000

5000

6000

7000

8000
i =3

θ*= [114;7779]

1 2

3 3

2

3

Fig. 12. Illustration of the iterative process for Algorithm 2. Specification: φ[θ] = 2(p[θ1]∧q[θ2]) where p[θ1] ≡ (v ≤ θ1) and q ≡ (ω ≤ θ2).
Model: Automatic Transmission as described in Example 1. The parameter range for the specification is Θ = [0 160; 3000 8000]. In each
plot, the search is conducted in a specific direction b. The plots from left to right represent three iterations of Algorithm 2. The yellow
circles and green marks represent sample points of the search optimizer in the process of solving Eq. 10. Specifically, the yellow circles
represent parameter values for which we have found system inputs and initial conditions that falsify the specification. The green marks
represent parameter values for which falsification is not found. The largest yellow circle found by the stochastic optimizer is returned as
the current marker. The orange squares represent the initial position of the search in the current iteration. The blue squares represent the
initial positions generated by the current marker that will be considered in future iterations. The black squares represent initial positions
that will be considered in future iterations. The red colored set represents set Ψ = {θ ∈ Θ | Σ 6|= φ[θ]} i.e. the set of parameter values
such that the system does not satisfy the specification.

Algorithm 2 Structured Parameter Falsification Do-
main Algorithm SDA(opt, Γ , Θ, φ, Σ, t, ε, b, n)

Input: Stochastic optimization algorithm opt, search space
Γ , parameter range Θ, specification φ, system Σ, number of
tests t, minimum distance between markers ε, bias vector b,
maximum number of iterations n
Output: Parameter falsification domain Ψ
Internal Variables: List of initial positions ML, termina-
tion condition T C, initial positions generated in the current
iteration T L, iteration i

1: 〈Ψ , p, T C, ML, T L, i〉 ← 〈∅, ∅, ⊥, {}, {}, 0〉
2: if (M(φ[θ]) = 1) then
3: ML.Add(0(dimension(Θ)))
4: else if (M(φ[θ]) = −1) then
5: ML.Add(1(dimension(Θ)))
6: end if
7: while T C = ⊥ do
8: T L ← {}
9: for v in ML do

10: i← i+ 1
11: [θ∗, γ]← opt(Γ,Θ, φ,Σ, t, ω,M(φ[θ]),b,v) .

run parameter mining starting at v and search along the
directional vector b

12: if (γ ≤ 0) then
13: T L.Add(GenerateMarkers(θ∗, M(φ[θ])))
14: if (M(φ[θ∗]) = 1) then
15: Ψ ← Ψ ∪ {θ ∈ Θ | ∀i (0 ≤ θi ≤ θ∗i }
16: Θ ← Θ \ Ψ
17: else if (M(φ[θ∗]) = −1) then
18: Ψ ← Ψ ∪ {θ ∈ Θ | ∀i (θi ≥ θ∗i ≥ 0)}
19: Θ ← Θ \ Ψ
20: end if
21: end if
22: end for
23: ML← T L
24: if ML.IsEmpty() or DistanceBetweenMark-

ers(ML) < ε or i > n then T C ← >
25: end if
26: end while
27: return Ψ

The parametric MTL exploration of CPS is moti-
vated by a challenge problem published by Ford in 2002
[34]. In particular, the report provided a simple – but
still realistic – model of a powertrain system (both the
physical system and the embedded control logic) and
posed the question whether there are constant operat-
ing conditions that can cause a transition from gear two
to gear one and then back to gear two. That behavior
would imply that the gear transition from 1 to 2 was not
necessary in the first place.

The system is modeled in Checkmate [35]. It has 6
continuous state variables and 2 Stateflow charts with
4 and 6 states, respectively. The Stateflow chart for the
shift scheduler appears in Fig. 13. The system dynam-
ics and switching conditions are linear. However, some
switching conditions depend on the initial conditions of
the system. The latter makes the application of standard
system verification tools not a straightforward task.

In [31], we demonstrated that S-TaLiRo [17,18] can
successfully solve the challenge problem (see Fig. 13)
by formalizing the requirement as an MTL specification
φPe1 = ¬3(g2 ∧ 3(g1 ∧ 3g2)), where gi is a proposition
that is true when the system is in gear i. Stochastic
search methods can be applied to solve the resulting op-
timization problem where the cost function is the ro-
bustness of the specification. Moreover, inspired by the
success of S-TaLiRo on the challenge problem, we tried
to ask a more complex question. Specifically, does a tran-
sition exist from gear two to gear one and back to gear
two in less than 2.5 sec? An MTL specification that
can capture this requirement is φPe2 = 2((¬g1 ∧Xg1)→
2(0,2.5]¬g2). The natural question that arises is what
would be the smallest time for which such a transi-
tion can occur? We can formulate a parametric MTL
formula to query the model of the powertrain system:
φPe3[θ] = 2((¬g1∧Xg1)→ 2(0,θ]¬g2). We have extended
S-TaLiRo to be able to handle parametric MTL specifi-

14 Hoxha et al.:: Mining Parametric Temporal Logic Properties in MBD for CPS

first_gear
entry: schedule =1;
STaliro_StateVar = 1;

transition12_shifting
entry : schedule = 2;
STaliro_StateVar = 2;

transition21_shifting
entry:schedule = 4;
STaliro_StateVar = 4;

second_gear
entry: schedule =3;
STaliro_StateVar = 3;

to_first

1

shift_speed12

shift_speed21

2

shift_speed12

2

to_second

1

shift_speed21

0 10 20 30 40 50 60
1

2

3

4

0 10 20 30 40 50 60
1

2

3

4

Fig. 13. Left: The shift scheduler of the powertrain challenge problem. Right: Shift schedules. The numbers correspond to the variables
in the states of the shift scheduler. Right Top: The shift schedule falsifying requirement φPe1. Right Bottom: The shift schedule falsifying
requirement φPe3[0.4273].

cations. The total simulation time of the model is set to
60 sec and the search interval is Θ = [0, 60]. S-TaLiRo
returned θ∗ ≈ 0.4273 as the minimum parameter found
(See Fig. 13) using about 300 tests of the system.

The challenge problem is extended to an industrial
size high-fidelity engine model. The model is part of the
SimuQuest Enginuity [36] Matlab/Simulink tool pack-
age. The Enginuity tool package includes a library of
modules for engine component blocks. It also includes
pre-assembled models for standard engine configurations,
see Fig. 15. In this work, we will use the Port Fuel In-
jected (PFI) spark ignition, 4 cylinder inline engine con-
figuration. It models the effects of combustion from first
physics principles on a cylinder-by-cylinder basis, while
also including regression models for particularly com-
plex physical phenomena. Simulink reports that this is a
56 state model. The model includes a tire-model, brake
system model, and a drive train model (including final
drive, torque converter and transmission). The model is
based on a zero-dimensional modeling approach so that
the model components can all be expressed in terms of
ordinary differential equations. The inputs to the system
are the throttle and brake schedules, and the road grade,
which represents the incline of the road. The outputs
are the vehicle and engine speed, the current gear and a
timer that indicates the time spent on a gear. We search
for a particular input for the throttle schedule, brake
schedule, and grade level. The inputs are parametrized
using 12 search variables, where 7 are used to model
the throttle schedule, 3 for the brake schedule, and 2
for the grade level. The search variables for each input
are interpolated with the Piecewise Cubic Hermite In-
terpolating Polynomial (PCHIP) function provided as a
Matlab function by Mathworks. The simulation time is
60s. We demonstrate the parameter mining method for
two specifications:

1. The specification φS1 [θ] = 2[0,60]((g2 ∧ Xg1) →
2[0,θ]((τ ≤ θ)→ g1), where τ is the time spent in a gear.
The specification states that after shifting into gear one
from gear two, there should be no shift from gear one to

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

1.28s

Fig. 14. A shift schedule which falsifies the specification φS1 [θ =
1.29] = 2[0,60]((g2 ∧ Xg1) → 2[0,1.29]((τ ≤ 1.29) → g1) on the
Simuquest high-fidelity engine model for specification.

any other gear within θ seconds. Clearly, the property
defined is equivalent to the property defined in the chal-
lenge problem in the sense that the set of trajectories
that satisfy/falsify the property is the same. The reason
for the change made is the improved performance of the
hybrid distance metric [37] with the modified specifica-
tion. The mined parameter for the specification returned
is 1.29s. Figure 14 presents a shift schedule for which a
transition out of gear one occurs in 1.28 seconds.
2. The specification φS2 [θ] = 2((v < θ1) ∧ (ω < θ2)),
where θ1, θ2 represent the vehicle and engine speed pa-
rameters, respectively. The specification states that the
vehicle and engine speed is always less than θ1 and θ2,
respectively. The mined parameters for the specification
returned are 137.1mph and 4870rpm.

In Table 1, we present experimental results for spec-
ifications on the Powertrain, Automotive Transmission,
and Simuquest Enginuity high-fidelity engine models. A
detailed description of the benchmark problems can be
found in [7,12] and the benchmarks can be downloaded
with the S-TaLiRo distribution [18].

8 Related Work

The topic of testing embedded software and, in partic-
ular, embedded control software is a well studied prob-
lem that involves many subtopics well beyond the scope
of this paper. We refer the reader to specialized book

Hoxha et al.:: Mining Parametric Temporal Logic Properties in MBD for CPS 15

Table 1. Experimental results of Parameter Mining with S-TaLiRo. The parameters were mined by running 1000 tests. Legend: f(θ) : the
priority function used, φAT

i : Specifications tested on the Automotive Transmission Model, φP : Specification tested on the Powertrain

Model, φS : Specification tested on the Simuquest Enginuity high-fidelity Engine Model. The gray colored rows are first presented in [14]
and are included for completeness.

S-TaLiRo

Specification f(θ) Time Parameters Mined

φAT1 [θ] = ¬3((v ≥ 120) ∧3[0,θ](ω ≥ 4500)) θ 135s 7.7s

φAT2 [θ] = ¬3((v ≥ 120) ∧3[0,θ](v ≥ 125)) θ 138s 10.00s

φAT3 [θ] = ¬3((v ≥ 120) ∧3[0,θ](ω ≥ 4500)) θ 137s 7.57s

φAT4 [θ] = ¬3((v ≥ 120) ∧3[0,θ](ω ≥ 4500)) θ 132s 7.56s

φAT5 [θ] = 2((v ≤ θ1) ∧ (ω ≤ θ2))

‖θ‖ 139s 〈138mph, 5981rpm〉
θ1 137s 〈57mph, 6000rpm〉
θ2 138s 〈180mph, 2910rpm〉

max(θ) 138s 〈109mph, 6000rpm〉
min(θ) 138s 〈154mph, 5300rpm〉

φAT6 [θ] = ¬(3[0,θ1](v ≥ 100) ∧ 2(ω ≤ θ2))

‖θ‖ 144s 〈15.7s, 4820rpm〉
θ1 142s 〈44.6s, 3598rpm〉
θ2 138s 〈12.2s, 6000rpm〉

max(θ) 140s 〈37.3s, 3742rpm〉
min(θ) 142s 〈12.3s, 5677rpm〉

φAT7 [θ] = 2((v ≤ θ1) ∧ (ω ≤ θ2)) ∧3[0,θ3](v ≥
150) ∧3[0,θ4](ω ≥ 4500)

‖θ‖ 145s 〈198mph, 4932rpm, 59.5s, 55s〉
max(θ) 143s 〈129mph, 6000rpm, 48.9s, 28.3s〉
min(θ) 142s 〈190mph, 5575rpm, 55.1s, 54.8s〉

φAT8 [θ] = 2((v ≤ θ1) ∧ (ω ≤ θ2)) ∧3[0,θ3](v ≥
150) ∧3[0,θ4](ω ≥ 4500) ∧ 2[θ5,60](v ≥

170) ∧ 2[θ6,60](ω ≥ 4750)

‖θ‖ 146s 〈159mph, 5700rpm, 48.3s, 36.2s, 54.2s, 53.9s〉
max(θ) 145s 〈85.9mph, 6000rpm, 3.8s, 38.8s, 44.5s, 51.5s〉
min(θ) 143s 〈191mph, 4958rpm, 43s, 55.3s, 42s, 47.1s〉

φPe3[θ] = 2((¬g1 ∧Xg1)→ 2(0,θ]¬g2) θ 2600s 0.1s

φS1 [θ] = 2[0,60]((g2 ∧ Xg1)→ 2[0,θ]((t ≤ θ)→ g1) θ 21803s 1.29s

Table 2. Experimental Comparison of the method presented in this paper (A) and the parameter synthesis method presented in [33],
(B). Legend: #Sim.: the number of system simulations, #Rob: the number of robustness computations.

Specification Method Parameters Mined Time #Sim #Rob

φS2 [θ] = 2((v ≤ θ1) ∧ (ω ≤ θ2))
A 137.1 mph 4870 rpm 20170s 1000 1000
B 149.8 mph 4883 rpm 50017s 2386 5130

φAT5 [θ] = 2((v ≤ θ1) ∧ (ω ≤ θ2))
A 100.2 mph 5987.6 rpm 106s 1000 1000
B 137.5 mph 6000 rpm 253s 2176 11485

φAT6 [θ] = ¬(3[0,θ1](v ≥ 100) ∧ 2(ω ≤ θ2)
A 21s 3580 rpm 110s 1000 1000
B 59.06s 3296 rpm 397s 3443 9718

chapters and textbooks for further information [38,39].
Similarly, a lot of research has been invested on testing
methods for Model Based Development (MBD) of em-
bedded systems [4]. However, the temporal logic testing
of embedded and hybrid systems has not received much
attention [40,41,6,42].

Parametric temporal logics were first defined over
traces of finite state machines [43]. In parametric tempo-
ral logics, some of the timing constraints of the temporal
operators are replaced by parameters. Then, the goal is
to develop algorithms that will compute the values of
the parameters that make the specification true under
some optimality criteria. That line of work has been ex-
tended to real-time systems and in particular to timed
automata [44] and continuous-time signals [15]. The au-
thors in [45,46] define a parametric temporal logic called
quantifier free Linear Temporal Logic over real valued

signals. However, they focus on the problem of deter-
mining system parameters such that the system satisfies
a given property rather than on the problem of exploring
the properties of a given system.

Another related problem is specification mining or
model exploration for finite state machines. The problem
was initially introduced by William Chan in [47] under
the term Temporal Logic Queries. The goal of model
exploration is to help the designer achieve a better un-
derstanding and explore the properties of a model of the
system. Namely, the user can pose a number of questions
in temporal logic where the atomic propositions are re-
placed by a placeholder and the algorithm will try to
find the set of atomic propositions for which the tempo-
ral logic formula evaluates to true. Since the first paper
[47], several authors have studied the problem and pro-
posed different versions and approaches [48,49,50,51].

16 Hoxha et al.:: Mining Parametric Temporal Logic Properties in MBD for CPS

Fig. 15. SimuQuest Enginuity model components. Used with per-
mission, c©SimuQuest [36].

A related approach is based on specification mining over
temporal logic templates [52] rather than special place-
holders in a specific formula. In [53], the authors present
an inference algorithm that finds temporal logic proper-
ties of a system from data. The authors introduce a reac-
tive parameter signal temporal logic and define a partial
order over it to aid the property definition process.

In [33], the authors provide a parameter synthesis al-
gorithm for Parametric Signal Temporal Logic (PSTL),
a similar formalism to MTL. To conduct parameter syn-
thesis for multiple parameters, a binary search is utilized
to set the parameter value for each parameter in se-
quence. After a set of parameters is proposed, a stochas-
tic optimization algorithm is utilized to search for tra-
jectories that falsify the specification. If it fails to do
so, the algorithm stops, otherwise this two step process
continues until the termination condition is met.

In the following, we present three main differences
between the method proposed here (A) and the method
proposed in [33] (B). First, A is a best effort algorithm
for which the termination condition is the number of
tests the system engineer is interested to conduct. Clearly,
the more tests, the better the search space is explored.
Since the parameter mining problem is presented as a
single optimization problem, runtime is not directly af-
fected by the number of parameters in the specification.
In contrast, in B, the runtime of the algorithm through
binary search is affected by the number of parameters
in the PSTL formula. For each iteration of the binary
search, multiple robustness computations have to be con-
ducted, which for systems that output a large trace and
contain complex specifications, could become costly. The
second step in B is the falsification of the parameters
proposed. This algorithm needs to be performed on ev-
ery iteration, until a falsification is found. If a falsifying
trajectory is not found, the stopping condition is met
and the parameters are returned. Second, in A, the pa-
rameters returned are the “best” parameters for which a
falsifying trajectory is found. In B, the proposed param-
eters are parameters for which no falsifying trajectory is
found. Proving that a specification holds for hybrid sys-

tems, in general, is undecidable and, therefore the failure
to find a falsifying trajectory does not imply that one
does not exist. Third, in A, through the priority func-
tion, we enable the system engineer to have flexibility
when assigning weights and priorities to parameters. In
B, parameter synthesis through binary search implicitly
prioritizes one parameter over others.

We compare the two methods using the Simuquest
Enginuity high-fidelity Engine model and the Automo-
tive Transmission model. To enable the comparison of
the two methods, we have implemented the B method
in S-TaLiRo. Note that the simulation time is 60s. The
experimental results are presented in Table 2. For the A
method, the number of simulations and robustness com-
putations is predefined. On the other hand, for the B
method, these numbers vary following the reasons pre-
sented in the previous paragraph. As a result, the dif-
ference in computation time between the two methods
is significant. Due to the significant differences between
the two algorithms, in terms of guarantees provided, it
is not possible to compare the quality of the solutions.
While the mined parameters with method A guarantee
falsification of the specification, the mined parameters
with method B do not.

The results for the Automotive Transmission model
can be reproduced by running the experiments in the
S-TaLiRo distribution [18].

9 Conclusion

An important stage in Model Based Development (MBD)
of software for CPS is the formalization of system re-
quirements. We advocate that Metric Temporal Logic
(MTL) is an excellent candidate for formalizing inter-
esting design requirements. In this paper, we have pre-
sented a solution on how we can explore system proper-
ties using Parametric MTL (PMTL) [15]. Based on the
notion of robustness of MTL [11], we have converted the
parameter mining problem into an optimization prob-
lem which we approximate using S-TaLiRo [17,18]. We
have presented a method for mining multiple parame-
ters as long as the robustness function has the same
monotonicity with respect to all the parameters. Finally,
we have demonstrated that our method can provide in-
teresting insights to the powertrain challenge problem
[34].We demonstrated the method on an industrial size
engine model and examples from related works.

Acknowledgements. This work has been partially supported
by award NSF CNS 1116136 and CNS 1350420. Also, we
thank the Toyota Technical Center for donating a license for
the Simuquest Enginuity tool package.

Hoxha et al.:: Mining Parametric Temporal Logic Properties in MBD for CPS 17

References

1. Lions, J.L., Lbeck, L., Fauquembergue, J.L., Kahn,
G., Kubbat, W., Levedag, S., Mazzini, L., Merle, D.,
O’Halloran, C.: Ariane 5, flight 501 failure, report by
the inquiry board. Technical report, CNES (1996)

2. Hoffman, E.J., Ebert, W.L., Femiano, M.D., Freeman,
H.R., Gay, C.J., Jones, C.P., Luers, P.J., Palmer, J.G.:
The near rendezvous burn anomaly of december 1998.
Technical report, Applied Physics Laboratory, Johns
Hopkins University (1999)

3. Oss, D.G.V.: Computer software in civil aircraft. In: Dig-
ital Avionics Systems Conference, 1991. Proceedings.,
IEEE/AIAA 10th, IEEE (1991) 324–330

4. Tripakis, S., Dang, T.: Modeling, Verification and Test-
ing using Timed and Hybrid Automata. In: Model-Based
Design for Embedded Systems. CRC Press (2009) 383–
436

5. Kapinski, J., Deshmukh, J., Jin, X., Ito, H., Butts, K.:
Simulation-guided approaches for verification of automo-
tive powertrain control systems. In: American Control
Conference (ACC), 2015, IEEE (2015) 4086–4095

6. Nghiem, T., Sankaranarayanan, S., Fainekos, G.E., Ivan-
cic, F., Gupta, A., Pappas, G.J.: Monte-carlo techniques
for falsification of temporal properties of non-linear hy-
brid systems. In: Proceedings of the 13th ACM Interna-
tional Conference on Hybrid Systems: Computation and
Control, ACM Press (2010) 211–220

7. Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivančić,
F., Gupta, A.: Probabilistic temporal logic falsification
of cyber-physical systems. ACM Transactions on Em-
bedded Computing Systems (TECS) 12 (2013) 95

8. Koymans, R.: Specifying real-time properties with metric
temporal logic. Real-Time Systems 2 (1990) 255–299

9. Maler, O., Nickovic, D.: Monitoring temporal properties
of continuous signals. In: Proceedings of FORMATS-
FTRTFT. Volume 3253 of LNCS. (2004) 152–166

10. Fainekos, G.E., Pappas, G.J.: Robustness of tempo-
ral logic specifications. In: Formal Approaches to Test-
ing and Runtime Verification. Volume 4262 of LNCS.,
Springer (2006) 178–192

11. Fainekos, G.E., Pappas, G.J.: Robustness of temporal
logic specifications for continuous-time signals. Theoret-
ical Computer Science 410 (2009) 4262–4291

12. Sankaranarayanan, S., Fainekos, G.: Falsification of
temporal properties of hybrid systems using the cross-
entropy method. In: ACM International Conference on
Hybrid Systems: Computation and Control. (2012)

13. Annapureddy, Y.S.R., Fainekos, G.E.: Ant colonies for
temporal logic falsification of hybrid systems. In: Pro-
ceedings of the 36th Annual Conference of IEEE Indus-
trial Electronics. (2010) 91–96

14. Yang, H., Hoxha, B., Fainekos, G.: Querying parametric
temporal logic properties on embedded systems. In: Int.
Conference on Testing Software and Systems. (2012)

15. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Paramet-
ric identification of temporal properties. In: Runtime
Verification. Volume 7186 of LNCS., Springer (2012)
147–160

16. Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M.:
Response surface methodology: process and product op-
timization using designed experiments. John Wiley &
Sons (2016)

17. Annapureddy, Y.S.R., Liu, C., Fainekos, G.E., Sankara-
narayanan, S.: S-taliro: A tool for temporal logic falsifi-
cation for hybrid systems. In: Tools and algorithms for
the construction and analysis of systems. Volume 6605
of LNCS., Springer (2011) 254–257

18. S-TaLiRo: Temporal Logic Falsification Of Cyber-
Physical Systems. https://sites.google.com/a/asu.

edu/s-taliro/s-taliro (2015)
19. Hoxha, B., Bach, H., Abbas, H., Dokhanchi, A.,

Kobayashi, Y., Fainekos, G.: Towards formal specifica-
tion visualization for testing and monitoring of cyber-
physical systems. In: International Workshop on Design
and Implementation of Formal Tools and Systems. (2014)

20. Sankaranarayanan, S., Homaei, H., Lewis, C.: Model-
based dependability analysis of programmable drug in-
fusion pumps. In: Formal modeling and analysis of timed
systems. Springer (2011) 317–334

21. Sankaranarayanan, S., Fainekos, G.: Simulating insulin
infusion pump risks by in-silico modeling of the insulin-
glucose regulatory system. In: International Conference
on Computational Methods in Systems Biology. (2012)

22. Jiang, Z., Pajic, M., Mangharam, R.: Cyber-physical
modeling of implantable cardiac medical devices. Pro-
ceedings of the IEEE 100 (2012) 122–137

23. Chen, T., Diciolla, M., Kwiatkowska, M.Z., Mereacre,
A.: A simulink hybrid heart model for quantitative ver-
ification of cardiac pacemakers. In: Proceedings of the
16th international conference on Hybrid systems: com-
putation and control, ACM (2013) 131–136

24. Abbas, H., Hoxha, B., Fainekos, G., Ueda, K.:
Robustness-guided temporal logic testing and verifica-
tion for stochastic cyber-physical systems. In: Cyber
Technology in Automation, Control, and Intelligent Sys-
tems (CYBER), 2014 IEEE 4th Annual International
Conference on, IEEE (2014) 1–6

25. Alur, R., Henzinger, T.A.: Real-Time Logics: Complexity
and Expressiveness. In: Fifth Annual IEEE Symposium
on Logic in Computer Science, Washington, D.C., IEEE
Computer Society Press (1990) 390–401

26. Hoxha, B., Mavridis, N., Fainekos, G.: Vispec : A graph-
ical tool for elicitation of mtl requirements. In: Proceed-
ings of the 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems. (2015)

27. Zhao, Q., Krogh, B.H., Hubbard, P.: Generating test in-
puts for embedded control systems. IEEE Control Sys-
tems Magazine August (2003) 49–57

28. Legriel, J., Le Guernic, C., Cotton, S., Maler, O.: Ap-
proximating the pareto front of multi-criteria optimiza-
tion problems. In: TACAS, Springer (2010) 69–83

29. Deb, K.: Multi-objective optimization using evolutionary
algorithms. Volume 16. John Wiley & Sons (2001)

30. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger,
T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J.,
Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical computer science 138 (1995) 3–34

31. Fainekos, G., Sankaranarayanan, S., Ueda, K., Yazarel,
H.: Verification of automotive control applications using
s-taliro. In: Proceedings of the American Control Con-
ference. (2012)

32. Donze, A., Maler, O.: Robust satisfaction of tempo-
ral logic over real-valued signals. In: Formal Modelling
and Analysis of Timed Systems. Volume 6246 of LNCS.,
Springer (2010)

https://sites.google.com/a/asu.edu/s-taliro/s-taliro
https://sites.google.com/a/asu.edu/s-taliro/s-taliro

18 Hoxha et al.:: Mining Parametric Temporal Logic Properties in MBD for CPS

33. Jin, X., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining
requirements from closed-loop control models. In: Pro-
ceedings of the 16th international conference on Hybrid
systems: computation and control, ACM (2013) 43–52

34. Chutinan, A., Butts, K.R.: Dynamic analysis of hybrid
system models for design validation. Technical report,
Ford Motor Company (2002)

35. Silva, B.I., Krogh, B.H.: Formal verification of hybrid
systems using CheckMate: a case study. In: Proceedings
of the American Control Conference. Volume 3. (2000)
1679 – 1683

36. Simuquest: Enginuity. (http://www.simuquest.com/
products/enginuity) Accessed: 2013-10-14.

37. Abbas, H., Fainekos, G.: Linear hybrid system falsifi-
cation through local search. In: Automated Technology
for Verification and Analysis. Volume 6996 of LNCS.,
Springer (2011) 503–510

38. Conrad, M., Fey, I.: Testing automotive control soft-
ware. In: Automotive Embedded Systems Handbook.
CRC Press (2008)

39. Koopman, P.: Better Embedded System Software.
Drumnadrochit Education LLC (2010)

40. Tan, L., Kim, J., Sokolsky, O., Lee, I.: Model-based test-
ing and monitoring for hybrid embedded systems. In:
Proceedings of the 2004 IEEE International Conference
on Information Reuse and Integration. (2004) 487–492

41. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Falsification of
ltl safety properties in hybrid systems. In: Proc. of the
Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Volume 5505 of LNCS.,
Springer (2009) 368 – 382

42. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical
model checking with application to simulink/stateflow
verification. In: Proceedings of the 13th ACM Interna-
tional Conference on Hybrid Systems: Computation and
Control. (2010) 243–252

43. Alur, R., Etessami, K., La Torre, S., Peled, D.: Para-
metric temporal logic for model measuring. ACM Trans.
Comput. Logic 2 (2001) 388–407

44. Di Giampaolo, B., La Torre, S., Napoli, M.: Parametric
metric interval temporal logic. In Dediu, A.H., Fernau,
H., Martin-Vide, C., eds.: Language and Automata The-
ory and Applications. Volume 6031 of LNCS. Springer
(2010) 249–260

45. Fages, F., Rizk, A.: On temporal logic constraint solving
for analyzing numerical data time series. Theor. Comput.
Sci. 408 (2008) 55–65

46. Rizk, A., Batt, G., Fages, F., Soliman, S.: On a continu-
ous degree of satisfaction of temporal logic formulae with
applications to systems biology. In: International Con-
ference on Computational Methods in Systems Biology.
Volume 5307 of LNCS., Springer (2008) 251–268

47. Chan, W.: Temporal-logic queries. In: Proceedings of the
12th International Conference on Computer Aided Ver-
ification. Volume 1855 of LNCS., London, UK, Springer
(2000) 450–463

48. Bruns, G., Godefroid, P.: Temporal logic query checking.
In: Proceedings of the 16th Annual IEEE Symposium
on Logic in Computer Science, IEEE Computer Society
(2001) 409 – 417

49. Chechik, M., Gurfinkel, A.: Tlqsolver: A temporal logic
query checker. In: Proceedings of the 15th Interna-

tional Conference on Computer Aided Verification. Vol-
ume 2725., Springer (2003) 210–214

50. Gurfinkel, A., Devereux, B., Chechik, M.: Model explo-
ration with temporal logic query checking. SIGSOFT
Softw. Eng. Notes 27 (2002) 139–148

51. Singh, A., Ramakrishnan, C., Smolka, S.A.: Query-based
model checking of ad hoc network protocols. In: CON-
CUR 2009-Concurrency Theory. Springer (2009) 603–
619

52. Wasylkowski, A., Zeller, A.: Mining temporal specifica-
tions from object usage. In: 24th IEEE/ACM Interna-
tional Conference on Automated Software Engineering.
(2009)

53. Kong, Z., Jones, A., Medina Ayala, A., Aydin Gol, E.,
Belta, C.: Temporal logic inference for classification and
prediction from data. In: Proceedings of the 17th inter-
national conference on Hybrid systems: computation and
control, ACM (2014) 273–282

http://www.simuquest.com/products/enginuity
http://www.simuquest.com/products/enginuity

	1 Introduction
	2 Problem Formulation
	3 Robustness of Metric Temporal Logic Formulas
	4 Parametric Metric Temporal Logic over Signals
	5 Temporal Logic Parameter Bound Computation
	6 Parameter Falsification Domain
	7 Experiments and a Case Study
	8 Related Work
	9 Conclusion

