
HAL Id: hal-01613576
https://hal.science/hal-01613576

Preprint submitted on 9 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-level Frameworks for the Specification and
Verification of Scheduling Problems

Mounir Chadli, Jin H Kim, Kim G. Larsen, Axel Legay, Stefan Naujokat,
Bernhard Steffen, Louis-Marie Traonouez

To cite this version:
Mounir Chadli, Jin H Kim, Kim G. Larsen, Axel Legay, Stefan Naujokat, et al.. High-level Frameworks
for the Specification and Verification of Scheduling Problems. 2017. �hal-01613576�

https://hal.science/hal-01613576
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

High-level Frameworks for the Specification and Verification of
Scheduling Problems

Mounir Chadli · Jin H. Kim · Kim G. Larsen · Axel Legay ·
Stefan Naujokat · Bernhard Steffen · Louis-Marie Traonouez

the date of receipt and acceptance should be inserted later

Abstract Over the years, schedulability of Cyber-Phy-

sical Systems (CPS) has mainly been performed by an-

alytical methods. These techniques are known to be ef-

fective but limited to a few classes of scheduling poli-

cies. In a series of recent work, we have shown that

schedulability analysis of CPS could be performed with

a model-based approach and extensions of verification

tools such as UPPAAL. One of our main contributions

has been to show that such models are flexible enough

to embed various types of scheduling policies, which

goes beyond those in the scope of analytical tools.

However, the specification of scheduling problems

with model-based approaches requires a substantial mod-

eling effort, and a deep understanding of the techniques

employed in order to understand their results. In this

paper we propose simplicity-driven high-level specifica-

tion and verification frameworks for various scheduling

problems. These frameworks consist of graphical and

user-friendly languages for describing scheduling prob-

lems. The high-level specifications are then automati-

cally translated to formal models, and results are trans-

M. Chadli
Irisa, Rennes, France
E-mail: {mounir.chadli}@irisa.fr

A. Legay, L-M. Traonouez
Inria, Rennes, France
E-mail: {firstname.lastname}@inria.fr

J.H. Kim
University of Pennsylvania, U.S.
E-mail: jhkim07@gmail.com

K.G. Larsen
Aalborg University, Denmark
E-mail: kgl@cs.aau.dk

S. Naujokat, B. Steffen
Technische Universitt Dortmund, Germany
E-mail: {stefan.naujokat,steffen}@cs.tu-dortmund.de

formed back into the comprehensible model view. To

construct these frameworks we exploit a meta-modeling

approach based on the tool generator Cinco.

Additionally we propose in this paper two new tech-

niques for scheduling analysis. The first performs run-

time monitoring using the CUSUM algorithm to detect

alarming change in the system. The second performs

optimization using efficient statistical techniques. We

illustrate our frameworks and techniques on two case

studies.

Keywords Scheduling · Energy · Hierarchical

scheduling · Formal methods · Statistical model-

checking · High-level language · Meta-modeling

1 Introduction

Cyber-Physical Systems (CPS) are software-implemen-

ted control systems that control physical objects in the

real world. These systems are increasingly used in many

critical systems, such as avionics and automotive sys-

tems. They are now integrated into high performance

platforms, with shared resources. This motivates the

development of efficient design and verification method-

ologies to assess the correctness of CPS.

One of the trends in developing a CPS is to integrate

many heterogeneous computational components into a

single platform in order to maximize the utilization of

hardware resources. The components are managed to

be completely partitioned, such that errors caused by

one component are alienated from the other compo-

nents. However, high-performance hardware architec-

tures, as well as advanced software architectures, make

it much harder to predict the behavior and the timing

performances of these real-time systems – in particu-

lar the schedulability analysis, that is essential to eval-

2 Mounir Chadli et al.

uate the safety and reliability of mission-critical sys-

tems. For this reason, designers are still reluctant to

use lower-price hardware components with higher capa-

bilities, such as multi-core processors, for these safety-

critical systems.

In order to increase the predictability of these com-

plicated CPS, two approaches are drawing more and

more attention: the model-based approach and the prob-

abilistic approach. On one hand, the model-based ap-

proach allows more flexibility and complexity in the

system design, and it expands the scope of properties

that can be analyzed on the system using automated

verification techniques, such as model checking and the-

orem proving techniques. Timed automata (TA) [1] for

instance is a well known formal model that can be used

to perform schedulability analysis of real-time systems

[20,16]. Recently, this model has been used to model so-

phisticated scheduling system with several hierarchical

scheduling units that allows to decompose the schedu-

lability analysis of complex CPS [8]. On the other hand,

the probabilistic approach allows abstracting unknown

and hardly-estimated aspects of system components.

Probabilistic timed automata is an extension of timed

automata with probabilities [4]. When the model is fully

stochastic its behavior can be predicted by statistical

methods such as statistical model-checking (SMC) [19].

This approach is much more efficient for analyzing com-

plex systems, that are often intractable with exhaustive

methods.

High-level frameworks Currently, many models and tools

are successfully used to analyze properties of CPS. But

they are domain-specific, which means they cannot eas-
ily be applied to other systems. Moreover, these models

and tools require high technical knowledge about the

theoretical formalisms used to design models and write

properties, which most system engineers do not mas-

ter. In this paper we demonstrate a flexible and formal

analysis engineering approach for analyzing scheduling

properties of CPS.

We first introduce new model-based frameworks to

describe scheduling systems. These frameworks are based

on stochastic hybrid automata to model stochastic real-

time tasks, scheduling mechanisms or energy consump-

tion. They constitute a model bank to describe complex

scheduling systems, such as hierarchical scheduling or

multi-processor energy aware.

We then encapsulate the formal frameworks into

Cinco [34,35], a generator for domain-specific mod-

eling tools. Cinco allows to specify the features of a

graphical interface in a compact meta-model language,

and it generates automatically from this meta-model

specification a domain-specific analysis tool with a graph-

ical interface. Inside this analysis tool we can specify

scheduling systems and the properties they must sat-

isfy. We can launch analysis of the properties, which

generates automatically the timed automata models us-

ing the components of our model-bank, and it calls the

tools Uppaal [5] and Uppaal SMC [18] to perform

the analysis. This approach allows to completely hide

the formal models being used from the system designer,

who can concentrate on the structure and the parame-

ters of the scheduling system.

The last challenge is to give significant feedbacks

to the user in the most user friendly manner. Indeed,

results of formal verification from academic tools like

Uppaal can be difficult to interpret, all the more when

the models used by these tools have been automatically

generated. Cinco provides an API for model transfor-

mations that allows to program actions that can update

the model. We have used this functionality to parse the

results of the analyses output by Uppaal and to show

graphically the most relevant information.

Scheduling problems We consider in this paper three

major problems to solve on scheduling systems. The

first problem is concerned with the correctness of the

design and its performances. The main correctness prop-

erty is the schedulability, whereas performance evalua-

tions can be the measure of maximum response times or

energy consumption. To solve these problems we will re-

sort to model-checking and statistical model-checking.

The second problem is concerned with the optimiza-

tion of the system. In [11] we have addressed this prob-

lem in the context of hierarchical scheduling systems,

in order to determine an optimal compositional frame-
work. In this paper we propose a new optimization tech-

nique for multi-processor scheduling systems. It deter-

mines optimal mappings from tasks to processors in or-

der to minimize energy consumption and/or response

time. To determine the minimal number of simulations

on which we can based a decision, we rely on statis-

tical tests (ANOVA and Tukey HSD). We use these

tests in new optimization algorithms that perform iter-

atively simulations of the scheduling system, check with

ANOVA and Tukey HSD if the results are significant,

and output as results the optimal mappings.

The last problem is to monitor the system to detect

emerging behaviors or expected events. To solve this

problem we propose a runtime monitoring technique

that detects if an expected event has occurred and de-

termines the time of the occurrence. It is based on the

CUSUM algorithm that we have already applied to sta-

tistical model-checking problems in [29]. Our algorithm

checks a long simulation trace of the system at regular

intervals against a formal property. According to the

High-level Frameworks for the Specification and Verification of Scheduling Problems 3

result it updates a CUSUM likelihood ratio. When this

ratio exceeds a sensitivity threshold an alarm is raised

to notify that the event has occurred. In this paper

we present a new implementation of the algorithm to

detect variations in the energy consumption of a multi-

processor scheduling system.

Results Using our meta-modeling approach we have de-

veloped two high level frameworks. One is dedicated to

hierarchical scheduling systems; the other is dedicated

to multi-processor energy aware scheduling systems. We

have applied these frameworks on two case-studies. The

first one describes an avionic scheduling system with

mixed critical tasks. Using our hierarchical scheduling

framework we determine if different sub-systems with

various criticality can be run on the same platform. The

second one is a proof of concept of a multi-processor

scheduling system organized in two layers: a platform

layer and an application layer. We demonstrate on this

case-study our new techniques for optimizing energy

consumption and change detection.

Summary of the contributions The paper is a journal

extension of the short conference paper presented in

[11], with several new major contributions:

– New formal models for specifying complex schedul-

ing systems. These models extend the models for hi-

erarchical scheduling systems presented in [11] with

models for multi-processor scheduling systems and

energy measure.

– Two high-level frameworks for specifying and veri-

fying scheduling problems. Both are automatically

generated using a meta-modeling approach.

– Two new techniques for solving scheduling prob-

lems. The first optimizes multi-processor scheduling

systems. The second performs runtime monitoring

to detect expected events.

– Two case-studies that demonstrate the high-level

frameworks and the verification techniques.

Organization of the paper The rest of this paper is or-

ganized as follows: Section 2 discusses related works

on scheduling problems. Section 3 presents background

theory about the classes of formal models used in the

paper and general analysis techniques that we apply.

Section 4 introduces the different scheduling problems

studied in the paper and how they are formalized using

model-based approaches. Section 5 proposes techniques

and new algorithms to solve the scheduling problems

previously defined. Section 6 presents high level frame-

works for the modelling and analysis of these scheduling

problems. Section 7 and Section 8 present experiments

to specify and solve scheduling problems using the high

level frameworks. Section 9 concludes the paper.

2 Related Work

Our model-based analysis framework for hierarchical

scheduling systems is based on [8,7,24]. Extending the

models of Timed Automata (TA) and Stopwatch Au-

tomata (SWA) in [8,7], we present a model of hierar-

chical scheduling systems, based on the stochastic spo-

radic tasks of [24] but with dynamic stochastic updates

of real-time attributes.

Scheduling problems with energy costs are studied

in [36]. This work studies an energy-flexible flow shop

scheduling problem, that is a multi-objective optimiza-

tion problem whose goal is to minimize both overall

completion time and global energy consumption. It em-

ploys stochastic local search techniques. We address a

similar problem in our framework for multi-processor

scheduling systems. Instead of execution modes and

machines switch-off, the configuration options that we

study are assignments of tasks to processors and we use

statistical model-checking combined with the ANOVA

technique to estimate energy cost and response time.

There also exists approaches that perform schedul-

ing via timeline-based planning. The work of [13] pro-

poses such an approach and uses timed game automata

(timed automata with controllable and uncontrollable

actions) to find strategies for the timeline-based plan-

ning problem. Timed games and satisfiability modulo

theory are also used in [12] to solve control problems

with temporal constraints. Our model-based approach

is also based on extensions of timed automata but we

mostly rely on statistical model-checking for finding so-

lutions to the scheduling problems. This allows us to

consider more complex scheduling systems, with spo-

radic tasks, hierarchical scheduling or energy constraints,

that would not be solvable using exhaustive techniques

such as model-checking or timed games.

Another work presented in [10] uses a logic-based

approaches. The planning problem is encoded in a high

level action notation modeling language [41] and then

translated into linear temporal logic modulo rational

arithmetic formula. In our work, we introduce new high

level graphical notations for complex scheduling prob-

lems. These notations are specific to the scheduling

framework being studied (either hierarchical or multi-

processor scheduling systems). These domain-specific

notations allow to have a simpler and more accurate

description of a scheduling system than using existing

formalisms. Moreover we can rely on the tool generator

Cinco for easily generating a domain-specific tool that

implements a graphical editor for these notations.

4 Mounir Chadli et al.

3 Background

We present in this section the formal models and the

basic techniques used in this paper. The formal mod-

els are extensions of timed automata supported by the

tools Uppaal or Uppaal SMC. They range from clas-

sical timed automata to hybrid automata and may in-

clude stochastic information. The main formal methods

used to analyze these models are model-checking and

statistical model-checking.

3.1 Hybrid Automata

A hybrid automaton [22] is a finite state automaton

extended with continuous variables that evolve accord-

ing to continuous dynamics associated to each discrete

state (called a location). Let X be a set of continuous

variables. A variable valuation is a function ν : X → R.

We write RX for the set of valuations over X. Valua-

tions over X evolve according to delay functions F :

R≥0 × RX → RX , where for a delay d and a valua-

tion ν, F (d, ν) is a the new valuation. Delay functions

are assumed to be time additive (F (d1, F (d2, ν)) =

F (d1 + d2, ν). To allow communication between these

automata we assume that the set of actions Σ is par-

titioned into disjoint sets of input and output actions

(Σ = Σi]Σo).

Definition 1 A hybrid automaton (HA) is a tupleH =

(L, lo, X,Σ,E, F, I). L is a finite set of locations, l0 ∈ L
is an initial location, X is a finite set of continuous

variables. Σ = Σi] Σo] {τ} is a finite set of ac-

tions partitioned into inputs (Σi), outputs (Σo) or in-

ternal (labelled with τ). E is a finite set of edges of the

form (l, g, a, φ, l′), where l and l′ are locations (resp.

the source and the destination), g is a predicate on RX
(called the guard), a ∈ Σ is an action label, φ is a bi-

nary relation on RX that defines the clock updates. For

each location l, F (l) is a delay function and I(l) is an

invariant predicate.

The semantics of H is a timed labeled transition

system, whose states are pairs (l, ν) ∈ L × RX with

ν |= I(l), and whose transitions are either, delay tran-

sitions (l, ν)
d−→(l, ν′) with d ∈ R≥0 and ν′ = F (l)(d, ν),

or, discrete transitions (l, ν)
a−→(l′, ν′) if there is an edge

(l, g, a, φ, l′) ∈ E, such that ν |= g and φ(ν, ν′). An ex-

ecution of H is an alternating sequence of delay and

discrete transitions. As classical transition systems can

do, HA can be combined in networks of HA via parallel

composition. This is done by synchronizing inputs and

outputs in a broadcast manner. This means that when

an HA executes one output, all those HA that can re-

ceive it must be synchronized. We denote input actions

with a channel name followed by ? and output actions

with the channel name followed by !.

The above definition deliberately left open the syn-

tax for the delay functions F , the guards g, the update

predicates φ and the invariants I. Their concrete defi-

nition depends on the class of hybrid automata that is

considered.

Timed automata (TA) [1] is the most restrictive class of

HA we use. In this model, continuous variables are real-

time clocks that all advance at the same speed. This

means that for any clock x ∈ X, the delay functions

F (l) defines an implicit rate x′ = 1. Guards and invari-

ants are defined by conjunction of simple integer bounds

of the form x ∼ k, where ∼∈ {<,≤, >,≥,==, !=}, and

k ∈ N. The update predicates φ only allow simple as-

signments of the form x = e, where e is an expression

that only depends on the discrete part of the current

state.

Stopwatch automata (SWA) [9] extend TA by allowing

to stop and resume clocks. The rates of the variables are

therefore either x′ = 1 (for running clocks) or x′ = 0

(for stopped clocks).

Priced timed automata (PTA) [6,2] allow the contin-

uous variables to be either clocks as in TA, or cost-

variables with a rate x′ = e, where e is an expression

that only depends on the discrete part of the current

state. These cost-variables cannot be used in guards,

updates and invariants of the PTA, which implies that

they cannot affect the behavior of the model.

Hybrid automata (HA) is the most general case. It al-

lows to use ordinary differential equations to define de-

lay functions F and invariants I.

3.2 Modelling Hybrid Automata in Uppaal

Uppaal is one the most famous tool for modelling and

analyzing timed automata and their hybrid extensions.

The tool has been developed for more than 20 years

by a collaboration between Uppsala University in Swe-

den and Aalborg University in Denmark. It allows to

design models that belong to one of the four classes of

hybrid automata presented previously. It additionally

provides many syntactic constructions that help the de-

sign of complex models. In the following of the paper we

will heavily use these constructions for designing mod-

els of scheduling systems. We will succinctly explain

the syntax and semantics of our models, but we cannot

present in the paper the full syntax of Uppaal models,

High-level Frameworks for the Specification and Verification of Scheduling Problems 5

and therefore we redirect the reader to the documen-

tation of the tool (at http://www.uppaal.org/) for a

more precise description. Some of the main capabilities

offered by the tool are:

– Data variables. In addition to clocks, the tool al-

lows to use data variables (integer, float, arrays,

and structures). They can be updated during tran-

sitions, and tested in guards or invariants. Synchro-

nization channels can also be defined in arrays.

– Functions. The tool allows to write functions using

a syntax similar to the C language. They can be

used in guards, invariants, and updates of variables.

When synchronizing transitions on a channel, the

update functions of all the transitions involved in

the synchronization are performed.

– Templates automata. Hybrid automata can be de-

fined as templates with input parameters. This al-

lows to instantiate several automata in a model us-

ing the same template (for instance several tasks

with different parameters).

In the paper we will show several examples of hybrid

automata by using screen captures from automata de-

signed in Uppaal. In these figures the transitions have

guards in green, synchronization actions in light blue (τ

actions are omitted), updates in blue. Locations have

a name and an invariant (possibly with clock rates) in

purple.

Example 1 We present in Fig. 1 four examples of the

different types of models. All these models implement

a simple real-time task with various functionalities, de-

pending on the type of model being used.

The model in Fig. 1a implements a task with no

preemption using a timed automata. It has a clock x to

measure the length of the period and a clock y to mea-

sure the execution time. It starts its execution when

receiving the event schedule?. It sends an event done! as

soon as the clock y has reached the best case execution

time (bcet) and before reaching the worst case execu-

tion time (wcet). Otherwise it goes to the location Miss-

ingDeadline with an internal transition when the clock

exceeds the deadline. Finally it returns to location Job-

Done to wait for the next execution round and it sends

the signal ready! to the scheduler.

The model in Fig. 1b implements a preemptive task

using a stopwatch automata. It refines the previous

model with a stopwatch on clock y: the clock is stopped

in location Ready (denoted y’=0), otherwise it is assumed

that its execution rate is 1. The task can be preempted

by the scheduler when it receives the signal not schedule?,

in which case it returns to location Ready.

The model in Fig. 1c additionally computes the en-

ergy consumed by the running task using a priced timed

(a) Timed automata

(b) Stopwatch automata

(c) Priced timed automata

(d) Hybrid automata

Fig. 1: Implementations of a simple real-time task with

timed, stopwatch, priced and hybrid automata

automata with a variable e to measure the energy. The

energy can only increase in location Executing at a rate

given by the constant POWER.

Finally, the model in Fig. 1d is additionally aware of

the frequency FREQ at which the processor is running.

This frequency defines the rate at which the task exe-

cutes by setting y’==FREQ in the invariant of location

Executing.

http://www.uppaal.org/

6 Mounir Chadli et al.

3.3 Stochastic Hybrid Automata

Hybrid automata (and their sub-classes) may be used

with a stochastic semantics [17,15] that refines all non-

deterministic choices with probability distributions. This

impacts the choice of delay, output and next state. For

each state s = (l, ν) of an HA H we assume there exist

the following probability distributions:

– the delay density function µs over delays in R≥0,

that defines when the component will perform an

output,

– the output probability function λs, that assigns prob-

abilities to each available outputs o ∈ Σo,
– the next-state density function ηas , that provides sto-

chastic information on the next state s′ = (l′, ν′) ∈
RX given an action a.

Adding stochastic information Stochastic hybrid auto-

mata are analyzed with Uppaal SMC. Without addi-

tional information the tool is also able to run classical

TA, SWA, PTA or HA with a stochastic semantics, that

applies uniform distributions to delays in states with

bounded delay, to outputs and to next states. Addi-

tionally the user can provide the rate of an exponential

distribution for each location with unbounded delay,

and discrete probability distributions between different

outputs and next states.

These distributions can be sampled from executions

or simulations of the system, or set as requirements

from the specifications. For instance in avionics, dis-

play components have lower criticality. They can in-

clude sporadic tasks generated by users requests. In

that case, average user demand will be efficiently mod-

elled with a probability distribution. Similarly, timing

executions may vary due to the content being display

and can be measured from the system.

If analyzed with Uppaal model-checker, stochastic

information from a stochastic hybrid automaton is dis-

carded to consider only the underlying non-determini-

stic model.

Example 2 Stochastic hybrid automata with discrete

probability distributions are useful to initialize the pa-

rameters of a model with random values, e.g., to spec-

ify that the period or the deadline of a task depend on

some random information. They can be designed in Up-

paal using a special node with one incoming transition

(possibly with guard), and several outgoing transitions

(displayed with dashed lines) that perform different up-

dates and reach different locations, each associated to

a probability weight (the probability of the transition

is then the ratio of the probability weight over the sum

of all the weights).

For instance, the simple automaton in Fig. 2 allows

to select two values for the period of the task: 10 with

probability 2/3 or 15 with probability 1/3. In what fol-

lows, we will call this automaton a dispatcher.

Fig. 2: Stochastic dispatcher implemented with a

stochastic TA

In a network of stochastic HA the components re-

peatedly race against each other, i.e. they independently

and stochastically decide on their own how much to de-

lay before outputting, the “winner” being the compo-

nent that chooses the minimum delay.

3.4 (Statistical) Model-Checking

Model-checking is an automated verification technique

that explores all the possible executions of a model to

verify if it satisfies a property written in a formal logic.

Model-checking can thus be used to assess the schedu-

lability of a system, for any of its executions. This cor-

responds to the so-called worst-case analysis. However,

even basic model-checking problems (reachability) are

undecidable for SWA and HA. For these models it is

only possible to perform exhaustive analysis with an
over-approximation of the reachable states. The alter-

native is to exploit the stochastic semantics of HA and

to resort to simulations and statistical model-checking

(SMC).

SMC allows to reason on the average scenario, and

to quantify the results with a probability measure. The

principle is to combine formal verification and tech-

niques from the statistic area in order to compute the

probability that a system achieves a given objective.

There exists several SMC algorithms, see [28] for

details. In this paper, we focus on the Monte-Carlo al-

gorithm. This algorithm performs N executions ρ and

then estimates the probability γ that the system sat-

isfies a logical formula ϕ using the following equation:

γ̃ = 1
N

∑N
i=1 1(ρ |= ϕ), where 1 is an indicator func-

tion that returns 1 if ϕ is satisfied and 0 otherwise.

The number of simulations N defines the precision of

the results. It guarantees that the estimate γ̃ is close

enough to the true probability γ, such that if N =⌈
(ln 2− ln δ)/(2ε2)

⌉
the probability of error is Pr(| γ̃−

High-level Frameworks for the Specification and Verification of Scheduling Problems 7

γ |≥ ε) ≤ δ, where ε and δ define the confidence interval

and the confidence level, respectively.

Depending on the verification technique, we will use

two types of formal properties. On one side, model-

checking queries are represented via a subset of the

Computational Tree Logic (CTL) as defined by the mo-

del-checker Uppaal. More precisely, we consider

ϕ ::= A[]P | A<>P | E[]P | E<>P

This branching logic allows to express properties over

all the possible paths, using the path operators A and E,

meaning respectively “for all paths” and “there exists

a path”. [] and <> are state operators, meaning respec-

tively “all states of the path” and “there exists a state

in the path”. P is an atomic proposition that is valid

in some state. For example the formula “A[] not error”

specifies that in all the paths and all the states on these

paths we will never reach a state labelled as an error.

For instance for schedulability analysis, an error state

is one where a task has missed a deadline.

On the other side, statistical model-checking queries

express properties over a single trace, using the Bounded

Linear Temporal Logic (BLTL). These queries only use

state operators [] and <>, associated to a probability

operator Pr and a time bound. The following query for

instance “Pr[<=maxTime](<> error)” asks to compute

the probability of reaching an error state before max-

Time. Additionally, Uppaal SMC allows to write simu-

late queries that only examine traces without computing

a probability.

4 Formalizing Scheduling Problems with

Hybrid Automata

Scheduling problems consist in finding a time schedule

that distributes a shared resource among several con-

suming devices. A common application is the schedul-

ing of a set of tasks that need to access a processor

to perform some computation. In a scheduling system,

a scheduler implements a scheduling algorithm to find

a good schedule. This scheduler can have different and

antagonist goals, like minimizing the response time (the

time needed to perform the work of a task), or on the

contrary minimizing the energy needed for the compu-

tation. When considering a real-time environment, like

an embedded control system, tasks have a deadline that

must be satisfied absolutely. In that case, the main goal

of the scheduler is to find a schedule such that the tasks

always satisfy their deadlines.

In the context of real-time systems, tasks are often

defined with a small number of characteristics. They are

often periodic, such that a new job is released at every

period. Each job consists in a computation that is only

represented by an execution time (the time needed by

the processor to complete the job). In that sense a job

is a simple abstraction of the real computation that

is performed. This job must be completed before the

deadline (usually smaller than the period, so before the

release of a new job).

Analytical scheduling methods determine if a set of

tasks are schedulable by a given scheduling algorithm,

using a scheduling test that is a function on the parame-

ters of the tasks. Though effective, these techniques are

limited to specific classes of scheduling policies and sys-

tems. An alternative is to use model-based approaches,

with formal models of the components of a schedul-

ing system (tasks, scheduler), and formal techniques

such as model-checking and statistical model-checking.

A recent series of papers [16,7,8,26] show that model-

based approaches, implemented with timed automata

and their extensions, are flexible enough to embed var-

ious types of scheduling policies, that go beyond those

in the scope of analytical tools.

Model-based approaches also enable to use stochas-

tic tasks whose real-time attributes, such as deadline,

execution time or period, are characterized by probabil-

ity distributions. This is particularly useful to describe

mixed-critical systems and to make assumptions on the

hardware domain. These systems combine hard real-

time periodic tasks, with soft real-time sporadic tasks.

Analytical scheduling techniques can only reason about

worst-case analysis of these systems, and therefore al-

ways return pessimistic results. Using stochastic verifi-

cation techniques like SMC we can instead analyze the

system in a average scenario and provide more accurate

measures.

4.1 Formal Models of Scheduling Components

The formal models of our scheduling systems are in-

spired by [7,8].

Tasks Tasks are implemented with a SWA shown in

Fig. 3. From the Init location, a first job is initialized

with real-time attributes obtained from the function

setTaskAttribute(...). This job is queued for execution at

location DlyPOoffset. There it requests the scheduler to

assign a CPU, which is granted by a synchronisation on

the channel req sched[tstat[tid].pid], and reaches location

Executing. Its execution can be stopped and resumed

according to the availability of the CPU resource. This

is implemented by a stopwatch clock t et[tid]. The clock

progresses only when the CPU is available, that is when

the function isSchedSuped(...) returns 1. Finally, the job

exits from location Executing when it has completed its

8 Mounir Chadli et al.

Fig. 3: SWA model of a stochastic task

execution time. This releases the CPU resource using

function deque tid(...). The SWA waits the end of the

minimal inter-arrival time (WaitEndofMINIntv) and then

instantiates a new job.

Scheduler The scheduler SWA implements the schedul-

ing policy. We use two types of scheduling policy: ear-

liest deadline first (EDF), implemented with the SWA

in Fig. 4a, and fixed priority (FP), implemented with

the SWA in Fig. 4b. These schedulers synchronize with
the task model on the channel req sched.

4.2 Stochastic Scheduling Systems

In [11] we have extended these models to use stochas-

tic tasks whose real-time attributes (period, delay, ex-

ecution time) depend on probability distributions, and

are dynamically chosen by a stochastic dispatcher. This

stochastic feature is of interest to model the variation

of execution time with respect to the computation log-

ics and the capability of the execution environments

(CPU, memory, I/O and caches, etc). Such real val-

ues can be obtained by sampling the execution times

from the real world system (and this objective is out of

scope of this paper). Observe that other task’s parame-

ters such as the deadline and the period are determined

according to the timing requirements of the functional-

ity implemented by a set of tasks. For instance, some

video decoder and encoder would update the deadline

and period of tasks according to the frequency of input

streams. For those reasons, they can also be represented

by probability distributions.

In a stochastic task the stochastic attributes are de-

termined by a stochastic dispatcher at each new instan-

tiation of a job (when calling the functions setTaskAt-

tribute and setJobAtt). The stochastic dispatcher is im-

plemented with a stochastic timed automata using dis-

crete probabilistic choices. Fig. 5 presents an example

of a dispatcher that configures the three attributes with
probabilistic choices between five values.

4.3 Multi-processor Scheduling Systems and Energy

Consumption

Besides schedulability, various objectives can be asked

upon the scheduler. One of these can be to measure

and minimize the energy consumption. This is a great

concern in energy limited systems, like cell phones or

satellites, and more generally the power consumption

of computing devices is an emerging topic.

Adding energy to our timed automata models re-

quire to extend the models with continuous variables

and costs, using priced timed automata and hybrid au-

tomata. For measuring energy consumption we consider

a multi-processor scheduling system with processors of

different capabilities (frequency). Based on CMOS tech-

nology, the power consumption is dominated by dy-

namic power dissipation Pd when the processor is used

High-level Frameworks for the Specification and Verification of Scheduling Problems 9

(a) EDF (b) FP

Fig. 4: SWA models of schedulers

Fig. 5: PTA of the stochastic dispatcher

by some task, given by the following formula:

Pd = C ∗ V 2 ∗ f

where C is the capacitance, V the voltage and f the

frequency. The processor speed is almost linear to the

voltage:

f = k · V − Vt
V

where k is a constant and Vt is the threshold voltage.

We therefore get an approximated power consumption:

Pd = k′ ∗ f3

k′ being a constant (C∗k). In our study we want to com-

pare different configurations of the system according to

the trade-off between speed (higher frequency) and en-

ergy consumption (lower frequency). We will therefore

consider that the different configurations have the same

constant characteristics by setting k′ = 1 and only com-

pare the energy consumption using the formula:

Pd = f3

Then, our formal models for multi-processor schedul-

ing systems define a set of processors, each having a fre-

quency and its own scheduler. Processors can use differ-

ent scheduling algorithms. Tasks are statically assigned

to one processor.

To measure the energy consumption of the system,

we add to our formal models a simple PTA. It defines a

cost variable energy whose rate is energy’=totalPow, where

totalPow is the power of all the running processors. If we

increase the speed of a processor (the frequency f) we

increase the energy consumption, but in return the task

using the processor can run faster. We take this into

account in our task model. The stopwatch clock t et[tid]

becomes a continuous variable that progresses at a rate

t et[tid]’=f , where f is the frequency of the processor

that executes the task.

10 Mounir Chadli et al.

4.4 Hierarchical Scheduling Systems

One of the trends in developing CPS is to execute many

heterogeneous real-time components into a single high-

performance platform. This does not only reduce costs,

but also improves performances and maximizes the uti-

lization of hardware resources. However, these hetero-

geneous components must be partitioned, such that er-

rors caused by one component are alienated from the

other components. For instance, heterogeneous operat-

ing platforms in avionics and automotive systems man-

age various and different integrity-level applications.

They are integrated using a high-performance hardware

platform, supported by multi-core processors, advanced

memory, and multi-level cache architectures.

This has motivated research on hierarchical schedul-

ing systems (HSS), where a global scheduler is used to

distribute a shared resource among several local sched-

ulers. This mechanism can be duplicated in a multi lev-

els system, effectively building a hierarchy of schedulers

organized in a tree structure. On one hand, analytical

methods have been proposed for HSS [39,38]. Though

they are easy to apply once proven correct, proving

their correctness is a difficult research topic, and they

only provide a coarse abstraction that grossly overesti-

mates the amount of resources needed.

On the other hand, there exists model-based tech-

niques [16,7,8]. Since the complexity of the entire HSS

is too large to be analyzed with formal methods, we

rely on compositional approaches that allow to analyze

each local scheduler independently [40].

In our formal framework, a HSS is a set of scheduling

units organized in a tree structure. Each scheduling unit

is composed of a set of real-time tasks, a scheduler,

that implements a scheduling algorithm, and a queue,

that manages jobs instantiated by tasks. To perform a

compositional analysis of the system, we provide each

scheduling unit with a resource supplier that abstract

the behavior of the parent scheduling unit.

Resource Supplier The resource supplier is responsible

for supplying a scheduling unit with the resource al-

located from a parent scheduling unit. We adopt the

periodic resource model (PRM) [40]. It supplies the re-

source for a duration of Θ time units every period Π. To

speed up the schedulability analysis using model check-

ing techniques, it only generates the extreme cases of

resource assignment: either the resource is provided at

the beginning of the period (from 0 to Θ) or at the very

end (from Π − Θ to Π). The choice between the two

assignments is non-deterministic. The PRM automata

communicates with the task model through a shared

Fig. 6: Periodic Resource Model supplier with stochas-

tic budget

Fig. 7: Example of Hierarchical Scheduling System

variable isSupply that is set to true during the supply

period.

We also use the probabilistic supplier model pre-

sented in [8]. This probabilistic supplier is implemented

with the SWA of Fig. 6. Instead of using a fixed budget

Θ, it uses a range of values specified between an inter-

val [LowerBound,UpperBound]. At each execution the value

is selected randomly over this range by the stochastic

transition. This will allow to perform a parameter sweep

with SMC by selecting randomly a value of the budget,

and it will help determining the optimal budget.

Example 3 We present in Fig.7 a small example of HSS

with three schedulers: a top scheduler Croot, with an

EDF policy, and two bottom schedulers C1 and C2, with

Rate Monotonic (RM) and EDF policies, respectively.

The top scheduler schedules two tasks T1 and T2 that

distribute the resource to the interfaces I1 and I2 of the

lower schedulers. These interfaces use the PRM, each

with a period of 100, and a budget of 35 for I1 and 25 for

I2. The lower schedulers schedule three real-time tasks

each using the resource they receive from the interfaces

I1 and I2.

4.5 Scheduling Problems

We finally present the different problems that we want

to solve on scheduling systems.

High-level Frameworks for the Specification and Verification of Scheduling Problems 11

Problem 1: Correctness and performance We want to

evaluate several properties of the scheduling system to

assess its correctness and measure its performances:

1. Absence of deadlock: We check that the formal

models have been correctly designed, such that they

cannot reach a deadlock state, that is to say a state

in which time is blocked and no action is available.

2. Schedulability: We determine whether the tasks

are schedulable, i.e, none of them misses a deadline.

In case of HSS, we check that all the scheduling units

are schedulable.

3. Maximum response time: We measure the maxi-

mum response time of tasks, i.e., the maximum time

between a job instantiation and its completion.

4. Energy consumption: We measure the average

and maximum energy consumed by the system over

a period of time.

Problem 2: Optimal configuration of the system De-

pending on their nature, our scheduling systems may

admit different configurations. Then, we may evaluate

each configuration according to one or several measures

presented in Problem 1 in order to select an optimal

configuration.

1. Multi-processor scheduling systems: We con-

sider a multi-processor system, with CPUs having

different frequencies, and a set of real-time tasks.

Our goal is to assign each task to a CPU. Then we

evaluate the configurations of the scheduling system

in terms of schedulability, response time and energy

consumption.

2. Hierarchical scheduling systems: In a HSS, each

scheduling unit is analyzed independently using the

budget provided by the PRM. To configure the sys-

tem we determine which budget values make the

system schedulable. Our goal is to find minimum

budgets, such that all the scheduling units are sche-

dulable.

Problem 3: Change detection We now want to moni-

tor our scheduling system in order to detect emerging

behaviors or an expecting event. We consider a prop-

erty of the system, based on the measures presented in

Problem 1, e.g., the energy is always lower than a given

value. We consider our system as a stochastic process

and we evaluate the property at regular steps during

an execution. This allows us to compute at runtime the

probability to satisfy the property. Then, our goal is

to detect an abrupt variation of this probability, which

will be the sign that some event happened.

Formally, let S be a set of states and T ⊆ R be

a timed domain. A stochastic process (S, T) is a fam-

ily of random variables X = {Xt | t ∈ T}, each Xt

having range S. An execution of the stochastic process

is any sequence of observations {xt ∈ S | t ∈ T} of

the random variables Xt ∈ X . It can be represented as

a sequence π = (s0, t0), (s1, t1), . . . , (sn, tn), such that

si ∈ S and ti ∈ T , with time stamps monotonically

increasing, e.g. ti < ti+1. Let 0 ≤ i ≤ n, we denote

πi = (si, ti), . . . , (sn, tn) the suffix of π starting at po-

sition i.

Let ϕ be a property that can be evaluated to true

or false on an execution. We consider a sequence of

Bernoulli variables Yi such that Yi = 1 iff πi |= ϕ.

We define that the execution π satisfies a change τ =

Pr[π |= ϕ] ≥ pchange, where pchange ∈]0, 1[, iff Pr[Yi =

1]<pchange for ti < t and Pr[Yi = 1]≥pchange for ti ≥ t.
The first time ti when this is detected is the time of

change.

Example 4 Consider for instance a stochastic schedul-

ing system as presented previously. We can evaluate at

regular time intervals the probability that the energy

consumption during the time interval exceeds a given

value. This probability may change at runtime if the

load of the scheduling system changes, because for in-

stance some new task has been added. With change de-

tection we would like to raise an alarm when the change

occurs.

5 Solving Scheduling Problems

In this section we detail the techniques we use to solve

the scheduling problems presented in Section 4.5.

5.1 Checking Correctness and Evaluating

Performances with MC and SMC

The properties associated to Problem 1 are translated

into formal queries in the format of the tool Uppaal

MC and Uppaal SMC.

Absence of deadlock We use the CTL formula A[] not

deadlock that is checked with model-checking by the tool

Uppaal.

Schedulability In our formal models we check schedu-

lability by searching for error states in tasks, that cor-

respond to the tasks missing their deadline. All these

error states are identified by a single Boolean variable

error, set to true when a task misses a deadlines.

Then, schedulability is analyzed by Uppaal SMC

using the following probabilistic query:

simulate nbSim [<=runTime] {error} : 1 : {error}

12 Mounir Chadli et al.

It asks to perform nbSim simulations of length runTime

t.u., until one reaches a state labelled with error. If such

a state is found, then the system is not schedulable.

Uppaal SMC performs a quick evaluation of the

schedulability. If the system is not schedulable it may

find quickly a counterexample execution. However, for

an exhaustive result, we rely on model-checking with

Uppaal using the CTL formula A[] not error. If the

system contains stopwatches the analysis is performed

with an over-approximation: if the result is true then

the system is surely schedulable; if the result is false it

may not be schedulable.

Maximum response time We measure this property us-

ing Uppaal SMC with the following query:

E[<= runTime;nbSim](max:t resp[2])

It runs nbSim simulations of runTime t.u. and it com-

putes the average value over these simulations of the

maximum response time of the task with ID 2 (the re-

sponse time of task 2 is measured in the model with a

variable t resp[2]).

Energy consumption We first measure the average en-

ergy consumed over a period of time. We use the fol-

lowing query:

E[<= runTime;nbSim](max: PlatformEnergy.energy)

PlatformEnergy is the PTA that measures the energy us-

ing a cost variable energy. Uppaal SMC runs nbSim

simulations of runTime t.u. and it computes the average

value of the energy at the end of these simulations.

We can also check if the energy is always lower than

a maximum value. We use the following probabilistic

BLTL formula:

Pr[<= runTime]([] PlatformEnergy.energy <= maxEnergy)

where runTime is the time length for the simulations and

maxEnergy is an energy bound. With Uppaal SMC we

compute the probability that the property is satisfied.

5.2 Optimization of a Multi-processor Scheduling

System with ANOVA

We consider a set of CPUs, C = (CPU1, CPU2, . . . ,

CPUk) and a set of real-time tasks T = (T1, T2, . . . , Tl).

A multi-processor scheduling system is configured by

specifying a mapping γ : T 7→ C.
For each possible mapping, we would like to evalu-

ate first, if the system is schedulable, and second, the

average energy consumption and/or the maximum re-

sponse time of a task Ti ∈ T . The Uppaal query that

we use to evaluate the energy consumption is:

ϕe = simulate nbSim[<= runTime]

{PlatformEnergy.energy} : 1 : false

and to evaluate the maximum response time of a task

with id i:

ϕt = simulate nbSim[<= runTime]{max resp[i] } : 1 : false

Finally we would like to compare the different con-

figurations in order to select a schedulable configura-

tion that has a minimum energy consumption and/or

a minimum response time. If we want to achieve both

objectives we are faced with a multi-objective optimiza-

tion problem. A simple solution would be to analyze

each configuration with SMC experiments in order to

compute values for the energy consumption and the

response time. However this require a lot of simula-

tions per configuration to be able to compare them,

as the confidence intervals should not overlap. Fortu-

nately, there exists a more efficient statistical technique

to solve this problem that is called analysis of variance

(ANOVA). The test has already been used to perform

optimization with SMC [14]. We propose in this paper

new algorithms based on this test.

ANOVA is a statistical test used to compare several

probability distributions. We use it in a single factor

configuration with a fixed effects model, as presented

in [33]. We have k treatments of a single factor (the

system configuration defined by a mapping γ) that we

wish to compare. For each 1 ≤ i ≤ k, the observed re-

sponse for treatment i is a random variable Xi (the en-

ergy or response time) for which we draw n random val-

ues xi,1, . . . , xi,n (computed by running n simulations of

the system using the mapping γi and a property ϕe or

ϕt). We denote Xi the mean of the random variable Xi

and X the total mean all the values. ANOVA tests the

null hypothesis that all the means of the treatments are

equal, against the alternative hypothesis that at least

two treatments have different means.

ANOVA is based on a comparison between the vari-

ability observed between the treatments and the vari-

ability observed within the treatments using the follow-

ing F-value:

F =
1/(k − 1)

∑k
i=1(Xi −X)2

1/(n− k)
∑k
i=1

∑n
j=1(Xi,j −Xi)2

If the null hypothesis is true this F-value should follow a

F-distribution defined by the degrees of freedom of the

High-level Frameworks for the Specification and Verification of Scheduling Problems 13

experiment, that are k−1 and n−k. To determine if the

null hypothesis holds a classical hypothesis testing solu-

tion is to compute the P-value of the test. The P-value

is the probability of observing a more extreme F-value

than the actual result. It corresponds to the area un-

der the probability density function of the distribution

greater than the F-value, as shown in Fig. 8. Therefore,

the lower the P-value, the lower the probability that the

F-value computed actually follows the F-distribution,

and consequently the more likely the null hypothesis

should be rejected. To make a decision we compare this

P-value to a confidence level α, for instance α = 0.05

for a 95% confidence. If P-value ≤ α then the null hy-

pothesis is rejected, i.e. some treatments have different

means, with a 5% chance of making a Type I error.

Fig. 8: F-distribution example with the p-value com-

puted for F=2.23.

Tukey HSD If ANOVA shows that the means of the

treatments are significantly different, then we would like

to determine which treatments differ in order to com-

pare them. In [14] the test was used with treatments

that are continuous variables (temperature thresholds).

In their context, using ANOVA alone, the authors were

able to valid a linear regression over the continuous vari-

ables in order to optimize the system

In our context, the treatments (the different map-

pings) cannot be compared directly with ANOVA. The

result of the test is only that at least two treatments dif-

fer, but we do not know which ones. Therefore we need

an additional test to compare the treatments. This can-

not simply be done by a series of pairwise T-test, as it

would greatly increase the likelihood of false positive.

There exists however a multiple comparison test

called Tukey HSD (Tukey’s Honest Significant Differ-

ence test) that compares the means of every treatments

to the means of every other treatment. It computes the

pairwise differences Xi − Xj with a confidence inter-

val. If the endpoints of the confidence interval have the

same sign (both positive or both are negative), then 0

is not in the interval and we conclude that the means

are different. If the endpoints of the confidence interval

have opposite signs, then 0 is in the interval and we can-

not determine whether the means are equal or different.

Tukey HSD is based on a studentized range distribution.

As for the ANOVA test, each comparison of the Tukey

test can be associated to a P-value to measure the level

of significance.

Note that if the number of mappings is reduced to

two, then Tukey HSD should be replaced by a T-test.

Algorithms Using the two statistical tests previously

presented, we propose two new algorithms to optimize

multi-processor scheduling systems. The algorithms de-

termine dynamically the number of simulations needed

to compare the means of energy consumption and/or

response time with a sufficient confidence. Algorithm 1

has a single objective (minimizing the energy consump-

tion or the response time), while Algorithm 2 considers

both objectives simultaneously.

In these algorithms Simulate is a function that per-

forms n simulation of a mapping γ and computes the

values specified in the property ϕ (e.g. energy con-

sumption or the response time). RunANOVA runs the

ANOVA test on the simulations to determine if the

mappings values are significantly different. It returns

the P-value of the test. RunTukeyHSDSingle runs the

Tukey HSD test on the simulations and determines the

best mappings, which can be a single mapping, or a

set of mappings that cannot be distinguished because

there is not enough significance, or because they have

the same probability distributions. RunTukeyHSDMulti

runs the Tukey HSD test and returns True if all the

differences have either a significant difference (P-value

≤ α) or are equal (P-value≥ 1−α). ComputeMeans com-

putes the means of the values for each mapping given

in parameter over all the simulations of the mapping.

Finally we are able to select the ”best” configu-

rations. Let (γ1, γ2, . . . , γn) be the set of schedulable

configurations. We denote energy(γi) the average energy

consumed over a fix period of time and resp(γi) the max-

imum response time of one the task. If we consider only

one objective we select the configuration with the min-

imum estimated value for energy(γi) or resp(γi). If we

consider both objectives simultaneously we should se-

lect a configuration that is Pareto-efficient. Formally,

a configuration γi is Pareto-efficient if there exists no

other configuration γj such that energy(γj) ≤ energy(γi)

and resp(γj) ≤ resp(γi). We can plot the results on a

graph and draw a Pareto-efficiency curve that links the

Pareto-efficient configurations.

Example 5 We consider that Algorithm 2 produces the

results given in the graph shown in Fig. 9, with val-

ues energy and resp for a set of configurations from A

14 Mounir Chadli et al.

Algorithm 1: Single objective multiprocessor op-

timization
Input:

Γ : list of mappings
n: initial number of simulations
α: confidence level
ϕ ∈ {ϕe, ϕt}: simulation property.

Output:
bestMappings: set of mappings with minimum
energy consumption or response time.
min: minimum mean of energy consumption or
response time.

Let conf be a Boolean, initialised conf ← False
bestMappings← Γ
foreach γ ∈ Γ do

Let simulations[γ] be the set of simulations of the
mapping γ, initially empty.

while not conf do
foreach γ ∈ bestMappings do

simulations[γ]←
simulations[γ] ∪ Simulate(γ, n, ϕ)

P-value← RunANOVA(simulations)
if P-value ≥ 1− α then

conf ← True

if P-value ≤ α then
bestMappings←
RunTukeyHSDSingle(simulations, α)

if |bestMappings| = 1 then
conf ← True

foreach γ ∈ Γ \ bestMappings do
Remove simulations[γ] from simulations

min←
Min(ComputeMeans(simulations, bestMappings))

to F. Configurations A to D are Pareto-efficient. Con-

figuration E is not Pareto-efficient because energy(C) <

energy(E) and resp(C) < resp(E). Similarly, configura-

tion F is no Pareto-efficient because resp(B) < resp(F)

and energy(B) = energy(F).

0 1 2 3 4 5
0

1

2

3

4

5

energy

re
sp

A

B C

D

E
F

Fig. 9: Pareto-efficiency curve

Algorithm 2: Multi-objectives multiprocessor

optimization

Input:
Γ : list of mappings
n: initial number of simulations
α: confidence level
ϕe, ϕt: simulation properties

Output:
means e,means t: means of energy consumption
and response time for each mapping

Let conf e and conf t be Booleans, initialised
conf e← False and conf t← False

foreach γ ∈ Γ do
Let simulations e[γ] be the measures of energy
consumption of the mapping γ, initially empty.

Let simulations t[γ] be the measures of response
time of the mapping γ, initially empty.

while not conf e or not conf t do
if not conf e then

foreach γ ∈ Γ do
simulations e[γ]←
simulations e[γ] ∪ Simulate(γ, n, ϕe)

P-value ← RunANOVA(simulations e)
if P-value ≥ 1− α then

conf e← True

if P-value ≤ α then
conf e←
RunTukeyHSDMulti(simulations e, α)

if not conf t then
foreach γ ∈ Γ do

simulations t[γ]←
simulations t[γ] ∪ Simulate(γ, n, ϕt)

P-value ← RunANOVA(simulations t)
if P-value ≥ 1− α then

conf t← True

if P-value ≤ α then
conf t←
RunTukeyHSDMulti(simulations t, α)

means e← ComputeMeans(simulations e, Γ)
means t← ComputeMeans(simulations t, Γ)

5.3 Optimization of a Hierarchical Scheduling System

To optimize a HSS we must determine the minimum

budgets for the resource suppliers such that all the

scheduling units are schedulable. For this purpose we

use the stochastic model of the resource supplier pre-

sented in Fig. 6 that specifies a range of possible bud-

gets Θ. Then we use Uppaal SMC to randomly select a

value within this range and check whether the schedul-

ing unit is schedulable with this value.

We use the following probabilistic BLTL formula:

Pr[estBudget[1]<=runTime]

(<>globalTime>=runTime and error)

It computes the probability distribution of all the pos-

sible budget values that are not schedulable. With Up-

High-level Frameworks for the Specification and Verification of Scheduling Problems 15

Fig. 10: Probability density distribution for the budgets

for the scheduling C1.

paal SMC we can plot the probability density distri-

bution in a graph, as shown in Fig. 10. By looking at

the support of this distribution we can determine the

minimum budget whose probability is zero, that is the

minimum budget necessary to schedule all the tasks of

the scheduling unit.

Example 6 We consider the HSS example presented in

Fig. 7. We analyze scheduling unit C1 to compute the

possible budgets for the resource supplier of this schedul-

ing unit (such that the unit is schedulable). In Fig. 7,

this budget was arbitrarily set at 35 over a period of

100. We would like to determine if this value is suffi-

cient and if it can be lowered.

We set the range of budgets between 0 and 100. Us-

ing Uppaal SMC we analyze the probabilistic BLTL

formula presented above and we compute the probabil-

ity density distribution shown in Fig. 10. It tells us that

all the budgets lower than 34 have a non zero proba-

bility of being not schedulable. Therefore the minimum

budget needed for the scheduling unit is 35 over a pe-

riod of 100.

5.4 Change Detection with CUSUM

CUSUM [37,3] is a statistical algorithm used for mon-

itoring change detection. The principle is to monitor

the evolution of a probability measure at successive po-

sitions during a single execution of the system. The al-

gorithm then detects the position where it drastically

changes from original expectation. We have previously

adapted the CUSUM algorithm to monitor a BLTL

property over an execution trace of a stochastic pro-

cess and to detect the position in the trace when the

probability to satisfy the property changes significantly

[29].

Let π = (s0, t0), (s1, t1), . . . , (sn, tn) be an execu-

tion of the stochastic process and ϕ a BLTL property

to monitor during this execution. As defined in Prob-

lem 3, Yi are Bernoulli variables such that Yi = 1 iff

πi |= ϕ. We have that pk = Pr[Yi = 1|i <= k] is

the probability of satisfying ϕ from (s0, t0) to the state

(sk, tk). CUSUM will decide between the two following

hypothesis:

– H0 : ∀ k, 0 ≤ k ≤ n, pk < pchange, i.e., no change

occurs.

– H1 : ∃ l, 0 ≤ l ≤ n such that the change occurs at

time tl: ∀k, 0 ≤ k ≤ n, we have tk < tl =⇒ pk <

pchange and tk ≥ tl =⇒ pk ≥ pchange.

We assume that we know the initial probability pinit <

pchange of Pr[π |= ϕ] before the change occurs. One

solution is to estimate this probability with the Monte

Carlo algorithm using an ideal version of the system in

which not change occurs.

Like the Sequential Probability Ratio Test (SPRT)

[43], the CUSUM comparison is based on a likelihood-

ratio test: it consists in computing the cumulative sum

Sk of the logarithm of the likelihood-ratios si over the

sequence of samples Y1, . . .Yk. The change is detected

as soon as Sk satisfies a stopping rule.

Sk =
∑k
i=1 si si =


ln

pchange

pinit
, if Xi = 1

ln
1−pchange

1−pinit
, otherwise

The typical behavior of the cumulative sum Sk is

a global decreasing before the change, and a sharp in-

crease after the change. Then the stopping rule’s pur-

pose is to detect when the positive drift is sufficiently

relevant to detect the change. It consists in saving mk =

min1≤i≤k Si, the minimal value of CUSUM, and com-

paring it with the current value. If the distance is suf-

ficiently great, the stopping decision is taken, i.e., an

alarm is raised at time ta = min{tk : Sk − mk ≥ λ},
where λ is a sensitivity threshold.

CUSUM Calibration

The efficiency of the CUSUM algorithm depends on sev-

eral parameters. First, it is important to note that the

likelihood-ratio test assumes that the considered sam-

ples are independent. This assumption may be difficult

to ensure over a single execution of a system, but heuris-

tic solutions exist to guarantee independence. One of

them is to introduce delays between the samples. In

that case Monte Carlo SMC analyses can evaluate the

correlation between the samples, and help to select ap-

propriate delays.

16 Mounir Chadli et al.

Second, the CUSUM sensitivity depends on the choi-

ce of the threshold λ. A smaller value increases the sen-

sitivity, i.e., the false alarms rate. A false alarm is a

change detection at a time when no relevant event ac-

tually occurs in the system. Conversely, big values may

delay the detection of the change. The false alarms rate

of CUSUM is defined as E[ta], the expected time of an

alarm raised by CUSUM while the system is still run-

ning before the change occurs. Ideally, this value must

be the biggest as possible (E[ta] → +∞). The detec-

tion delay is defined as the expected time between the

actual change at time t and the alarm time ta raised by

CUSUM (E[ta − t | t < ta]). Ideally, this value has to

be as small as possible.

To calibrate the sensitivity a solution is to use two

versions of the model: one in which the change never

occurs and one in which it always occurs. Running the

CUSUM on the first model allows to determine the min-

imum sensitivity such that no detection occurs. Then,

the CUSUM is run on the second model to determine

the detection delay.

6 High Level Languages for Scheduling Systems

Modeling a scheduling system requires a deep under-

standing of the various involved formal models and ver-

ification tools. They need to be adequately configured

by the user to run the experiments and analyze the re-

sults. This comprises, in particular, the following five

steps:

1. Select the right formal models, from the model bank

presented in Section 4.

2. Input values to the parameters of these models, e.g.,

periods, deadlines and execution times of tasks.

3. Write the formal properties that must be analyzed.

4. Launch formal verification using Uppaal and Up-

paal SMC.

5. Analyze and interpret the results.

These tasks should be simplified to help the adoption

of formal methods by system engineers. We propose an

approach that uses high-level domain-specific languages

instead of generic formal languages with powerful, but

complex, syntax and semantics. These languages focus

on the necessary elements that engineers are used to

manipulate to design their systems, while other un-

necessary parameters of the formal models are hidden.

The language is embedded in a user-friendly tool, which

launches formal verification using automatic code gen-

eration of the formal models from the high-level de-

scription languages. Finally, the tool provides relevant

and readable results of the formal verification on the

components of the high-level language, instead of the

components of the underlying formal models.

We have designed two high-level frameworks for sche-

duling systems, using Cinco [34], a generator for do-

main-specific modeling tools. The first framework is

dedicated to hierarchical scheduling systems. The sec-

ond is dedicated to the design and analysis for multi-

processor scheduling systems with energy constraints.

The frameworks can be downloaded from Cinco’s web-

site1.

6.1 Domain-Specific Code Generator: CINCO

Cinco is a generative framework for the development

of domain-specific graphical modeling tools. It is based

on the Eclipse Modeling Project [21], but with a strong

emphasis on simplicity [32], so that the user (i.e. the

developer of a tool generated with Cinco) does not

need to struggle with the underlying powerful but com-

plicated EMF metamodeling technologies [42] directly.

This is achieved by focusing on graph model struc-

tures (i.e. models consisting of various types of nodes

and edges) and automatically generating the required

Ecore metamodel as well as the complete corresponding

graphical editor from an abstract specification in terms

of structural constraints. In a sense, this approach turns

constraint-based variability management [23,27] into a

tool generation discipline, where a product line is just

characterized by the tools’ modeling capacities.

6.1.1 Meta-Modeling

Central to every Cinco product is the definition of a file

in the Meta Graph Language (MGL). It defines what

kind of modeling components the model consists of and

what attributes they have. Every modeling component

is either a node type, a container type (i.e. a special

node that can hold other nodes) or an edge type. It is

also possible to define which kind of nodes can be con-

nected by which kind of edges and express cardinality

constraints on those connections.

Example 7 For instance, Listing 1 presents of a portion

of an MGL file with the definition of a container node to

represent a resource supplier in an HSS. The definition

precises some attributes (policy, period, budget . . .).

It needs exactly one input transition and one or more

output transitions. Furthermore, it can contain other

nodes of type Query.

The second important file is a specification in the

Meta Style Language (MSL), which is used for defining

1 http://cinco.scce.info/applications/

http://cinco.scce.info/applications/

High-level Frameworks for the Specification and Verification of Scheduling Problems 17

@style(supplier ,"${policy}","${resource}","${tid}",
"${period}","${budget}")

container Supplier {
attr Policy as policy
attr Resource as resource
attr EInt as tid
attr EInt as priority
attr EInt as period
attr EInt as budget
attr EInt as deadline
incomingEdges (Transition[1,1])
outgoingEdges (Transition[1 ,*])
containableElements (Query)

}

Listing 1: Part of the MGL file that specifies the

supplier of a HSS.

shapes (rectangle, ellipse, polygon, image, text, etc.)

and appearances (colors, line style, line width, etc.) for

nodes and edges. To change the look of the model de-

pending on runtime information (e.g. the value of a

node’s attribute) one can either use the attribute di-

rectly within a text shape or implement an appearance

provider that is invoked by the framework and may

contain Java code that decides on the appearance by

arbitrary external or internal factors.

Example 8 Listing 2 contains the style definition for the

previous supplier node. It is displayed with a yellow

rounded rectangle, and a smaller white rectangle inside,

showing some parameters as text, as shown in Fig. 11.

nodeStyle supplier(5) {
roundedRectangle r {

appearance extends default {
background (222,222,117) // light yellow

}
size(150,150)
corner(10,10)
rectangle p {

appearance extends default {
background (255,255,255)

}
position relativeTo r (CENTER ,TOP)
size(60,20)
text {

position relativeTo p (CENTER ,MIDDLE)
value "%1$s | %2$s"

}
}
text {

position relativeTo r (CENTER ,MIDDLE)
value "Supp%3$s: (%4$s ,%5$s)"

}}}

Listing 2: Part of the STYLE file that configures the

display of the supplier node.

Those specifications are already enough for Cinco

to generate the complete graphical modeling tool. But

Cinco also provides mechanisms to integrate code that

Fig. 11: Example of supplier display generated by the

style configuration.

Fig. 12: Main principles of domain-specific tools gener-

ation with Cinco.

interprets or transforms the models. It automatically

generates APIs specific to the model type and seam-

lessly integrates code implemented against it into a

ready-to-run modeling tool, which is a realization of

the one-thing-approach [31].

The main principles for the generation of a domain-

specific tool with Cinco are depicted in Fig. 12. From

the MGL and Style definitions, Cinco generates an

Ecore metamodel as well as a corresponding graphical

editor for the domain-specific tool. The user can then

create a model in the tool that conforms to the given

specification. This model can be analyzed by custom

Java code, embedded in the tool during the automatic

generation by Cinco.

6.1.2 Domain Specific Tool

Besides the tool meta-modeling, the second important

feature of Cinco needed to develop a domain specific

tool is the possibility to enhance the graphical editor

by adding custom code. This code can call an API gen-

erated by Cinco to interact with the meta-model.

Fully pointing out all of Cinco’s concepts and ca-

pabilities for the development of sophisticated domain-

specific modeling tools is clearly beyond the scope of

this paper. We therefore only briefly point out the as-

pects most relevant for our scheduling systems mod-

18 Mounir Chadli et al.

eling tools. Please refer to [34,35] or the website2 for

more detailed introductions.

The easiest way to enhance the graphical editor is by

adding a custom action to a node type, which is then

available via the nodes’ context menu or on double-

click. For a custom action two methods need to be im-

plemented: canExecute and execute. Both receive the

node on which the action should be performed as pa-

rameter. While the first decides whether the action is

available (i.e. not disabled/greyed out in the context

menu), the second one actually performs it. The gener-

ated enhanced API for the metamodel simplifies the im-

plementation of those methods, as one can easily access

related modeling elements in a semantic and type-safe

way, e.g. by accessing all successors (i.e. target nodes of

outgoing edges) of a certain type.

Furthermore, Cinco makes it especially easy to per-

form changes to the edited model. Usually, with the

common Eclipse approaches, the visual representation

as well as the underlying model structure need to be

changed separately. The transformation API that Cinco

generates for every model type handles the synchronous

and consistent modification of both parts automati-

cally, so that it becomes very straightforward to pro-

gram transformations for the model, as the generated

API provides the same actions the tool user can perform

within the editor, e.g. change attributes, add new ele-

ments, connect them with edges, or move/resize/delete

them.

6.2 High-Level Framework for Hierarchical Scheduling

Systems

As presented in Section 4.4, HSS are best represented

by a tree structure. This is the format we adopt for

our graphical specification of HSS. Fig. 13 presents an

example of an HSS designed in our framework. The

nodes of the tree correspond to the components of the

scheduling units (tasks, suppliers). In the rest of the

section we detail the available components of our high-

level language and their configuration parameters.

Resource suppliers TopSupplier(policy), in blue, is the root

of the HSS tree. It supplies the resource to all the

scheduling units. Its only parameter is the scheduling

policy. Supplier(policy,period,budget), in yellow, are inter-

mediate suppliers (e.g., Supplier1 in Fig. 13) that re-

ceive the resource from an upper level and supply real-

time tasks or lower level suppliers. Their parameters are

a scheduling policy, a period and a budget within this

2 http://cinco.scce.info

period. To estimate the necessary budget of a schedul-

ing unit we use a probabilistic supplier, in red, (e.g.,

PSupplier2 in Fig. 13) whose budget is chosen randomly

between values given in an interval. It is denoted Prob-

Supplier(policy,period,budget), where budget is an interval

of the form [LowerBound,UpperBound].

Tasks Tasks are the leaf of the HSS tree. They repre-

sent the time spent for executing some computation. A

task is denoted Task(period,deadline,bcet,wcet,priority) and

represented in the model with a green rounded box.

As presented in Section 4.1, we propose a new model

of stochastic task whose attributes may be probability

distributions. This type of task is denoted STask(period,

deadline,execution,priority) and represented by a green rect-

angle. Here period, deadline and execution are discrete

probability distributions. Instead of having a worst case

and best case execution time, we input a probability

distribution of execution times.

Queries Queries are associated to the suppliers. The

following queries, that correspond to the formal prop-

erties presented in Section 5.1, are available: deadlock

query, schedulability, maximum response time, and bud-

get estimation. In Fig. 13 for instance, PSupplier2 is

assigned a budget estimation query and Supplier1 a

schedulability query. Queries that have been verified

are colored automatically by the tool, in green if they

are satisfied, or in red if they are not satisfied.

6.3 High-Level Framework for Multi-Processor

Scheduling Systems

For the design of CPS with multi-processor we consider

a two-layer approach as proposed in [25]. The first layer

models the hardware platform, with a scheduling sys-

tem composed of real-time tasks and CPUs. The second

layer models the application that is composed of a set of

actions. The link between the two layers is implemented

by a mapping from actions to tasks, that specifies for

each action of the application on which task it is in-

tended to run. In our current framework this mapping

is static and determined before an execution.

This design allows a separation of concerns that fa-

cilitates the verification of formal properties:

– Scheduling properties are verified on the platform

layer only.

– Logical properties of the application are verified on

the application layer only.

– Energy consumption or execution time properties

need to consider both layers simultaneously.

http://cinco.scce.info

High-level Frameworks for the Specification and Verification of Scheduling Problems 19

Fig. 13: HSS with 3 scheduling units

We have implemented with Cinco a high-level frame-

work that allows to design a two-layer multi-processor

scheduling system.

Platform Layer The platform layer is composed of a set

of processors and a set of real-time tasks. Each proces-

sor has its own scheduling mechanism and is parameter-

ized by its frequency. The frequency defines the speed

of the processor and its energy consumption when run-

ning. Real-time tasks can be either hard real-time, with

a deadline, a period and execution times, or soft real-

time, with only period and execution times. Tasks are

statically assigned to a processor. A model of a platform

layer designed in our framework is presented in Fig. 14.

This model is translated into a set of timed automata,

using the models presented in Section 4.

Fig. 14: Platform layer with 2 processors, 3 hard real-

time tasks and 1 soft real-time task

Application Layer Applications running in CPS are un-

limited, with no fixed design. To demonstrate the use of

our framework we consider a simple design methodol-

ogy for writing applications with stochastic behaviour.

Our application is composed of a set of components.

Each component consists in a sequence of actions. Each

action has a delay mechanism, implemented with either

a uniform or an exponential probability distribution,

and minimum and maximum execution times. Actions

are also parameterized with an energy consumption pa-

rameter (between [0, 1]) that defines how much power

the action will take from the CPU. The semantics of

this language is to execute each component in parallel

by running their actions iteratively. A component that

has completed its last action will continue in a loop

with the execution of the first action. An example of

application is presented in Fig. 15. These models are

translated in a set of stochastic timed automata.

Fig. 15: Application layer with 3 components and 5 ac-

tions

Mapping between application and platform The map-

ping between the two layers is done by linking each ac-

tion of the application to a real-time task, as presented

in Fig. 16.

Queries: In this framework we consider different type

of queries, some of them associated to the platform and

some of them associated to the application. On the plat-

form layer we verify schedulability queries and we de-

termine optimal mapping between tasks and processors

with ANOVA, as presented in Section 5.2. On the ap-

plication layer we measure average energy consumption

and we use CUSUM to detect changes in the applica-

tion behavior.

20 Mounir Chadli et al.

Fig. 16: Mapping between application layer and plat-

form layer

Tool Generation Framework

Domain-Specific Design and Verification Framework

Meta-model
specifications

Analysis
Program

(Java)

Model
Generation

Program
(Java)

reference

Model bank

HAn

TA1 SWA2

...

reference

CINCO: Tool Generator

Specifications
+

Properties

Domain-Specific
Analysis Tool

Results

transform

External Tools

UPPAAL UPPAAL
SMC

R

Fig. 17: Tool chain for generating and using domain-

specific analysis frameworks

6.4 Implementation of the Frameworks and Tool Chain

We have implemented two domain-specific analysis fra-

meworks: one dedicated to HSS and one dedicated to

multi-processor scheduling systems. The tool chain in-

volved in the generation of these frameworks and then

in their usage is described in Fig. 17.

The frameworks are developed in Java and with

Cinco. The graphical interface of the framework is

specified with the meta-modeling languages of Cinco,

presented at the beginning of this section. Then we have

developed Java programs for generating complete for-

mal models from the high-level specifications. These

generators use existing formal models from a model

bank (the models presented in Section 4). Finally we

have developed Java custom analysis programs. These

programs are linked to the code generated by Cinco

such that they can be started directly from the graph-

ical interface, either by a right-click menu or double-

click actions. These programs solve the problems listed

in Section 4.5 using the techniques presented in Sec-

tion 5. In the background, they launch Uppaal and

Uppaal SMC via the command line interface to per-

form formal verifications, and they use the tool R for

statistical analysis. The textual results of these verifica-

tions are then analyzed by our programs to determine

the relevant results of the analysis. Then, the transfor-

mation API of Cinco is used to visualize the results

on the model’s high-level abstract view, either by cre-

ating pop-up windows or by making modifications on

the model designed in the interface.

Using the meta-model specification, our custom Java

code and the model bank, Cinco automatically gen-

erates a domain-specific framework, that includes the

Java code and the Ecore specifications of an Eclipse

graphical interface. This domain-specific framework al-

lows to design scheduling problems, using the high-level

graphical languages presented before. It then launches

analysis by calling external tools (Uppaal, Uppaal

SMC and R). It produces results and consequently can

transform the original high-level specification.

We detail below the basic steps performed by our

analysis programs to solve the different scheduling prob-

lems.

Correctness and performance The program that solved

these problems first generates a Uppaal model from

the model designed in the graphical interface of the

framework. It also generates a text file with the Up-

paal query needed for the analysis. It then launches

Uppaal or Uppaal SMC and analyses the results. The

following results are displayed in the interface:

– The absence of deadlock is shown in a pop-up win-

dow. The color of the query is turned to green or

red according to the result.

– The schedulability analysis produces a pop-up win-

dow with the result. The color of the query is turned

to green or red. Additionally, if the result is false the

color of the task that has missed a deadline is turned

to red.

High-level Frameworks for the Specification and Verification of Scheduling Problems 21

– The measures of maximum response times or energy

consumptions are displayed in pop-up windows and

in the queries.

Optimization of Hierarchical Scheduling Systems The

program that solves this problem generates the Uppaal

model of the HSS with a probabilistic supplier, as the

one presented in Fig. 6. It analyses the schedulability

query with Uppaal SMC. This generates a probability

distribution, as the one presented in Fig. 10. The pro-

gram analyses this distribution to determine the mini-

mum budget. It displays the result in a pop-up window.

Optimization of Multi-processor Scheduling Systems

We have implemented Algorithms 1 and 2. Our pro-

gram generates a set of Uppaal models, each corre-

sponding to a configuration of the system with a map-

ping from tasks to processors. It then runs the optimi-

sation algorithm. This algorithm launches some simu-

lations with Uppaal SMC and extracts the numeri-

cal results. The results are written in some temporary

files. that are analysed with the statistical tool R to

perform the RunANOVA, RunTukeyHSDSingle, RunTukeyHS-

DMulti and ComputeMeans procedures. According to the

results the program determines if more simulations are

needed, or outputs the result.

For the single objective problem the program di-

rectly shows the optimal mapping by drawing it on the

interface using the transformation API of Cinco.

For the multi-objectives problem the program opens

a pop-up window and draws into the Pareto diagram.

This window allows to select one of the Pareto-efficient

mapping that is then drawn on the interface.

Change detection The program that performs change

detection implements the CUSUM algorithm. It first

generates the Uppaal model and it will run the CUSUM

algorithm on this model several times. For each execu-

tion, it generates with Uppaal SMC a simulation trace

that corresponds to the total length of the experiment.

It then splits this execution into a set of samples and

it analyses each sample to evaluate the query and up-

date the CUSUM ratio. If the value of ratio exceeds the

sensitivity threshold it outputs a detection with the de-

tection time in a pop-up window.

7 Experiment with Hierarchical Scheduling

Systems

We apply our framework for HSS to model and verify

an avionic scheduling system. We consider the specifica-

tion of avionic tasks presented in [30]. This is a mixed-

critical system with multiple tasks of various critical-

ity running together. We arrange these tasks in a hi-

erarchical scheduling system by grouping tasks from

similar functions and critically (Navigation, Targeting,

Weapon control and Controls and displays). Each func-

tion is associated to a scheduling unit. The three schedul-

ing units of the most critical functions (Navigation, Tar-

geting and Weapon control) are further grouped under

a “Hard-Subsystem” scheduling unit. This results in the

hierarchical scheduling systems presented in Fig. 18.

The goal of our study is to determine if the com-

plete system is schedulable and to find appropriate pa-

rameters for each scheduling unit, such that they are

all schedulable.

High-level model We design the HSS in our domain-

specific tool generated by Cinco, using the high-level

language presented in Section 6.2. Sporadic tasks are

modeled with stochastic task nodes and are associated

to probability distributions. To estimate their necessary

budget, each scheduling unit is modeled using a proba-

bilistic supplier.

Verification procedure We analyze each scheduling unit,

starting from the bottom, with the budget estimation

query. We configure the scheduling unit, by selecting

several values for the period of the probabilistic sup-

plier. The period must be lower than the minimum pe-

riod of the tasks being supplied. Then, we configure

the minimum and maximum budget for the estimation

between [1, period]. The tool computes the minimum

budget such that the tasks are schedulable. The ratio

budget/period gives us the load factor of the scheduling

unit. Our goal is to find the lowest load factor among

the choice of possible values for the period.

When all the bottom units have been analyzed we

can replace them with normal supplier using the mini-

mum budget that has been computed. We then repeat

the procedure to compute the minimum budget for the

upper scheduling units.

Results We present in Fig. 19 the results obtained from

the analysis of the 3 bottom scheduling units (Naviga-

tion, Targeting, Weapon control). The graph plots the

load factor of the scheduling unit using the minimum

budget computed with SMC for several values of the pe-

riods. From these results we select the points with the

lowest load factor and the highest period. The values

that we choose are listed in Table 1.

We can now replace these probabilistic Suppliers

with normal suppliers and confirm the schedulability of

the units using the schedulability query, that is checked

either with model-checking or SMC.

22 Mounir Chadli et al.

Avionics

Hard-Subsystem
(000, 000)

Controls and Display
(000, 000)

Targeting
(000, 000)

Navigation
(000, 000)

Weapon Ctrl.
(000, 000)

HUD Display
(50,6,50)

MPD Display
(50,8,50)

HOTAS Button
(Exp.,40,1,40)

Threat Display
(Gauss.,100,3,100)

Flight Data
(50,8,50)

Steering
(80,6,80)

Target Tracking
(40,4,40)

Target Sweetening
(Unif.,40,2,40)

AUTO/CCIP Toggle
(Gauss.,200,1,200)

Weapon Release
(10,1,5)

Hard

Sof

Weapon Trajectory
 (100,7,100)

Reinitiate Trajectory
(Unif.,400,6,400)

Periodic Task

Sporadic Task

Fig. 18: Hierarchical scheduling of avionic tasks

0 10 20 30 40 50

0.2

0.4

0.6

0.8

1

Period

L
o
a
d

fa
ct

o
r

Navigation

Targeting

Weapon Ctrl.

Fig. 19: Budget estimation for Navigation, Targeting

and Weapon control

Unit Period Budget Load
factor

Navigation 8 2 0.25
Targeting 6 1 0.17
Weapon Ctrl. 4 2 0.5
Hard-Subsystem 4 4 1
Controls and Display 3 1 0.33

Table 1: Minimum budget for the scheduling units

We then determine the period and the budget for

the Hard-Subsystem unit. Its period must be lower than

4, the chosen period of the Weapon control unit. Since

the combined load factor of the 3 lower scheduling unit

is 0.92, only a budget of 4 over 4 can scheduled the Hard

Subsystem unit, which we verify with the schedulability

query.

We also determine the necessary budget for the Con-

trols and display scheduling unit. We found the best

budget to be 1 over a period of 3.

From our results we conclude that the two upper

scheduling units (Hard Subsystem and Controls and

Display) are each schedulable. However since the load

factor of the Hard Subsystem is already 1, it cannot

be scheduled with the second unit using the same re-

sources.

8 Experiment with Multi-processor Scheduling

Systems

This section present an example of a multi-processor

scheduling system designed and analyzed in our frame-

work. We first describe the model and then we present

the experiments performed in our framework to solve

the problems presented in Section 5.

8.1 Example

The proposed example is composed of two layers, fol-

lowing the modeling framework presented in Section 6.3,

a Platform layer and an Application layer.

The Platform Layer is composed by 3 periodic hard

real-time tasks and 2 processors. The tasks parame-

ters are configured according to the following order:

Task(period,deadline,bcet,wcet,priority), and are respectively

T1(10, 10, 3, 4, 9), T2(20, 20, 5, 6, 8) and T3(30, 30, 6, 8, 7).

The 2 processors are P1, with a 1.5 MHz frequency and

a FP scheduling policy, and P2, with a 1.0 MHz fre-

quency and an EDF scheduling policy. We initially dis-

tribute T1 and T2 on processor P1, while T3 is running

alone on processor P2.

The Application Layer consists of 3 components, each

composed by a succession of actions as presented in

High-level Frameworks for the Specification and Verification of Scheduling Problems 23

Fig. 20: Application layer of our case-study model

Fig. 20. Component C1 is composed of actions A1, A2

and A3, whose execution times are respectively 4, 3, 5.

These actions are executed on task T1. Component C2

is composed of actions A4, A5 and A6, whose execution

times are respectively 4, 5, 5. These actions are executed

on task T2. Component C3 is composed of actions A7

and A8, whose execution times are respectively 5 and

6. These actions are executed on task T3.

Each action has an energy parameter that defines

how much energy it takes when running on a processor,

with a maximum value of 1 meaning that it takes the

full power of the processor.

Finally, random delays with uniform distributions

are set between the execution of each actions. As ex-

plain in Section 6.3 the execution of each component is

cyclic: it runs sequentially each action, and then starts

again at the first action. Action A8 is additionally de-

layed, such that is starts only after 50 or 100 executions

of action A7. Using the change detection problem and

CUSUM we will try in our experiments to detect the
beginning of execution of this action.

8.2 Checking Correctness and Evaluating

Performances

Experiments Using SMC we perform the following ex-

periments on the initial model:

1. Schedulability analysis.

2. Measure of energy consumption, considering the plat-

form only and both the platform and the applica-

tion.

3. Measure of the maximum response time for each

task.

We use 100 simulations and a runtime of 60 t.u. This

runtime allows to execute the model over the smallest

common multiple of the periods of our tasks (the hyper-

period).

Results The results of these experiments are presented

in Table 2. We give for each result the time taken by the

analysis. If the result is a measure we give its estimated

value and the confidence interval that corresponds to

the SMC analysis.

Analysis Result Time (s)
Schedulability True 4.47
Energy consumption
(platform)

69.408± 0.46 1

Energy consumption
(application)

37.69± 0.72 4.2

Maximum response
time of T1

3.86± 0.025 3.8

Maximum response
time of T2

9.36± 0.055 3.78

Maximum response
time of T3

4.89± 0.061 3.78

Table 2: Correctness and performances analyzed with

Uppaal SMC

8.3 Optimization with ANOVA

Experiment This second experiment consists in finding

optimal mappings between tasks and processors, such

that the system is schedulable and has optimal perfor-

mances. Therefore we start by removing in our model

the mapping used in the previous section. Then we use

the ANOVA method with the multi-objectives Algo-

rithm 2 proposed in Section 5.2. Our two objectives are

to minimize the energy consumption of the scheduling

system and to the maximum response time of one of

the tasks. The result is a Pareto efficiency diagram.

For this experiment with will use SMC with 100 sim-

ulations to determine schedulability, and Algorithm 2

with ANOVA and Tukey HSD techniques with a 95%

confidence.

Results Table 3 presents the results of executing Al-

gorithm 2. We perform 3 executions of the algorithm

(Exec. 1, Exec. 2 and Exec. 3) that are differentiated

according to the task for which we want to minimize

the maximum response time. One execution takes ap-

proximately 40 seconds. We determine that there are

8 mappings schedulable, simply named mapping-i with

i from 1 to 8. Then for each execution we give in col-

umn E the energy consumption of the processors, and

in column t(Ti) the maximum response time of a task

Ti.

Let us now consider that task T2 is our critical task

for which we want to minimize the maximum response

24 Mounir Chadli et al.

Exec. 1 Exec. 2 Exec. 3
Mapping

E t(T1) E t(T2) E t(T3)
mapping-1 98.1 2.57 98.1 6.21 97.8 7.15
mapping-2 115 2.58 115 6.24 115 11.7
mapping-3 77.2 2.57 77.3 5.74 77.5 12.2
mapping-4 95.3 2.57 95.1 5.76 94.9 7.18
mapping-5 70.1 3.81 70.2 3.58 70.1 9.99
mapping-6 88.5 3.80 88.5 3.74 88.8 8.29
mapping-7 50.9 3.87 50.8 9.34 50.7 19.3
mapping-8 69 3.86 68.7 9.33 69.2 4.91

Table 3: Optimization of the mapping between tasks

and processors according to energy consumption and

maximum response time of tasks T1, T2 or T3

time. From the results given in columns 4 and 5 we can

plot in our framework a Pareto diagram in a pop-up

window, as shown in Fig. 21. From this window we can

select one of the Pareto-efficient mapping that will then

be automatically applied to the model.

Fig. 21: Pareto Efficiency diagram for optimizing energy

consumption and maximum response time of task T2

8.4 Change Detection with CUSUM

Experiment In our third experiment we analyze each

of the 4 optimal mappings found in the previous ex-

periment and shown in Fig. 21. We use the CUSUM

algorithm presented in Section 5.4 to detect the begin-

ning of execution of action A8. While action A7 that

precedes A8 consumes only 80% of the CPU power,

A8 when it starts consumes the full power. This dif-

ference should increase the probability that the max-

imum energy consumption during a sample exceeds a

given level. We consider a sample time of 60 time units,

that corresponds to the hyper-period of the executing

platform. We will observe at each sample of an execu-

tion the probability to exceeds the maximum energy

consumption. This probability should raise when ac-

tion A8 starts executing. We will monitor the variation

of this probability during an execution of 300 samples,

i.e. 18’000 time units. We will the CUSUM algorithm

to detect a change of probability and measure the de-

tection time. We repeat the CUSUM 100 times and we

compute the detection time as the average detection

time over all the execution of the CUSUM.

To configure the CUSUM algorithm we first need

to determine the initial probability. In this example we

choose to estimate this probability by executing the op-

timal model, that is the model without action A8 that

provokes the change. The second parameter that we

need to configure is the deviation from the initial prob-

ability when the change occurred. This parameter is

estimated by computed the energy consumption on a

model in which that action is already running at the

beginning of the execution.

After fixing these two parameters, we proceed to the

calibration of the CUSUM algorithm. This step consists

in computing the sensitivity threshold λ. It is done by

executing CUSUM on the optimal model, without the

action responsible for the change, and using the ini-

tial probability and the deviation computed before. The

threshold λ will be the minimal value such that no de-

tection is observed for all simulations.

Results We run CUSUM on the set of Pareto-efficient

mappings of Fig. 9. The analysis of one model takes ap-

proximately 20 minutes. The results for each mapping

are presented in the following tables. In these tables, the

first column (Energy) is the energy level used for the
detection, the second column (Init. prob.) is the initial

probability , the third column (Deviat.) is the proba-

bility deviation, the fourth column (λ) is the sensitivity

threshold λ, the fifth and sixth columns (T.Detect) are

the detection times, in the cases when action A8 starts

after 50 or 100 executions of A7.

Table 4 presents the results obtained for mapping-6,

that executes T1 on processor P1 and T2, T3 on proces-

sor P2. With this mapping we can measure experimen-

tally with Uppaal that action A8 starts after approx-

imately 1470 t.u. when its start parameter is 50, and

2950 t.u. when its start parameter is 100.

Energy Init. Deviat. λ T. Detect T. Detect
prob. (50) (100)

48 0.665 0.27 7.2 2745 4282
50 0.227 0.432 7.4 2278 3814
52 0.042 0.215 8.4 3109 4396

Table 4: Change detection results for mapping-6

High-level Frameworks for the Specification and Verification of Scheduling Problems 25

Table 5 presents the results obtained for mapping-5,

such that T1 and T3 are executed on processor P1, and

T2 is executed on processor P2. In this mapping action

A8 begins after approximately 1480 t.u. for a start of

50, and 2970 t.u. for a start of 100.

Energy Init. Deviat. λ T. Detect T. Detect
prob. (50) (100)

44 0.867 0.059 5.3 7277 8646
46 0.492 0.255 5.4 9381 9546
48 0.135 0.124 5.5 4961 6425
50 0.026 0.03 5.7 10725 11761

Table 5: Change detection results for mapping-5

The third mapping is mapping-8 such that T1 and T2
executes on P1 and T3 executes on P2. The results are

presented in Table 6. In this mapping action A8 begins

after approximately 1510 t.u. for start of 50, and after

approximately 3010 t.u. for a start of 100.

Energy Init. Deviat. λ T. Detect T. Detect
prob. (50) (100)

39 0.48 0.475 9.0 2362 3851
41 0.289 0.518 4.7 1932 3416
43 0.118 0.489 7.0 2339 4004
45 0.033 0.271 8.0 2557 4070

Table 6: Change detection results for mapping-8

The last Pareto-efficient mapping is mapping-7 that

executes all tasks on P1. Results for this mapping are

presented in Table. 7. In this mapping the action A8

begins after approximately 1480 t.u.for start of 50, and

after approximately 2980 t.u. for a start of 100.

Energy Init. Deviat. λ T. Detect T. Detect
prob. (50) (100)

23 0.976 0.013 4.0 3687 3714
25 0.832 0.067 20.8 16211 16730
27 0.612 0.086 19.8 13067 13683
29 0.388 0.119 13.5 7379 8587
31 0.188 0.106 3.8 6836 8170
33 0.038 0.103 8.3 7348 8092

Table 7: Change detection results for mapping-7

Discussion In these experiments, we are mainly inter-

ested in the detection delay, that is the delay between

the true occurrence of the event and its detection by

our CUSUM algorithm. Since our models are stochastic

and our experiments are based on statistics there is in-

evitably some variance in the results. First we have con-

figured our algorithm in order to limit to the minimum

the occurrences of false alarm. As we can see in the re-

sults there is no detection before the true occurrence of

the event. There is however some detection delay. Since

our algorithm is based on the measure of energy con-

sumption, the event that we monitor (the start of action

A8) needs some time to produce effects on the energy

consumption. Indeed the change produced by this event

is quite subtle (a change from 80% CPU power to 100%

CPU power, when the action is running). Nevertheless

the algorithm always manages to raise a detection.

Looking more closely at the results from the differ-

ent mappings, we can observe that the best results are

obtained from mapping-8, a model in which action A8

(that runs on task T3) is executed alone on processor

P2. This result can be explained by the fact that A8

running alone on P2 is not perturbed by the preemp-

tion from other tasks, and therefore tends to produce

more deterministic effects on the energy consumption.

In Table. 3 we can see that mapping-8 also provides the

best maximum response time for task T3.

9 Conclusion

We have presented a software engineering approach that

generates model-based analysis tools for the schedula-

bility analysis of CPS. This approach is based on one

side on a set of formal models for describing complex

scheduling problems, and on the other on meta-models

of high-level specification languages to easily specify

these scheduling problems.

Our approach generates automatically domain-speci-

fic analysis tools based on the Cinco framework. These

tools allow to specify scheduling problems using graph-

ical components, and they can launch formal analyses

by calling model-checking tools such as Uppaal and

Uppaal SMC. We have also presented new statistical

model-checking algorithms that perform optimization

or runtime monitoring. These algorithms are based on

statistical tests like ANOVA and CUSUM. They are

implemented and embedded into our analysis tools.

Using this approach we have proposed two domain-

specific tools, one for hierarchical scheduling systems,

and one for multi-processor scheduling systems with en-

ergy constraints. We have experimented these tools on

two case-studies.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor.
Comput. Sci. 126(2), 183–235 (1994). DOI 10.1016/
0304-3975(94)90010-8

26 Mounir Chadli et al.

2. Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in
weighted timed automata. Theor. Comput. Sci. 318(3),
297–322 (2004). DOI 10.1016/j.tcs.2003.10.038

3. Basseville, M., Nikiforov, I.V.: Detection of Abrupt
Changes: Theory and Application. Prentice-Hall, Inc.
(1993)

4. Beauquier, D.: On probabilistic timed automata. Theor.
Comput. Sci. 292(1), 65–84 (2003). DOI 10.1016/
S0304-3975(01)00215-8

5. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J.,
Pettersson, P., Yi, W., Hendriks, M.: UPPAAL 4.0. In:
Third International Conference on the Quantitative Eval-
uation of Systems (QEST), pp. 125–126 (2006). DOI
10.1109/QEST.2006.59

6. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pet-
tersson, P., Romijn, J., Vaandrager, F.W.: Minimum-cost
reachability for priced timed automata. In: Proceed-
ings of the 4th International Workshop on Hybrid Sys-
tems: Computation and Control (HSCC), pp. 147–161.
Springer (2001). DOI 10.1007/3-540-45351-2 15

7. Boudjadar, A., David, A., Kim, J.H., Larsen, K.G.,
Mikuionis, M., Nyman, U., Skou, A.: Hierarchical
scheduling framework based on compositional analysis
using Uppaal. In: Proceedings of the 10th International
Symposium on Formal Aspects of Component Software
(FACS), Revised Selected Papers, LNCS, vol. 8348, pp.
61–78. Springer (2013). DOI 10.1007/978-3-319-07602-7
6

8. Boudjadar, A., David, A., Kim, J.H., Larsen, K.G.,
Mikuionis, M., Nyman, U., Skou, A.: Widening the
schedulability of hierarchical scheduling systems. In: Pro-
ceedings of the 11th International Symposium on For-
mal Aspects of Component Software (FACS), Revised
Selected Papers, LNCS, vol. 8997, pp. 209–227. Springer
(2015). DOI 10.1007/978-3-319-15317-9 14

9. Cassez, F., Larsen, K.G.: The impressive power of stop-
watches. In: Proceedings of the 11th International Con-
ference on Concurrency Theory (CONCUR), pp. 138–
152. Springer (2000). DOI 10.1007/3-540-44618-4 12

10. Cesta, A., Fratini, S., Orlandini, A., Finzi, A., Tronci,
E.: Flexible plan verification: Feasibility results. Fun-
dam. Inform. 107(2-3), 111–137 (2011). DOI 10.3233/
FI-2011-397

11. Chadli, M., Kim, J.H., Legay, A., Traonouez, L., Nau-
jokat, S., Steffen, B., Larsen, K.G.: A model-based frame-
work for the specification and analysis of hierarchical
scheduling systems. In: Proceedings of the Joint 21st
International Workshop on Formal Methods for Indus-
trial Critical Systems and 16th International Workshop
on Automated Verification of Critical Systems (FMICS-
AVoCS), LNCS, vol. 9933, pp. 133–141. Springer (2016).
DOI 10.1007/978-3-319-45943-1 9

12. Cimatti, A., Micheli, A., Roveri, M.: Dynamic controlla-
bility of disjunctive temporal networks: Validation and
synthesis of executable strategies. In: Proceedings of
the 30th AAAI Conference on Artificial Intelligence, pp.
3116–3122. AAAI Press (2016)

13. Cimatti, A., Micheli, A., Roveri, M.: Validating do-
mains and plans for temporal planning via encoding into
infinite-state linear temporal logic. In: Proceedings of
the 31st AAAI Conference on Artificial Intelligence, pp.
3547–3554. AAAI Press (2017)

14. David, A., Du, D., Larsen, K.G., Legay, A., Mikučionis,
M.: Optimizing control strategy using statistical model
checking. In: NASA Formal Methods: Proceedings of
the 5th International Symposium (NFM), pp. 352–367.
Springer (2013). DOI 10.1007/978-3-642-38088-4 24

15. David, A., Du, D., Larsen, K.G., Legay, A., Mikucionis,
M., Poulsen, D.B., Sedwards, S.: Statistical model check-
ing for stochastic hybrid systems. In: Proceedings of the
First International Workshop on Hybrid Systems and Bi-
ology (HSB), EPTCS, vol. 92, pp. 122–136 (2012). DOI
10.4204/EPTCS.92.9

16. David, A., Larsen, K.G., Legay, A., Mikucionis, M.:
Schedulability of herschel-planck revisited using statisti-
cal model checking. In: Proceedings of 5th International
Symposium ISoLA, Part II, LNCS, vol. 7610, pp. 293–
307. Springer (2012). DOI 10.1007/978-3-642-34032-1 28

17. David, A., Larsen, K.G., Legay, A., Mikucionis, M.,
Poulsen, D.B., van Vliet, J., Wang, Z.: Statistical model
checking for networks of priced timed automata. In: Pro-
ceedings of the 9th International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS),
LNCS, vol. 6919, pp. 80–96. Springer (2011). DOI
10.1007/978-3-642-24310-3 7

18. David, A., Larsen, K.G., Legay, A., Mikuionis, M.,
Poulsen, D.: Uppaal SMC tutorial. International Jour-
nal on Software Tools for Technology Transfer pp. 1–19
(2015). DOI 10.1007/s10009-014-0361-y

19. David, A., Larsen, K.G., Legay, A., Poulsen, D.B.: Sta-
tistical model checking of dynamic networks of stochastic
hybrid automata. ECEASST 66 (2013)

20. David, A., Rasmussen, J.I., Larsen, K.G., Skou, A.:
Model-based Framework for Schedulability Analysis Us-
ing Uppaal 4.1d. CRC Press LLC (2009)

21. Gronback, R.C.: Eclipse Modeling Project: A Domain-
Specific Language (DSL) Toolkit. Addison-Wesley (2008)

22. Henzinger, T.A.: The Theory of Hybrid Automata,
pp. 265–292. Springer (2000). DOI 10.1007/
978-3-642-59615-5 13

23. Jrges, S., Lamprecht, A.L., Margaria, T., Schaefer, I.,
Steffen, B.: A Constraint-based Variability Modeling
Framework. International Journal on Software Tools
for Technology Transfer (STTT) 14(5), 511–530 (2012).
DOI 10.1007/s10009-012-0254-x

24. Kim, J.H., Boudjadar, A., Nyman, U., Mikucionis, M.,
Larsen, K.G., Lee, I.: Quantitative schedulability analy-
sis of continuous probability tasks in a hierarchical con-
text. In: 18th International ACM SIGSOFT Symposium
on Component-Based Software Engineering (CBSE), pp.
91–100 (2015). DOI 10.1145/2737166.2737170

25. Kim, J.H., Legay, A., Larsen, K.G., Mikučionis, M.,
Nielsen, B.: Resource-parameterized timing analysis of
real-time systems. In: Hardware and Software: Veri-
fication and Testing: Proceeding of the 11th Interna-
tional Haifa Verification Conference (HVC), pp. 190–205.
Springer (2015). DOI 10.1007/978-3-319-26287-1 12

26. Kim, J.H., Legay, A., Traonouez, L.M., Boudjadar, A.,
Nyman, U., Larsen, K.G., Lee, I., Choi, J.Y.: Optimiz-
ing the resource requirements of hierarchical scheduling
systems. SIGBED Rev. 13(3), 41–48 (2016). DOI
10.1145/2983185.2983192

27. Lamprecht, A.L., Naujokat, S., Schaefer, I.: Variability
Management Beyond Feature Models. Computer 46(11),
48–54 (2013). DOI 10.1109/MC.2013.299

28. Legay, A., Delahaye, B., Bensalem, S.: Statistical model
checking: An overview. In: Proceedings of the First In-
ternational Conference on Runtime Verification (RV),
LNCS, vol. 6418, pp. 122–135. Springer (2010). DOI
10.1007/978-3-642-16612-9 11

29. Legay, A., Traonouez, L.M.: Statistical model checking
with change detection. Transactions on Foundations for
Mastering Change I 1, 157–179 (2016). DOI 10.1007/
978-3-319-46508-1 9

High-level Frameworks for the Specification and Verification of Scheduling Problems 27

30. Locke, D., Lucas, L., Goodenough, J.: Generic avionics
software specification. Tech. Rep. CMU/SEI-90-TR-008,
Software Engineering Institute (1990)

31. Margaria, T., Steffen, B.: Business Process Modelling
in the jABC: The One-Thing-Approach. In: Handbook
of Research on Business Process Modeling. IGI Global
(2009)

32. Margaria, T., Steffen, B.: Simplicity as a Driver for Agile
Innovation. Computer 43(6), 90–92 (2010). DOI 10.
1109/MC.2010.177

33. Montgomery, D.C.: Design and Analysis of Experiments.
John Wiley & Sons (2006)

34. Naujokat, S., Lybecait, M., Kopetzki, D., Steffen, B.:
CINCO: A Simplicity-Driven Approach to Full Genera-
tion of Domain-Specific Graphical Modeling Tools. Soft-
ware Tools for Technology Transfer (2017). To appear

35. Naujokat, S., Traonouez, L.M., Isberner, M., Steffen, B.,
Legay, A.: Domain-Specific Code Generator Modeling: A
Case Study for Multi-faceted Concurrent Systems. In:
Proc. of the 6th Int. Symp. on Leveraging Applications
of Formal Methods, Verification and Validation, Part I
(ISoLA), no. 8802 in LNCS, pp. 463–480. Springer (2014).
DOI 10.1007/978-3-662-45234-9 33

36. Oddi, A., Rasconi, R., Cesta, A.: A multi-objective large
neighborhood search methodology for scheduling prob-
lems with energy costs. In: 2015 IEEE 27th International
Conference on Tools with Artificial Intelligence (ICTAI),
pp. 453–460 (2015). DOI 10.1109/ICTAI.2015.74

37. Page, E.S.: Continuous inspection schemes. Biometrika
41(1/2), 100–115 (1954)

38. Phan, L.T.X., Lee, J., Easwaran, A., Ramaswamy, V.,
Chen, S., Lee, I., Sokolsky, O.: CARTS: A tool for com-
positional analysis of real-time systems. SIGBED Rev.
8(1), 62–63 (2011). DOI 10.1145/1967021.1967029

39. Shin, I., Easwaran, A., Lee, I.: Hierarchical scheduling
framework for virtual clustering of multiprocessors. In:
Euromicro Conference on Real-Time Systems, pp. 181–
190 (2008). DOI 10.1109/ECRTS.2008.28

40. Shin, I., Lee, I.: Periodic resource model for compositional
real-time guarantees. In: Proceedings of the 24th IEEE
International Real-Time Systems Symposium (RTSS),
pp. 2–13. IEEE Computer Society (2003)

41. Smith, D., Frank, J., Cushing, W.: The anml language.
In: In ICAPS Poster session (2008)

42. Steinberg, D., Budinsky, F., Paternostro, M., Merks,
E.: EMF: Eclipse Modeling Framework (2nd Edition).
Addison-Wesley (2008)

43. Wald, A.: Sequential Tests of Statistical Hypotheses. The
Annals of Mathematical Statistics 16(2), 117–186 (1945)

	Introduction
	Related Work
	Background
	Formalizing Scheduling Problems with Hybrid Automata
	Solving Scheduling Problems
	High Level Languages for Scheduling Systems
	Experiment with Hierarchical Scheduling Systems
	Experiment with Multi-processor Scheduling Systems
	Conclusion

