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Institute of Theoretical Computer Science
Technische Universität Dresden, 01062 Dresden, Germany

Abstract. The popular model checker PRISM has been
successfully used for the modeling and analysis of complex
probabilistic systems. As one way to tackle the challeng-
ing state explosion problem, PRISM supports symbolic
storage and manipulation using multi-terminal binary
decision diagrams for representing the models and in the
computations. However, it lacks automated heuristics for
variable reordering, even though it is well known that the
order of BDD variables plays a crucial role for compact
representations and efficient computations. In this article
we present a collection of extensions to PRISM. First, we
provide support for automatic variable reordering within
the symbolic engines of PRISM and allow users to manu-
ally control the variable ordering at a fine-grained level.
Second, we provide extensions in the realm of reward-
bounded properties, namely symbolic computations of
quantiles in Markov decision processes and, for both the
explicit and symbolic engines, the approximative com-
putation of quantiles for continuous time Markov chains
as well as support for multi-reward-bounded properties.
Finally, we provide an implementation for obtaining mini-
mal weak deterministic Büchi automata for the obligation
fragment of Linear Temporal Logic (LTL), with appli-
cations for expected accumulated reward computations
with a finite horizon given by a co-safe LTL formula.

? This is a post-peer-review, pre-copyedit version of an article
published in the International Journal on Software Tools for Tech-
nology Transfer. The final authenticated version is available online
at: https://doi.org/10.1007/s10009-017-0456-3. The authors
are supported by the DFG through the collaborative research cen-
tre HAEC (SFB 912), the Excellence Initiative by the German
Federal and State Governments (cluster of excellence cfaed), the
Research Training Groups QuantLA (GRK 1763) and RoSI (GRK
1907), and the DFG-projects BA-1679/11-1 and BA-1679/12-1.

1 Introduction

The prominent probabilistic model checker PRISM [47,
37,48] provides support for modeling and the analysis
of discrete-time Markov chains (DTMC) and Markov
decision processes (MDP) as well as continuous-time
Markov chains (CTMC) against temporal logical specifi-
cations. While the behavior of Markov chains is purely
probabilistic, MDPs exhibit both probabilistic and nonde-
terministic choices. The typical task addressed within the
analysis of MDPs is to compute a scheduler that resolves
all the nondeterministic choices and that maximizes (or
minimizes) expected values or the probability of a given
path property.

One prominent approach to cope with the well-known
combinatorical state-explosion problem in model check-
ing is the use of symbolic methods, such as those based on
binary decision diagrams (BDDs) [10,43]. Various BDD-
variants have been studied and implemented in tools for
the quantitative analysis of probabilistic systems, see,
e.g., [25,3,27,47,29,45,33,40,12,28]. For its symbolic en-
gines, PRISM uses algorithms relying on a multi-terminal
binary decision diagram (MTBDD) [2,22] representation
of the model. Using these data structures, a symbolic
representation of the Markovian models can be obtained
and the required steps in the analysis (e.g., graph analysis
on the transition matrix, matrix-vector multiplications,
etc) can be carried out by manipulating the MTBDDs
without requiring an explicit representation of the model.
In particular this allows the analysis of models with ex-
tremely large state spaces that are infeasible to handle
with explicit methods, provided that the structure of the
model permits a compact MTBDD representation.

Overall, PRISM provides four different engines for the
analysis of DTMCs, CTMCs and MDPs. The Explicit
engine uses an explicit representation of the reachable
state space for the system analysis, whereas the Mtbdd
engine completely builds on MTBDD-based symbolic
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2 J. Klein et. al.: Advances in Probabilistic Model Checking with PRISM

representation. Additionally, there are two semi-symbolic
engines, called Hybrid and Sparse that rely on the
symbolic data structures and combine them with explicit
representations and computations during the numeri-
cal computations. Hybrid combines the MTBDD-based
representation of the transition matrix with an explicit
representation of the state value solution vector [35]
during the iterative computations. This is motivated
by the observation that the MTBDD representation of
such state value vectors can become quite large during
such computations, even for models that have a compact
MTBDD representation themselves. The Sparse engine
constructs an explicit, sparse matrix from the MTBDD-
based transition matrix for numerical computations and
performs computations using this explicit representation.
While the three (semi-)symbolic engines rely internally
on the infrastructure of the C-based CUDD library [52]
for MTBDD storage and manipulation, the Explicit
engine is fully implemented in Java.

The efficiency of each of the four engines crucially
depends on the concrete model, its structure and size
as well as the objective(s) under consideration. For each
of the engines there are situations where it can show its
particular strength. While the Explicit engine is partic-
ularly well-suited for initial prototype implementations,
it is desirable to have support for the symbolic engines
as well to allow the handling of models where the state
space exceeds what can be explicitly represented. In prac-
tice, it is thus of considerable interest that novel analysis
techniques are implemented both for the Explicit and
(semi-)symbolic engines.

It is well known that the ordering of the (MT)BDD
variables plays a crucial role for obtaining a compact
representation of the model and for model-checking per-
formance. Within PRISM the order of the BDD variables
is fully determined by the order in which the individual
modules and the state variables are written down in the
model file. Hence, the only influence on the order of BDD
variables is by changing the order of module definitions
and variable declarations. In our previous work, when
applying PRISM for the analysis of complex systems, in
particular for models for which explicit approaches were
infeasible (e.g., [16]), we often had to manually swap
the modules and variable definitions for finding a better
ordering. While care has been taken to use a sensible
variable order derived from the structure of elements in
the model description [47], PRISM lacks any support
for automatically finding a good variable order using
dynamic reordering techniques such as sifting [49,46],
which are routinely employed in symbolic model checkers
for non-probabilistic systems (e.g., [13]).

Contributions. This article presents several enhance-
ments of PRISM. Motivated by observed limitations in
practice, our aim here is to provide an increase in the
efficiency of the symbolic engines and extend the func-

tionality to allow the analysis of a wider range of models
and properties.

First, we address the issue of variable ordering in
PRISM by adding support for the automated variable
reordering of the MTBDD-based model representation by
enabling CUDD’s implementation of group sifting. This is
complemented by extensions of PRISM’s input modeling
language that allow to rearrange and interleave the order
of the bits of state variables within the same module
as well as (the bits) of state variables of different mod-
ules. The impact of the automated reordering has been
evaluated using examples from the PRISM benchmark
suite [38] and in the context of the symbolic quantile
computations.

Our second contribution are extensions of PRISM
in the area of reward-bounded properties. This includes
computation schemes for cost- or reward-bounded reach-
ability properties in DTMCs and MDPs. Additionally,
we provide implementations in the Mtbdd, Hybrid
and Sparse engines for computing quantiles for reward-
bounded reachability properties in MDPs, complementing
the prototypical implementation in the Explicit engine
presented in [4] and report on the results of comparative
experimental studies. Furthermore, we also present an
implementation, in all four engines, for the approximative
computation of quantiles for time-bounded reachability
properties in CTMCs using the algorithm proposed in [5].

Finally, we augment the existing implementation for
Linear Temporal Logic (LTL) model checking in PRISM
by a specialized treatment for the obligation fragment
of (LTL) [14]. While full LTL requires the use of com-
plex acceptance conditions such as Rabin acceptance to
construct a deterministic ω-automata used for probabilis-
tic model checking of LTL path properties, the obliga-
tion fragment allows a conversion to weak deterministic
Büchi automata (WDBA). Büchi acceptance conditions
are structurally simple and require that a given set of
states is visited infinitely often. Crucially, WDBA enjoy
as well the property that they can be efficiently mini-
mized to a minimal WDBA with at most as many states
as any other ω-regular automaton for the same language,
which is in general not the case for ω-automata with
more complex acceptance conditions or structure. We
have implemented the translation and minimization algo-
rithms [14,41] to obtain this minimal automaton. As the
probability computations are carried out in the product
model formed from the original model and the determin-
istic automaton obtained from the LTL formula, the size
of the automaton significantly impacts the efficiency of
the analysis and a specialized treatment of this fragment
is worthwhile. We also apply the translation to minimal
WDBA in the context of expected accumulated reward
computations with a finite horizon as given by a co-safe
LTL formula [34,39], where the regular structure of the
obtained automaton is crucial for correctness.
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Outline. Section 2 presents our new approaches for vari-
able reordering in PRISM. Section 3 summarizes the main
features of our implementations for cost/reward-bounded
properties and quantiles, while Section 4 presents our im-
plementation for obtaining weak deterministic Büchi au-
tomata for the obligation fragment of LTL and computing
expected accumulated rewards with co-safety formulas.
Throughout the article, we assume a basic familarity with
the concepts and notations used in probabilistic model
checking and PRISM and refer to [21] for a tutorial-style
introduction.

For further details (implementation, experiments) see
http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/STTT/

We are collaborating with PRISM’s authors to eventually
integrate our extensions into the main version and would
like to thank David Parker for fruitful discussions. 1

2 Automatic variable reordering in PRISM

Here, we will briefly describe the relevant infrastructure in
PRISM for dealing with variable ordering. The MTBDD
variable ordering of the symbolic model representation
is determined by the order of module and variable def-
initions in the PRISM model file. Fig. 1 sketches the
general schema.2 In a first block, MTBDD variables for
nondeterministic choices are allocated. This includes a
unary encoding of the synchronizing actions (i.e., one
MTBDD variable for each action), scheduling variables
(one MTBDD variable indicating that a given module
is active) as well as several bits for representing local
choices, e.g., between alternative commands for the same
synchronizing action. Then, two blocks of extra variables
are preallocated to serve in later model transformations,
e.g., during a product construction with a deterministic
ω-automaton for LTL model checking. For each individ-
ual bit of a state variable in the model, two MTBDD
variables are allocated, one serving in the representation
of the rows and one for the columns of the transition ma-
trix. The MTBDD variables for representing the possible
values of the (integer-valued) state variables are allo-
cated in the order in which they appear in the PRISM
model file, with each state variable forming a block of
row/column pairs. The bits for each state variable are
ordered from most-significant to least-significant. Global
state variables are treated as if they were contained in a
single module located before the “real” modules.

The arrows in Fig. 1 indicate the extent of the in-
fluence that can be applied to the variable ordering by
syntactically reordering the PRISM source file: At the

1 This article is an extended version of the TACAS’16 paper [31].
2 The depicted scheme corresponds to the default ordering for the

Hybrid and Sparse engines. There are subtle differences when using
the Mtbdd engine, discussed in Appendix A. Additionally, standard
PRISM preallocates only extra state variables, mainly for the
product with deterministic automata. To support generic symbolic
model transformations, we also preallocate choice variables, i.e.,
for fresh actions in the transformed MDP.

highest level, the order of the modules can be changed.
Additionally, inside each module, the order of the defi-
nition of the state variables can be changed. Note that
such changes of the ordering in the PRISM model file
do not lead to any semantic changes in the model, but
can lead to cosmetic changes, e.g., in the order of the
states for exported models. To complement the manual,
trial-and-error approach for finding a good order in the
model file, we detail our automatic approach in the next
section.

2.1 Automatic variable reordering using group sifting

PRISM internally relies on the CUDD (MT)BDD li-
brary [52] for the management of a set of BDDs that
arise during probabilistic model checking. CUDD pro-
vides implementations of several heuristics for (dynamic)
variable reordering which in principle should be available
to be used by PRISM. Unfortunately, the implementa-
tion of PRISM heavily relies on the assumption that the
variable ordering of the MTBDD does not change at all.
The order of the MTBDD variables is assumed to corre-
spond with the order of the respective variables in the
underlying PRISM model, i.e., that the variable index
(logical index) and the variable level (index in the current
variable order) need to agree. Eliminating this restriction
on the variable order would require a substantial refac-
toring of PRISM’s infrastructure, touching many parts
of the implementation.

Our approach presented in this section makes au-
tomatic variable reordering available to a PRISM user
while avoiding any substantial refactoring of PRISM’s
infrastructure. First, a symbolic, MTBDD-based repre-
sentation of the model is built by PRISM as usual. After
the model is built, we trigger the group sifting reorder-
ing heuristic [49,46] via the CUDD library, using several
variable grouping constraints that will be detailed later.
After this reordering, the MTBDD-based model repre-
sentation violates PRISM’s assumptions, which renders
further computations in PRISM impossible. Thus, we per-
form an analysis of the variable ordering found by group
sifting and translate the changes in variable locations
back to the source level of the PRISM model. This way,
we obtain a syntactically reordered PRISM model, where
the placement of the PRISM modules and state variables
reflects the calculated variable ordering. Our implemen-
tation then allows using this reordered model directly
after the reordering computation via the following trick:
After reordering, we delete the MTBDDs of the model
and reset the variable ordering in CUDD to the one that
PRISM expects, where each variable index corresponds
to the variable level in the BDD. Then, we build the
BDDs for the model a second time, this time using the
syntactically reordered PRISM model. We thus obtain
the reordered model again, but now with the underlying
assumptions of PRISM intact, allowing to use the full
PRISM machinery. This approach provides transparent
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Fig. 1. Schema for the standard variable ordering used by PRISM. The arrows indicate the effect of syntactic reordering in the PRISM
model file on the variable order.

and convenient access to the reordering functionality to
the user. Additionally, we also support exporting the re-
ordered model to a file, which can then be used in future
PRISM runs. This way, the time for reordering can be
amortized over multiple model-checking runs.

For this approach to work, it is crucial that we are
able to seamlessly convert between the reordered variable
ordering obtained after sifting and the variable order
that is induced by syntactically reordering the elements
of the PRISM model file. To achieve this, we introduce
appropriate groups of MTBDD variables represented by
a tree structure and used in the groups sifting. The group-
ing reflects the structure of the given model file: Each
PRISM module forms a group of BDD variables that
can be reordered as a block. This corresponds to syntac-
tically changing the order of modules in the model file.
Additionally, inside each module, the MTBDD variables
for each state variable form another group. Reordering
those groups corresponds to changing the order of the
variable declarations inside a PRISM module. The re-
maining variables, e.g., those for nondeterministic choices
remain in fixed positions. Hence, the above approach al-
lows for creating all variable orders that can result from
permutations of modules and state variables within the
PRISM model file. In the next section we show how a
more fine-grained control can be achieved.

2.2 Bit-level control over the variable order using views

Although it is well known that for some operators, e.g.,
the addition of two integers, an efficient representation
relies on the interleaving of the individual bit-variables,
there is no way of interleaving the individual bits of
multiple state variables in PRISM up to now.

module M

s_bit_2 : [0..1];

s_bit_1 : [0..1];

s_bit_0 : [0..1];

s : view (s_bit_2,s_bit_1,s_bit_0)

<=> [2..7] init 3;

[inc] s<7 -> 1:(s’=s+1);

endmodule

Fig. 2. Defining a view s with data domain (2, 7) from three
single-bit state variables.

Our implementation provides the option of syntacti-
cally “exploding the bits” of all the state variables in a
PRISM model file: Each multi-bit state variable s is re-
placed with the appropriate number of single-bit variables
si. To keep this transformation simple and transparent
to the user we introduce a syntactic enhancement of the
PRISM modeling language called a view. A view forms
a virtual variable s over bit variables sj . This virtual
variable can be used in guards and updates of transition
definitions just as ordinary variables. Hence, exploding
the bits does not affect any of the transition definitions
given in the model file.

As an example, consider the PRISM module in Fig. 2.
Here, the virtual state variable s with an integer data
domain of 2 6 s 6 7 requires three bits to represent all
values, as internally integer variables are encoded by first
subtracting the lower bound of the data domain (2 is
internally represented as 0, etc.). The actual storage is
provided by the three single-bit state variables s bit i.
The order of the single-bit state variables in the view
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definition determines their use in the encoding, with the
most-significant bit appearing first. As can be seen, the
virtual view variable s is being used just like a standard
PRISM state variable.

Note that “exploding the bits” of a PRISM model file
alone will not change the variable ordering and MTBDD
representation, as the encoding and ordering of the newly
introduced single-bit state variables correspond to the
standard encoding used for the original variables. When
applying the automatic reordering detailed in the previ-
ous section to an “exploded” model file, the individual
bits of the state variables can be now be sifted and in-
terleaved, as their grouping is removed. However, the
MTBDD variables are still restricted from crossing mod-
ule boundaries. We detail how to remove this restriction
in the next section.

2.3 Interleaving state variables of different modules

To overcome the limitation that state variables cannot
be interleaved across modules our implementation pro-
vides the option of “globalizing” all state variables in a
PRISM model file: Each state variable inside a PRISM
module is moved from the module to become a global
variable, while keeping the order they appeared in the
original model file. Realizing this requires to loosen some
restrictions on the use of global variables imposed by
PRISM. In standard PRISM, global variables cannot be
updated in synchronous actions, as this has the potential
of resulting in conflicting updates from multiple mod-
ules. We removed this restriction, as in our setting only
the “previous owner” of a variable, i.e., the module in
which the variable was initially declared, will update the
global variable in the transformed model. This ensures
that there can be no conflicting updates introduced by
globalizing variables. Our implementation supports such
global variable updates for similar situations as well, i.e.,
where it is apparent by a syntactic inspection that no
conflicting updates can happen.

The options for exploding the bits and globalizing
the variables can be used separately and in a combined
fashion (cf. Fig. 3) and the resulting model yields a
starting point for group sifting. This way, fine-grained
control of the variable ordering for all state variables
in the model becomes possible. Within the following
section we will evaluate our implementation by means of
a number of case studies.

2.4 Benchmarking automatic variable reordering of
PRISM models

To explore the effect of automatic variable reordering
using our implementation, we performed benchmarks us-
ing the DTMC, CTMC and MDP models in the PRISM
benchmark suite [38]. The models are parameterized in
various parameters, affecting both the number of states

Before “explode bits” and “globalize”:

module M1

x : [0..3] init 0;

[a] true -> 0.5:(x’=0)

+ 0.5:(x’=y);

endmodule

module M2

y : [0..3] init 0;

[a] true -> 1:(y’=0);

[b] y<3 -> 1:(y’=y+1);

endmodule

After “explode bits” and “globalize”:

global x_bit_1 : [0..1];

global x_bit_0 : [0..1];

global y_bit_1 : [0..1];

global y_bit_0 : [0..1];

global x :

view (x_bit_1,x_bit_0) <=> [0..3] init 0;

global y :

view (y_bit_1,y_bit_0) <=> [0..3] init 0;

module M1

[a] true -> 0.5:(x’=0) + 0.5:(x’=y);

endmodule

module M2

[a] true -> 1:(y’=0);

[b] y<3 -> 1:(y’=y+1);

endmodule

Fig. 3. Example of both “exploding bits” and “globalizing variables”
for a PRISM model file, before and after.

and the size of the MTBDD representation. In total,
we performed benchmarks with 208 model instances
(70 DTMCs, 70 CTMCs, 68 MDPs). We present here
statistics for the “top” initial variable ordering [47] used
by default in the Hybrid engine. Results using the de-
fault variable ordering of the Mtbdd engine were roughly
similar.

Fig. 4 presents statistics for the basic case, i.e., re-
ordering without any syntactic transformations before-
hand. Similar plots for reordering with the “globalize
variables” (Sec. 2.3) and “explode bits” (Sec. 2.2) trans-
formations being applied can be found in the appendix.3

In the plots, the model instances are grouped by their
base model. The size of the MTBDD refers to the num-
ber of nodes in the shared MTBDD structure storing the
various individual MTBDDs. Those individual MTBDDs
represent the model in PRISM, i.e., its transition matrix,
a 0/1-version of the transition matrix representing the
underlying graph structure of the model, the set of reach-

3 The benchmarks for reordering were carried out on a machine
with two Intel Xeon L5630 4-core CPUs at 2.13GHz and 192GB
RAM, with a timeout of 1 hour and a CUDD memory limit of
10GB. The max-growth factor of CUDD was set to 2, i.e., allowing
a doubling in MTBDD size before sifting is abandoned.
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6 J. Klein et. al.: Advances in Probabilistic Model Checking with PRISM

able states, representations for the transition and state
rewards.

As can be seen in the second plot from the top in
Fig. 4, the automatic reordering was able to achieve
significant reductions for many of the model instances. As
a particularly striking example, the reordering was very
effective for the “mapk-cascade” model, a CTMC: For the
instance with parameter N = 8, the MTBDD size was
reduced from 1,478,511 nodes to 96,718 nodes, a reduction
of more than 90%. The time for building the symbolic
representation of this model instance was reduced from
124 s to less than 2 s for the reordered model. Most of the
time, the reduction in the MTBDD size is accompanied by
a reduction in the time needed for building the MTBDDs
for the reordered model. The major outlier to this are
several instances of the “crowds” model, where the time
for building the reordered model was substantially worse
compared with the original model. Our investigation
revealed that this is due to the point in time at which our
reordering is performed, i.e., after the symbolic transition
matrix has been restricted to the reachable part of the
state space, which is the symbolic representation that is
then used for the actual model checking. The reordering
heuristic thus produced a variable order tailored for this
state space and which is not particularly suitable for the
representation of the individual, not yet restricted parts of
the model used during the building phase. This is a classic
example of the case where an asynchronous reordering,
i.e., continuously adapting the variable ordering during
the construction phase, would be helpful.

In general, the time for reordering tends to be related
to the size of the MTBDD before reordering, as expected.
As noted above, even substantial reordering times might
be worthwhile, as the reordered model can be stored
and subsequently reused multiple times, profiting, e.g.,
from the reduced build time and more compact symbolic
representation.

There were three models (“brp”, “nand” and “poll”),
where instances exhibited an overall reduction in the
size of the MTBDD, but an increase in the size of the
MTBDD for the transition matrix alone (in all cases the
increase was less than 10%). This is explained by the
fact that the reordering operates on the whole shared
MTBDD data structure and thus does not necessarily
optimize all the individual MTBDD functions that are
stored.

We have also benchmarked the effect of our syntactic
transformations on the automatic reordering and present
here (Table 1) some notable examples. For further, de-
tailed statistics we refer to the appendix. As already
seen in Fig. 4, the “tandem” model has no reduction in
MTBDD size when it is reordered as-is. However, when
the state variables are “exploded”, reordering becomes
profitable, with additional reductions when combined
with the “globalize variables” transformations. Globally,
for every model instance from the benchmark suite, at
least one of the variants achieved some reduction. As is

to be expected, no variant is uniformly best. Consider
the statistics for the “cluster” model in Table 1. For
N = 32, “exploding” and “globalizing” are individually
successful, but in combination lead to only minor reduc-
tions. For N = 256 and N = 512, the combination of
“exploding” and “globalizing” becomes more successful,
but the standard reordering leads to the most reductions.
For “kanban” with t = 6, “globalizing” alone leads to
worse reductions than reordering on the standard model.
As can be seen, it remains an area of experimentation
to select the reordering variant that is a good fit for a
particular model and model instance.

As a good first assumption, the time for model check-
ing tends to be related in general to the compactness of
the symbolic representation. We present here statistics
for the impact of the automatic reordering on the model
checking time for two examples from the PRISM bench-
mark suite (Tables 2 and 3). The results are presented
for the variant of reordering that provided the best reduc-
tion of the BDD size. In case of the “egl” case study this
was the combination of “globalize” and “explore bits”,
whereas for the “fms” case study using “explode bits” by
itself turned out to yield the highest reduction. For each
instance, the tables present statistics for the number of
reachable states, the size of the MTBDD for the transi-
tion/rate matrix after reordering, the reduction in size
of the MTBDD representation of the matrix due to re-
ordering and the time spent for reordering. Additionally,
the tables depict the time for computing the respective
query: once for the original model (without reordering)
and once for the reordered model. As can be seen, the
more compact MTBDD representation corresponds here
to a reduction in the model checking time as well, with
the largest relative improvement achieved for N=9 in
the “fms” case study. It has to be kept in mind that the
reordering time can be amortized over multiple runs of
the model checker and multiple queries by reusing the
reordered model.

However, as is usual in symbolic methods using BDDs,
a more compact representation of the model does not
necessarily guarantee an improvement in model-checking
time. One possible reason for this can be that a variable
order most suitable for representing the model might not
be suitable for efficiently storing the value vectors that
arise in the numerical algorithms as well. Similarly, a
good order for the fully constructed model (restricted
to the reachable state space) may be inefficient during
the compositional construction phase where the different
parts of the model have to be represented individually
and are then composed. However, in the cases where
our heuristic does work well, the improvements can be
quite significant and help substantially in making large
models tractable. In the next section, we will report
on significant reductions in model-checking time in the
context of quantile computations on the basis of reordered
models.
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Fig. 4. Statistics for reordering without syntactic transformations: The number of MTBDD nodes before reordering, the reduction (larger
numbers represent more reduction) in the number of MTBDD nodes, the change in time for building the model (before/after reordering)
and the time spent reordering. Times below 0.1 seconds are clipped to 0.1 for visualization purposes. There was one timeout, reordering
the “csma4 6” instance (30 minutes of the 1 hour timeout spent on building, with 3,589,198 nodes).
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Table 1. Selected statistics for the reduction achieved using reordering on the standard model instance and where the “explode bits” and
“globalize variables” transformations were applied. In the last column, both transformations are applied. For reference, the MTBDD size
before reordering is included as well. For full details, see appendix.

MTBDD reduction in %
Model instance before standard explode globalize exp.+glob.

tandem c=255 4 917 0.0 26.0 0.0 35.1
tandem c=4095 103 233 0.0 35.7 0.0 64.3

cluster N=32 7 391 45.5 47.9 52.2 8.3
cluster N=256 61 749 53.6 42.0 24.2 39.8
cluster N=512 129 740 54.1 42.0 26.2 47.5

kanban t=6 14 001 27.5 34.0 1.2 32.3

Table 2. Statistics for the “egl” case study with “unfairA” query (L=8), Mtbdd engine and “top” initial variable ordering. Reordering
with “globalize” and “explode bits”.

reordered reduction tquery
Instance States MTBDD in % treorder original reordered

N=5 156 670 21 797 56.9 9.0 s 2.5 s 1.3 s

N=10 317 718 526 72 001 40.1 39.5 s 14.2 s 8.9 s

N=15 486 405 046 270 146 352 31.9 97.8 s 39.1 s 29.4 s

N=20 663 005 511 548 926 238 028 28.8 196.4 s 82.5 s 57.6 s

Table 3. Statistics for the “fms” case study with “productivity” query, Hybrid engine. Reordering with “explode bits”.

reordered reduction tquery
Instance States MTBDD in % treorder original reordered

N=5 152 712 20 681 59.4 4.1 s 11.3 s 8.7 s

N=6 537 768 30 228 61.3 7.2 s 50.2 s 39.6 s

N=7 1 639 440 40 610 66.4 12.5 s 168.1 s 142.2 s

N=8 4 459 455 72 908 66.1 22.8 s 637.2 s 496.2 s

N=9 11 058 190 102 514 66.8 49.6 s 3148.2 s 1434.6 s

3 Reward-bounded reachability and quantiles

Models in PRISM can be annotated with rewards (non-
negative values) specifying the costs or the gain for visit-
ing certain states or taking certain transitions. PRISM
provides implementations of algorithms for reasoning
about expected rewards, but lacks support for comput-
ing the probabilities for reward-bounded path properties,
except for the special case of step-bounded formulas (see
[21] for a tutorial-style introduction to the underlying
concepts, notations and algorithms).

Reward-bounded path properties are used, for exam-
ple, for reasoning about resource-constraints (e.g., “what
is the probability of reaching the goal within some energy
budget” in the case of upper bounds) or for requiring a
certain amount of utility (e.g., “what is the probability
of finishing a task while having served at least a certain
number of customers” in the case of lower bounds).

3.1 Reward-bounded reachability

We have extended PRISM with support for the computa-
tion of (extremal) probabilities of cost-/reward-bounded
reachability path formulas for DTMCs and MDPs with

non-negative integer rewards. For this, the standard reach-
ability operator ♦Φ (“eventually some state satisfying
state formula Φ is reached”) is augmented with a re-
ward bound, i.e., of the form ♦≤r Φ with reward bound
r (“eventually some state satisfying Φ is reached while
accumulating no more than r reward along the way”).
Here, the accumulated reward for a given path fragment
in the model corresponds to the sum of the rewards that
are assigned to the states and actions that comprise the
path fragment. Lower reward bounds, i.e., of the form
♦≥r Φ, are supported as well.

For MDPs, this results in queries such as Prmax(♦≤r Φ)
for a reward bound r and state formula Φ, which asks:
“what is the maximal probability of reaching some state
satisfying Φ while accumulating at most reward r”, where
the maximum is taken over all schedulers, i.e., resolutions
of the non-determinism in the MDP.

For a single reward bound and Prmax, we can use the
iterative computation of the values xs,r = Prmax

s (♦≤r Φ)
for reward bounds r = 1, 2, 3, . . . , r. This yields the build-
ing block of the algorithm for the computation of quan-
tiles as proposed in [4] and discussed in the next section.
For the Prmin operator (asking for minimal probabilities)
and for Pr in the case of a DTMC, the analogous compu-
tations can be performed. For conjunctions of multiple
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reward bounds and step bounds [1], we rely on a syn-
chronous product of the MDP (or DTMC) with a finite
automaton that tracks the accumulated reward. We can
hence reduce the case of multiple bounds to the base
case with only a single step bound or reward bound. This
is implemented for the explicit and the (semi-)symbolic
engines.4 As the case of a reward-bounded simple path
formula (i.e., a single eventually, until, globally or release
operator with state formula operands) can easily be re-
duced to a (possibly negated) reachability question via
simple transformations, those kinds of reward-bounded
path formulas are supported as well.

3.2 Computing quantiles in MDPs

In our recent work [55,4], we addressed the computation
of quantiles in Markov models for probability constraints
on reward-bounded reachability formulas. The prototypi-
cal implementation based on PRISM’s Explicit engine
used in [4] for experimental studies has been refined and
extended with implementations for the Mtbdd, Hybrid
and Sparse engines. In what follows we describe impor-
tant details of this implementation. We consider here
MDPs and reward functions rew : S ×Act→ N>0, map-
ping state-action pairs (s, α) to the non-negative integer
reward rew(s, α). The considered type of quantiles (for
details we refer to [4]) stand for optimal reward thresholds
that guarantee that the maximal or minimal probability
of a reward-bounded reachability path formula meets
some probability bound. Examples are

min
{
r ∈ N : Prmax(♦≤r Φ) > p

}
max

{
r ∈ N : Prmin(♦≥r Φ) > p

}
where r can be seen as a parametric reward bound, Φ
is a state formula and p a rational probability bound.
The first of the two queries above could, for example,
stand for the question “in the best case, what is the min-
imal amount of energy r that is required to ensure that
some goal state Φ is reached with at least probability p”.
Quantiles thus yield a useful concept for a cost-utility
analysis, allowing reasoning over some or all schedulers.
The approach for computing quantiles as proposed in [4]
consists of a two-step process. A precomputation step
determines all states s ∈ S for which the quantile exists,
i.e., is finite. In the simplest case, this amounts to the
computation of the maximal probability for unbounded
reachability. In other cases, the computation requires the
analysis of zero-reward and positive-reward end compo-
nents [4]. For the remaining states, an iterative approach
is used, which we illustrate here for a quantile of the form
min

{
r ∈ N : Prmax(♦≤r Φ) > p

}
where we suppose the

4 As the quantile algorithm for reward-bounded path formulas
in the symbolic engines is currently only implemented for MDPs,
reward-bounded reachability computations for DTMCs convert all
reward bounds into counters in the state space.

MDP has a unique initial state s0. Successively, the val-
ues xs,r = Prmax

s (♦≤r Φ) for r = 1, 2, 3, . . . are computed
for all states s ∈ S until some r with xs0,r > p is reached,
using the equation xs,r = max{As, Bs} with

As = max
α∈Act(s),rew(s,α)=0

∑
t∈S

P (s, α, t) · xt,r

Bs = max
α∈Act(s),rew(s,α)>0

∑
t∈S

P (s, α, t) · xt,r−rew(s,α)

where P (s, α, t) is the probability of reaching state t
when action α is chosen in state s. For states satisfying
Φ, xs,r is set to 1 for all r. The values As, handling the
zero-reward actions, are computed using value iteration.
The values Bs, handling the positive-reward actions, are
determined by inserting the previously calculated values
xt,i for i < r. For the other quantile variants, similar
computations are performed [4]. The time complexity of
this approach is pseudo-polynomial. Given the PSPACE-
hardness result by [24], no polynomial-time algorithm
can be expected.

3.3 Symbolic computation of quantiles in MDPs

We have extended PRISM with implementations for the
computation of quantiles with the Mtbdd, Hybrid and
Sparse engines, following the general approach out-
lined above. For the precomputation step, we rely on
the PRISM machinery allowing for the computation of
maximal/minimal probabilities for unbounded path for-
mulas. The implementation for calculating (maximal) end
components has been adapted by appropriate (symbolic)
model transformations such that states in positive-reward
end components and zero-reward end components can
be identified.

The implementations for the Mtbdd, Hybrid and
Sparse engines use tailored approaches for the iterative
computation of the values xs,r, r = 1, 2, 3, . . . until the
probability threshold p is reached.

3.3.1 Iterative computation in the Mtbdd engine

The computed values xs,r are stored symbolically, using
one MTBDD per bound r for representing the func-
tions xr : S → Q. For the computation of xs,r+1, the
positive reward fragment of the MDP is handled first,
computing the MTBDD B : S → Q, i.e., the values Bs
mentioned above, representing the result of choosing the
“best” positive-reward actions. Here, all state-action pairs
with identical reward value are handled simultaneously.
Consequently, this symbolic approach tends to be most
efficient if there are many state-action pairs, but few
distinct reward values in the model.

For the handling of the zero-reward fragment in the
MDP, we employ a modified version of PRISM’s standard
symbolic value iteration for computing extremal reacha-
bility probabilities in MDPs. The procedure is enriched
with an additional comparison against the optimal values
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10 J. Klein et. al.: Advances in Probabilistic Model Checking with PRISM

among the positive reward actions as stored in B. Hence,
in each iteration and for each state, either the currently
considered zero-reward action is chosen or the optimal
positive-reward action represented by the value stored in
B.5

3.3.2 Iterative computation in the Hybrid engine

The Hybrid engine [47] relies on an explicit storage
of the value vectors, combined with a symbolic stor-
age of the transition matrix and a recursive procedure
which traverses the symbolic matrix to compute, e.g.,
the matrix-vector product. To handle MDPs, for each
distinct action a separate symbolic transition matrix is
maintained, and each action is handled in turn.

For our quantile computations, we maintain sepa-
rate matrices for the positive-reward fragment and for
the zero-reward fragment. We additionally store explicit
vectors for the previously computed values xs,r for the
relevant values of r, i.e., those values that are still needed
because they could still be reached by one of the positive-
reward transitions. The handling of the positive-reward
fragment then amounts to a modified recursion procedure,
additionally tracking the relevant reward value. This way,
once the terminal case in the recursion, i.e., the discovery
of the probability P (s, α, t), is reached, we can lookup
the relevant value xt,r−rew(s,α) (see equation for Bs).

The subsequent computation for handling the zero-
reward fragment then consists of an adapted variant of
PRISM’s Hybrid value iteration for extremal reacha-
bility probabilities, with the equivalent additional com-
parison with the optimal action in the positive-reward
fragment as described above for the Mtbdd engine.

As an optimization, PRISM’s Hybrid algorithms
convert some of the lower levels of the MTBDDs for the
matrices to sparse matrices, as this speeds up the very
frequent bottom cases in the recursion at a negligible
memory impact [47]. We support this in the quantile com-
putations as well for the zero-reward fragment. For the
positive-reward fragment, this optimization is used only
if the rewards depend solely on the states or solely on the
actions, as otherwise the computation of the correspond-
ing reward during the recursion gets more complicated.

3.3.3 Iterative computation in the Sparse engine

The Sparse engine [47] of PRISM constructs an explicit
sparse matrix for the MDP from the MTBDD repre-

5 As demonstrated in [26], the termination criterion for detecting
convergence in the iterative numerical computations used by all
engines of PRISM and by other probabilistic model checkers can
lead to imprecise results for certain models. This is due to the
convergence check succeeding before the overall result has converged
with a sufficient precision. In the quantile calculations, we currently
follow the standard PRISM approach. In separate work, we are
currently working on an implementation of the fix proposed in [26].
As the relevant parts of the quantile computations are similar,
those can then be adapted easily as well.

sentation and maintains explicit value vectors for the
numerical algorithms.

Our quantile computations for the Sparse engine
is structurally very similar to the one for Hybrid: We
maintain a sparse matrix for the positive-reward and
zero-reward fragments of the MDP. In addition, we main-
tain a sparse representation of the rewards assigned to
each (s, α) pair, similar to PRISM’s approach for comput-
ing expected reachability rewards. Again, we also store
the relevant values xs,r from previous iterations. Then,
for the positive-reward fragment, a parallel traversal of
the matrix and the structure for the rewards obtains
the values P (s, α, t) · xt,r−rew(s,α). For the zero-reward
fragment, we again use a modified variant of Sparse’s
value iteration.

3.4 Benchmarks for quantile computations in MDPs

To perform benchmarking of our implementation, we have
reused several models and quantile queries that were first
considered in [4] for benchmarking our implementation
for PRISM’s Explicit engine. We present here (Table 4)
statistics for some noteworthy model instances. For fur-
ther statistics and details on the models and quantile
queries we refer to Appendix C. 6

For the “Self-stabilizing algorithm” case study, our
Hybrid and Sparse implementations tend to outper-
form the Explicit implementation, particularly due to
the efficient model building phase. For the Mtbdd en-
gine, however, this is an example where the numerical
computation phase takes a long time, even though the
model can be represented as a compact MTBDD. This is
mostly due to the non-compact symbolic representation
of the symbolic state value vectors during the numerical
iterations.

In contrast, for the “asynchronous leader election”
case study, the Mtbdd implementation becomes com-
petitive for the larger model instances. The Explicit
implementation is hampered here by the time spent for
building the model, which becomes infeasible for the
largest instance.

For the first “energy aware job scheduling” case study,
eventually the Mtbdd engine becomes competitive for
large instances. Here, it is interesting that the time tquery
tends to be smaller for Explicit compared to Sparse.
This is due to some additional heuristics used in the
numerical quantile computations in the Explicit engine
that have not yet been implemented in the Sparse en-
gine. For the second “energy aware job scheduling” case
study, all three (semi-)symbolic engines outperform the
Explicit engine, which is mostly due to some implemen-
tation inefficiencies related to Java data structures in the
precomputation phase of the quantile computations (e.g.,
1735.5 s).

6 The benchmarks for the quantile computations were carried
out on a machine with two Intel E5-2680 8-core CPUs at 2.70 GHz
with 384GB of RAM running Linux.
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Table 4. Quantile computations for selected case studies, with statistics for the model size (reachable state space, MTBDD size of
symbolic transition matrix) and times spent for model building and computing the quantile query (in seconds). The “iter.” column depicts
the number of overall iterations in the quantile computation.

symbolic quantile computations
N States MTBDD iter. Explicit Hybrid Sparse Mtbdd

size tbuild tquery tbuild tquery tbuild tquery tbuild tquery

Self-stabilizing algorithm (Israeli/Jalfon), N processes (query Q1)

11 2 047 433 144 0.5s 0.2s < 0.1s < 0.1s < 0.1s < 0.1s < 0.1s 1.1s

15 32 767 729 271 1.7s 3.5s < 0.1s 1.6s < 0.1s 1.3s < 0.1s 74.1s

18 262 143 993 392 8.7s 37.0s < 0.1s 22.1s < 0.1s 18.4s < 0.1s 1 338.9s

Asynchronous leader election, N processes (query Q3)

7 2 095 783 180 383 13 62.1s 25.7s 4.5s 97.7s 4.5s 52.1s 4.5s 156.6s

8 18 674 484 392 093 13 894.0s 371.7s 17.3s 997.5s 17.3s 404.6s 17.3s 685.6s

9 167 748 115 868 257 14 – – 68.1s 11 914.3s 68.3s 4 125.5s 68.2s 3 532.8s

Energy-aware job scheduling, N processes (query Q7)

5 6 079 533 187 458 302 332.0s 365.2s 6.3s 1 493.9s 6.3s 404.8s 6.2s 776.0s

6 44 072 357 507 805 416 4 610.4s 2 623.2s 18.5s 19 408.2s 18.3s 5 003.7s 18.5s 2 815.7s

Energy-aware job scheduling, N processes (query Q8)

5 3 049 471 25 363 13 72.6s 311.0s 0.5s 67.3s 0.5s 25.7s 0.5s 116.7s

6 7 901 694 38 911 15 226.8s 1 960.5s 0.9s 209.4s 0.9s 81.5s 0.9s 345.3s

Overall, it can be seen that the different implementa-
tions have their strengths and weaknesses, depending on
the concrete model and situation. Interestingly, our quan-
tile computation implementation in the Hybrid engine
was not able to demonstrate its usual strengths, i.e., in
situations where the Sparse engine becomes infeasible
but the hybrid approach can still outperform the Mtbdd
engine. This is partially due to the fact that our exper-
iments were run with a large amount of memory, the
additional memory requirements due to the quantile com-
putation (storage of the values xs,i for a sufficiently large
number of previous iterations). Additionally, we noticed
that, for the larger models, a relatively large amount of
time is spent for the setup of the data structures for the
hybrid computations. We believe that in this area there
is still substantial opportunity for efficiency gains.

For the “energy-aware job scheduling” case study,
the computations were carried out in a reordered model,
using the methods presented in Section 2. This led to
a significant decrease in MTBDD size and computation
times. For instance, for (Q7) and N=6 we observed a
reduction in the size of the transition matrix of 78.2 %
and the quantile computation (Sparse) took 6 201.2 s in
the original model instead of 5 003.7 s in the reordered
model. Similar results were observed for the Mtbdd and
Hybrid engines.

Quantiles in feature-oriented systems. The concept
of features provides an elegant way to specify families of
systems: Features encapsulate additional functionalities
that influence the behaviors of a given base system. The
members of the family usually share a lot of common
behaviors, such that symbolic representations may yield
significantly smaller representations of the family (see,

e.g., [54,16,11]). Such a smaller representation is also
beneficial for analysis, i.e., using a family-based anal-
ysis approach, where the family is represented in one
single model and the analysis of all systems contained is
performed in a single run.

In previous work [16], we carried out experiments on
an energy-aware server product line eServer, illustrating
the benefits of symbolic representations in probabilistic
product-line verification. There, we also showed that vari-
able orderings have a crucial impact on family-based
analysis performance. However, due to the lack of a sym-
bolic quantile implementation, an energy-utility analysis
of eServer had to be postponed as future work.

In Table 5, we summarize statistics for the computa-
tion of quantiles on two instances of eServer, becoming
possible due to our symbolic implementation. We com-
puted the minimal amount of energy required to guaran-
tee in 95% of the cases a certain percentage of the time
without any package drop. The table shows the impact of
our four reorder mechanisms on the model size and the
quantile computation time. We only included the results
for the Mtbdd engine, as the other engines struggled
with the size of the model and reached a timeout after
one day. Within all computations, 1476 quantile itera-
tions were required. Interestingly, although the model
presented in [16] already used heuristics to find good
initial variable orderings, the fully automatic reorder
mechanisms presented here allow for a further signifi-
cant reduction of the model size and a speedup of the
analyses7.

7 Comparing with the experiments for eServer presented in [31],
our Mtbdd implementation for quantile computations features an
improved handling of the zero-reward fragment of the MDP, which
more than halved the query times.
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Table 5. Quantile computations for eServer, with statistics for the reachable state space and MTBDD size of the transition matrix,
reduction, time for reordering, time building the model, and computing the quantile query (in seconds).
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1

States MTBDD Reduction Mtbdd
nodes in % treorder tbuild tquery

original 145 984 112 63 619 - - 8.0s 393.9s
reordered “ 39 716 37.6 2.7s 5.9s 297.5s
with explode “ 33 858 46.8 6.0s 6.8s 291.2s
with globalize “ 35 769 43.8 2.2s 4.6s 286.6s
with exp.+glob. “ 29 339 53.9 2.2s 6.1s 270.7s

original 441 704 832 139 136 - - 21.6s 1 812.0s
reordered “ 72 145 48.1 62.4s 12.7s 2 552.6s
with explode “ 65 798 52.7 24.2s 13.2s 2 149.9s
with globalize “ 42 857 69.2 5.0s 8.3s 2 617.8s
with exp.+glob. “ 35 718 74.3 6.2s 9.0s 2 028.7s

3.5 Computing quantiles in CTMCs

Quantiles for continuous-time Markov chains can be de-
fined in a similar way as for discrete Markov chains.
However, in the case of CTMCs we have to consider tra-
jectories rather than paths, in which case the quantile
can be a real number (rather than an integer) and min
and max in the definitions need to be replaced with inf
and sup, respectively. As an example, the quantile

inf
{
t ∈ R : Prs

(
♦6t Φ

)
> p

}
asks for the “smallest” time-bound t such that the prob-
ability of reaching states satisfying Φ within the given
time is at least p starting from some fixed state s.

We present here an implementation of the simple ap-
proximation scheme for quantiles proposed in [5]. As the
basic building block, we rely on the existing implementa-
tion in PRISM for computing probabilities in CTMCs for
time-bounded reachability with a concrete time bound t.
As a first step, we check that the quantile is finite using
a precomputation. Then, an exponential search is used to
determine the smallest i ∈ N such that Prs

(
♦62iΦ

)
> p.

If i > 1, then we perform a binary search to determine
some value t ∈ [2i−1, 2i] such that Prs

(
♦6t−

ε
2 Φ
)
< p

and Prs
(
♦6t+

ε
2 Φ
)
> p for some user-defined ε > 0.

Then, t is indeed an ε-approximation of the quantile
inf
{
t ∈ R : Prs

(
♦6t Φ

)
> p

}
. In the case where the

exponential search succeeds immediately with i = 0, we
perform a similar binary search in the interval [0, 1].

Using PRISM’s realization of the uniformization ap-
proach to compute approximations for time-bounded
reachability probabilities in CTMCs, we have imple-
mented this scheme in both the Explicit and the sym-
bolic engines, supporting quantiles with upper or lower
time bounds on simple path formulas. PRISM currently
does not support the computation of reward-bounded
reachability probabilities in CTMCs, but once support is
added (e.g., using the duality between reward- and time-
bounds [6]), our implementation can be easily adapted to
handle quantiles for reward-bounded reachability proper-
ties in CTMC with positive rewards.

To give a brief example of the performance of this
scheme, we consider here an instance of the “tandem” case
study from the PRISM benchmark suite, with parameter
c set to 10. To obtain an ε-approximation of the quantile
value for a precision of ε = 10−6 and the quantile

inf
{
t ∈ R : Prs

(
♦6t “network becomes full”

)
> 0.1

}
,

the exponential search requires 14 threshold computa-
tions for finding the upper bound 4096, which is then
refined by the binary search using 31 additional thresh-
old computations to obtain the result t = 2954.281344.
The overall computation time was 56.079 s (Explicit),
4001.817 s (Mtbdd), 33.609 s (Hybrid) and 17.625 s
(Sparse). To provide a sense for the computation time
for a single value of t, the computation of the probability
for the result of the quantile computation, i.e.,

Prs
(
♦6t “network becomes full”

)
for t = 2954.281344,

takes 1.626 s (Explicit), 118.819 s (Mtbdd), 0.993 s
(Hybrid) and 0.528 s (Sparse).

The computation of time-bounded probabilities for
CTMCs in PRISM relies on the computation of a trun-
cated infinite sum using the uniformized DTMC (see,
e.g., [7,47]), where the number of summands is chosen
depending on a user-supplied value for the desired preci-
sion. In general, it can be expected that computations
with a coarser precision require fewer iterations in the
computation of the sum. We have thus experimented
with an approach that gradually refines the precision for
the probability computations: We start with a coarse
precision, e.g., allowing imprecision of 0.1. As long as
we get definitive results for the probability threshold
computations when taking the imprecision of the result
value into account, we remain at the same precision. If
we get an inconclusive result, i.e., the threshold p lies
inside the possible values when taking the imprecision
into account, we refine the precision, e.g., by dividing by
ten. Our experiments indicate that the potential savings
in runtime due to the coarser precision tend to be negated
by the required additional probability computations in
the refinement step when encountering an inclusive result.
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A reason for this is that the already carried out compu-
tations for the same time bound but with the coarser
precision can not be reused. As a consequence, we suggest
the integration of the threshold check into the compu-
tation of the time-bounded reachability probabilities in
PRISM using an adaptive precision as future work: Dur-
ing the computation of the sum, a periodic check against
the threshold could be carried out, taking the achieved
bound on the precision into account and returning early
if it can be conclusively determined that the threshold is
satisfied or can never be satisfied.

4 Minimal weak deterministic Büchi automata
and expected accumulated reward for co-safe
LTL formulas

For handling complex path formulas given in Linear Tem-
poral Logic (LTL), the standard approach in probabilistic
model checking (e.g., [56]) is to perform a synchronous
product of the model with a deterministic ω-automaton
(see, e.g., [23] for an overview) obtained from the path
formula and perform the analysis in this product. This
approach is implemented in PRISM as well, relying on a
Java reimplementation of the ltl2dstar tool [30]. Ad-
ditionally, PRISM supports the use of external LTL to
automata translators, which allows the use of state-of-the-
art translators such as Rabinizer [19,32]. As the state
space of the product model consists of the (reachable
part) of the state spaces of the original model and of the
automaton, the number of states of the automaton can
have a decisive impact on model checking time and even
the feasibility of analysis. In particular, as the numerical
analyses carried out in the product model tend to be
costly, even small reductions in automaton size can have
a large impact.

Inspired by a similar implementation in the LTL to
automaton translator of Spot [17] of the translation pro-
posed in [14], we have implemented a specialized treat-
ment for formulas in the syntactic obligation fragment of
LTL, relying on the construction of a weak deterministic
Büchi automaton (WDBA) with a subsequent minimiza-
tion step. Obligation formulas are, roughly speaking,
boolean combinations of safety (“nothing bad happens”)
and co-safety (“eventually something good happens”)
formulas, for details see, e.g., [14]. The syntactic obli-
gation fragment of LTL are then all formulas where it
can be easily determined, by a syntactic inspection, that
they belong to the obligation fragment and can thus be
represented by a WDBA. A WDBA is a deterministic
Büchi automaton such that, for every strongly connected
component (SCC) of the automaton, either all states in
the SCC are accepting states or all states in the SCC are
non-accepting states. The algorithm of [14] relies on the
standard powerset construction on the nondeterministic
Büchi automaton with a subsequent analysis of the SCCs
to determine whether all states in a SCC should be made

accepting or not accepting. As described in [41], WDBA
can be minimized to yield a minimal WDBA, which has
at most as many states as any other ω-regular automa-
ton for the same language (assuming that acceptance
is defined on the states). The minimization procedure
relies on two steps: At first, the WDBA is transformed
into a normal form, and then standard minimization for
deterministic finite automata (DFA) is applied. The nor-
malization consists essentially of deciding whether states
that are not contained in a cycle should be accepting or
not. Since these states cannot be visited infinitely often,
the normalization does not affect the accepted language
of an WDBA. As DFA minimization, we use Brzozowski’s
minimization algorithm [9].

We have tested our implementation against automata
generated by other tools using Spot’s ltlcross testing
tool for equivalence. From the 94 benchmark formulas
from [20,53,18], 44 formulas were detected to be syntac-
tic obligation formulas by our implementation. For these
44 formulas, the constructed minimal automaton was
smaller than the one generated by PRISM’s ltl2dstar
implementation in 30 cases, and was smaller than the
one produced by Rabinizer in 31 cases. Comparing the
cases with the largest reduction, the minimal WDBA
had 6 states versus 17 states for the automaton using
PRISM’s default translation and the minimal WDBA
had 4 states versus 30 states for the automaton obtained
from Rabinizer. A more detailed experimental evalu-
ation, including a comparison with probabilistic model
checking approaches that try to avoid full determiniza-
tion such as using unambiguous Büchi automata [8] or
limit-deterministic automata [51], remains future work.

Expected accumulated reward for co-safe LTL. [39]
addresses the problem of computing extremal expected
accumulated rewards on a finite horizon which is given
in terms of a co-safe LTL formula. We provide here an
informal description. For details see [39]. The co-safety
(sometimes also called guarantee) fragment of LTL is
characterized by the existence of good prefixes. Formally,
an LTL formula ϕ is said to be co-safe iff each (infinite)
word in the language of ϕ has a finite prefix σ such
that all infinite extensions of σ satisfy ϕ. Each such
word σ is called a good prefix for ϕ. Intuitively, once a
good prefix has been consumed, the formula can not be
falsified anymore. It is known that one can construct a
deterministic finite automaton (DFA) recognizing exactly
the minimal good prefixes [34]. For a path in a DTMC,
the accumulated reward for a co-safe LTL formula ϕ is
then defined as the accumulated reward where reward
accumulation happens only as long as the corresponding
run in the DFA for ϕ has not yet reached an accepting
state, i.e., where the path prefix is not yet a good prefix.

For the algorithmic treatment, the crucial step is
the construction of the DFA. The additional steps rely
on standard transformations to an automaton product
and reduction to the problem of expected accumulated
reward until an accepting state of the DFA is reached
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in the product, i.e., an (extremal) expected reachability
reward computation.

As the co-safe fragment of LTL is a subset of the
obligation fragment, we can use the implementation de-
scribed above to obtain such a DFA. Formally, an LTL
formula is syntactically co-safe if, converted to positive
normal form (negation only on the atomic propositions),
it only uses the temporal operators ♦ (eventually), U
(until) and © (next step). As the WDBA we construct
is minimal, we can easily identify the set of acceptance
states in a suitable DFA on the same automaton structure
by a simple graph analysis.

Once the DFA is obtained, it can then be used by
PRISM to compute (extremal) accumulated expected re-
wards for syntactically co-safe LTL formulas, for DTMCs,
MDPs and CTMCs in all four engines. When translating
the formula to a DFA in this context, it is crucial that
PRISM’s model-based optimizations in automata con-
structions (which are sound in the context of probability
computations) are not used. For example, PRISM usually
checks whether the satisfaction set for an atomic proposi-
tion (AP) matches the full state space of the model and
simplifies the LTL formula by replacing the AP with true,
e.g., simplifying ϕ = ©© a to ϕ′ = ©© true ≡ true,
where ϕ results in reward accumulation for two steps
while the simplified formula ϕ′ would erroneously result
in no reward accumulation due to the modified set of
good prefixes. A similar issue arises for the identification
of APs with the same satisfaction set. We thus disable
these kinds of optimizations in this context.

5 Conclusion

This article presented several enhancements for PRISM.
In particular, we have demonstrated a significant re-
duction in both time- and memory consumption gained
through our implementation of automated variable re-
ordering and its support for more fine-grained user in-
fluence on the order. Our implementation of quantile
computations for reward-bounded reachability properties
in MDPs for the Mtbdd, Hybrid and Sparse engines
complements the implementation in the Explicit engine
and allows computations where the memory requirements
of an explicit representation become too large, such as in
the eServer product-line cases study. Additionally, we
have implemented support to compute approximations
of quantiles in CTMCs for time-bounded properties. Our
translation to weak deterministic Büchi automata for
the syntactic obligation fragment of LTL guarantees the
minimal size of the obtained deterministic automata and
yields the base for obtaining deterministic finite automata
to be used in the computation of (extremal) accumulated
rewards for co-safe LTL path formulas.

Future work. In the area of automatic variable reorder-
ing, it would be interesting to support more structured
reordering: Often, models are obtained from templates

with parameterization, e.g., specifying the number of
copies of certain modules in the model. By swapping the
variables of all copies simultaneously, it might be possible
to discover good initial variable orders from instances
with few copies and apply these to instances with more
copies. This approach would also be interesting when
the aim is to apply symmetry reduction [36,15], as all
copies would remain symmetrical. While our syntactic
transformations provide very fine-grained reordering for
the state variables, it would be interesting to have the
option of adding back some restrictions or hints for the
reordering by annotating the variable declarations in the
PRISM model. This would allow to state preferences
which variable should be kept together, etc.

An orthogonal approach to obtain a good variable or-
dering are static variable ordering approaches, i.e., where
heuristics are used to extract a good initial variable or-
dering from the structure of the model description. These
approaches can be quite successful, see, e.g., [50,42,44],
and it would be interesting to have automatic support
in PRISM. Additionally, our extensions of the PRISM
model language make it possible to easily specify and
use a particular variable ordering at a much finer-grained
level of control than possible before. This should also be
beneficial for static ordering approaches. In addition, our
benchmark results serve as an indication that it would
be worthwhile to attempt a refactoring of PRISM to
remove the variable order assumptions and add support
for asynchronous reordering.
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tomata. In Proc. Computer Aided Verification (CAV’16),
Part I, volume 9779 of LNCS, pages 23–42. Springer,
2016.

9. J.A. Brzozowski. Canonical regular expressions and mini-
mal state graphs for definite events. Mathematical Theory
of Automata, 12:529–561, 1963.

10. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
L. J. Hwang. Symbolic model checking: 1020 states and
beyond. Information and Computation, 98(2):142–170,
1992.

11. P. Chrszon, C. Dubslaff, S. Klüppelholz, and C. Baier.
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