Qualitative and quantitative analysis of safety-critical systems

with S#

Johannes Leupolz! - Alexander Knapp! - Axel Habermaier! - Wolfgang Reif!

Abstract We give an overview of the S# (pronounced
“safety sharp”) framework for rigorous, model-based analy-
sis of safety-critical systems. We introduce S#’s expressive
modeling language based on the C# programming language,
showing how S#’s fault modeling and flexible model compo-
sition capabilities can be used to model a case study from the
transportation sector with multiple design variants. A formal
semantics for executable probabilistic models is given. Fully
automated qualitative and quantitative safety analyses are
conducted for the case study using algorithms of the model
checkers LTSmin and MRMC. The results of the quantitative
analyses are discussed in comparison with results obtained
by using traditional techniques.

Keywords Safety analysis - Model checking - Quantitative
analysis - Executable models - Formal methods

1 Introduction

Safety-critical systems have the potential to cause hazards,
i.e., situations resulting in economical or environmental
damage, injuries, or loss of lives [19]. Deductive Cause Con-
sequence Analysis (DCCA) is a model-based safety analysis

< Johannes Leupolz
leupolz@isse.de

Alexander Knapp
knapp @isse.de

Axel Habermaier
habermaier @isse.de

Wolfgang Reif

reif @isse.de

Institute for Software & Systems Engineering, University of
Augsburg, Augsburg, Germany

technique that uses model checking to compute how faults
such as component failures or environmental disturbances
(the causes) can cause such hazards (the consequences) [13].
From a model of a safety-critical system that not only
describes the system’s nominal behavior but also the relevant
faults, the qualitative analysis technique DCCA determines
all minimal critical fault sets, that is, combinations of faults
that can cause hazards, allowing the evaluation of the sys-
tem’s overall safety. Traditional safety techniques describe a
way how these minimal critical sets can be used to estimate an
upper bound of the hazard probability using the probabilities
of the component faults. But by using these fault probabilities
directly when analyzing the system traces (instead of using
the detour of the minimal critical sets), a better estimate of
the hazard probability may be expected.

The S# modeling and analysis framework [12] can con-
duct DCCAs fully automatically for system models authored
in the ISO-standardized C# programming language and .NET
runtime environment [18,20]. Furthermore, S# can directly
compute the hazard probabilities in these models using algo-
rithms of the Markov chain model checker MRMC. This
paper provides an overview of modeling and analyzing
safety-critical systems with S#, using a well-known case
study from the transportation sector [30]. It discusses the
core concepts of S#’s modeling language and the underlying
model of computation; particular emphasis is placed on S#’s
flexible system design variant modeling and composition
capabilities as well as its support for fault modeling. Addi-
tionally, this paper introduces S#’s unified model execution
approach based on an integration of the explicit-state model
checker LTSmin [21] into S#: Instead of model transforma-
tions typically employed by safety analysis tools such as
VECS, Compass, and AltaRica [5,27,28], S# unifies simula-
tions, model-based tests, visualizations, and fully exhaustive
model checking by executing the models with consistent

360

semantics regardless of whether a simulation is run or some
formula is model checked. By using explicit model traver-
sal techniques of LTSmin, S# can also create low-level
Markov chains which can be analyzed quantitatively by the
model checker MRMC. To justify our probabilistic analysis
approach, we give a formal semantics of a simplified imper-
ative modeling language based on operational semantics and
Markov chains. We present the results of the fully automated
qualitative and quantitative safety analyses for the case study.
To demonstrate the usefulness, we compare the quantitative
results computed directly by S# with results obtained by using
traditional techniques.

The main contribution of this paper is to show how sys-
tems can be modeled in a way that is amenable to automatic
safety analysis and how these analyses can be performed
technically. This paper extends reference [15] which treated
the automatic calculation of qualitative results in the form of
minimal cut sets. This paper extends the original paper by a
quantitative analysis and especially the calculation of hazard
probabilities from executable models. This includes a for-
mal semantics, proof of feasibility using the case study, and
adetailed discussion of the obtained results in the case study.

The remainder of this paper is structured as follows: In
the next section, we give a brief introduction to the case
study. Section 3 gives an overview of modeling safety-critical
systems with S#. Section 4 gives the formal foundation
of analyzing probabilistic executable models. How model
analysis is performed technically is discussed in Sect. 5.
Qualitative and quantitative analyses of the case study are
presented in Sect. 6. Finally, Sect. 7 concludes with a brief
discussion of related and future work.

S# and its usage documentation are available at our Web
site http://safetysharp.isse.de.

2 Case study: height control system

Figure 1 shows a schematic overview of the height control
system of the Elbe Tunnel in Hamburg which raises alarms
and closes the tunnel when it detects overheight vehicles try-
ing to enter the old tube, risking collisions with the tunnel’s
ceiling. Overall, the height control consists of five sensors:
Two light barriers Ib4 and Ibp as well as three overhead detec-
tors 0dy, 0od|, and 0ds; the sensors are grouped into the pre,
main, and end control. The light barriers span the entire
width of both lanes, whereas each overhead detector is posi-
tioned hovering above only one of the lanes. Consequently,
the light barriers can only report that an overheight vehicle
passes by, but cannot determine the lane they drive on; it is
physically impossible to install the light barriers in a way that
would allow this distinction. The overhead detectors, on the
other hand, can in fact distinguish between the lanes, but they
cannot differentiate between overheight vehicles and regular,

O
Ib, :i od,]JI_—[od, }

end control

S]

[new tube

old tube

Fig. 1 A schematic overview of the case study: There are two lanes
entering and exiting the two tunnel tubes at the bottom, with the arrows
indicating the driving direction; overheight vehicles are only allowed to
enter the new tube on the right lane. The height control consists of a pre,
main, and end control that use light barriers and overhead detectors to
monitor approaching vehicles

non-overheight ones; they are, however, not triggered by pas-
senger cars. By contrast, the light barriers are positioned high
enough to ensure that they are only triggered by passing over-
height vehicles. The height control therefore has to combine
the data of both types of sensors to determine the positions
of overheight vehicles in the observed area.

Height control mechanism. When no overheight vehicles
approach the tunnel, only the pre control is active, that is,
the sensors of the main and end controls are deactivated.
When Ibq detects an overheight vehicle, the main control is
activated, enabling its sensors and starting its timer. Addi-
tionally, a counter is increased that counts the number of
overheight vehicles assumed to be between the pre and main
control. The main control is deactivated when a vehicle is
reported by Ibo and 0d; or 0d; and the counter reaches zero,
or the main control’s timer times out. If the main control
discovers an overheight vehicle driving on the left lane, the
tunnel is closed immediately. Otherwise, the end control is
activated, enabling its sensor and starting its timer. When
the end control does not detect a high or overheight vehicle
before its timer runs out, it is deactivated; otherwise, the tun-
nel is closed. Due to the road layout, vehicles cannot switch
lanes after passing 0ds.

Faults & hazards. Two failure modes are considered for each
sensor: misdetections and false detections. Misdetections are
false negatives, that is, omission faults preventing a sensor
from reporting a vehicle passing by that it should detect.
False detections, by contrast, are false positives, i.e., a sensor
detects something that is not a vehicle, but, say, a bird. There

http://safetysharp.isse.de

are two antagonistic hazards: On the one hand, the height
control system is designed to prevent collisions by closing
the tunnel whenever an overheight vehicle is about to enter
the wrong tube (hazard collision). On the other hand, false
alarms should be prevented, as unnecessary closures cause
traffic jams and economical losses (hazard False Alarm). The
system design is intended to strike an acceptable balance that
minimizes both hazards as far as reasonable.

Design variants. Previous analyses revealed that collisions
and false alarms can happen without any sensor fault occur-
rences [30]. Design alternatives were proposed to fix the
problem, necessitating additional safety analyses to check for
newly introduced safety issues. While discussing the results
of our qualitative and quantitative analyses, we have a closer
look at four design variants described here briefly. The variant
Original denotes the original design. Prelmproved is a vari-
ant where two additional sensors have been added to the pre
control to improve its detection rate. Both NoCounter and
NoCounterT remove the main control’s counter to reduce
false alarms. This requires only a change of the logic of the
controller and does not require adding or removing any sen-
sors. The logic of NoCounterT is designed to be more tolerant
to the sensor input than NoCounter. Prior work [30] discusses
the design variants in greater detail, with each analyzed vari-
ant requiring manual changes to a copy of the model. In this
paper, by contrast, S#’s support for variant modeling and
automated composition of different design variants can be
leveraged to more conveniently model the different and par-
tially orthogonal variants in a modular way, automatically
composing all combinations together for fully automated
safety analyses based on DCCA.

Sensor quality. Besides the concrete design of a height con-
trol, the quality of the sensors has a major influence on how
likely a false alarm is raised and how likely a collision occurs
or is prevented. In a perfect world, there is a perfect sensor
and every system would only use this best sensor, preferably
even redundantly. But in the real world, two sensors measur-
ing the same data might have different characteristics and in
some situations one sensor might be better and in others the
other, e.g., one light barrier might be more prone to misde-
tections and the other more to false detections. The challenge
is always to find the best trade-off. Being able to play with
different fault probabilities when analyzing a system dur-
ing the system design is definitively a plus for an analysis
approach.

3 Modeling safety-critical systems with S#
Safety-critical systems typically follow the control-theore-

tical system partitioning into plants and controllers [26]: The
controllers constantly and continuously interact with their

361

plants to prevent potentially bad plant behavior that might
result in hazards. A controller internally has an implicit or
explicit model of its plant, using sensors to predict and actua-
tors to affect the plant’s state and future behavior. Discrepan-
cies can emerge between the controller’s perceived plant state
and the plant’s actual state: Due to faults such as component
failures or environmental disturbances, sensors can provide
incorrect data or actuators can have unintended effects on the
plant. Subsequently, the controller is likely to mispredict the
plant’s future behavior, omitting control actions or unknow-
ingly issuing destructive actions that potentially result in
hazards. Models of safety-critical systems must contain both
plants and controllers in order to adequately represent such
control failures for formal safety analyses. In the case study,
for instance, the vehicles constitute the plants with the haz-
ards of collisions and false alarms specified over the vehicles’
positions as well as tunnel closures; false alarms are control
failures that the height control is unaware of, making it nec-
essary to model the vehicles: The hazard of false alarms can
only be adequately expressed over the state of the vehicles as
the height control is completely unaware of its control fail-
ure; had it known that no overheight vehicles are on the left
lane, it would not have closed the tunnel in the first place.

The case study model is iteratively decomposed into less
complex subcomponents to increase modularity and com-
posability, also enabling variant modeling; Fig. 2a gives
an overview using SysML block definition diagrams [29].
The leaves of the hierarchy represent components for which
further decomposition is not required: Either the compo-
nents are modeled in sufficient detail for implementation
in hardware or software, or they are standard off-the-shelf
components such as light barriers that can be bought from
third-party vendors and incorporated into the final system.
Dependencies between a component and its parent, siblings,
or subcomponents are broken up with behavioral encapsula-
tion: Components expose provided and required ports that
allow component interactions but hide actual component
implementations. For the case study, the vehicle detectors are
abstracted away behind a common VehicleDetector block
to increase modularity and the PreControl, MainControl,
and EndControl abstract blocks are introduced in order to
facilitate variant modeling. The SysML internal block dia-
gram in Fig. 2b illustrates the interdependencies between the
vehicles and the preControl.

3.1 Model of computation

S# models are discrete-state, discrete-time. While the case
study’s controller is software-based and thus inherently dis-
crete, the vehicles, by contrast, move continuously in reality;
for the case study, standard numerical procedures for solving
ordinary differential equations such as the Euler method [7]
can adequately discretize vehicle behavior. Such discretiza-

362

(a)

(b)

bdd Height Control Case StudV ibd PreControl Vehicle Detection/
) «controller»
3 (W
«block» HeightControl vehicles :
Model VehicleSet o
1 1 1 1 2
o
«block,abstract» «block,abstract» «block,abstract» «actuator» %
PreControl MainControl EndControl TrafficLights : §
' =
1 o
{incomplete} {incomplete} {incomplete} | o
1
1
o ' o
[C o
1 ® L]
2 F—
«plant» «block» «block» «block» 2 ! o
VehicleSet PreControlOriginal MainControlOriginal EndControlOriginal % °
? ? 3 ;
operations 0.1 0.1 -
prov ObserveVehicles(«1t-).lock»
VehicleDetector) : bool 1 imer 1
detector :
LightBarrier
1 3 IsVehicleDetected
*
«sensor,abstract»
«block» VehicleDetector 1
Vehicle «block» preControl :
. LightBarrier PreControlOriginal
) operations
A Popg(athns bool prov IsVehicleDetected() : bool {incomplete}
prov; _thots(')t[‘i‘n(!n;)t' 00 prov DetectsVehicle(Vehicle) : bool «block» controller
prov Height() : ‘?'g reqd ObserveVehicles(VehicleDetector) : bool OverheadDetector HeightControl
prov IsCollided() : bool

Fig. 2 A partial overview of the case study’s structure and composition
using SysML notation. a A partial block definition diagram of the case
study showing some of the blocks’ ports and operations. The model
consists of the plant, i.e., a set of vehicles, and the actual height con-
trol system. The latter is subdivided into three subcontrollers which are
abstract to support variant modeling. Only the blocks for the original

macro step macro step
Plant Controller At Plant Controller
ZW At
l\\?f\o« [=

Fig. 3 Each macro step is not only subdivided into a finite sequence of
micro steps, it also separates plant behavior from controller behavior,
with the plant behavior always executed first. The controller’s last micro
step ends the macro step, causing time to pass and a new macro step to
begin; no time passes between the plant and controller parts of a macro

step

tions are a form of abstraction that is often possible for
safety-critical systems; for the case study, in particular, the
sensors can only observe the vehicles at very few locations.
The model of computation embraces the zero execution time
assumption for reactive systems [23]: Systems execute a
sequence of macro steps at fixed points in time 1y, t1, 2, . . .,
with each macro step taking zero time to execute a finite
amount of micro steps. Macro steps describe externally vis-
ible system behavior, while the intermediate micro steps are
internal and thus unobservable from the outside. Between
two consecutive macro steps, time Ar passes such that
t; = to + i - At as illustrated by Fig. 3. However, S# com-
pletely abstracts from time, allowing the models to assume

controller designs are shown for reasons of brevity. b A partial internal
block diagram showing the connection of the preControl’s detector
to the vehicles. While the ObserveVehicles ports are connected, the
VehicleSet directly calls the DetectsVehicle port on the VehicleDe-
tector instance passed to ObserveVehicles as shown in Listing 1

a At to pass between two consecutive macro steps that suits
them best.

S#’s model of computation implicitly considers two
separate components synchronously concurrent when their
actions have no effect on each other within the same macro
step, like the vehicles in the case study; as asynchronous
concurrency can be modeled explicitly, neither modeling
flexibility nor adequacy is limited. As illustrated by Fig. 3,
however, macro steps linearize plant and controller execu-
tion, conceptually allowing the controllers to immediately
react to changes in their plants’ states: During a macro step
at time #,, the plants change their state in zero time through
a sequence of micro steps. Within the same macro step,
the controllers observe these changes through their sensors,
compute the appropriate control actions, and update their
actuators, all in zero time as well through multiple micro
steps. Subsequently, the macro step ends and a new macro
step begins at time #,,4-1 in which the plants are influenced by
the control actions from the previous step. Sensors there-
fore observe the most recent plant states within a macro
step, whereas actuator effects are delayed to the next step.
Algorithm 1 conceptually illustrates macro step execution,
sending Update signals to all components; Update signals

trigger a component’s autonomous macro step behavior, if it
has any.

Algorithm 1 Macro Step Execution in Two Phases

1: function MACROSTEP(plants : Component|[*],
controllers : Component[*])

2: for p in plants do SIGNAL(p, Update) end for

3: for c in controllers do SIGNAL(c, Update) end for

4: end function

3.2 The S# modeling language

S# provides a domain-specific modeling language embedded
into the C# programming language and the .NET runtime
environment [18,20]. While S# models are represented as C#
programs, they are still models of the safety-critical systems
to be analyzed; for the case study, for instance, the vehicles
are part of the model even though they are not software-based
in the real world. Even the software parts of S# models such
as the preControl of Fig 2b are not intended to be used as
the actual implementations; these are typically done in C or
C++ for reasons of efficiency. Additionally, the S# models are
typically abstractions of the real controller software to make
model checking-based safety analysis feasible. Thus, S# is
best regarded as an executable, text-based extended subset
of SysML, though there currently is no automatic conversion
between the two.

S# inherits C#’s language features and expressiveness
and can use third-party .NET libraries and tools, in partic-
ular during model composition and initialization. However,
some restrictions apply during simulations and model check-
ing: No heap allocations are allowed, for instance. The
only source of nondeterminism can be S#’s own Choose
function; threads, in particular, are unsupported. For quan-
titative analyses, the concrete probabilities of the options
need to be provided as parameters of the Choose func-
tion. When no probability is provided, S# assumes that
the options are distributed uniformly, i.e., they are equally
probable. S# components are represented by C# classes,
instances of which correspond to S# component instances.
Listing 1 declares the abstract VehicleDetector com-
ponent from Fig. 2a as a class derived from S#’s Component
base class. All of its methods are considered to be either
required or provided ports; required ports are marked
as extern and have no implementation. Class inheri-
tance, interfaces, generics, lambda functions, etc. are fully
supported; for example, LightBarrier derives from
VehicleDetector, overriding the abstract provided port
DetectsVehicle as necessary using C#’s shorthand
syntax => for simple expression-returning methods. The
hierarchical system structure is established by defining fields
that are of a Component-derived type; in Listing 1, for

363

instance, the VehicleSet component has multiple sub-
components of type Vehicle because of the _vs array
field.

enum Lane { Left, Right 1}

enum Height { Regular, High, Over }

abstract class VehicleDetector Component {

public Fault Misdetection = new
TransientFault () ;
public Fault FalseDetection = new

TransientFault () ;

public virtual bool IsVehicleDetected () =>
ObserveVehicles (this) ;
public abstract bool DetectsVehicle (Vehicle
vehicle) ;
public extern bool
ObserveVehicles (VehicleDetector
detector) ;

[FaultEffect (Fault = nameof (Misdetection))]
abstract class MisdetectionEffect
VehicleDetector {
public override bool IsVehicleDetected ()
=> false;
}
[FaultEffect (Fault = nameof (FalseDetection))]
abstract class FalseDetectionEffect
VehicleDetector {
public override bool IsVehicleDetected ()
=> true;
}
}
class LightBarrier
int _pos;

VehicleDetector {

public LightBarrier (int pos) { _pos = pos; }
public override bool DetectsVehicle (Vehicle
v) =>
v.Height == Height.Over &&

v.IsAtPosition (_pos) ;
}
class VehicleSet
members omitted

Component { // other

Vehicle[] _vs;
public bool ObserveVehicles (VehicleDetector
d) =>

_vs.Any (d.DetectsVehicle) ;
}

class Vehicle Component { // other members

omitted
int _pos; int _speed;
Lane _lane; const int StepTime = 1;

public extern bool IsTunnelClosed ()
public bool IsAtPosition (int pos) =
pos &&
_pos - _speed * StepTime <= pos;
public bool IsCollided () => Height () ==
Height.Over &&
_pos >= Model.TunnelPosition && _lane ==
Lane.Left;
protected virtual Lane ChooseLane () =>
Lane.Right;
protected virtual int ChooseSpeed () =>
MaxSpeed;

;
> _pos >

public override void Update () {
if (IsTunnelClosed ())
return;
if (_pos < Model.EndControlPosition)
_lane = ChooseLane () ;
_speed = ChooseSpeed(); _pos += _speed *
StepTime;
}

[FaultEffect]
public class DrivelLeft Vehicle {
protected override Lane ChooselLane () =>
Choose (Lane.Right, Lane.Left);
}
[FaultEffect]
public class SlowTraffic Vehicle {
protected override int ChooseSpeed () =>
ChooseFromRange (MinSpeed, MaxSpeed) ;
}
}

Listing 1 Parts of the S# model for Fig. 2a. The abstract Vehicle-
Detector base type declares two provided ports IsVehicle-
Detected and DetectsVehicle. The former simply passes

364

the detector instance to the required port ObserveVehicles
that is connected to the ObserveVehicles provided port of a
VehiclesSet instance (cf. Listing 2 and Fig. 2b). Bind (nameof
(d.ObserveVehicles) , nameof (v.ObserveVehicles))
during model composition (not shown) where d is the Vehicle-
Detector instance. The VehicleSet uses .NET’s standard Any
function to invoke the given detector’s DetectsVehicle port
for each Vehicle instance in _vs. LightBarriers, for instance,
detect such a Vehicle if it is overheight and passes the light barrier’s
position; the position the detector is installed at is specified via the
component’s constructor. The Vehicle’s IsAtPosition provided
port hides the effects of positional discretization, because of which the
vehicles might never reach a detector’s exact position. Vehicles, by
default, drive on the right lane with their maximum speed; different
Vehicle instances execute their discretized movement behavior
concurrently as they have no interdependencies. The IsCollided
port is used to check for collision hazards.

To instantiate a S# model, the appropriate component
instances must be created, their initial states and subcompo-
nents must be set, and their required and provided ports must
be connected. All C# language features and .NET libraries
can be used to compose model instances; S#’s limitations
for heap allocations, etc., only apply during simulations and
model checking. The case study uses reflection to automat-
ically instantiate all design variants of the model as shown
in Listing 2; alternatively, valid model configurations could
also be read from a database, for instance. A total of 16 dif-
ferent design alternatives result from the four main control
variants and the two variants of the pre and end controls
each; of these 16 variants, four are not analyzed in detail as
their main controls ignore the improved detection capabil-
ities of their pre controls, which makes them unrealistic.
While the model supports an arbitrary amount of vehicles,
their number has to remain constant during model check-
ing, i.e., a model instance cannot create or remove vehicles
while it is analyzed. Therefore, a fixed amount of Vehicle
instances must be created and initialized during model com-
position. By default, model instances contain two overheight
vehicles and one high vehicle which turned out to be suffi-
cient to find all minimal critical fault sets for the analyzed
hazards.

IEnumerable<Model > CreateVariants ()

preControls =
GetVariants <PreControl > () ;
GetVariants<MainControl>(); wvar endControls
GetVariants <EndControl >(); return from
preControl in preControls
from mainControl in mainControls £from
endControl in endControls
where IsRealisticCombination (preControl,
mainControl, endControl)
select new Model (preControl,

{ wvar

var mainControls

mainControl,

endControl); }
IEnumerable<Type> GetVariants<T>() => from
type in
typeof (T) .Assembly.GetTypes ()
where type.IsSubclassOf (typeof (T)) &&

ltype.IsAbstract select type;

void BindDetectors (VehicleSet s,
VehicleDetector [] ds) {foreach (var

d in ds) Bind (nameof (s.ObserveVehicles),
nameof (d.ObserveVehicles)) ;

}

void VehicleFaults (VehicleSet s,
leftOHV, Fault leftHV, Fault
slowTraffic) {
leftOHV.AddEffects<Vehicle.DriveLeft>(s.
Where (v =>
v.Height () == Height.Over)) ;
leftHV.AddEffects<Vehicle.DriveLeft>(s.Where (v
=> v.Height () ==
Height .High)) ;
slowTraffic.AddEffects<Vehicle.SlowTraffic
>(s); }
Listing 2 Partial overview of model initialization; the full code is
available online: The CreateVariants method instantiates all
12 realistic design variants of the case study using reflection and
C#’s language integrated query functionality, filtering out unrealistic
variants using the IsRealisticCombination method (not
shown). BindDetectors sets up the connections between the
vehicles and the detectors as illustrated by Fig. 2b. VehicleFaults
programmatically adds the two Vehic1e fault effects for slow-moving
and left-driving vehicles to three faults using S#’s AddEffects
method and .NET’s array filter method Where in combination with
some C# lambda functions: When either 1eftOHV or 1eftHV is
activated, overheight or high vehicles are allowed to drive on the left
lane, respectively. slowTraffic allows all vehicles to drive slower
than assumed during system design.

Fault

3.3 Fault modeling

Safety analyses consider situations in which faults cause sys-
tem behavior that would not occur otherwise. Fault behavior
must therefore be part of the analyzed models as illustrated
by the Misdetection and FalseDetection faults in
Listing 1, for example. In accordance with common termi-
nology [2], faults are activated when they somehow affect
and influence actual system behavior. They are dormant until
they are activated and become active, turning dormant again
when they are deactivated. A fault’s persistence constrains the
transitions between its active and dormant states. Transient
faults, for instance, are activated and deactivated completely
nondeterministically, whereas permanent faults, while also
activated nondeterministically, never become dormant again.
In the case study, all faults are modeled with transient per-
sistence.

Fault activations trigger effects, represented by the nested
classes MisdetectionEffect, FalseDetection-
Effect, DrivelLeft, and SlowTraffic in Listing 1,
which cause errors or failures, i.e., internal or externally
observable deviations of the components’ behaviors from
what they should have been, respectively. Faults therefore
affect the internal state of a component or the behavior
of one or more of its ports. The two fault effects of the
VehicleDetector component, for instance, immedi-
ately result in component failures whenever their correspond-
ing faults are activated.

Failures either provoke faults in other components or
they represent system hazards; S# deduces such propagations
automatically using DCCA.

False detections of the VehicleDetector component
in Listing 1 cause the detector to incorrectly report the pres-

ence of a Vehicle: The field FalseDetection of type
Fault is initialized with a TransientFault instance,
activating and deactivating the fault completely nondetermin-
istically. The type Fault itself has a field Probability.
This field must be set for each instance of Fault with the
requested value for quantitative analysis.

The fault’s local effect on the component is modeled by
adding the nested class FalseDetectionEffect thatis
marked with the FaultEf fect attribute to link the effect
to the fault. The effect overrides the original behavior of the
IsVehicleDetected provided port; when the fault is
activated, the port always returns true, regardless of the
actual Vehicle positions. The port’s original implemen-
tation is invoked only when the fault is dormant; if both
the false detection and misdetection faults of a detector are
activated simultaneously, S# chooses one of the fault effects
nondeterministically. In the case of a quantitative analysis,
each of the choices for fault effects is currently distributed
uniformly. We plan to integrate a way to annotate such distri-
butions directly in the model. As high or overheight vehicles
on the left lane violate traffic laws and slow-moving vehi-
cles violate basic design assumptions about traffic flow that
influence the choice for the durations of the timers, left- and
slow-driving vehicles are modeled using faults. To demon-
strate S#’s flexibility in fault modeling, these faults affect
multiple Vehicle instances: It is generally irrelevant which
overheight vehicles drives on the left, and hence there is
only a single fault, 1eftOHV in Listing 2, whose activa-
tion allows all overheight vehicles to switch lanes. For false
alarms, it is important to differentiate between high and over-
height vehicles on the left lane; however, hence there is also
a leftHV fault; slowTraffic, by contrast, can affect
all kinds of vehicles. Due to the use of S#’s nondeterminis-
tic Choose function in DriveLeft and SlowTraffic,
each Vehicle instance decides independently whether it is
actually affected by a fault activation.

4 Labeled Markov chain semantics of S#

Instead of providing a formal semantics of the complete S#
modeling language, we introduce a simplified imperative
modeling language which includes all necessary language
features to demonstrate our approach. This modeling lan-
guage abstracts away all high-level features like classes and
methods and other convenience functions, which facilitate
modeling. Every S# model can still be reduced to the simpli-
fied language. In the following, we focus on the probabilistic
case using a structural operational semantics; nondetermin-
ism in the simplified language for S# has been considered
in [11] using a denotational approach. We first introduce
formal probabilistic programs for micro steps before pro-

365

viding these and whole executable models with a Markov
chain semantics.

4.1 Formal probabilistic programs and executable
models

We replace the nondeterministic choices from formal pro-
grams of [11] by probabilistic choices. In a similar way,
probabilistic choices have been added to the guarded com-
mand language by Gretz et al. [10] and to Promela by Baier
et al. [3].

The valuation of variables is stored in variable environ-
ments 0 € ¥ = Vi U Vs — Val. We differentiate between
local variables Vp, i.e., variables which are not persisted
between macro steps, and state variables Vs. A variable envi-
ronment maps each variable v € Vp U Vs to basic values
v € Val, e.g., integers, booleans, and doubles, which can be
serialized into a finite, fixed amount of memory.

We leave the expression language Expr intentionally
underspecified. We only assume that the evaluation of e €
Expr is side-effect-free and its semantics is given by a func-
tion Efe] : £ — Val.

The statements of formal programs contain the usual
statements skip, the sequential composition, the condi-
tional statement, the while-loop, and the standard variable
assignment. In addition to that, it contains the probabilis-
tic variable assignment choose, which adds to each option
a probability. For each probabilistic choice, the probabili-
ties have to sum up to 1, i.e., Zq[_ gi = 1. The statement
v := choose(ey, ..., e,) is syntactic sugar for v :=
choose ((Yu,e1), ..., (Vu,en)).

p € Stm = skip
o1 p2
| if e then p; else pp fi
| while e do p od
|v:=e

| v :=choose((q1,e1), ..., (qn.en))

Figure 4 provides the inference rules for the structural
operational semantics.

An example of a formal probabilistic program is shown in
Fig. 6.

Based on the statements, executable models can be for-
malized as follows. An executable model M is represented
by the tuple (E, Vs, Vi, pE, p1), which contains a finite set
of state expressions E C Expr, a finite set of state variables
Vs, a finite set of local variables V; suchthat V; N Vg =@, a
terminating execution probabilistic program pg € Stm, and
a terminating initialization probabilistic program p; € Stm.
The execution program is executed in each macro step. The
state expressions correspond to properties to be checked, and

366

(skip) (skip, o) —ar (step, o)
(seq) (p1,0) =M 1

(p1 i p2,0) =M 1
(if true) (if e then p1 else p2 £i,0) — s (p1,0),
(if false) (if e then p1 else p2 £1,0) — s (p2,0),
(whilet™®) (while e do p od,o) —ns {p ; while e do p od, o),
(whilefalse) (while e do p od, o) — s (step, o), if E[e]o = false
(assign) (v :=e,0) = (step, ov — E[e]o])
(por) (v :=choose ((q1,€1), ..

Fig. 4 Structural operational semantics defining the inference rules.
The usual definitions are adopted to fit into the quantitative setting.
Consider for the sequential composition (seq): Assume that a distri-
bution | for state (p;, o) exists. By applying (seq), we can infer the
distribution p of state (p; ; p2,0). Indeed, when p is the first state-

11;12,£,0

11312:13,£,0

Fig. 5 Inference rules of Fig. 4 applied to example in Fig. 6. Each node
represents a statement with a variable environment. To keep the node
labeling concise, we write the reference numbers of the statements and
abbreviate false to £ and true to t, respectively. The distributions are
depicted by (distribution) arrows with solid heads. When a distribu-
tion has only one target state with probability 1, the solid arrow ends

11: 1 := choose((0.6, true), (0.4, false));
12: y := 1;
13: if 1 then
14: y := choose(2, 3)
else
15: skip
£i

Fig. 6 An example for a formal probabilistic program which contains
two probabilistic choices. Each statement is numbered to allow easy
referencing, e.g., skip has the reference 15. These references are not
part of the program

the state variables represent the state vector to be stored dur-
ing model checking.

4.2 Markov chains

We briefly recall the terminology of Markov chains and their
probability space [4]. Since we will make use of two dif-

with p((py i p2,0") = m((ph,), u{p2,0")) = pa((step,0’)), and p(s) = 0 otherwise

if £[e]o = true
if £[e]o = false
if E[e]o = true

.o (gn.en)), o) = p with p((step, olv — E[e;]o])) = qi, 1 < i < n and p(s) =0 otherwise

ment in a sequence of statements and the execution of p on its own in
a certain variable environment is resulting in a distribution of variable
environments, the subsequent statement of the sequence of statements
can be executed in the resulting variable environments. How to apply
the rules is illustrated by an example in Fig. 5

directly in the node representing the state. Otherwise, a set of (prob-
ability) arrows with empty heads start at the head of the distribution
arrow and end in the target state. Distribution arrows are numbered and
contain the name of the inference rules by which they are justified and,
if required, the arrow number of the premise’s distribution

ferent flavors, we introduce the basic notions for a slightly
generalized form of Markov chains.

A generic Markov chain M = (S, ©, R, ug) consists of
a finite set S of states, a finite set ® of rargets with a rarget
state function T : ® — S, a transition distribution function
R : S8 — Dists(®) = {u: 0 — [0,1] | Y yeou®) =
1}, and the initial probability distribution po € Dists(®).
We also write S™ for M’s states, OM for M’s targets,
etc. A standard Markov chain is represented in our terms
by choosing oM = sM and tM as the identity. When
®M is chosen to be L x SM for some set of labels L with
rM(Z, s) = s, then we obtain an L-labeled Markov chain.

A finite path 1 = 6y 60y ... 0, € (OM)* of M is a
sequence of targets where ,ué\/‘ (6p) > Oand R (TM @) (Oi+1)
> 0 forall 0 < i < n; we write Pathsg, for the set of all
finite paths of M. A path @ = 6y 0,6, ... € (OM)® of
M is an infinite sequence of targets where ué\/l ©) > 0
and R(‘L’M(G,‘))(@i_;,_l) > 0 for all 0 < i, and the set of all
(infinite) paths of M is denoted by Paths.

The cylinder set CylM (7r) of a finite path 7 € Pathsg,
contains all paths of M that start with r, i.e., CylM () =
(w7’ € Paths | m € Pref(z')} where Pref (7) denotes all
finite paths that are prefixes of 7. The probability space
@M, eM prMy of a generic Markov chain M is given
by the sample space M = Paths, the events &M as the
smallest o -algebra on 22M that contains {CylM (m) | T €
Pathsg,}, and the probability measure Pr'M with

PrM M@ ... 6,))
= 131 (00) - Tlo<i <o REM) O111).

For a countable [T C PathsJ{i\,f such that CylM () N

CyM@'y = Gforallm # 7' € IT (ensuring that each
path is only counted once), we then obtain

PrMay =Y PrMcyM ().
mell

In particular, we can consider reachability of a target 6 €
oM by computing the probability of the set of paths

Paths%‘ ={6y...0, € Paths]/ﬁ\f |
6, EO0AVY0<i<n.6 =0}

where 0’ = 0 if, and only if, 8 = 6. We abbreviate
Pr™M(Pathsgg) by Pr'™(F6). The probability of reaching
a particular state s € §M is defined analogously by consid-
ering

Pathsp)! = {00 ... 0, € Pathsj! |
0, =Es AVO<i<n.0 fEs}

where now 6 |= s if, and only if] rM(G) =s.
4.3 Labeled Markov chains of executable models

Given an executable probabilistic program p with initial vari-
able environment o, we now define a standard Markov chain
representing the operational semantics with its probability
distributions. The states of the Markov chain will be the pos-
sible states the program might be in. In fact, we cannot simply
choose (Stm U {step}) x X as the states because Stm is infi-
nite; we assume X', however, to be finite by only considering
finite variables domains. Thus, we focus on those statements
Stm,, relevant for p as the set of all sub-programs of p and
for each loop while e do p’ odin p the unwound loop,
ie,p’ ; whileedo p’ od.

Consequently, we define the Markov chain semantics of
a single formal probabilistic program p with initial vari-
able environment og as the standard Markov chain M
with states SM = (Stm, U {step}) x X; transition dis-
tributions R({p,0)) = nu <<= (p,0) —py WK and

367

R((step, o))({step,c)) = 1 and O otherwise; and initial
distribution ué\/‘((p, 0p)) = 1| and O otherwise. We write
M p]op for this macro step Markov chain M.

Based on the Markov chains induced by formal probabilis-
tic programs representing single macro steps, we now move
to a complete executable model M = (E, Vs, Vi, pE, p1).
For notational succinctness, let us write X' (A, og) for the
variable environments where exactly the set of expressions
e € A C FE are true and the state variables coincide with
os, 1.e., X(A,05) = {op Uos | Ve € E.e € A <
Ele](or U og) = true}; and aSL for adding the initializa-
tion of local variables to a state variable environment, i.e.,
GSL = 11, U og. With these preliminaries, the Markov chain
semantics of M is defined as the 2Z-labeled Markov chain
M with states SM = Vs — Val, transition distributions

L
R@5) (A6 = Y gre s (ar.ap PrOPELs (Fistep, o)

and initial distribution
L
WA 09 = Y e s(ar.op PrOPIS (E (siep, o).

In fact, RM is only well defined if pg always terminates
when started in oslr, a requirement which we have to assume
for computing successors (see Sect. 5.1). Note that the
local variable environment produced in a macro step is not
recorded in the states of the labeled Markov chain, but con-
tributes to the evaluation of the expressions.

5 Analyzing safety-critical systems with S#

S# unifies LTSmin-based, fully exhaustive, explicit-state
model checking and MRMC-based probabilistic model
checking as well as non-exhaustive simulations as shown in
Fig. 7: In all cases, the S# runtime executes a model compiled
with the S# compiler, ensuring the correct execution seman-
tics of faults and required ports. During model checking, all
combinations of nondeterministic or probabilistic choices
and fault activations within a model are exhaustively enu-
merated. S# is not a software model checker such as Java
Pathfinder or Zing [1,34], however, as it does not analyze
states after every instruction; only state changes between
macro steps are considered.

5.1 Execution semantics of S# models

The Model class shown in Fig. 8 captures S#’s model exe-
cution semantics. It consists of a hierarchy of Component
instances, each having fields that form the component’s state.
Fields are allowed to be of most .NET types, including arrays,
delegates, object references, and classes comprised of any of
these like List <T>; e.g., the state of a Vehicle instance
from Listing 1 consists of _pos, _speed, and _lane. For

368

S# Compiler compiles S# Model

initializes [executes
| S# Simulator

uses R
S# Runtime FL
TUSGS
i L replays enerates
| Visualization | ﬂ>| Counter Example |<7g
heck . enerates
|£>| Markov chain |<7g

Fig. 7 Illustration of S#’s execution-centric architecture: The runtime
initializes S# models compiled by a slightly extended version of the
C# compiler to ensure the desired S# semantics of required ports and
faults. Both the simulator and the model checker use the runtime to
execute a model. The only difference between simulation and model
checking is that the latter is exhaustive, checking all combinations of
nondeterministic choices within a model, whereas the former considers
a single combination only. Counter examples generated by the model
checker can be replayed by the simulator for debugging purposes. Model
visualizations build upon the simulator. For quantitative analysis, the S#
model checker generates a Markov chain using state space exploration
algorithms based on LTSmin. The generated Markov chain is checked
using MRMC

S# Model Checker

LTSMIN

| MRMC

| |
LabeledMarkovChai ator | I LabeledMarkovChain H MRMC
Simulator
PinsAdapter Viodel Replay(CounterExample) : void
Next() : void
Init() : void Init() : (LabeledState x double)[*] FastForward(steps : int) : void
Next(LtsState) : LtsState[*] Exec(State) : (LabeledState x double)[*] Rewind(steps : int) : void

Eval(LtsState, int) : bool] step() : void

Eval(LabeledState, Formula) : bool
Ser() : State

Deser(State) : void

N :(
FaultEffect |é-| Component H Formula
ATV

ChoiceResolver

| LTSmin | | LabeledState

Choice CounterExample
Choose(count : int) : int

SetProbabilityOfChoice(p : double) : void |
NextChoices() : bool |
GetProbabilityOfTrace() : double |

Fig. 8 A UML class diagram showing the classes required to simulate
and model check S# models. The Model class is responsible for For-
mula evaluation and model execution with the intended S# semantics; in
particular, it uses a ChoiceResolver instance to determine all combina-
tions of nondeterministic choices and fault activations. For quantitative
analyses, Model passes ChoiceResolver the probability of each of its
taken choices directly after making the choice. The Simulator class, the
LabeledMarkovChainGenerator, and LTSmin are decoupled from
Model execution semantics, only requiring them to take care of State
management

efficient storage and comparison, Component states are seri-
alized and deserialized to and from fixed-sized byte arrays,
represented by the State class. The set of State instances has
to be finite; therefore, object creation and other forms of heap
allocations during model checking and simulation are unsup-
ported; during model initialization, on the other hand, no
such restrictions exist. The method Model::Ser stores Com-
ponent states in a State instance, whereas Model::Deser
does exactly the opposite. S# generates these two methods
dynamically at runtime via reflection, tailoring them to a spe-
cific Model instance to guarantee maximum efficiency with
respect to serialization time and state storage size.

The method Model::Init generates all initial labeled states
of a Model instance, while Model::Exec computes all suc-
cessors of a state. In the case of quantitative analysis, these
labeled states are accompanied by probabilities. Details
are shown by Algorithm 2: For all combinations of non-
deterministic choices and fault activations determined by
ChoiceResolver::NextChoices, the given state is deseri-
alized using Model::Deser so that Model::Step can allow
all Component instances to compute their successor states,
which are subsequently serialized using Model::Ser. At this
point of time, the local variables are still set in the memory
and state formulas which might reference some of these are
evaluated. In case of a quantitative analysis, the probability of
the micro step trace is retrieved from the ChoiceResolver.
It may occur that two combinations of nondeterministic
choices lead to the same labeled state. We assume that the
+= operator merges such probabilities on-the-fly. Finally, the
computed successors are returned. Model::Step is con-
ceptually equivalent to Algorithm 1. The Formula class
represents state formulas that evaluate arbitrary Boolean C#
expressions over Component instances. The evaluation is
expected to be terminating, deterministic, and side-effect-
free; otherwise, the exact behavior is unspecified.

Model::Eval evaluates a Formula instance for a given
serialized LabeledState, which is needed for compatibility
with LTSmin.

Algorithm 2 Model::Exec (s : State)

1: var successors : double x LabeledState[*] =[]
2: while choiceResolver.NextChoices() do

3. Deser(s);

Step();

var state = Ser();

var label = EvaluateStateFormulas();

var labeledState = (label,state);

var prob = choiceResolver.GetProbabilityOfTrace();
9: successors += (labeledState,prob);

10: end while

11: return successors

A

The only allowed source of nondeterminism within a
Model are Fault instances and invocations of ChoiceRe-
solver::Choose; the latter records the number of choices
that can be made at a specific point during the execution
of Model::Step and returns the index of the chosen value.
Based on this index, one of the options is selected. For quan-
titative analysis, the probability of the selected option is
passed to the ChoiceResolver. ChoiceResolver::Choose
is not accessible for the modelers directly. Instead, Com-
ponent provides a Choose method which is similar to the
one presented in the simplified language in Sect.4 both for
convenience and to prevent misuse.

Other sources of nondeterminism, such as race conditions
of threads, are not captured by S#; S# does not analyze the

code it executes for illegal nondeterminism. There are two
reasons why a state might not have any successors at all:
Either Model::Step does not terminate or its execution is
aborted abnormally due to an unhandled exception, for exam-
ple. Both cases indicate bugs in the model or in the S# runtime
that are readily discoverable.

5.2 Qualitative model checking of S# models

LTSmin allows S# to execute a Model using Model::Exec
during model checking. In order to enable the integration
of various modeling languages into LTSmin, the so-called
PINS interface written in C [21] is provided that S# makes
use of S#’s integration of LTSmin takes about 250 lines
of C++/CLI code, a Microsoft-specific variant of C++ that
integrates into the .NET framework, allowing for easy
interoperability between C/C++ and C#. The PinsAdapter
class maps LTSmin’s C-based PINS interface to the C#
interface of the Model class: PinsAdapter::Init initializes
and sets up LtsMin, which in turn repeatedly calls Pin-
sAdapter::Next to compute all successors of a serialized
state using Model::Exec. PinsAdapter::Eval prompts S# to
evaluate a Formula instance identified by its index for some
serialized state by calling Model::Eval. Itis also the job of the
PinsAdapter to map between LabeledState and LtsState.
An LtsState contains both the labeling and the state. For a S#
model, a Kripke structure is generated on-the-fly using this
interface. If there are no bugs that cause the S# model to get
stuck in an infinite loop or to throw an unhandled exception,
exploration of the Kripke structure terminates as soon as all
reachable states are encountered. S# models always generate
Kripke structures without any deadlock states; consequently,
all paths through the Kripke structure are of infinite length.
It is the responsibility of LTSmin to do the actual model
checking, that is, to check whether an LTL formula or an
invariant is satisfied by an induced Kripke structure. In the
case study, for example, the LTL formula checking whether
there either is no tunnel closure or no collisions occur before
the tunnel is closed is specified as
G (!model.TunnelClosed()) ||
U(model.Vehicles.All (v =>

lv.IsCollided ()),
model . TunnelClosed ())

in S#; the formula obviously does not hold as faults are
indeed able to cause situations in which collisions occur
before any tunnel closures. The two operands of the LTL
until operator used above are two C# expressions that are
represented by two Formula instances and evaluated dur-
ing model checking; similarly, the operand of the globally
operator is also such a Formula instance. Both LTL oper-
ators and their disjunction are also converted into Formula
instances that are subsequently transformed for interpreta-
tion by LTSmin which in turn invokes the contained C#

369

expressions at the appropriate times. If LTSmin detects a
violation of the Formula instance that is checked, it gen-
erates a CounterExample that consists of a sequence of
State instances, which are trivial to deserialize back into
sequences of Component states using Model::Deser. For
later replay, a CounterExample also captures the nonde-
terministic choices that the ChoiceResolver made during
the generation of the CounterExample, which also include
fault activations.

5.3 Quantitative model checking of S# models

We focused on two classes of probabilities for the quantita-
tive analysis of safety-critical systems: the probability that a
certain state formula is satisfied at some time in the future
(finally) and the probability that a certain state formula is
satisfied within a fixed number of system steps (bounded
finally). To calculate these probabilities, it is not sufficient to
stop the first time after a labeled state has been found which
satisfies a formula. There might exist more such labeled states
which contribute to the total probability as shown in Sect.4.
Thus, to calculate the correct probability, the corresponding
Markov chain of a model must be created.

We reimplemented LTSmin’s state exploration algo-
rithm [25]. This algorithm exploits the multi-core capabilities
of modern processors and calculates the successors of each
state exactly once. Due to the latter property, we could easily
amend the algorithm to record the distributions of each state
into a labeled Markov chain during model traversal.

For a S# model m : Model, a 2m-StateFormulas_j,peleqd
Markov chain M is generated such that M = (S, RM,
m.Init()) with RM(s) = m.Exec(s). Not having to repre-
sent a program counter or local variables reduces the state
space enormously. This makes probabilistic model checking
feasible for large models using an explicit approach.

The created labeled Markov chain can be exported into
the . tra format of MRMC. Subsequently, MRMC may be
used to check certain formulas denoted in the temporal logic
PCTL. We also reimplemented algorithms for finally and
bounded finally. Therefore, it is often not necessary to save
the models first (those files easily grow to a size of several
gigabytes) and for MRMC to load this file which costs time.
These algorithms are described in [31].

5.4 Simulating S# models

Simulations of S# models work similar to model check-
ing except that only a single path of the induced Kripke
structure or Markov chain is explored. Simulator instances
are either guided or unguided: Unguided simulations do
not follow a predetermined path, whereas guided ones are
used to replay the CounterExample instance passed to
Simulator::Replay by forcing the nondeterministic choices

370

made by the model checker upon the simulator. Conse-
quently, counter examples cannot only be stepped through
state by state, but also allow debugging each transition, giving
insights into why and how some possibly undesired successor
labeled state is reached from some source state. A simula-
tion stores all computed labeled states, allowing it to be fast
forwarded or rewound by some number of steps using Simu-
lator::FastForward and Simulator::Rewind. In contrast to
Algorithm 2, Simulator::Next computes only one succes-
sor of the current state using the sequence of method calls
Model::Deser, Model::Step, and Model::Ser based on a
set of predetermined choices. Both simulation-based model
tests as shown in Listing 3 as well as visualizations can be
implemented on top of the Simulator class. In the interac-
tive visualization of the case study, for instance, the user can
spawn high and overheight vehicles and change their speed
and lanes using the mouse or touch; visual replays of counter
examples help to understand the situations in which hazards
occur.

For the quantitative analysis, the options of each choice
are selected by using the random number generator of NET
during an unguided simulation. Modelers using this feature
for safety analysis must be aware that faults are in most cases
very unlikely. Thus, bad behaving traces are chosen with
an extreme low probability. The unguided simulation could
be used as foundation for the approximation of the hazard
probability using Monte Carlo experiments which requires
an enormous number of simulation runs due to the low fault
probabilities. Thus, using model checking to calculate the
exact probability is often the easier way.

model = new Model (new PreControlOriginal (), new

MainControlOriginal (), new
EndControlOriginal ()) ;

SuppressAllFaultActivations (model); new

Simulator (model) .FastForward (steps: 20) ;
foreach (wvar vehicle in

model .Vehicles)
Assert.IsFalse (vehicle.IsCollided()) ;

Listing 3 A model test based on a S# simulation of the case study’s
original design with all faults suppressed by the helper method
SuppressAllFaultActivations (not shown), i.e., dormant the
entire time. The test asserts that after the first 20 simulated steps, no
vehicles collide with the tunnel, as all vehicles drive on the right lane
without any fault activations.

6 Evaluation

For evaluating the S# approach to the analysis of safety-
critical systems, we discuss both qualitative and quantitative
results for our height control case study and compare these
results to previous, traditional approaches.

6.1 Qualitative analysis of the height control case study

S# automatically conducts DCCAs to compute all minimal
critical fault sets for a hazard H given as a Formula instance,

i.e., an arbitrary C# expression that is interpreted as a propo-
sitional logic formula over the induced Kripke structure K:
For faults F contained in K, S# individually checks all com-
binations of faults I" € F, determining whether I" does
or does not have the potential to cause an occurrence of
H [13]. I" is a critical fault set for H if and only if there
is the possibility that H occurs and before that, at most
the faults in I" have occurred. More formally, using LTL:
I' C F issafe for H if and only if K = —(onlyp(I")UH),
where onlyp(I') & A\ pep\p —f- A fault set is critical if
and only if it is not safe. A critical fault set I" is minimal
if no proper subset I C I is critical; a complete DCCA
computes all such minimal critical fault sets. For any critical
fault set I', any superset I/ D I is also critical because,
in general, additional fault activations cannot be expected to
improve safety. The criticality property’s monotonicity with
respect to set inclusion [13] trivially holds regardless of the
actual model as the LTL formula above does not require
any critical faults f € I' to be activated; instead, it only
suppresses the activations of all other faults f € F\I'. In
practice, monotonicity often allows for significant reductions
in the number of checks required to find all minimal criti-
cal fault sets; otherwise, all subsets of F would have to be
checked for criticality. As seen in Listing 4, S# automatically
takes advantage of monotonicity, significantly reducing the
amount of fault sets to be checked for criticality; in partic-
ular for the hazard of false alarms, only 3% of all possible
sets have to be analyzed for criticality. In the worst case,
however, DCCA does indeed have exponential complex-
ity.

Results: Collisions (1 second) Minimal

Critical Sets (35 fault sets

had to be checked; <1
1) { leftOHV, slowTraffic }

(

(2) { leftOHV, misdetectionLB2 }
(3) { leftOHV, misdetectionLBl }
(4) { leftOHV, misdetectionODF }
(5) { leftOHV, falseDetectionLB2 }

DCCA Results:
Minimal Critical Sets
checked; 1

1) { leftHV }

2) { falseDetectionODF }
3) { falseDetectionODL }
4) { falseDetectionLB2 }
5) { misdetectionODR }

false alarms (3.9\, s)
(43 fault sets had to be

Listing4 Overview of the DCCA results for both hazards using the case
study’s original design. S# automatically analyzes a total of 13 faults;
exploiting the monotonicity of the criticality property is especially
effective for the hazard of false alarms, significantly reducing analysis
times.

Listing 4 shows the DCCA results for the original
case study design; for collisions, specified in S# as
m.Vehicles. Any (v => v.IsCollided()) for a
Model instance m, at least one overheight vehicle must
drive on the left lane, hence the 1eftOHV fault of List-
ing 2 is contained in all minimal critical fault sets. For
instance, the fault set { 1eftOHV, slowTraffic } is
critical for collisions because two overheight vehicles can

pass the pre control’s light barrier simultaneously, while
one is faster than the other: The faster vehicle deacti-
vates the main control, and the slower vehicle can pass
the end control when it is already deactivated again. {
leftHV } is minimal critical for false alarms, speci-
fied as m.HeightControl.IsTunnelClosed () &&
m.Vehicles.All (v => v.DrivesRight ()), bec-
ause of a high vehicle passing the main control’s left overhead
detector when an overheight vehicle passes the main con-
trol’s light barrier at the same time. Safety analysis times for
some design variants are significantly higher than the ones
in Listing 4 due to the larger number of faults that have to be
checked.

The results of our qualitative analyses for the four
design variants Original, Prelmproved, NoCounterT, and
NoCounter are summarized in the first four rows of Table 2.
All DCCAs have been conducted automatically in between
1 and 13 s. In most cases, a system variant with a fewer num-
ber of minimal critical sets should be preferred over one
with more when the cardinality of each minimal critical set
is equal. For the prevention of the hazard Collision, both
NoCounter and NoCounterT have the same four minimal crit-
ical sets each consisting of two elements. The minimal critical
sets of both Original and Prelmproved are proper supersets
of the former minimal critical sets. Thus, NoCounterT and
NoCounter should be preferred according to the DCCA result
of hazard Collision. Applying the same reasoning on the haz-
ard False Alarm leads to the result that NoCounterT should be
chosen. To sumit up, NoCounterT seems to be the best variant
to prevent both hazards according to the qualitative analysis.

6.2 Quantitative analysis of the height control system
with S#

Including the probability of each fault into the model is essen-
tial for the quantitative analyses. Table 1 shows different sets

Table 1 We analyzed four different sets of fault probabilities

371

of fault probabilities used in our analyses. One dimension
of our analyses is the impact of the quality of different sen-
sors and the probability of drivers complying with the traffic
rules. The other dimension is the selected design variant of
the height control.

For our quantitative analyses, we analyzed the probabili-
ties of each hazard to occur within 50 time steps for the four
design variants. Using a step limitation for the safety analysis
is essential for the calculation of a hazard because in most
systems the probability that a hazard will eventually (infinite
time horizon) occur is almost always close to 1. The results
are summarized starting with row 5 in Table 2. The analyses
have been conducted automatically in between 3.5 and 17.0
minutes. The number of states and transitions had a major
impact on the model checking time. In either case, the quali-
tative analysis is faster than the quantitative analysis by orders
of magnitude. Still, these analyses show a more differenti-
ated view than the qualitative analyses. The analyses confirm
the common assumption that the quality of the senors has a
major impact on the safety of the system. Besides from that,
we had several more interesting findings for the height con-
trol by comparing the probabilities: (1) The better the quality
of the sensors, the closer the hazard probabilities in different
variants. (2) For low-quality sensors, the selection of a bet-
ter variant can almost halve the probability of a false alarm.
(3) Better drivers only have a minor impact on the proba-
bility of a false alarm. (4) Even when the minimal cut sets
are equal, NoCounterT and NoCounter have different hazard
probabilities. NoCounter should be preferred over NoCoun-
terT when the probability of a collision should be reduced.
But this has the price of a major increase of false alarms.

The quality of the sensors plays the most crucial role for
the safety of the system. Thus, we further analyzed the impact
of the quality of the light barriers by varying the probabil-
ity of a false detection in a range between 1.0 x 107° and
1.0 x 1072. The results are shown in the graphs of Fig. 9.

Fault StandardQuality BetterLightBarrier BetterSensors BetterDrivers
False detection of light barrier 5% 1073 5% 1076 5% 1076 5% 1073
Misdetection of light barrier 1x 1074 1x1074 1x10°° 1x 1074
False detection of overhead detector 5% 1073 5% 1073 5% 1076 5% 1073
Misdetection of overhead detector 1x107* 1x1074 1x10°° 1x107*
High vehicle changes to left lane 1x1072 1x1072 1x1072 1x1074
Overheight vehicle changes to left lane 1x1073 1x1073 1x1073 1x1073
Slow traffic 1x107! 1x 107! 1x107! 1x1073

The first set StandardQuality contains the probabilities the system design starts with. BetterLightBarrier deviates from this basis by decreasing the
false detection probability of the light barriers by three orders of magnitude

The third set Better sensors decreases the fault probabilities of all sensors notably

In the last test set BetterDrivers, only the fault probabilities of external factors are decreased, i.e., faults the designers of the height control cannot

influence

372

A1eAnoadsar jos Aniqeqod oy jJo sweu oY) Sureq Jojowrered 9y) Jo ureU Y YIIM (—)IJ MOI Y} UT UMOYS Ik sanifiqeqold Surnsar ayJ,

“Anpiqeqoid Sunnsar oy A[uo Inq ‘(, Id — 99 U WILL,,, MOI) oW SIsA[eue 2AneIUENb 24) 10 ‘SUONISURI) ‘SA)e)s JO Joquinu) 93ULYD JOU Op $19S Iajourered JUAIQYIP dy) ‘pIeZel] PUL JUBLIBA B UIYIA\
sisATeue aAnjeInIuenb oy 10J | 9[qe], woly s3os A)fIqeqoid jney JUSISHIP IN0J AY) Pasn am ‘sasA[eue aaneInuenb oY) 10
(2 SDIN) ($19S [BINLIO [RWIUTW) JO AJ[[RUIPIED 9TRIOAR,, PUB (# SDIN) S19S [BOIILID [RUIIUIW JO JAQUINU,, SOLIOW 0M] U} 0JUT PASUIPUOD AIe Sy DD Y} JO SINSAL Y],
(.WDD{ — 99s UI dWI],, MOI) S| PUB | USOMIAq UI PAINJAXD a1om YD Y3 Sursn sasATeue aaneyenb oy,

paSueyd sem AIeM)JOS IS[[ONUO0D Y} A[UO ISNLIAq [RUISLI) SB S)[NEJ JO JOqQUINU JUWIES JY) ALY ISJUNO)ON PUB [IUNODON SIUBLIBA YT,

SIOSUDS [RUOT)IPPE 0M] S)T JO 9Sned3q [euISLIQ 0] pareduod pasearoul paaoidw]ald JUBLIBA Y} 10 S)[Ne] JO Joquinu ay [,

-0l X GL'S 01 X €6'C 01 X 20°S 0l X 10°¢ 601 X S¥'1 6-01 X LV'L 6-01 X LS'T 601 X LE'T (srAL@INRg)Id
¢-01 X 68°¢ 01 X 09°¢ -0l X 6L°¢ -0l X 6L°¢ g—01 X 9T°L g-0L X LTI g—01 X I¢'v -0l X Ty (s1osusgIoNag)Id
0l X €Ty -0l X¥T'¢ -0l x0Tt -0l X 0T¥ (-0 X ¥6°1 (—01 X 8¢"[1-01 X ¥6°1 1-01 X661 (TorIe IS eNg)Id
=01 X 119 01 X €T¢ =01 X 9¥°¢ 01 X &¥'¢ (—01 X 0¢°1 1—01 X 9¢°[1—01 X661 (—01 X 007C (Knendpiepuels)id
180°€T8°99¢ 1ST'8EL VST SOV ITY TIE'T €L9°978°S€9 1TL°698°SSE ISLTET'LYT LLLTTTELT T 678 078919 suonIsuel],
919°€08 919°€08 957 6681 9S¥°668°1 80€°LY8 80€ L8 8TLTO0T 8TLT00°T SIS
9¢¢C 161 0€6 80¢ (4 LOT 1201 143 Id —9os ur oy,

1 Sl I 1 (4 4 £C C & SO

S 4 S S L4 ¥ 9 S # SO

€ el 8 ¥ 4 I ¥ ! VOO — 998 Ul awl],

€l el Ll €l el €l Ll €l sineq
I9UNODON LI91UNo)ON paaoxdwyarg reuisuQ I9UNODON LI9UNo)HON paaoxdwyarg reur3uQ JUBLIBA
wiele 9s[ej plezeyq UOISI[[0D pIeze plezeHq

(7 "199S 998) WiIL[R 9S[RJ PUE UOISI[[0D SPIBZBY OM] d) UO Paseq
“IQUNODON PUB ‘[IIUNODON ‘parordwiard ‘[euISLIO A[oweu ‘WaisAs [01)u0d JYSIOY Y} JO SIUBLIBA INOJ 9Y) INO JO SHNSA SIsA[eue aAneinuenb pue aAnejenb ayj sozuewwns d[qe) SIY], 7 d[qRL

373

(a) (b) (©
_ 0.001745
> é 0.07 A =
o 203 x 107 = 8
g S < 006 2 0.001740
£ 200x 107 1 Ele g
3 G I
L 198 %1071 £ 0,054 £ 0001735
= = ~ Sy
195x 107 o ' ' - . . ' ' :
0.000 0.005 0.010 0.000 0.005 0.010 0.000 0.005 0.010

Pr(false detection of light barrier)

Fig. 9 These graphs illustrate the impact of the quality of the light bar-
rier. The probability of the false detection of the light barriers is varied in
arange between 1.0 x 10~% and 1.0 x 1072, while all other fault prob-
abilities keep their value (see StandardQuality in Table 1). Twenty-five
linear sample points were used. We analyzed the effect on the hazards
Collision and False Alarm and we also computed the probability that the
height control system prevented a collision (Prevention). a The quality
of the light barriers has a minor impact on the probability of a collision.
When the false detection gets more probable, the collision gets more
probable as well. Nevertheless, the leftmost and rightmost sample val-
ues only differ by 9.1 x 1072, Tt seems that the graph is almost linear
with its inflection point being somewhere in the middle of the graph.

6.3 Traditional quantitative analysis of the height
control system

In traditional fault tree-based methodologies, the hazard
probability is deduced from the resulting minimal cut sets
of the qualitative analysis [33]. Minimal cut sets are approx-
imately the same as minimal critical sets of the DCCA. Faults
are usually assumed to be stochastically independent. Rare
event approximation can be applied when the probabilities of
each fault are very small. The rare event approximation states
that the probability of a hazard H can be approximated by
summing up the probabilities of each minimal cut set leading
to H. This is an upper bound for the probability of the hazard.
The probability of one minimal cut set is approximated by
multiplying the probabilities of the faults inside that minimal
cut set. More formally,

Preea(H) = X reyesny [per Prf)

where Pr(f) denotes the probability of fault f. This delivers
an explanation why a lower number of minimal critical sets
should be preferred when the cardinality of each minimal
critical set is the same.

The probabilities given in Table 1 are the probabilities for
each fault to occur in 1 time step. For the traditional analysis,
we need to know the probability to fail at least once in 50
time steps. These probabilities can be derived easily from the
given probabilities. According to the geometric distribution
in statistics, given a probability p of success in one trial and
k independent trials, the probability that we have at least one
success within & trials is 1 — (1 — p)¥ [9]. In our case, we want
to determine how probable it is to fail within 50 time steps.
Ironically, we treat the occurrence of a fault as “success.”

Pr(false detection of light barrier)

Pr(false detection of light barrier)

b The quality of the light barriers has a clear impact on the probability
of a false alarm. When the false detection gets more probable, the false
alarm gets more probable as well. This graph shows a clear curve with
its inflection point being somewhere in the middle of the graph. Com-
paring the leftmost and rightmost sample values, the probability of the
hazard almost doubled. But increasing the quality of the sensors even
more only has a minor effect. ¢ The probability of a collision and of the
prevention of a collision are obviously negatively correlated when the
behavior of the drivers is the same. This is also shown clearly in this
graph. The worse the light barriers, the worse the chance to prevent a
collision

Note that component suppliers often publish the mean
time to failure (MTTF) of their components. The definition
of MTTF is based on the exponential distribution. Due to
the discrete nature of S#, the geometric distribution is used,
which is the discrete analogue of the exponential distribution.
The probability Pri(f) = 5 x 1073 of a fault f denotes
the chance that the corresponding fault occurs within one
time step. Thus, the accumulated probability to fail within
50 time steps at least once is Prso(f) = 1 — (1 — Pri(f))*°
~ 0.22.

We assume that we can ignore the fact that some faults are
only relevant in some system states. We also assume that a
fault of a minimal critical set is present when it occurs in any
of these 50 time steps. This is clearly an over-approximation.
Applying the formula for Pry,(H) on the minimal cut sets
calculated earlier gives us these probability:

Priea(Collision) =
Prso(1eftOHV) - Prsg(slowTraffic) + - - - &
5x 1073,
Prrea(False Alarm) = Prsg(leftHV) 4+ .- ~ 1.07 .

The calculated probability for false alarm is greater than 1
which is an invalid probability. The reason for that is that the
assumption of the rare event approximation is not satisfied
because the probability Prso(leftHV) makes leftHV certainly
not a rare event.

Next, we assume that each of these transient faults is only
relevant in exactly one of these 50 time steps. Applying the
formula for Pre, (H) on the minimal cut sets calculated ear-
lier gives us these probability:

374

Priea(Collision)
= Pri(leftOHV) - Pr(slowTraffic) + --- ~
1.05 x 1074,

Priea(False Alarm) = Pri(leftHV) + .- - &
2.51 x 1072

The resulting collision probability is still quite high. The
reason is that the ordering of faults is also important and
that some faults are only relevant in certain steps. On the
other hand, the probability of a false alarm is estimated too
low. Assuming that each fault occurs only in one time step is
too indulgent. Including details about fault activation order-
ing and better estimates of how often each fault must be
activated into a formula would improve the resulting proba-
bilities further. But this is far from trivial. This clearly shows
that it is difficult to apply traditional methods on systems
which have a complex logic and have a dynamically behav-
ing environment. S# does not derive the probability from the
minimal critical sets. Instead, S# derives the probability from
the traces directly using the semantics shown in the previous
section. This produces more accurate estimates and is espe-
cially useful when some of the faults are transient and only
relevant in certain system states, e.g., the fault of a sensor in
the main control is only relevant, when the main control is
active. Also, when a controller detects a fault in a component
and decides to switch to a spare component or to go into a
degraded mode, this has a direct effect on the traces.

As already shown in Table 2, S# deduces the following
results from the model:

Prss(Collision) ~ 2.00 x 1077,
Prss(False Alarm) ~ 5.45 x 1072 .

It is possible to make a better approximation with tradi-
tional methods, but these also require a deep knowledge of
the exact order of fault activations which lead to a hazard.
Fault probabilities cannot simply be multiplied with each
other. For systems with a highly complex behavior, these
approaches might be not feasible. As a consequence of look-
ing into the traces directly, S# is not affected by this problem.
Another source for the difference is that S# does not adhere
to the “no miracles rule” of the fault tree analysis [33]. Sim-
ply put, the “no miracles rule” states that if one fault would
prevent a more severe situation, then assume that this fault
does not occur. Thus, when the first light barrier is defect,
and its defect would prevent that the light barrier would not
activate the height control system at all, which leads to no
false alarm, then assume that the first light barrier works cor-
rectly in these cases. S# does not adhere to this rule, because
it looks at the traces directly.

The precise quantitative analysis does not make the qual-
itative analysis redundant, because the minimal cut sets can

help explain the results of the quantitative analysis and rein-
force the validity of the results. The quantitative analysis of
S# is not intended to replace traditional analysis, but to serve
as an additional means for engineers. Its strength lies in the
analysis of systems early in the development process. In early
phases, a preliminary analysis of different design variants or
different algorithms can be conducted with S#. In this phase, a
traditional analysis would be too time-consuming and expen-
sive to be applied on every variant because for each variant
a separate fault tree needs to be created manually. The early
rigorous analysis of design variants with S# can give differ-
ences in hazard probabilities even when traditional analysis
would see no difference or expensive prototypes would be
needed. Thus, S#’s quantitative analysis can make life eas-
ier for engineers. With S#, engineers do not need to know
the interrelationship of different faults in these early phases.
They just need to know the exact impact of each fault and S#
derives the rest automatically.

6.4 Evaluation of S# analysis efficiency

Many safety analysis tools such as VECS, the Compass
toolset, or AltaRica [5,27,28] rely on the standard approach
of model transformations to use model checkers like SPIN,
NuSMYV, PRISM, or MRMC [8,17,22,24]. The Safety Anal-
ysis Modeling Language (SAML) is an extension of the
PRISM input language to facilitate its application for the
analysis of safety critical systems [27]. The safety analy-
sis tool VECS transforms a SAML model directly into the
NuSMYV input language for qualitative analysis and into the
PRISM input language for quantitative analysis. The quali-
tative analysis is based on the DCCA formula. The Compass
toolset transforms SLIM models into the NuSMV input lan-
guage [6]. Afterward, qualitative analyses are conducted by a
fork of NuSMYV in which symbolic algorithms specialized for
minimal cut set generation are integrated. For the quantita-
tive analyses, the procedure is even more sophisticated: The
model is transformed to NuSMYV first; afterward, the state
space is exported to an intermediate file on which bisimu-
lation is applied and probabilities are annotated by the tool
SigRef. Finally, the resulting Markov chain is model checked
by MRMC.

By contrast, S# unifies simulations, visualizations, and
fully exhaustive model checking by executing the C# models
with consistent semantics regardless of whether a simulation
is run or some formula is model checked with LTSmin. Con-
sequently, no model transformations are necessary, avoiding
significant implementation complexity while retaining com-
petitive model checking efficiency.

S# only has to execute C# code instead of understanding
and transforming it, supporting most C# language features
without any additional work; transformations, by contrast,
would require large parts of the .NET virtual machine to be

encoded for model checking or to forgo many higher level
C# features such as virtual dispatch or lambda functions.

The two main challenges of S#’s LTSmin integration were
efficient state serialization and efficient handling of non-
determinism. The algorithm that allows ChoiceResolver
to handle and track all combinations of nondeterministic
choices, however, turned out to require only around 90 lines
of C# code. To enable quantitative analyses based on Markov
chains, only additional 30 lines of code had to be appended
to the ChoiceResolver. Generating low overhead serializa-
tion methods, by contrast, is more involved, taking about
700 lines of C# code to generate the appropriate serialization
methods at runtime. For the case study, serialization causes
only around 5% of overhead during the entire model check-
ing. The serialized states are smaller than the state vectors of
a hand-optimized SPIN model of the height control, taking
only 12 instead of 24 bytes per state. Another S# case study,
the hemodialysis machine, has 71 variables but only requires
40 bytes per state.

In the worst case of valid formulas, S# and LTSmin have to
enumerate the model’s entire state space. For an earlier ver-
sion of our model, S# required 68.8 s to enumerate 950,249
states and 40,197,857 transitions. SPIN, by contrast, takes
553 s to check a hand-optimized, non-modular version of the
model that semantically corresponds to the S# version. On a
quad-core CPU, LTSmin achieves a speedup of 3.7x, bring-
ing the analysis time down to 18.6 s whereas SPIN scales by a
factor of 1.5x only. One reason for S#’s superior performance
are automatic symmetry reductions [14] that allow S# to
ignore irrelevant fault activations more efficiently than SPIN.
These symmetry reductions enable S# to provide smaller
models to LTSmin for model checking, increasing model
checking efficiency noticeably; however, they can only be
partially encoded into SPIN models, for full support, changes
to SPIN would be required. For the case study, symbolic anal-
ysis with NuSMV, on the other hand, is faster than using S#:
For a hand-written, very low-level and non-modular NuSMV
model that is approximately equivalent to the S# model, the
entire state space is generated almost instantly. However,
some other S# case studies are more efficiently checked by S#
or SPIN than by NuSMYV, so the relative efficiency of explicit-
state and symbolic model checking is case study specific
and independent from S#; in general, highly nondeterminis-
tic models seem to profit more from symbolic techniques.

S# models have a much higher level of expressiveness than
either SPIN or NuSMV models, allowing variant modeling
and analysis in a way that is not supported by either model
checker directly. Additionally, S#’s explicit support for fault
modeling guarantees conservative extension [13], i.e., faults
only add or suppress system behavior when they are activated
but cannot do so while they are dormant, which is important
for adequate modeling and safety analyses. SPIN, NuSMV,
PRISM, MRMC, or Zing, by contrast, cannot give this guar-

375

antee at a language level. While S# is more efficient than
SPIN due to its fault optimizations, the increase in analysis
time compared to NuSMV seems acceptable given the step-
up in modeling flexibility, expressiveness, and fault modeling
adequacy.

Analysis times are dominated by computing successor
states, so we implemented an optimization that in many cases
reduces the number of transitions by an exponential factor:
Fault occurrences can be ignored for as long as they have
no observable effects on the system state, cutting off large
parts of the state space that subsequently do not have to be
enumerated and analyzed [14]. Parts of these optimizations
can also be applied for the quantitative analysis when the
optimization has no impact on the probability measure.

Our findings, however, are solely based on our own expe-
rience with other modeling languages and other case studies
analyzed with S#. For example, the railroad crossing case
study available online in the S# repository is faster to check
with S# than with NuSMV or VECS. In general, however, fair
comparisons between these tools and S# are hard to achieve
due to their different models of computation. For instance,
it took us about 740 lines to create a scaled down Compass
version of the railroad crossing model that is semantically
similar to the S# version written in 400 lines of C# code.
Compass performs a qualitative safety analysis that is equiv-
alent to DCCA in 21 minutes using NuSMV instead of the
1.95s it takes S# to do the same. We did not conduct a quan-
titative analysis of the railroad crossing with Compass. Of
course, the comparison is unfair as forcing Compass seman-
tics onto S# might likewise slow down analyses.

7 Conclusion and future work

S# provides an expressive C#-based modeling language for
safety-critical systems and conducts fully automated DCCAs
over these models to determine the minimal critical fault
sets for all hazards. Also, S# can deduce the probability of
hazards or other properties from the model using probabilistic
model checking techniques. S#’s model execution approach
not only has competitive analysis efficiency but also unifies
model simulation and model checking to guarantee semantic
consistency.

S# has a competitive edge over other approaches for safety
modeling and analysis like Compass or VECS [27,28] by
tightly integrating the development, debugging, and simula-
tion of models with their formal analysis. Compared to other
safety analysis tools [5,27,28], no model transformations are
required by S# as LTSmin-based algorithms allow for execut-
ing S# models while model checking. To conduct quantitative
analyses, Markov chains are generated on-the-fly by execut-
ing the model. Due to the step semantics of S#, the state
space can be reduced notably, by being able to remove local

376

variables and a program counter from the state vector. This
reduction makes the quantitative analysis of complex exe-
cutable models feasible for explicit techniques. Competing
approaches which transform models into the intermediate
language of a model checker first cannot remove local vari-
ables in the intermediate models.

The qualitative safety analysis results of the case study
match those from previous analyses [30]. These results could
be augmented by quantitative results. Furthermore, the qual-
ity of the model could be improved thanks to S#’s modular
modeling language and flexible model composition capa-
bilities based on C# and .NET; manual work is no longer
required for composing multiple modeled design variants.
Additionally, S#’s unified model execution approach not only
generates and checks the required DCCA formulas fully auto-
matically, but also allows for interactive visualizations and
visual replays of model checking counter examples based on
the same underlying S# model.

The quantitative analysis capability of S# opens up new
possibilities. Currently, we are investigating more deeply
how the exact probabilities of hazards correlate with the
minimal cut sets in our models. We also analyze the effect
of component quality, especially the case when the proba-
bility of one fault cannot be decreased without increasing
the probability of another fault. Two faults of one compo-
nent type might even be antagonistic, e.g., the probability of
misdetections of a light barrier cannot be decreased without
increasing the probability of false detections. The analyses
in this paper are only a first step. Also, we are adding means
to analyze models quantitatively, even when only some but
not all fault probabilities are known. For this, we integrate
Markov Decision Processes into S#. Then, S# can at least
estimate the minimal and maximal probability of the haz-
ard’s occurrence. Furthermore, current work on our toolchain
includes the integration of the Lustre language [16]. Lustre
is a dataflow language, which is used for creating software
for safety critical systems. This integration is a step toward
offering modelers a means to create their models visually.

References

1. Andrews, T., Qadeer, S., Rajamani, S.K., Rehof, J., Xie, Y.: Zing:
a model checker for concurrent software. In: Alur, R., Peled, D.A.
(eds.) Proceedings of the 16th International Conference Computer
Aided Verification (CAV’04). Lecture Notes in Computer Science,
vol. 3114, pp. 484—487. Springer (2004)

2. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic
concepts and taxonomy of dependable and secure computing.
Dependable Secur. Comput. 1(1), 11-33 (2004)

3. Baier, C., Ciesinski, F.,, Grofier, M.: PROBMELA: a modeling lan-
guage for communicating probabilistic systems. In: Proceedings of
the 2nd ACM-IEEE International Conference on Formal Methods
and Models for Codesign (MEMOCODE’2004). pp. 57-66. IEEE
(2004)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press,

Cambridge (2008)

. Batteux, M., Prosvirnova, T., Rauzy, A., Kloul, L.: The altaRica

3.0 project for model-based safety assessment. In: Industrial Infor-
matics. pp. 741-746. IEEE (2013)

. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V., Noll, T., Roveri,

M.: The COMPASS Approach: correctness, modelling and per-
formability of aerospace systems. In: Computer Safety, Reliability,
and Security, pp. 173-186. Springer (2009)

. Butcher, J.: The Numerical Analysis of Ordinary Differential Equa-

tions: Runge-Kutta and General Linear Methods, 2nd edn. Wiley,
Chichester, UK (2003)

. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M.,

Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: an open source
tool for symbolic model checking. In: Computer Aided Verifica-
tion, Lecture Notes in Computer Science, vol. 2404, pp. 359-364.
Springer (2002)

. Diez, D.M., Barr, C.D., Cetinkaya Rundel, M.: OpenlIntro Statis-

tics. OpenlIntro, Inc., (2015)

Gretz, F., Katoen, J.P., Mclver, A.: Operational versus weakest
pre-expectation semantics for the probabilistic guarded command
language. Perform. Eval. 73, 110-132 (2014)

Habermaier, A.: Design Time and Run Time Formal Safety Analy-
sis using Executable Models. Ph.D. thesis, University of Augsburg
(2017)

Habermaier, A., Eberhardinger, B., Seebach, H., Leupolz, J., Reif,
W.: Runtime model-based safety analysis of self-organizing sys-
tems with S#. In: 2015 Self-Adaptive and Self-Organizing Systems
Wsh.s. pp. 128-133. IEEE (2015)

Habermaier, A., Glidemann, M., Ortmeier, F., Reif, W., Schellhorn,
G.: The ForMoSA approach to qualitative and quantitative model-
based safety analysis. In: Railway Safety, Reliability, and Security,
pp. 65-114. IGI Global (2012)

Habermaier, A., Knapp, A., Leupolz, J., Reif, W.: Fault-aware mod-
eling and specification for efficient formal safety analysis. In: ter
Beek et al.[32] , pp. 97-114

Habermaier, A., Leupolz, J., Reif, W.: Unified Simulation, Visual-
ization, and Formal Analysis of Safety-Critical Systems with S#.
In: ter Beek et al. [32], pp. 150-167

Halbwachs, N., Caspi, P, Raymond, P., Pilaud, D.: The syn-
chronous data flow programming language LUSTRE. Proc. IEEE
79(9), 1305-1320 (1991)

Holzmann, G.: The SPIN Model Checker. Addison-Wesley, Boston
(2004)

ISO: ISO/IEC 23270: Information technology — Programming lan-
guages —C#(2006)

ISO: ISO 24765: Systems and software engineering — Vocabulary
(2010)

ISO: ISO/IEC 23271: Information technology — Common Lan-
guage Infrastructure (2012)

Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van
Dijk, T.: LTSmin: high-performance language-independent model
checking. In: Tools and Algorithms for the Construction and Anal-
ysis of Systems, Lecture Notes in Computer Science, vol. 9035,
pp. 692-707. Springer (2015)

Katoen, J.P., Zapreev, 1., Hahn, E., Hermanns, H., Jansen, D.: The
ins and outs of the probabilistic model checker MRMC. Perform.
Eval. 68(2), 90-104 (2011)

Kirsch, C., Sengupta, R.: The evolution of real-time programming.
In: Handbook of Real-Time and Embedded Systems, chap. CRC
Press, (2007)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification
of probabilistic real-time systems. In: Computer Aided Verifica-
tion, Lecture Notes in Computer Science, vol. 6806, pp. 585-591.
Springer (2011)

25.

26.

217.

28.

29.

30.

Laarman, A., van de Pol, J., Weber, M.: Boosting multi-core reach-
ability performance with shared hash tables. In: Formal Methods
in Computer Aided Design, pp. 247-255 (2010)

Leveson, N.: Engineering a Safer World. MIT Press, Cambridge
(2011)

Lipaczewski, M., Struck, S., Ortmeier, F.: Using tool-supported
model based safety analysis — progress and experiences in SAML
development. In: High-Assurance Systems Engineering, pp. 159—
166. IEEE (2012)

Noll, T.: Safety, dependability and performance analysis of
aerospace systems. In: Formal Techniques for Safety-Critical Sys-
tems, CCIS, vol. 476, pp. 17-31. Springer (2015)

Object Management Group: OMG Systems Modeling Language,
Version 1.4 (2015)

Ortmeier, F., Schellhorn, G., Thums, A., Reif, W., Hering, B.,
Trappschuh, H.: Safety analysis of the height control system for
the Elbtunnel. In: Computer Safety, Reliability and Security, Lec-
ture Notes in Computer Science, vol. 2434, pp. 296-308. Springer
(2002)

31

32.

33.

34.

377

Parker, D.: Implementation of symbolic model checking for prob-
abilistic systems. Ph.D. thesis, University of Birmingham (2002)
ter Beek, M.H., Gnesi, S., Knapp, A. (eds.): Proceedings of
the Joint 21st International Workshop on Formal Methods for
Industrial Critical Systems and 16th International Workshop on
Automated Verification of Critical Systems (FMICS-AVoCS’16),
Lecture Notes in Computer Science, vol. 9933, Springer (2016)
Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J.: Fault
Tree Handbook with Aerospace Applications. Tech. rep, NASA
(2002)

Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model check-
ing programs. Autom. Softw. Eng. 10(2), 203-232 (2003)

	Qualitative and quantitative analysis of safety-critical systems with S#
	Abstract
	1 Introduction
	2 Case study: height control system
	3 Modeling safety-critical systems with S#
	3.1 Model of computation
	3.2 The S# modeling language
	3.3 Fault modeling

	4 Labeled Markov chain semantics of S#
	4.1 Formal probabilistic programs and executable models
	4.2 Markov chains
	4.3 Labeled Markov chains of executable models

	5 Analyzing safety-critical systems with S#
	5.1 Execution semantics of S# models
	5.2 Qualitative model checking of S# models
	5.3 Quantitative model checking of S# models
	5.4 Simulating S# models

	6 Evaluation
	6.1 Qualitative analysis of the height control case study
	6.2 Quantitative analysis of the height control system with S#
	6.3 Traditional quantitative analysis of the height control system
	6.4 Evaluation of S# analysis efficiency

	7 Conclusion and future work
	References

