
Noname manuscript No.
(will be inserted by the editor)

Scalable and Precise Estimation and Debugging of the
Worst-Case Execution Time for Analysis-Friendly Processors
A Comeback of Model Checking

Martin Becker1 · Ravindra Metta2 · R Venkatesh2 · Samarjit Chakraborty1

This is a pre-print of an article published in the International Journal on Software Tools for Technology Transfer. The final authenticated version is
available online at: https://doi.org/TODO

Abstract Estimating the Worst-Case Execution Time (WCET)
of an application is an essential task in the context of devel-
oping real-time or safety-critical software, but it is also a
complex and error-prone process. Conventional approaches
require at least some manual inputs from the user, such as
loop bounds and infeasible path information, which are hard
to obtain and can lead to unsafe results if they are incorrect.
This is aggravated by the lack of a comprehensive expla-
nation of the WCET estimate, i.e., a specific trace showing
how WCET was reached. It is therefore hard to spot incorrect
inputs and hard to improve the worst-case timing of the appli-
cation. Meanwhile, modern processors have reached a com-
plexity that refutes analysis and puts more and more burden
on the practitioner. In this article we show how all of these
issues can be significantly mitigated or even solved, if we use
processors that are amenable to WCET analysis. We define
and identify such processors, and then we propose an auto-
mated tool set which estimates a precise WCET without un-
safe manual inputs, and also reconstructs a maximum-detail
view of the WCET path that can be examined in a debug-
ger environment. Our approach is based on Model Checking,
which however is known to scale badly with growing appli-
cation size. We address this issue by shifting the analysis to
source code level, where source code transformations can be
applied that retain the timing behavior, but reduce the com-
plexity. Our experiments show that fast and precise estimates
can be achieved with Model Checking, that its scalability can
even exceed current approaches, and that new opportunities
arise in the context of “timing debugging”.

E-mail: martin.becker@tum.de, Tel.+49-89-289-23556

1Chair of Real-Time Computer Systems, Technical University of Mu-
nich, Munich, Germany · 2Tata Research Development and Design
Centre, Pune, India

Keywords Worst-Case Execution Time · Debugging ·
Static Analysis · Deterministic Processor

1 Introduction

Many real-time systems need to provide strict guarantees
for response times. For instance, airbag deployment in a
car, collision avoidance systems in aircraft, and control sys-
tems in spacecraft have to meet deadlines for ensuring ve-
hicle and passenger safety. The need to analyze this class
of time-critical systems has been the main motivator [50]
for research on calculating the Worst-Case Execution Time
(WCET), which is the longest time a program takes to termi-
nate, considering all possible inputs and control flows.

This timing depends both on the structure of the pro-
gram, as well as on the processor it is running on. In the
most general case, the WCET problem is undecidable (e.g.,
because loop bounds have to be known), and hence only an
upper bound of the WCET can be determined through au-
tomatic analysis. Therefore, in a practical setting, the prob-
lem reduces to finding the tightest safe upper bound, and in
particular using a technique that scales well with program
complexity.

The techniques being applied today for analyzing the tim-
ing behavior, such as Integer Linear Programming (ILP) and
Abstract Interpretation (AI), or a combination thereof [59],
work very well for analyzing complex programs, but they ex-
hibit several weaknesses: (1) User annotations, such as loop
bounds, have to be provided [59,55], but are hard to obtain,
influence the tightness and may even refute the soundness
of the WCET estimate. Providing too large bounds leads to
a large overestimation, and too small bounds may yield an
unsafe estimate. As a result, providing safe and tight bounds
has become a research field on its own with a wide range
of different approaches, e.g., using Abstract Execution [25],

ar
X

iv
:1

80
2.

09
23

9v
1

 [
cs

.S
E

]
 2

6
Fe

b
20

18

https://doi.org/TODO

2 Becker et al.

Fig. 1 Overview of our WCET tools and their artifacts

refinement invariants [23] and pattern matching [28]. (2) Ex-
isting approaches work at the machine code level, where the
high-level information from the original program is hard to
extract. Variables are distributed over multiple registers, type
information is lost, loops and conditional statements can be
implemented in many different ways, and indirect addressing
can make it close to impossible to track data flows and func-
tion calls. As a consequence, overapproximations have to be
used, which usually result in pessimistic estimates. (3) Over-
approximations are also used to bound the control flow. As
a result, the control flow that would correspond to WCET
might not even exist in many cases, contributing further to
less tight estimates. (4) Finally, practitioners are facing an-
other challenge with today’s analysis tools. Once the WCET
of an application has been computed, the output offers little
to no explanation of how the WCET has developed, even
less of how it can be influenced through changes in the pro-
gram. Clearly, there is room for improvement in the process
of WCET estimation.

However, there exists an even more fundamental prob-
lem: Analysis cannot keep up with modern processor archi-
tecture. In recent years, the research community arrived at
the alarming conclusion that a sound analysis of modern pro-
cessors is almost impossible, since their complex microar-
chitecture requires considerably large models, which in turn
lead to a state-space explosion [44,48,39,33, Chapter 5.20].

In this article, we see this discouraging situation as a
chance to anticipate what improvements could be possible
in WCET analysis if processors would become more ana-
lyzable, as being proposed by various researchers [39,48].
Assuming that we have a “deterministic processor”, we ques-
tion the techniques being used today. Specifically, we show
that by virtue of more analyzable processors, WCET analy-
sis can build on approaches that have already been declared

dead for that purpose. The weaknesses in the estimation pro-
cess, such as the difficulty of providing flow annotations and
imprecision of the estimate, can be significantly reduced, and
the usability of WCET tools increased. Moreover, we get a
chance to realize a true “time debugging”, through which
practitioners get a handle on the timing behavior, in the same
way as functional behavior is being debugged today.
The Idea: Assuming that we have a processor that is amenable
to WCET analysis (we specify and identify such processors
later on), our approach builds on the following ideas:

– First, we propose WCET estimation by analysis of the
source code, instead of the machine code. This is enabled
by choosing analysis-friendly processors, and makes the
control flows easier to analyze, and the additional infor-
mation, such as variable types and their ranges, helps
cutting down the number possibilities to be analyzed,
thereby providing more precise estimates in shorter time.

– Second, we propose to use Model Checking instead of tra-
ditional ILP or AI techniques for path analysis, because
it can precisely determine the longest feasible path, as
it explores all paths in the program explicitly. Therefore,
we expect tighter estimates, and ideally we no longer
need flow constraints to be specified by the user, which
makes WCET analysis safer and easier to apply.

– Last but not least, we propose to leverage the counterex-
ample that is generated by the model checker, to recon-
struct the precise path that is taken in the WCET case,
and enable an interactive replay that shows not only the
path being taken and how time is accumulating, but also
the contents of all program variables.

However, there are three main challenges in realizing
our idea: First, microarchitecture–specific execution times
from the machine-level code need to be represented in the
source code. Towards that, a back-mapping from machine-
level code to source code has to be developed. Second, Model
Checking had been considered for WCET estimation ear-
lier, but it was found to scale poorly with program size [58,
40], and thus never been seen as a competitive technique
for WCET estimation. We show that this scalability prob-
lem can be mitigated by the mentioned shift of the analysis
from machine code to source code level, and that source
transformation techniques, such as program slicing and loop
summarization, can be used to reduce the complexity and
allow Model Checking to scale better. The third challenge is
to reconstruct the WCET path, such that it is accessible to
the user, and provides specific explanation why a path was
taken. That is not directly possible from the counterexample,
as this carries incomplete information. We therefore need to
devise an efficient path reconstruction technique.
Summary of our approach: The overall approach consists
of two steps, as depicted in Fig. 1. First, we estimate the
WCET using a model checker, then we reconstruct the WCET
path from the counterexample that is provided. The WCET

Scalable and Precise Estimation and Debugging of the Worst-Case Execution Time for Analysis-Friendly Processors 3

estimation – detailed in Fig. 3 – starts by establishing a map-
ping between machine code and source code, and evaluate
the instruction timing of the program. Given this information,
we annotate the source code with increments to a counter
variable, which is updated at the end of each source block ac-
cording to the instruction timing. The resulting code is then
sliced with respect to time annotations, to remove all com-
putations not affecting the control flow. In the next step, we
accelerate all loops that can be accelerated. Next, we over-
approximate the remaining loops with a large or unknown
number of iterations. Then, we perform an iterative search
procedure with a model checker to determine the WCET
value. We terminate the search procedure as soon as we find
a WCET estimate within the precision specified by the user.
Finally, the path reconstruction takes place in a debugger,
while forcing decision variables to the values given in the
counterexample, and through that reconstruct the precise
path leading to WCET, whilst collecting a timing profile
similar to gprof.

The contributions are as follows:

– Efficient application of Model Checking at source code
level to find the worst-case execution time of a C program
(Section 3.6).

– Application of source code transformation techniques to
reduce the complexity of the system subject to Model
Checking (Section 3.4.1ff).

– A debugger-based technique to reconstruct and replay
the precise control flow, all variable contents, and a tim-
ing profile of the path leading to the worst-case execution
time (Section 4).

– A prototype of a tool set called TIC which implements
our proposed approach.

– Experiments with the standard Mälardalen WCET Bench-
mark Suite, to assess the impact of the source code trans-
formations on scalability and tightness of the WCET es-
timates, in comparison to an ILP-based analyzer and a
cycle-accurate simulator (Section 5).

This article is an extension of our earlier work [42].

2 Technical Background

2.1 WCET Analysis

The goal of WCET analysis is to estimate the longest time a
(sub)program P takes to terminate, while considering all pos-
sible inputs and control flows that might occur, but excluding
any waiting times caused by sleep states or interruption by
other processes. In real-time systems, this estimate is subse-
quently used as an input for schedulability analysis, which
then models the influence of other processes and computes
an upper bound of the reaction time of P. The reaction time,
finally, should be shorter than any deadline imposed on P.

For example, the deadline for P could be given by the max-
imum time that is permissible to detect a car crash and acti-
vate the airbags. Consequently, the WCET estimate is a vital
metric for real-time systems, and thus needs to be safe (i.e.,
never smaller than what can be observed when executing P)
and tight (i.e., as close as possible to the observed value).

The WCET of an application is influenced by the pro-
cessor architecture, e.g., caches and pipelines, as well as
program structure. Therefore, WCET analysis usually com-
prises the following steps (not necessarily in that order):

1. Compilation: Cross-compile P for the processor it is
supposed to run on. The source code of P is translated to
machine instructions I, applying various optimizations.

2. Flow Analysis: Analyze I to discover all possible control
flows. This includes finding all potential branches in I
and storing them in a control flow graph G, including
their branch conditions.

3. Value Analysis: Calculate possible ranges for operand
values in I, to resolve indirect jumps and classify mem-
ory accesses into different memory regions (e.g., slow
DRAM vs. fast core-coupled memory).

4. Loop Analysis: Bound the control flow of G, that is,
identify loops and compute their maximum execution
counts based on branch conditions, and annotate the nodes
and edges in G with those execution counts.

5. Microarchitectural Analysis: Predict the timing effects
of caches, pipelines and other architecture-dependent
constructs, based on memory mapping and the paths in G.
Annotate nodes and edges in G with instruction timing
considering these features.

6. Path Analysis: Formulate a mathematical model based
on G and solve for WCET. The discovered control flow
graph G and the computed loop bounds are analyzed
together to find those paths along G which could produce
the longest execution time.

Steps 2 through 5 are often referred to as low-level analy-
sis, and step 6 as high-level analysis. The employed methods
typically involve a combination of Abstract Interpretation
and Linear Programming [58]: Flow analysis parses the ISA-
specific binary and builds the control flow graph, value and
loop analysis typically use Abstract Interpretation to deduce
variable values and loop counts that may influence control
flow or timing, microarchitectural analysis typically builds
on Abstract Interpretation to approximate cache and pipeline
effects, and finally path analysis is usually done by trans-
lating the annotated control flow graph into a constrained
optimization problem [38].

2.1.1 WCET-Amenable Processors

In this paper, we focus on “predictable” hardware, as recently
defined by Axner et al. [3]. In particular, the ideal processor

4 Becker et al.

for WCET analysis has a constant instruction timing. By this
we mean, that each instruction takes a constant and bounded
amount of time, and this time should neither depend on pro-
cessor states or operand values, nor be subject to additional
waiting states (e.g., pipeline stalls due to pending bus trans-
fers). We allow an exception for branch/jump instructions,
where variable instruction timing (e.g., taking a branch may
take more time vs. not taking it) can be covered in our flow
analysis. With such a WCET-amenable processor, it is nei-
ther necessary to perform a value analysis at register level,
nor do we require complex microarchitectural models. Al-
though these requirements seem unrealistic even for simple
processors, they do not automatically forbid the use of fea-
tures such as pipelines and caches, as we shall explain in the
following.

Pipeline Requirements. Processors may have a pipeline, but
the timing of successive instructions must not depend on
each other. Again, we allow one exception for conditional
jumps (decisions upon the control flow), where we model
the variable timing. Furthermore, the processor may make
use of bypass/operand forwarding, but potential bubbles are
assumed to be included in the instruction timing, or other-
wise avoided by the compiler; otherwise, an architectural
way around this problem are interleaved pipelines [17]. Fur-
thermore, there must be no out-of-order processing. Through
that, structural and data hazards need not be modeled, but
only control hazards at the granularity of basic blocks.

Cache Requirements. Processors may have instruction and
data caches, but we do not allow for cache misses. That is,
cache contents are selected at or prior to compile time and
kept static during execution, or deterministically loaded by
software at locations known at compile time. For example,
caches could be loaded every time a function is entered (as
in [54]), or explicitly through statements in the source code
(scratchpad memory). Cache locking [45] provides an alter-
native mechanism to reach the same effect (which, inciden-
tally, can improve the WCET [16]), and potentially qualifies
many more processors for our approach. With these cache
requirements, timing effects due to caches can be annotated
in the source code as part of our analysis, and do not have to
be modeled on instruction granularity.

On-Chip Bus Transfers. In many system-on-chip processors,
there are peripherals (e.g,. a UART peripheral) which are ac-
cessed from the core via on-chip buses. Since usually there
will be no model available for the behavior of the periph-
eral, we cannot support such accesses in a WCET analysis.
A WCET-amenable processor therefore should provide time
bounds for instructions performing such accesses. Conse-
quently, no model is necessary for bus arbiters and peripheral
states.

Multicore Processors. With the presence of hardware threads,
there could be interference caused by resource sharing. In

principle, there are techniques which provide some tempo-
ral isolation for the hardware threads, as described in [3].
We expect that a WCET-amenable processor has to imple-
ment such techniques, since otherwise the WCET problem
becomes even more intractable than it already is for today’s
monoprocessors. Consequently, we are only considering mo-
noprocessors here, assuming that an extension to multicore
processors can build on such isolation, and otherwise capture
high-level interactions such that they are visible in the source
code.

Amenable Processors. Due to the complexity and variety
of modern processor architectures, only a detailed review
on a case-by-case basis allows to identify existing proces-
sors which fulfill our requirements. Therefore, we can only
give a few select examples, and otherwise refer to our re-
quirements for what we wish future processor architectures
would look like, to keep WCET analysis tractable. Slight
overapproximations, such as using only the maximum exe-
cution time for time-variable instruction, might be applied
to use our approach even for processors that are not strictly
compliant. The processor family that we target in this paper,
the 8-bit Atmel AVR family [36], is a good example for that.
While there is a dependency of the instruction timing on the
operands in some cases – namely, slight variations in instruc-
tion timing for flash memory access – this is negligible and
can be overapproximated. Our results shown later in this arti-
cle justify this approach. Other processors that are a good fit
are the SPARC V7 (specifically the ERC32 model [56]), the
ARM7TDMI family [22], and the Analog Devices ADSP-
21020. Academic examples include the Java-Optimized Pro-
cessor [54], and the Precision Timed Architecture [39] with
minor modifications (namely, port-based I/O to avoid time
variances in load/store instructions, and absence of structural
hazards).

2.1.2 WCET Analysis at Source Code Level

Our main goal is to shift WCET analysis from the instruction
level to the source code level, where control flows are easier
to follow and type information is available. We expect two
profound effects from this shift. First, a model checker can
leverage the clearly visible control flow and type information
to perform an automatic path analysis, without requiring user
inputs. That should lead to tighter and safer estimates than
other approaches, such as ILP. Second, the complexity of
the analysis is reduced, since operations are represented in a
more high-level view.

A necessary prerequisite for such a source-level analysis
is to annotate the source code with the instruction timing,
as faithfully as possible. We do so by introducing a counter
variable [30] into the source code, which is a global variable
representing execution time that is incremented after each

Scalable and Precise Estimation and Debugging of the Worst-Case Execution Time for Analysis-Friendly Processors 5

statement according to the time taken thereof (see Fig. 4b for
an example).

Towards that, timing information needs to be extracted
from the executable code, whilst considering the microarchi-
tecture of the target processor, and then mapped back to the
source code in the form of assignments to our counter vari-
able at the correct locations. For a WCET-amenable proces-
sor, considering the microarchitecture boils down to model
variable instruction timing only at branch points. The time
annotations in the source code must therefore allow the en-
coding of such variable timing. In principle this is only possi-
ble precisely when the control flow of the instructions is also
mapped back to the source code. That is, conditional jumps
in the instructions must be lifted in the source code. Later, we
show that some overapproximations can be applied, in case
a back-mapping is not possible because a source equivalent
is lacking for some instructions.

In general, mapping the instruction timing back to the
source code means to establish a mapping from the instruc-
tions to source-level constructs. This can be difficult, because
compiler optimization may produce a control flow in the ex-
ecutable that is very different from that of the source. For
example, functions that are present at the source level may
be absent in the executable because of inlining. Vice versa,
new functions could be introduced in the executable which
have no direct match in the source code. For instance, it
is common for compilers to introduce loops and functions
to compute 64-bit multiplications and shifts, or to imple-
ment switch case statements as binary search or lookup ta-
bles. These kinds of transformations make it hard to auto-
matically map the basic blocks in the machine instructions
to the source code. An ideal compiler would keep track of
the mapping during the translation process, however, we are
not aware of any compiler doing so. Therefore, some over-
approximations must be applied to overcome these difficul-
ties, and they can go a long way in automating the back
mapping.

For the work in this paper, we have established a heuristic
mapping for the AVR gcc compiler with only little difficulty,
as explained later in Section 3.2. Other researchers have ac-
complished the same goal for different WCET-amenable pro-
cessors [32,52] even under some optimization, suggesting
that such a mapping usually can be established when only
considering the timing.

In the next section, we elaborate how Model Checking
can be used on this time-annotated source code to estimate
the WCET.

2.2 Model Checking

Model Checking [13] is a formal analysis technique used to
verify a property on a model. Given a model and a property,
a model checker – a tool implementing this technique – de-

termines if the model satisfies the property in every possible
execution. If the property does not hold, the model checker
produces evidence for the violation, called a counterexam-
ple. Model checkers perform reachability analysis over finite-
state transition systems, where the number of states is a prod-
uct of program locations and variable valuations at these
locations. Therefore, though Model Checking is sound and
complete for finite-state models, scalability is often an issue
for complex models.

It has been demonstrated that model checkers are useful
at computing the WCET of simple programs [32,37], but the
scalability issue has not been addressed before. The idea is
to take a program that is annotated with timing information,
translate it into a model and use a model checker to verify the
property “at program exit, execution time is always less than
X”, where X is a proposed WCET value. The model checker
acts as an oracle, telling if there exists any execution that
takes longer than this proposal. This process is repeated with
changing proposals, until we find the lowest upper bound
where no counterexample is generated. We will follow the
same approach here, but address the scalability issue by mini-
mizing the number of oracle queries, and also the complexity
of the individual queries.

For our experiments we have used the model checker
CBMC [12], due to its robustness and performance. It is a
bounded model checker which accepts models and properties
in the form of ANSI-C programs. Some important features
of CBMC that we use in WCET computation are:

– Assertions: CBMC allows expressing properties with as-
sertions. In our case, these assertions are of the form
assert(time<X), where the constant X is the proposed
WCET, and time denotes the counter variable reflecting
the time passing by in the program.

– Non-determinism: CBMC allows any of the program
variables to be assigned a non-deterministic value. This is
done using assignments of the form y=nondet(), where
nondet() is an undefined function having the same re-
turn type as y. This results in y being assigned a non-
deterministic value from the range specified by its type.

– Assumptions: CBMC allows the use of assume state-
ments to block the analysis of undesirable paths in a
program. A statement of the form assume(c) marks all
those paths infeasible for which c evaluates to false

at the execution of this statement. This feature can be
used to constrain the value domain of non-deterministic
assignments.

– Checking multiple assertions: CBMC allows multiple
assertions in the input program, which can be checked at
once using the --all-properties option. This option
uses an optimal number of solver calls to verify programs
with multiple assertions.

The technique we present here does not depend on CBMC
specifically. It could be replaced by any other model checker,

6 Becker et al.

possibly through an additional front-end that translates C
code into a model to work with (e.g., the CPROVER tools).

2.3 Program Slicing

Program slicing was first introduced by Mark Weiser in
1981 [57]. Given an imperative program and a slicing crite-
rion, a program slicer uses data flow and control flow analy-
sis to eliminate those parts of the program that do not impact
the slicing criterion. That is, it removes statements which do
not influence the control flow related to the criterion, and
do not change its value. The resulting program is called a
“program slice”, and behaves identically w.r.t. the slicing cri-
terion, but has a reduced complexity.

Slicing works by constructing and evaluating a Program
Dependency Graph (PDG), which captures the control and
data flow dependencies of a program. For example, Figure 2
shows the PDG corresponding to the code in Figure 4b. This
graph has two kinds of edges to denote dependencies: dashed
edges denote data dependence, and solid edges denote a con-
trol flow dependency. For example, the loop increment “i++”
is control-dependent on the loop condition “i < 35”, and
data-dependent on itself as well as on the loop initialization.

Given the PDG from Fig. 2 and a slicing criterion, we
start at the node that corresponds to the location of the cri-
terion, and traverse the PDG from this point until all the
root nodes of the graph are reached. Subsequently, we re-
move from the program all statements and expressions that
correspond to nodes that have not been visited during this
traversal. For our example program in Fig. 4b, the criterion
is the latest possible assignment to variable time in line 17,
and the corresponding PDG node is “ time += 5” (in the
lower right corner of the graph). When traversing the graph
from there, the outlined/red nodes (e.g., “out = acc/scl”) are
not reachable. Therefore, these parts of the program do not
impact the value of variable time at our location, and can
be safely removed from the program. The resulting program
slice is given in Fig. 4c.

2.4 Loop Acceleration

Loop acceleration describes the action of replacing a loop
with a precise closed-form formula capturing the effects of
the loop upon its termination. This has been shown to be
effective for Model Checking of source code [14,6].

For loop acceleration to be applicable, the loop should
have the following characteristics:

– The loop should iterate a fixed number of times, say n,
which could either be a constant or a symbolic expres-
sion. For example, the loop may execute 10 times or n
times, or x∗ y times and so on.

– The statements in the loop constitute only of assignments
and linear arithmetic operators, that is, first order polyno-
mial computations (and no higher order).

– The loop body consist of straight line code, that is, there
are no branching statements such as if-else statements
inside the loop body.

When a loop satisfies the above constraints, it is possible
to replace the loop with simple linear recurrence relations
that precisely compute the summarized effect of all the iter-
ations of loop on each of the assignments in the loop body.
For example, the for-loop in Figure 4c is replaced with the
block spanning lines 7 through 13 in Figure 4d.

2.5 Abstraction

Abstraction is a term used to describe a modification to an
input program in such a way that the resulting output pro-
gram allows more runs than the input program. That is, the
set of all possible program states at the end of the output
program, is a superset of all possible states at the end of
the input program. In other words, abstraction creates a safe
overapproximation of a program.

For instance, in Section 2.4, suppose a loop has only
the first two characteristics, but violates the last one, viz.,
the loop does have branching statements in the form of if-
else statements. Then, it is still possible to replace the loop
with an over-approximate formula. The most simple way to
achieve this is to replace it with a non-deterministic assign-
ment that allows for the computation of the result in any
arbitrary value. For example, the effect of the loop in Fig-
ure 5a on the variable ans is abstracted as shown in line 5
of Figure 5b. There we allow ans to take on any non-deter-
ministic value in its type range, which is a superset of all the
feasible values among all possible executions.

3 Finding the Worst-Case Execution Time

Our tool set TIC estimates the WCET at source level, with
the help of timing information that is extracted from the exe-
cutable code. The overall workflow is illustrated in Fig. 3 and
shall now be explained in detail. Given a C program, a corre-
sponding executable that results from cross-compilation for
the target, and information about the target architecture, TIC
does the following:

1. Estimates the time taken for each basic block in the ma-
chine code of the program.

2. Establishes a mapping from these basic blocks to a set
of source lines and instruments the C program with the
timing obtained in the previous steps.

3. Detects and prepares the handling of persistent variables,
i.e., the internal states of the program, since those may
have an impact on the control flow and thus on the WCET.

Scalable and Precise Estimation and Debugging of the Worst-Case Execution Time for Analysis-Friendly Processors 7

Param fir

acc += fir;

fir <<= 1;

Param scl

out = acc / scl;

acc = 0;

_time += 44;

_time += 21;

i = 1;

i < 35

i ++;

for

{}

_time += 36;

break;

_time += 24; _time += 737;

return out;

_time += 5;

return value

Global _time

Fig. 2 Program Dependence Graph of the program from Fig. 4c. Sliced statements are outlined/red

Compiler
avr-gcc

Timing
Instrumentor

custom

SlicerAccelerator

Abstractor

Assertion
Insertor

Output
Parser

Model Checker
cbmc

 C Source Basic Block Reader
Bound-T

precise
enough?

STOP

already
abstracted?

C source

New
WCET
range

timeout

WCET precise

W
C

ET
 im

p
re

ci
se

results

no

yes

Imprecise/no WCET

Basic block
Timing info

LABMC

Python script

original

time-
annotated

Fig. 3 WCET analysis using Model Checking

4. Applies source code transformations to eliminate all ir-
relevant data computations and to summarize loops.

5. Adds a driver function which represents the entry point
for the model checker and encodes the search for WCET
as a property.

6. Uses a model checker and an appropriate search strategy
to estimate the WCET with desired precision.

7. If the model checker does not scale, then it abstracts the
program and repeats the search.

The details of each of the above steps are given in the fol-
lowing sections. As a running example, we use a simplified
version of the fir benchmark from the Mälardalen WCET
benchmark suite.

3.1 Estimation of Basic Block Time ()

We first analyze the executable file produced by the target-
specific compiler to construct a control flow graph. Towards
that, we identify basic blocks. These are maximal sequences
of instructions that are free of branches, i.e., where the only
entry point is the first instruction and the only exit point
is the last instruction. Therefore, the basic blocks become
the nodes in our control flow graph, and the edges repre-
sent branches or function calls, labelled with their branching
condition. Finally, we determine the execution time for each
basic block by adding up the time taken by the contained
instructions, and annotate our nodes with this block timing.
Since we allow for branch instructions to have a variable
timing (e.g., the instruction may take longer if a conditional
branch is taken), we annotate the precise timing of the jump
instructions to the edges of the graph. Through that, there is
no overestimation due to such timing variations.

Our implementation re-uses parts of the Bound-T WCET
analyzer [31] to build the control flow graph and estimate
basic block times. We therefore have exactly the same inputs
for our approach and the ILP-based analysis in Bound-T.
Alternatively, a more generic binary analysis library could
be used, such as the Binary Analysis Platform [9].

8 Becker et al.

3.2 Back-Mapping and Annotation of Timing

The next task is to match the control flow of the machine
instructions with the control flow of the source code, and
back-annotate the basic block timing in the source code, in
the form of increments to a counter variable. The result shall
be a source code that is instrumented with timing, in the
following called instrumented program.

Specifically, here we annotate the basic blocks of the
source with the instruction timing as close as possible to
the corresponding source construct. That is, each maximal
sequence of statements that is free of branches (just like ba-
sic blocks at machine code level) is immediately followed
(or preceded, in the case of loop headers) by a timing an-
notation that reflects the execution time of the instructions
corresponding to that block.

First of all, an approximate and incomplete mapping
of machine instructions to source line numbers is given by
GNU’s addr2line tool. However, it is incomplete because
some instructions do not have a direct match in the source
code, and it is only approximate because it does not provide
column numbers. Complex expressions falling into multi-
ple basic blocks, such as loop headers or calls in compound
expressions, cannot be resolved with this information. We
therefore use this information as an initial mapping, and then
apply safe heuristics to complete the picture.

For the heuristics that manage the back-annotation of
the basic block (BB) timing information according to source
code, there are two cases to handle:

1. One-to-Many mapping. One basic block in the executable
corresponds to one or more continuous expressions in the
source code. This case is trivial to handle, all that needs
to be done is instrument the basic block before the last
expression with the corresponding timing information.

2. Many-to-one mapping. In these cases, several basic blocks
in the executable map to a single source expression. Typ-
ically, this case arises when a source expression splits
into different control paths in the machine instructions,
for example in case of a division or a bit shift operation
being converted into loops. In such cases, it is hard to
instrument the source code with this information, since
it would require translating back the loop into the source
first. To tackle this issue, we summarize the timing in-
formation from such multi-path instruction blocks, and
instrument the source code with its worst-case timing
value.

As an example, the timing of the source code in Figure 4a
was mapped as follows:

The table contains timing information of each basic block
along with the span of the block in the source code. This in-
formation is used to instrument the source code as shown
in Figure 4b: We introduce a global counter variable time,

Table 1 Mapping of basic blocks (BB) to souce code

Start line End line BB (#) Time Comment

1 3 1 44 including for init
3 3 2 21 for conditional
3 6 3 36 including for iter
7 7 4 24 before div
7 7 mult. 737 div block
7 18 6 5 after div

which is incremented through macro TIC by the correspond-
ing amount of time at the respective source locations.

Basic block 2 is an instance of a one-to-many mapping.
This block maps to the conditional part of the for-statement
on line 3 of Figure 4a, and therefore the annotation is in-
serted just before the statement on line 8 in Figure 4b. Simi-
larly, basic blocks 1 and 3 are one-to-many mappings. Basic
block 1 implements the start of the function line 1, as well
as the declarations and initialization on line 2 and also the
for-initialization block on line 3. All these source level lines
fall into a single source basic block. Similarly, the for-loop
increment on line 3 along with statements on lines 4 and
5 map to basic block 3. The instrumentation in this case is
placed in lines 6 and 12 respectively, in Fig. 4b.

The division assignment in line 7 is an instance of a
many-to-one mapping, i.e., many basic blocks, and therefore
also some conditional jumps, map to this single statement.
Here, these basic blocks include a compiler-inserted func-
tion call (for the long division). In particular, the compiler-
inserted function contains a loop, for which we do not com-
pute the timing precisely, but instead we over-approximate
this loop with its worst-case bound, and subsequently we use
a single timing annotation for the entire function. Thereafter,
the statement at line 7 can be represented by three parts; one
before the division (function call), one for division (func-
tion WCET) and the final one after the call. The resulting
three timing annotations are shown on lines 14, 16 and 17
Figure 4b.

This concludes the shift of WCET analysis from machine
code level to source level. At this point, we have an instru-
mented program, i.e., a source code carrying the execution
timing, ready to be analyzed for WCET. From now on, we
continue the analysis with the instrumented source code only.

3.3 Handling of Persistent Variables

A WCET estimation of a function f (including all its direct
and indirect callees) must consider all possible inputs to f ,
and from those derive the longest feasible paths. Such inputs
can be function parameters, but also referenced variables that
are persistent between successive calls of f (they can also be
seen as the hidden program state). In the C language, such
persistent variables are static and global variables that are
referenced by f or its callees.

Scalable and Precise Estimation and Debugging of the Worst-Case Execution Time for Analysis-Friendly Processors 9

1 int task(int fir , int scl) {
2 int i, out , acc=0;
3 for(i = 1 ; i < 35; i++) {
4 acc += fir;
5 fir <<=1;
6 }
7 out = acc/scl;
8
9

10
11
12
13
14
15
16
17
18 return out;
19 }

(a) Original code

1 #define TIC(t) (_time += (t))
2 unsigned long _time = 0;
3
4 int task(int fir , int scl) {
5 int i, out , acc=0;
6 TIC (44); // BB1
7 for(i = 1 ;
8 TIC (21), // BB2
9 i < 35; i++) {

10 acc += fir;
11 fir <<=1;
12 TIC (36); // BB3
13 }
14 TIC (24); // BB4
15 out = acc/scl;
16 TIC (737); // mult. divmodsi4
17 TIC (5); // BB6
18 return out;
19 }

(b) Instrumented

1 #define TIC(t) (_time += (t))
2 unsigned long _time = 0;
3
4 int task(int fir, int scl) {
5 int i, out, acc=0;
6 TIC (44);
7 for(i = 1 ;
8 TIC (21),
9 i < 35; i++) {

10 acc += fir;
11 fir <<= 1;
12 TIC (36);
13 }
14 TIC (24);
15 out = acc/scl;
16 TIC (737);
17 TIC (5);
18 return out;
19 }

(c) Sliced

1 #define TIC(t) (_time += (t))
2 unsigned long _time = 0;
3
4 void task(void) {
5 int i, _k0 , _k1;
6 TIC (44);
7 {
8 _k0 = 1;
9 i = 35;

10 _k1 = i - _k0;
11 TIC (21* _k1 + 36*_k1);
12 TIC (21);
13 }
14 TIC (24);
15
16 TIC (737);
17 TIC (5);
18
19 }

(d) Accelerated

Fig. 4 Example for source code instrumentation and transformations to compute the WCET of a function task

In this work we over-approximate the content of such per-
sistent variables by initializing them with a non-deterministic
value, as explained in Section 2.2. This guarantees that all
the feasible and infeasible values of the persistent variables,
as allowed by their data type size, are considered as inputs
to f . Thus, the WCET estimate for f is always a safe over-
approximation of the maximum observable execution time
of f . It is possible to remove (some of) the infeasible val-
ues either with manual inputs by users or by analyzing the
callees of f . This may lead to a tighter WCET, but we did
not explore these approaches as they are orthogonal to our
main work.

3.4 Source Transformation Techniques

The source code is now instrumented with its timing be-
havior, and ready to be analyzed for WCET. However, a
direct application of Model Checking to compute the WCET
of large and complex programs would not scale due to the
size of the generated model. The analysis time could quickly
reach several hours for seemingly small programs, and mem-
ory requirements may also quickly exceed the available re-
sources. Our next step, therefore, are source code transfor-
mations which retain the timing behavior, but reduce the pro-
gram complexity. This can be done effectively thanks to the
additional information available in the source code, such as
data types and clearly visible control flows. The transforma-
tions are executed sequentially in stages, which we explain
in the following. All three states require only little computa-
tional effort themselves, and therefore speed up the overall
process of WCET estimation.

3.4.1 Stage 1: Slicing (G#)

Slicing reduces the size of the program by removing all state-
ments that do not influence a certain criterion, as explained
in Section 2.3. For the specific case of WCET analysis us-
ing a counter variable, our slicing criterion is the value of

this variable upon program termination, through which state-
ments not impacting the counter variable are eliminated, and
WCET estimation becomes less complex.

As an example, consider again the instrumented program
in Figure 4b. Firstly, observe that line 15 is not needed to
compute timing, since the variable time has no data or con-
trol dependency on the variable out. Similarly, lines 10 and
11 do not impact timing computation and can be sliced away.
The sliced source for this example is shown in Figure 4c.

We used a program slicer that builds an inter-procedural
program dependency graph [47], capturing both intra-pro-
cedural and inter-procedural data and control dependencies.
It then runs one pass over this graph to identify statements
that impact the property to be verified and outputs the sliced
code. The slicer is a conservative one, which means that it
discards statements only when sure that the statements do not
affect the timing analysis. In all other cases, the statements
are preserved.

3.4.2 Stage 2: Loop Acceleration (I)

A major scalability obstacle in Model Checking are loop-
like constructs, since they have to be unrolled before anal-
ysis. They can therefore increase the program complexity
significantly. This problem can be solved by applying loop
acceleration, as described in Section 2.4. The resulting pro-
gram will have a reduced number of loops, and therefore
exhibit a reduced complexity.

As an example, consider the loop in Figure 4c: Here,
time is incremented in line 12 within a loop body through
TIC. The effect of this repeated increment of time, can be
summarized by the expression time = time + n ·36, where
n is the number of loop iterations. Line 11 in Figure 4d shows
the accelerated assignment. Note that two new variables k0

and k1 have been introduced, representing the initial value
of the loop counter (k0) and the number of loop iterations
(k1). After accelerating all variables, the loop in Figure 4c
can be removed and replaced by the statements given in Fig-
ure 4d lines 7 through 13. Here, lines 8 to 11 represent the

10 Becker et al.

1 for (i=1 ;
2 TIC (20), i<=len ;
3 TIC (8), i++) {
4 TIC (35);
5 if(ans & 0x8000) {
6 TIC (31);
7 ans ^= 4129;
8 } else {
9 TIC (23);

10 ans <<= 1;
11 }
12 }

(a) Branch inside loop

1 int _k0 , _k1;
2 _k0 = 1;
3 i = len + 1;
4 _k1 = i - _k0;
5 ans = nondet ();
6 TIC(_k1 *(20+8+35)+_k1 *31);
7 TIC (20);
8
9

10
11
12

(b) Abstracted loop

Fig. 5 Loop abstraction using LABMC

effect of all the 34 iterations of the loop. Line 12 captures the
time taken for evaluating the loop condition after the final
iteration.

As the accelerated program of Fig. 4d is free of (most)
loops, it is less complex than the instrumented program. For
this example, the program size (as determined by CBMC)
reduces from 325 steps for the instrumented program to only
60 steps for the accelerated program. Last but not least, note
that a prior slicing is important for loop acceleration; if we
had not sliced the instrumented program w.r.t. time, then
the above loop could not have been replaced, as the assign-
ment to acc on line 4 of cannot be accelerated due to the
assignment to fir on line 5.

TIC implements acceleration as proposed in [14], mainly
as they are shown to be effective on SVCOMP benchmark C
programs and industrial programs [6].

3.4.3 Stage 3: Loop Abstraction (3)

Finally, further reduction of complexity at the cost of pre-
cision can be accomplished by abstraction, as described in
Section 2.5. However, we tailor the abstractions by including
some specific time-approximations that preserve the WCET
estimate and reduce complexity even further.

Abstraction is used to get rid of loops that could not
be accelerated, such as the loop shown in Figure 5a: The
if-condition on line 5 depends on the variable ans, which
is updated both in the then-branch (line 7) and else-branch
(line 10). These assignments determine how many times the
then and else-branches would be executed. As these branches
depend on values updated within the loop, we cannot deter-
mine the number of times this branch would be executed,
and hence we cannot accelerate the loop.

The abstracted version of the loop in Figure 5a is shown
in Figure 5b. First, we introduce variables k0 and k1 to
capture the initial value of the loop counter (line 2) and the
value of it upon loop termination (line 4). Then, the variable
ans is assigned a non-deterministic value (line 5). This as-
signment, as explained in Section 2.2, allows ans to take any
value in the entire range of its data type, int. While in the
original program ans may take only a subset of int values,

we now allow it to take on any int value, and thus have
constructed an abstraction.

After this abstraction, the loop can now be accelerated as
explained before. Line 6 contains the accelerated assignment
to time. In this, k1*(20+8+35) accounts for the time in-
crements in Figure 5a corresponding to the loop condition
evaluation (line 2), loop counter increment (line 3) and the
first part of the loop body on line 4. Finally, line 7 captures
the time taken for evaluating the loop condition after the final
iteration.

Time Approximations. The trailing k1*31 in Fig. 5b on
line 6 summarizes the time taken by the if-statement forming
the remainder of the loop body, but it is somewhat special. It
contains a WCET-specific modification to the abstraction as
explained in Section 2.5: Since now the values of ans have
been abstracted, we can no longer reason about which branch
of the if-statement is taken in the WCET case. Therefore,
when abstracting such undecidable conditional statements,
we over-approximate the effects on our time variable by
only considering the longest branch (here: the then-branch in
line 6 with 31 clock cycles). Note that this does not change
the WCET estimate, because the model checker would have
picked the longer branch anyway, since the possible values
of ans include the case allowing the then-branch to be taken.
It is thus a safe modification to the abstraction in the context
of WCET analysis, which however reduces the complexity
of the program further.

If a loop contains unstructured code, such as break and
return statements, these are easily handled through a non-
deterministic Boolean variable that allows these statements
to be executed or not executed.

To implement abstraction, we again used the LABMC
tool [14]. However, the standard abstraction has been tailored
for the counter variable time, as explained above, to pick
the maximum time increment from the branches.

3.4.4 Further transformations

A number of other source transformations could be applied
to further reduce the program complexity and yet retain the
worst-case timing information. For example, after the back-
annotation of timing, the counter variable could be summa-
rized by merging increments belonging to the same source
block. Or, live variable analysis and loop folding could be
used to reduce the unwinding depth of a program [4]. How-
ever, all of this would make it harder to understand how
source-level statements contribute to timing, and thus has
not been investigated in the context of this work.

Furthermore, CBMC itself (more specifically, goto-in-
strument, a front-end of CBMC), features transformations
that can be applied to the source program, such as k-induction

Scalable and Precise Estimation and Debugging of the Worst-Case Execution Time for Analysis-Friendly Processors 11

for loops, constant propagation and inlining. While our tool-
chain supports using those CBMC features, none of them
have proven effective in reducing the complexity or analysis
time in our WCET framework. In particular, the loop accel-
eration included there takes longer than our entire WCET
analysis and does not improve the analysis time thereafter,
and “full slicing” even produces unsound results. Therefore,
our source transformations introduced above are justified,
because they have a proven impact on WCET analysis.

3.5 Adding a Driver Function

To run a model checker on the instrumented (sliced, acceler-
ated, abstracted) source code, we add a driver function to the
source that implements the following operations in sequence:

1. Initialize counter variable time to zero.
2. Initialize all input variables of the program to nonde-

terministic values according to their data type. This in-
cludes handling of persistent variables as described in
Section 3.3.

3. Call function f for which WCET shall be estimated.
4. Encode assertion properties to query for WCET (details

in Section 3.6).

The driver function is handed over as entry point to the
model checker.

3.6 Determining WCET

At this point, a model checker such as CBMC can verify
whether the counter variable time always carries a value
less than X after the program terminates. In this section we
explain how to choose candidates for X , such that we even-
tually approach the WCET.

A WCET candidate X is encoded as assert(time <=

X), and subsequently passed to the model checker. Unless
the model checker runs into a timeout or out of memory, only
two outcomes are possible:

1. Successfully verified, i.e., time can never exceed X .
Therefore, X is a valid upper bound for the WCET.

2. Verification failed, i.e., time may exceed X in some
executions. Therefore, X is a lower bound for WCET. If
a counterexample was generated, then it may contain a
value Y > X , which then is a tighter lower bound for the
WCET.

Our strategy is to use both outcomes to narrow down
on the WCET value from both sides: Initially, we start with
lower bound elower as zero, and upper bound eupper as a very
large value (intmax). We now place a number of assertions1

1 We have empirically chosen Nassert=10; placing either more or less
assertions usually take longer, because either the computational effort
is growing, or more iterations are required.

in the program, where each is querying one WCET candi-
date X . In particular, the candidates are equidistantly spaced
between elower and eupper; except for the first step, where we
use a logarithmic spacing to initially find the correct order
of magnitude. Subsequently, we invoke the model checker
to verify the assertions – in the case of CBMC, all at once.
For each assertion we obtain a result. We set elower as the
largest X where the assertion was failing (or, when a coun-
terexample with Y > X was generated, to Y), and eupper as
the smallest X where the assertion was successfully verified.
The search is now repeated with the new bounds, and stopped
when these upper and lower bounds are close enough to each
other, which can be interpreted as a precision goal for the
WCET estimate. The full algorithm is given in Algorithm 1.

Algorithm 1: Iterative search for WCET bound
Input: instrumented C source code C, required precision P
Output: WCET estimate eupper, s.t. eupper− elower < P.
begin

Nassert← 10 // number of assert per call

elower← 0
eupper← intmax
p = eupper− elower

1 while p > P and not timeout do
if eupper = intmax then

candidates← logspace(elower..eupper,Nassert)

else
candidates← linspace(elower..eupper,Nassert)

2 C′← insert asserts for candidates into C
3 results← model checker (C′)

for i = 1 to Nassert do
if verified(results[i]) then

eupper←min(eupper,candidates[i])

else
4 B← getCounterexample(results[i])

elower←max(elower,candidates[i],B)

5 p = eupper− elower

At any point in time the model checker could terminate
due to either a user-defined timeout or when it runs out of
memory. In such cases the algorithm returns the WCET esti-
mate as at-this-point tightest bound eupper that could be veri-
fied. In combination with the precision goal P, this gives the
user a fine control over how much effort shall be spent on
computing the WCET. For example, an imprecise and fast es-
timate may be sufficient during early development, whereas
a precise analysis may be only of interest when the WCET
estimate approaches a certain time budget.

The maximum number of search iterations can be deter-
mined in advance; in the worst case the number of search
iterations n is

n =

⌈
logNassert

(
eupper− elower

P
)

⌉
, (1)

12 Becker et al.

where eupper = intmax and elower = 0, if no a-priori knowl-
edge about the bounds of WCET is available. Usually the
number of iterations is lower, since the values found in the
counterexamples speed up the convergence (point 4 in Alg. 1).

Leveraging A-Priori Knowledge. In this article we assume
that no information about the timing behavior of the program
is available. If, however, the user has some knowledge on the
WCET bounds already, then these bounds can be tightened
by the algorithm, reducing the number of iterations. If an up-
per bound is known, then eupper can be initialized with that
bound, and the algorithm tightens it up to the required preci-
sion. Similarly, if a lower bound is known from measuring
the worst-case execution time on the target (e.g., from a high
watermark), then elower can be set to that measured value.

Implementation. The WCET search procedure was imple-
mented as a Python script. It further implements monitoring
of memory and CPU time as given in Table 4. As model
checker we used CBMC with various solver backends. How-
ever, other model checkers, such as cpachecker could be used
as alternatives with only little changes.

3.6.1 Target-Specific Analysis

Since the analysis takes place at source level, it is essential
to include target-specific information, such as word with,
endianness, interrupts, I/O facilities etc. If neglected, the be-
havior between the model in the analysis and the real target
may differ, leading to unsafe results. Most importantly, we
provide target-specific preprocessor definitions and the word
widths with the corresponding flags that CBMC offers. For
more details on how to include target-specific information
for the model checker, we refer the reader to [4], where the
specific pitfalls for CBMC have been explained. We further
employ checks during the WCET path reconstruction, which
can identify missing or incorrect target information.

3.7 Determining BCET

Our tool set can also be used to compute the Best-Case Exe-
cution Time (BCET), with minor modifications. Such a lower
bound of execution time may be of interest for running a
schedulability analysis of event-driven tasks, for example,
interrupts. Schedulability analysis then requires a minimum
inter-arrival time (MINT), i.e., the shortest possible time be-
tween two consecutive releases, to bound the processing load
that is generated by the task. If a software has no inherent
mechanism to limit the MINT of an event-driven task, then
the BCET can be computed and used in place of MINT.

4 Reconstructing the WCET Trace

From a software developer’s point of view, the WCET value
in itself (and its inputs) are of limited use. Without under-
standing the exact path and the decision variables leading
to the WCET, counteractive measures are limited to a time-
consuming trial-and-error approach. Instead, the following
information would be of high value for comprehension and
proactive mitigation of the WCET case:

1. The exact inputs leading to the WCET path,
2. a concrete walk-through of the worst-case path where all

variables can be inspected, to identify the timing drivers,
and

3. a timing profile of the worst-case path (how much time
was spent where?).

Especially a detailed walk-through of the worst-case path
is very important to understand why a certain path incurs
high timing cost. From our experience, it is not sufficient to
know only the WCET path. Oftentimes the specific values
of decision variables are important to understand why this
path was taken, but such information is not provided by any
tool that we know of. The user is therefore left with the
mental puzzle of finding an explanation how the presented
path came to be, and at times there can be very subtle and
unintuitive reasons. For example, in our prime benchmark,
we found that an integer overflow in a loop condition caused
the loop to terminate only after a multiple of its explicit
bound. In turn, this overflow depends on the word width
of the processor being used (more details about this case
are given in Section 5.3). In such a case a developer would
most likely struggle to explain why the loop did not obey to
its bounds, and thus not understand the WCET estimate. In
summary, the WCET trace that we want to reconstruct shall
be detailed enough to inspect not only the control flow and
its timing, but also all data that is relevant for the specific
path being taken. Towards that, we want to leverage the final
counterexample from Alg. 1 to provide a maximum-detail
explanation of how the WCET can be reached.

The challenge in reconstructing the WCET path from a
counterexample is illustrated in Figure 6, for the same pro-
gram from Fig. 4b introduced earlier. The goal is to annotate
the corresponding control flow graph in Fig. 6a with execu-
tion counts at both its nodes (basic blocks in source code)
and its edges (branches being taken). However, the coun-
terexample produced by the model checker only contains
sparse information as shown in Fig. 6b. Typically, it only
provides a subset of the visited code locations, variable as-
signments that are relevant for branches being taken, and
assignments to time oftentimes occur only at the end of the
counterexample, depending on which solver backend was
chosen. In fact, the counterexample is only guaranteed to
provide exactly one value for the variable time, which is at
the location where the WCET assertion is failing.

Scalable and Precise Estimation and Debugging of the Worst-Case Execution Time for Analysis-Friendly Processors 13

exit

BB#1

begin: line 14 col 3

end: line 18 col 13

?

BB#2

begin: line 9 col 15

end: line 9 col 18

BB#4

begin: line 8 col 7

end: line 9 col 13

?

?

BB#3

begin: line 10 col 7

end: line 12 col 15

?

?

BB#5

begin: line 5 col 7

end: line 7 col 12

?

entry

?

(a) Control flow graph

total time=2769

exit

BB#1

begin: line 14 col 3

end: line 18 col 13

count 1

1

BB#2

begin: line 9 col 15

end: line 9 col 18

BB#4

begin: line 8 col 7

end: line 9 col 13

count 35

?

1

BB#3

begin: line 10 col 7

end: line 12 col 15

?

?

BB#5

begin: line 5 col 7

end: line 7 col 12

count 1

1

entry

1

(b) Typical output of model checker

total time=2769

exit

BB#1

begin: line 14 col 3

end: line 18 col 13

time 766

count 1

total 766

1

BB#2

begin: line 9 col 15

end: line 9 col 18

count 34

BB#4

begin: line 8 col 7

end: line 9 col 13

time 21

count 35

total 735

34

1

BB#3

begin: line 10 col 7

end: line 12 col 15

time 36

count 34

total 1224

34

34

BB#5

begin: line 5 col 7

end: line 7 col 12

time 44

count 1

total 44

1

entry

1

(c) Fully reconstructed path

Fig. 6 Reconstruction problem of WCET path for example code from Figure 4a

It is clear that the counterexample provided by the model
checker is insufficient as an explanation for the WCET path,
much less for values of arbitrary variables. It could carry
even less information than what is provided by an ILP-based
approach, where execution counts for all basic blocks on the
WCET path are available. Without such data, neither can we
compute a timing profile in the presence of function calls,
nor is it possible for the developer to understand or even
walk through the WCET path.

Therefore, towards reconstruction of the WCET path, we
have to interpolate the control flow in between the locations
given in the counterexample, and deduce variable valuations
that are not available (most importantly, variable time).
There are two fundamental approaches for reconstructing
the path:

1. By Analysis: Use SMT, AI, or a similar technique to fill
the “location gaps” of the counterexample, and to con-
clude about assignments of all (possibly sliced) variables.
This is expected to be computationally complex and not
precise.

2. By Execution: Execute the code with the worst-case in-
puts. An “injection” of critical values beyond inputs is re-
quired, for example to all persistent variables. This could
be compiled into the application through look-up tables
that contain the known assignments from the counterex-
ample, or done dynamically during execution.

It should be clear that an execution is preferable in terms
of precision and speed, however, there are some challenges
in such an approach:

1. Using an Interpreter: Whereas the most logical choice,
only few good interpreters available for the C language.
Most of them have limited “stepping” support (e.g., cling
uses JIT; which means stepping would inline/flattening
functions), and in general they are slow. There would be
no support for target-specific code, such as direct pointer
dereferencing. Often only a subset of the language is
implemented.

2. Instrumented Execution: Compile and run the applica-
tion, preferably on the target for maximum fidelity, while
capturing an execution trace which subsequently could
be replayed. Capturing a complete trace including vari-
able valuations could produce a huge amount of data and
incur memory and timing overhead. If the program under
analysis is supposed to run on a different target (cross-
compilation), then it might not be feasible to capture the
trace for reasons of memory limitations or missing inter-
faces.

We decided for an execution-based approach, since this
is computationally less complex than analysis, and thus ex-
pected to be faster. The problem of insufficiently granular
interpretation and trace capturing has been addressed as fol-
lows: Our path reconstruction is accomplished by means of
executing the application in a debugger, whilst injecting vari-
able valuations from the counterexample when necessary.
By choosing a debugger as replay framework, replaying the
WCET has the potential to become intuitive to most devel-
opers, and thus could be seamlessly integrated into the soft-
ware development process. Furthermore, debuggers are read-

14 Becker et al.

loop

Compiler
host or target

C source

Automatic Replay

time-
annotated

C stubs
for nondet

Executable

Debugger
GDB/Mi

Replay
Engine

counter-
example

break at nondet_()*

continue

Breakpoint hit

nondet
lookup

set return value

continue

Program terminated

short nondet_short() {}

int nondet_int() {}

. . .

WCET reached

control
flow

Fig. 7 Automatic WCET replay using a debugger

ily available for most targets, and some processor simulators
even can be debugged like a real target (in our case, simulavr
allows this). And, finally, word widths, endianness etc, are
bound to be correct, in contrast to any approach based on
an interpreter. However, to use these advantages to full ca-
pacity, the replay process must be of low overhead, and able
to be fully automated to not require any additional inputs
compared to traditional debugging.

4.1 Preparing Replay

Our proposed replay process is illustrated in Figure 7. We
start by compiling the instrumented (or sliced, accelerated,
abstracted) program with additional stubs (empty functions)
for each “nondet” function (see section 2.2). Then, we load
the program into a debugger. Depending on which compiler
was chosen, this could either be the host’s debugger, or the
one for the target (connecting to either an actual target or to a
simulator). Since in all cases the replay process is similar, for
the rest of this paper we do not distinguish anymore between
a host-based replay, a simulator or a real target.

Finally, it should be mentioned that the replay path is
based on the time instrumentation in the sources, which
is why the path always exists unless the model checker is
handed wrong target-specific settings (e.g., word widths), or
unless the analysis is unsound.

4.2 Injection of Nondeterminism

To inject the critical variables as found by the model checker,
we set breakpoints on the inserted nondet stubs and start the
execution. As soon as the debugger reaches one of our break-
points (additional user breakpoints for stepping may exist
and are not interfering), we automatically inject the correct
value as follows: First, we query the current call stack to
identify the caller, i.e., the source location of the nondet call.
Knowing the location of the designated nondet assignment,
the value that leads to WCET is extracted from the coun-
terexample, and subsequently forced as a return value in the
debugger. As an effect, the call to the empty nondet stub re-
turns the critical value suggested by the model checker. After
that, the execution is resumed automatically.

However, there exists a second source of non-determin-
ism, besides the explicit “nondet” function calls. In the C lan-
guage, every uninitialized variable that is not static nor at file
scope, initially carries an unspecified value. Therefore, every
such uninitialized local variable is considered by the model
checker as non-deterministic input, as well. Since no explicit
“nondet” function calls exist, the breakpoints inserted ear-
lier do not allow us to inject values into those variables. As
a solution, we first identify all uninitialized local variables
from the parse tree of the C source (declarations without
right-hand sides, mallocs, etc.), and then insert additional
breakpoints for every such variable that is mentioned in the
counterexample. Through this, injecting values into unini-
tialized variables is handled in the same way as the nondet
function calls (not shown in the Fig. 7 for clarity).

With this technique, the injection of the critical variables
from the counterexample is accomplished without any user
interaction, and without embedding the assignments in the
program itself (no memory overhead). Furthermore, this live
injection allows for additional checks during the execution,
such as matching the assignment with the actual call location,
and ensuring that the execution path does not deviate from
the analysis.

4.3 Identification of WCET-Irrelevant Variables

The valuations of some variables do not have an effect on
the control flow, and thus do not influence the timing2. As
explained before, such variables are identified and sliced
away during the analysis phase. In particular, both our pre-
processing (slicing, acceleration, abstraction), as well as the
model checker itself remove such variables. Consequently,
the counterexample does not include valuations for variables
that have been found irrelevant for the WCET.

As an effect, any location having a non-deterministic as-
signment that is visited during replay and and does not have

2 Note that this only holds true for cache-less processors.

Scalable and Precise Estimation and Debugging of the Worst-Case Execution Time for Analysis-Friendly Processors 15

Table 2 Timing profile obtained from WCET path of adpcm decode
benchmark

%total cycles %self cycles calls self/call total/call name

100.0 69,673 35.3 24,593 1 24,593 69,673 decode
13.7 9,522 13.7 9,522 2 4,761 4,761 upzero
13.2 9,168 13.2 9,168 2 4,584 4,584 uppol2
12.9 8,984 12.9 8,984 2 4,492 4,492 filtez
9.3 6,472 9.3 6,472 2 3,236 3,236 uppol1
5.5 3,854 5.5 3,854 2 1,927 1,927 filtep
5.1 3,576 5.1 3,576 2 1,788 1,788 scalel
2.5 1,758 2.5 1,758 1 1,758 1,758 logscl
2.5 1,746 2.5 1,746 1 1,746 1,746 logsch

an equivalent assignment in the counterexample, indicates
that the respective assignment is irrelevant for WCET. We
highlight such irrelevant statements to the developer, to help
focus on the drivers for the worst-case timing, and not get
distracted by surrounding code.

4.4 Collecting a Timing Profile

When larger programs are being analyzed, it may quickly be-
come impractical to step through the whole path to find the
main drivers of the worst-case execution time. To help the de-
veloper identify interesting segments that need to be stepped
through in the debugger, we also generate a timing profile
of the WCET path, showing which location was visited how
often, and how much time was spent there.

Towards that, we capture the complete control flow on
the fly during the replay. Since the timing profile is espe-
cially useful for larger programs, capturing the control flow
during the debugger execution must scale well with growing
path length and thus cannot be realized by a slow step-by-
step execution in the debugger. Instead, we set a hardware
watchpoint on our counter variable. That is, every time this
variable is modified, the debugger pauses execution and no-
tifies the replay engine of the new variable content. Since
hardware watchpoints are realized through exceptions, the
debugger can run without polling and interruptions between
the watchpoints, and therefore the control flow is captured
with very little additional delay. Considering that the counter
variable is embedded at least once per source block, the se-
quence of all reached watchpoints (their valuation and loca-
tion), represents the actual control flow in the source code.
As a result, a timing profile similar to the outputs of the well-
known tools gprof or callgrind can be reconstructed and
intuitively used by the developer. Table 2 shows the resulting
flat WCET timing profile for the adpcm decode benchmark.
Note that additionally to the shown per-function metrics, the
execution times are also available at the even finer granu-
larity of source blocks, which helps pinpointing the timing
bottlenecks to specific source blocks within the functions.

5 Experiments

We applied TIC to the Mälardalen WCET Benchmark Suite
[24] to evaluate the performance and the tightness of WCET
estimates computed with TIC. As a target, we used the At-
mel ATmega 128 [36], for which WCET analyzers (Bound-
T [31]) and simulators (simulavr) are freely available and can
be used as a baseline for evaluating TIC. This target satis-
fies our requirements for WCET-amenable processors, since
there is practically no timing dependence on the operands.

The complete set of experimental data (instrumented,
sliced, accelerated and abstracted sources, as well as com-
plete traces of the WCET search) is available at https:
//github.com/TRDDC-TUM/wcet-benchmarks.

5.1 Setup and Reference Data

Selected Benchmarks. We selected a representative subset
consisting of 17 Mälardalen WCET benchmarks, such that
all program properties, e.g., multi-path flows, nested loops,
arrays and bit operations were covered, except for recursion
and unstructured code (they cannot be handled by the basic
block extractor, yet), and floating point variables (cannot be
handled by the timing instrumentor, yet). However, these
missing properties in principle can be addressed; this is not
a limitation of our approach.

Host Platform. We conducted our experiments on a 64bit
machine with a 2.7GHz Intel Xeon E5-2680 processor and
16GB RAM, using CBMC 5.6 as model checker. As CBMC’s
backend we have used a portfolio of solvers, consisting of
minisat (built-in), mathsat (v5.3.10/GMP), cvc4 (v.1.5pre/-
GLPK-cut), z3 (v.4.5.1) and yices (v.2.5.1/GMP). We stopped
the analysis as soon as the first solver provided a WCET esti-
mate. Solvers finishing within the same second were consid-
ered equally fast. All programs have been analyzed sequen-
tially, to minimize interference between the analyses and
with third-party background processes. The computational
effort (CPU time, peak memory usage) are derived from the
Linux system call wait3, and thus expected to be accurate.

Bounding the Control Flow. In most cases our approach
could bound the control flow automatically, and no manual
input was required. However, in two benchmarks, namely bs
and insertsort, CBMC could not find the bounds automati-
cally and we were not able to accelerate or abstract either,
and thus bounds had to provided. This occasional need for
manual bounds is discussed in detail in Section 6.3.

In contrast, we frequently had to provide loop bounds
for the ILP-based WCET analyzer. Since in an ILP approach
the bounds cannot be verified, they have to be specified cor-
rectly and tightly in the first place. Towards this, whenever
the ILP-based estimation required manual loop annotations,
we have taken the deduced bounds from our approach and

https://github.com/TRDDC-TUM/wcet-benchmarks
https://github.com/TRDDC-TUM/wcet-benchmarks

16 Becker et al.

handed them to the ILP-based analyzer. Consequently, both
techniques had similar preconditions for their WCET estima-
tion.

Simulation Baseline. All benchmarks were also simulated
with the cycle-accurate ISS simulavr, with the goal of hav-
ing sanity checks for the WCET estimates, and also to get an
impression on their tightness. Whenever possible, the simu-
lation was performed with those inputs triggering the WCET.
In other cases, we used random simulations in an attempt
to trigger the WCET, but naturally we cannot quantify how
close to the actual WCET we have come (e.g., in nsichneu).
Hence, the simulation results can only serve as a lower bound
for the actual WCET (i.e., no estimate must be less) and as
an upper bound for the tightness (i.e., the overestimation of
the actual WCET is at most the difference to the simulation
value).

5.2 Results

Tables 3 and 4 summarize our experiments. We evaluated our
technique of WCET estimation for each source processing
stage (Section 3.1) of the selected benchmarks, that is:

1. instrumented with execution times (),
2. sliced w.r.t. timing (G#),
3. loops accelerated (I) and
4. abstracted (3).

In Table 3 we compare the tightness of our WCET esti-
mate with that of Bound-T, an ILP-based WCET analyzer.
We computed the tightest possible WCET, i.e., precision P =
1, while allowing for a (relatively long) timeout of one hour,
to show how our source transformations influence the tight-
ness. Cases denoted with timeout are those where no solution
was found within that time budget. Finally, the columns de-
noted as ∆ represent the difference between the respective
WCET estimates and simulation value, i.e., they give an up-
per bound of the tightness for both techniques.

Table 4 summarizes the computational effort of the esti-
mation process for a practical time budget of one minute and
a precision of 10,000 clock cycles. The table also quantifies
the speedup we have achieved with our source transforma-
tion techniques. Again we denote timeout in cases where the
WCET could either not be bounded within the time budget,
or not up to the required precision. The column prog.size
shows the number of program steps found by CBMC. Cases
where the program size is not given (viz., in fir and prime)
indicate a state-space explosion. That is, the model checker
never finished constructing the state space before the time-
out. The column iter denotes the number of iterations of
the search procedure (Algorithm 1) and the column time de-
notes the total time taken by the search procedure in seconds.
Cases with a valid program size and a timeout (e.g., bsort100

Table 3 Tightest WCET estimates per method and benchmark (timeout
1 hour)

Simulation ILP-based Model Checking

benchmark observed WCET ∆% stage WCET ∆%

adpcm-decode 48,168 71,575 +48.6 69,673 +44.6
G# 69,673 +44.6
I 69,673 +44.6
3 69,673 +44.6

adpcm-encode 72,638 113,154 +55.8 110,901 +52.7
G# 110,901 +52.7
I 110,901 +52.7
3 110,901 +52.7

bs 401 496 +23.7 410 ≈0

bsort100 788,766 1,553,661 +97.0 timeout –
3 797,598 +1.1

cnt 8,502 8,564 ≈ 0 8,564 ≈0
G# 8,564 ≈0
3 8,564 ≈0

crc 129,470 143,137 +10.6 130,114 ≈0
G# 130,114 ≈0
I 130,114 ≈0
3 143,426 +10.8

fdct 17,500 17,504 ≈ 0 17,504 ≈0
G# 17,504 ≈0
I 17,504 ≈0

fibcall 1,777 1,781 ≈ 0 1,780 ≈0
G# 1,780 ≈0
I 1,780 ≈0

fir 5,204,167 5,690,524 +9.3 timeout –
G# timeout –
I 5,476,023 +5.2

insertsort 5,472 5,476 ≈ 0 5,476 ≈0

jfdctint 14,050 14,054 ≈ 0 14,054 ≈0
G# 14,054 ≈0
I 14,054 ≈0

matmult 1,010,390 1,010,394 ≈ 0 1,010,394 ≈0
G# 1,010,394 ≈0
I 1,010,394 ≈0

ndes 459,967 470,499 ≈ 0 timeout –
G# timeout –
3 465,459 ≈0

ns 56,409 56,450 ≈ 0 56,413 ≈0
3 56,450 ≈0

nsichneu 33,199 timeout – timeout –
3 75,369 +127.0

prime 27,702,943 30,343,092 +9.5 timeout –
G# timeout –
3 30,146,785 +8.8

ud 35,753 93,487 +161.5 38,992 +9.1
G# 38,992 +9.1
I 38,992 +9.1

 instrumented, G# sliced, I accelerated, 3 abstracted, ∆ upper bound for tightness

) indicate that the solver backend could not verify the given
properties within 10 minutes.

Finally, some benchmarks in Tables 3 and 4 are lacking
a sliced, accelerated or abstracted version. This occurs when
the respective source transformation technique did not result
in any changes to the source code. For example, bsort100
remained unmodified post slicing and acceleration and thus
does not have a dedicated sliced or accelerated version.

5.3 WCET Path Reconstruction

We were able to reconstruct and replay the WCET path for
all benchmarks. The time taken for the debugger-based re-
play is in the range of a few seconds in all cases. For a better

Scalable and Precise Estimation and Debugging of the Worst-Case Execution Time for Analysis-Friendly Processors 17

Table 4 Complexity and computational effort of WCET search for
precision of 10,000 clock cycles and timeout of 1min

benchmark stage fastest solver(s) iter. time [s] mem [MB] prog.size

adpcm-decode C 3 7.4 356 3,537
G# C 3 2.8 120 2,416
I C 3 2.9 121 2,134
3 C 3 2.5 123 1,676

adpcm-encode C – timeout 15,853 4,911
G# C 3 10.4 168 4,131
I C 3 8.5 173 3,986
3 C 3 2.6 136 1,846

bs A, B, C, D, E 1 0.2 117 303

bsort100 timeout – timeout 13,259 1.57 ·105

3 A, C 5 2.3 114 5,833

cnt C 3 22.1 102 3,238
G# C 3 23.8 100 2,212
3 A, B, C, D, E 3 0.3 104 373

crc A 3 4.6 407 41,398
G# C, D 3 4.7 367 40,648
I A, C, D 3 4.1 268 39,812
3 A, B, C, D, E 3 1.2 103 11,142

fdct A, B, C, D, E 3 0.6 101 990
G# A, B, C, D, E 3 0.3 96 183
I A, B, C, D, E 3 0.3 97 99

fibcall A, B, C, D, E 1 0.1 96 592
G# A, B, C, D, E 1 0.1 96 496
I A, B, C, D, E 1 0.1 96 79

fir timeout – timeout 6,718 −
G# timeout – timeout 16,322 −
I A 5 18.5 1,574 50,488

insertsort C 1 2.3 127 1,663

jfdctint A, B, C, D, E 3 0.5 101 787
G# A, B, C, D, E 3 0.3 96 168
I A, B, C, D, E 3 0.7 98 100

matmult B 5 22.7 773 70,769
G# A 5 6.0 661 62,367
I A, B, C, D, E 5 1.6 101 9,638

ndes timeout – timeout 40,867 75,932
G# timeout – timeout 40,877 75,797
3 A, C 2 0.9 167 5,727

ns C 3 28.3 827 22,399
3 C 3 6.5 200 8,272

nsichneu timeout – timeout 25,491 23,244
3 A, B, C, D, E 3 0.5 120 85

prime timeout – timeout 22,052 −
G# timeout – timeout 23,532 −
3 A, B, D, E 5 0.7 99 158

ud D 3 1.2 101 2,382
G# A, B, C, D, E 3 0.4 98 1,881
I A, B, C, D, E 3 0.4 99 1,380

Step: instrumented, G# sliced, I accelerated, 3 abstracted
Solvers: A=minisat, B=mathsat, C=yices, D=z3, E=cvc4

usability, we enabled our replay engine to output the trace as
a CBMC-like counterexample, but additionally augmented
with all assignments to time. Recall that the complete in-
formation about variable time implicitly carries the con-
trol flow, because each block in the source code increments
this variable. As an effect, the graphical user interface can
load this augmented counterexample, and map back the coun-
terexample to the control flow graph, as well as compute a
timing profile at a granularity of block- or function-level.

Identifying a Timing Hotspot. As an example, we show the
resulting annotated control flow graph for the ud benchmark
in Figure 8. There, we have applied a heatmap over timing,
where red marks the timing hotspots. At first glance, it is
apparent that there exists one source block forming a timing

bottleneck, which consumes about one third of the overall
execution time.

The ud program performs a simple form of LU decom-
position of a matrix A, and subsequently solves an equation
system Ax = b. The timing bottleneck in this program oc-
curs in the LU decomposition, but interestingly not at the
innermost or most frequently executed loop, but at a location
where a division occurs. With this, the reconstruction of the
WCET path made it easy to spot that for the chosen target, a
long division incurs a high execution cost (see also the inline
annotations TIC), and that this is the single driver for the
WCET of this program.

Discovering a Bug. The replay of the WCET path can also
reveal defects in the program. Such a defect has been found
in the prime benchmark on a (simulated) 32-bit target, where
initially the WCET estimate just seemed suspiciously high.
After reconstructing the WCET path, an unexpected implau-
sibility showed up. The path was indicating that the follow-
ing loop had been executed 349,865 times:

for (uint i=3; i*i <= n; i+=2) {

if (divides (i, n)) return 0;

...

}

where n is a formal parameter of the surrounding function
that shall be checked for being a prime number. At first
glance it seems like the loop can only execute 65,536 times:
the maximum 32-bit unsigned integer n that the user can pro-
vide is 4,294,967,295, therefore the loop must execute at
most

⌈√
4,294,967,295

⌉
= 65,536 times to evaluate whether

that number is prime. Thus, we replayed the WCET path
in our debugger, setting a watchpoint on i. It turned out
that the expression i*i will overflow for some specific val-
ues of n> 4,294,836,225, since this would require at least
i≥ 65,536, which, when squared, lies beyond the maximum
representable unsigned integer and thus overflows. Specifi-
cally, this happens for only those numbers which are also not
divisible by anything less than 65,536, hard to replicate if
only the path and no values would be available. As an effect,
the loop keeps running until finally the 32-bit modulo of i*i
is larger than n before the loop terminates (which luckily
is always the case). Clearly, this is a defect in the context
of this program, resulting in a WCET which was orders of
magnitude higher than it should have been3. Thanks to the
ability of interactively replaying the WCET path and inspect-
ing variable values, such defects can be easily spotted.

Top Ten Longest Paths. In principle our approach could also
provide the “top 10” longest paths in the program. This could
be done by repeating the overall WCET estimation, while ex-
cluding already known paths from the solution, and decreas-
ing the WCET proposal to the Model Checker if no coun-

3 Note that this code works correctly for 16-bit targets, as ∀n ∈
uint16,∃i≤ 255, s.t. divides(i,n).

18 Becker et al.

Fig. 8 WCET path reconstruction for benchmark ud with identified timing hotspot

terexample can be found. However, then this would become
an explicit enumeration of paths, typically exponentially in
the size of the program [38], and would still leave us with
the question of how the program’s overall probability distri-
bution looks like (unless we repeat our estimation until every
possible path length has been found). We did not investigate
this further, as this clearly would not scale well with program
size.

6 Discussion

Using our approach, the WCET could be estimated for all
benchmarks, within a few seconds, including a timing pro-
file and path replay of the WCET case. Through that, not
only did we provide an estimate without minimal user in-
puts, but also we generate useful insights into the WCET
path, enabling a true “time debugging”. As we elaborate on
the following pages, source transformation techniques had
a noticeable impact on scalability of Model Checking, and
thus paved the way to use Model Checking for WCET anal-
ysis. As a result, the estimates are comparable to those of an

ILP-based technique, but with less effort and more feedback
for the user.

6.1 Tightness

The tightness of TIC’s WCET estimate can be expected to be
almost exact when Model Checking is allowed to explore all
paths (i.e., no abstraction applied), and becoming less tight
when abstractions are applied, comparable to an ILP-based
solver where only loops are bounded with no further flow
analysis. In fact, Table 3 shows that our WCET estimates
often are even tighter than an ILP-based approach.

For the adpcm benchmarks, there is still a lot of room
for improvement. The computed WCET, even on the orig-
inal version, is likely a large overestimation, as suggested
by the simulation. The reasons for this are discussed in the
following.

Scalable and Precise Estimation and Debugging of the Worst-Case Execution Time for Analysis-Friendly Processors 19

6.1.1 Intrinsic Sources of Overapproximation

During the back translation of timing information from ma-
chine instructions to source code, overapproximations have
been used as described earlier. We argue that these over-
approximations are common even when using the existing
ILP-based techniques. During back translation, wherever
there is a difference between the source blocks and basic
blocks in the machine instructions, we over-approximate that
part machine instructions into one block. However, these
over-approximations are usually small, since these differ-
ences are often formed by few and small basic blocks, amount-
ing to only a few clock cycles per iteration.

Without any abstractions, TIC will exhaustively explore
all feasible paths in the (instrumented) source code, and
therefore not make additional overapproximations. Thus, when
identifying the longest path, TIC will never be worse than
an ILP-based path search. In fact, the ILP solver could only
perform better, if the control flow could be bounded exactly
and then encoded in the ILP formulation.

A typical case is that of crc. When no abstractions were
applied, our estimate is around 10% tighter than that of
Bound-T (130,114 vs. 143,137), which we tracked down to
infeasible paths being considered by Bound-T: In crc, there
exists a loop containing an if-else statement, whereas the
if-part takes more time than the else-part. Bound-T, not an-
alyzing the data flow and dependency between these two
parts, always assumes the longer if-branch is taken. How-
ever, this is only feasible 70% of the time, whereas the other
30% the shorter else-branch takes place. Without additional
user annotations or a flow analysis, ILP cannot discover this
dependency and thus must overestimate the WCET.

Consequently, TIC performs better than an ILP-based ap-
proach when abstractions are left aside, if the program com-
plexity had been reduced enough by slicing and acceleration.
For the remaining cases, where abstraction was necessary
to make Model Checking scale, we now must discuss the
overestimation caused thereby.

6.1.2 Overestimation due to Abstraction

Abstraction overapproximates the control and data flows,
trading analysis time for tightness. When applying loop ab-
straction, the abstracted code forces the model checker to
pick times along the branch with the longest times, cutting
out shorter branches. Thus, we compute the WCET assuming
that every branch inside the loop will always take the worst
local choice, which may be infeasible. Naturally, this leads
to an overestimation of WCET. However, ILP-based analyz-
ers usually over-approximate with similar strategies when
bounding the control flow. The result is a WCET estimate
comparable to that of an ILP-based analyzer.

Again, consider crc as a typical case. When no abstrac-
tions were applied, our estimate was around 10% tighter than

that of Bound-T. When applying abstractions, the estimate
became very close to the estimate of Bound-T, whereas the
complexity was cut down to approximately 25%.

Surprisingly, in some benchmarks, namely adpcm-decode
and encode, cnt, fdct, jfdctint and ud, the loop abstraction did
not lead to a higher WCET estimate. This is because in all
the loops with branches in these programs (a) either there
is an input to the program that forces the branch with the
highest time to be taken in all the iterations of the loop, or
(b) there is a break or return statement that gets taken in the
last iteration of the loop. These cases match the exact pes-
simistic loop abstraction. In short, these loops do exhibit the
pessimistic worst case timing behavior.

An extreme overestimation due to abstraction seems likely
(reminder: the simulation is not guaranteed to contain the
worst-case) for nsichneu, where the estimate is 127% higher
than the observed WCET. This benchmark has only one loop
with two iterations, but its simulated WCET is far away from
the observed WCET. Upon inspection, we found that this
loop has 256 if-statements in a single sequence, many of
which do not get executed in every iteration. However, our
loop abstraction pessimistically assumes that all the 256 if-
statements do get executed in each iteration, which explains
the overestimation in this case. Note that this benchmark
could not be solved with Bound-T, at all.

Consequently, TIC performs close to and often slightly
better than an ILP-based approach when abstractions are
used. However, this result depends on the way control flows
are bounded before the ILP solver is called, and thus it might
not hold true when AI and ILP are combined.

6.2 Reduction of Computational Effort

Our claim was, that the scalability issues of Model Checking
could be mitigated with appropriate source preprocessing
techniques, which we expected to be particularly effective
at source code level. The experimental data clearly confirms
that claim. In all cases, the analysis time – usually in the
range of minutes up to unsolvable size for the original ver-
sion – could be reduced to an acceptable time of at most a
few seconds, which makes TIC an interesting alternative to
existing WCET estimation techniques.

However, taking the analysis time (computational effort)
as measure of the computational complexity can be mislead-
ing. The time to solve the WCET problem in our approach
consists of two fundamental parts: 1. building the SAT/SMT
model and 2. solving the model. Whereas the time to build
the model is often proportional to the size of the program
(number of steps as found by CBMC), the time for solving
the model cannot be predicted trivially by looking at pro-
gram metrics. In particular, we have found no correlation
between any of program size, cyclomatic complexity, num-
ber of statements, number of loops and the analysis time.

20 Becker et al.

The reason for this is that the analysis time of a SAT or SMT
problem can vary significantly between two problems of the
same size or between two solvers, due to the nature of mod-
ern solver algorithms [15]. For instance, compare adpcm-
encode (program size 4,911 steps, timeout after 1 minute)
with ndes3 (program size 5,727 steps, solved in less than
one second).

Therefore, we used a portfolio of solvers to reduce the
effect of solver-specific strengths and weaknesses, and we
consider the program size (last column in Table 4) as a prime
indicator for the complexity of the program. With this, we
show in the following that the complexity of a program can
be significantly reduced with our techniques. Nevertheless,
note that the solving time also points towards our interpre-
tation. In all benchmarks we were able to greatly reduce
the computational effort with each source processing stage.
In particular, several benchmarks could not be solved in a
reasonable amount of time without our proposed process-
ing, viz., adpcm-encode, bsort100, fir, ndes, nsichneu and
prime. The memory usage suggests, that a state-space explo-
sion prevents building the model. Their program size could
be reduced to a tractable size with acceleration and abstrac-
tion. Moreover, the benchmark nsichneu could not even be
processed with Bound-T, since bounding of the control flow
had failed because of too many variables and flows (out of
memory after running for several hours). After applying our
abstraction, the WCET of this benchmark could be success-
fully estimated with Model Checking, within one second of
analysis time.

The overall impact of source transformations is quanti-
fied in Figure 9, where the program size after the respective
processing stage is compared to the instrumented program
and over all benchmarks. It can be seen, that on average each
additional processing stage reduces the program complexity;
in average we reach 78% of the original complexity after
slicing, 63% after acceleration, and 22% after abstraction.
Furthermore, it can be seen that in the worst case slicing and
acceleration have no effect, whereas abstraction has a much
more consistent impact on the complexity.

Note that the numbers in Figure 9 exclude those bench-
marks where a timeout had occurred for the instrumented
version, i.e., the original program without our source pro-
cessing. Here, the program size could not be determined.
For each of those benchmarks, we have additionally spent
24 hours of processing to determine the program size, but
without success.

As explained in Section 3.6, further reduction of the anal-
ysis time can be reached if a lower bound for the WCET is
already known. This is often the case for safety-critical sys-
tems, where run-time measurements (like high watermarks)
are common practice. The user would initialize the search
algorithm with an observed WCET, thereby reducing the
analysis time. However, this does not change the structure of

sliced accelerated abstracted

0

0.2

0.4

0.6

0.8

1

G# I 3

R
el

at
iv

e
pr

og
ra

m
co

m
pl

ex
ity

Fig. 9 Box plot showing reduction of program complexity of after
different source transformation stages, relative to original program.
Whiskers are denoting the mix/max values, diamonds the average value

the model under analysis, and therefore is not considered a
complexity reduction.

6.3 Safety and Usability

Most programs can be analyzed automatically, without any
user input. However, two programs, namely bs and insertsort,
could not be bounded automatically. The loop bounds could
not be deduced by CBMC, which shows up as an infinite loop
unwinding phase. In such cases, the user has to specify an
unwinding depth, at which the loop unwinding stops. CBMC
then places an assertion at this point, which proves that the
given depth is sufficient. In case of an insufficient bound,
the model checker identifies this as a failed property. In case
of a too generous bound, the unwinding may take longer,
but WCET is not overestimated. Therefore, unsound or too
imprecise flow constraints do not refute (or even worsen)
the WCET estimate, which makes our approach safer than
others.

Another contribution to the safety of our toolchain are
the run-time checks introduced during WCET replay. As
discussed earlier, a wide range of problems can be discovered
by this, including confounding of input data and failure to
specify the details of the target architecture.

Regarding the usability of our toolchain, we argue that
the results of a source-level WCET analysis, especially the
possibility to replay the worst-case path, should increase the
level of acceptance for WCET analysis in a practical setting.
As opposed to machine code or assembly, developers can
be expected to be proficient in understanding a source code,
for its higher level of abstraction and higher readability. By
offering the possibility to replay the WCET path through an
ordinarily looking debugging session – which can be con-
trolled in the usual ways of stepping, inspecting and resum-

Scalable and Precise Estimation and Debugging of the Worst-Case Execution Time for Analysis-Friendly Processors 21

ing – it becomes intuitive to walk through the path an identify
the drivers of WCET. This is also supported by generating
a profiler-like timing profile of the worst-case path, which
is another, well-known view at a program, and a quick entry
point for WCET inspection. A developer can identify those
parts of the WCET path that need an in-depth inspection, and
subsequently dive into debugging.

In summary, our approach is inherently safer than exist-
ing approaches for its protection against unsound user input,
and it ensures that developers need no additional tools or
training to analyze and understand the WCET path of a pro-
gram.

6.4 Correctness

The WCET estimate computed by TIC will always be an
upper bound of the actual WCET. This is easy to see as in
each step in TIC, we either over-approximate or preserve the
timing information of machine instructions. In step 1, while
the execution time computed for each basic block in TIC
(Section 3.1) is precise, the back-annotation done in Section
3.2 over-approximates the time in the case where multiple
basic blocks map to one source line. Therefore, at the end
of this step, the WCET of the machine instructions is either
preserved or over-approximated in the source.

The slicing removes only those statements that do not
impact the values of the counter variable, thus preserving the
WCET as per the instrumented program.

In the next stage, acceleration preserves the computa-
tion of the counter variable and abstraction potentially over-
approximates it. So, at the end of this step, too, WCET is
either preserved or over-approximated. Finally, the iterative
search procedure of Algorithm 1 terminates only upon find-
ing an upper bound of the WCET as per the accelerated or
abstracted program. Thus, if TIC scales for the input pro-
gram, it will provide a safe upper bound for the WCET.

6.5 Threats to Validity

Microarchitectural Features. We presented our results for
a simple microcontroller. Modern processors, such as ARM
SoCs, have architectural features like caches and pipelines,
and memory-mapped I/O. As shown in [11], some of these
features can be modeled in C in the form of appropriate con-
straints. However, adding such constraints would increase
the complexity of the C code. Thus, while TIC can be ex-
tended to handle for these features, the additional constraints
may hinder its scalability. In such a situation, we can elimi-
nate infeasible paths using Model Checking (as in [11]) and
reduce the search space of the model checker (as in [29])
while applying our technique. Furthermore, when the in-
struction timing depends on the value of operands, a register

value analysis becomes necessary. For example, to determine
the timing of a load instruction, the specific address decides
whether this is cached, or it becomes a slow bus access, pos-
sibly with waiting states, or a fast access to a core-coupled
memory. At the moment, we have not addressed how to carry
over such a value analysis to the source code level.

Back-Annotation of Timing. The mapping of temporal infor-
mation from machine instructions to source-level is a rather
technical problem. A compiler could be build which enables
complete traceability in at least one direction. Plans for such
a compiler have been made in [51], unfortunately, we are
not aware of any implementation, which leaves us with the
task of matching instructions to source code. Without any
mapping information, this poses an optimal inexact graph
matching problem. Specifically, when compiler optimization
is off, then we expect this to boil down to a graph minor test
(where the edit sequence represents our wanted mapping and
the source graph is fixed), known to have a polynomial com-
plexity in the number of nodes [53]. With optimization on,
however, it is unclear how the matching could be established
in general. We therefore have to rely on some mapping infor-
mation from the compilation process (as given by addr2line
in our toolchain), and apply techniques to complete the map-
ping.

Our mapping strategy assumes that the program is com-
piled using gcc 4.8.1 for the 8bit AVR microprocessor fam-
ily [36], with standard compilation options. If we change
the target-compiler pair or the compilation options, then
our backmapping strategy may not work. Since it was es-
tablished on a case-by-case basis, our strategy might not be
complete, but it was extensive enough to cover all cases in
the Mälardalen benchmarks. In general, compiler transfor-
mations are a common problem for all WCET techniques.
And, to the best of our knowledge, there has been no generic
solution to this problem, except to provide support for each
architecture, compiler and transformation individually, often
in the form of pattern matching [59].

Compiler-Inserted Code. The compiler may insert low-level
procedures, such as loops for arithmetic shifts or code for
soft-floating point operations. These are not covered in our
current tool. We believe that this is only a matter of tooling.
If the source code for such computations is not available,
then TIC requires a pre-computed library of the WCETs of
low-level functions, to facilitate the backmapping for the
low-level loops.

7 Related Work

WCET Analysis. An excellent survey about techniques and
tools for WCET analysis was published by Wilhelm et al. [59].
We refer the reader to this article for a profound overview on

22 Becker et al.

the topic. A commonly used set of benchmark programs for
WCET analysis are the Mälardalen WCET benchmarks [24].

Model Checking for WCET Analysis. There have been stud-
ies highlighting the inadequacy [58,40] of Model Checking
for the task of WCET computation, concluding that is does
not scale for WCET estimation. Experiments in [40] con-
firmed that model checkers often face run-time- or memory-
infeasibility for complex programs, whereas the ILP tech-
nique can compute the WCET almost instantly. However,
because they used the same benchmarks that we are using
here (on a very similar processor) and we come to the oppo-
site conclusion, this confirms that our shift of the analysis to
the source code indeed mitigates the scalability issue.

Further, there have been instances where a model checker
was used as a subanalysis or optimization step in WCET es-
timation. Chattopadhyay et al. [11] propose the use of AI for
cache analysis and Model Checking for pruning infeasible
paths considered by AI. Marref et al. [41] show automatic
derivation of exact program flow constraints for WCET com-
putation using Model Checking for hypothesis validation.
Another proponent for Model Checking in WCET analysis
is found in Metzner [43], who has shown that it can im-
prove cache analysis, while not suffering from numerical
instabilities, unlike ILP. However, none of these approaches
addressed the scalability issue of Model Checking.

WCET Analysis at Higher Levels of Abstraction. One of the
first works proposing WCET analysis at source level was
published by Puschner [50]. He introduced the notion of tim-
ing schemata, where each source-level construct is assigned
a constant execution time. Many constraints have been im-
posed on the programming language, as well as annotation
constructs to aid analysis. A similar approach was described
shortly after that in [46]. In fact, the processors they used
were very comparable to the one used in our experiments.
However, in their case, all loops must be statically bounded,
and overestimation is a direct result of assigning a constant
execution time to source level constructs (since the compiler
may translate the same construct very differently, depending
on the specific variable types and values).

Holsti [30] proposed modeling execution time as a global
variable, and to use a dependency and value analyses (Pres-
burger Arithmetic) to determine the value of the variable
at the end of a function and meanwhile exclude infeasible
paths. Similar to our approach, slicing and loop accelera-
tion were suggested. However, he showed by example that
only some infeasible paths can be excluded by his method,
whereas we can precisely detect all infeasible paths. Further-
more, his approach seems to have scalability issues, which
unfortunately are not detailed further due to a lacking set
of experiments. Kim et al. [32] experimented with comput-
ing WCET using Model Checking at source level on small
and simple programs, but without addressing the scalability
issues, nor providing experimental data.

Puschner [49] later computed WCET on an AST-like
representation of a program, where flow constraints are ex-
pected to be given by the user, and assuming that the com-
piler performs the back-mapping of actual execution times to
the source code. He used ILP to compute the longest path. It
should be noted that any ILP-based approach cannot handle
variable execution times of basic blocks without large over-
approximation, whereas Model Checking can encode such
properties with non-determinism and range constraints. Fur-
thermore, complete path reconstruction is not possible either
with that approach.

WCET analysis has also been proposed at an interme-
diate level in between source code and machine code, sim-
ilarly because of easier analysis of data and control flow.
Altenbernd [2] et al. developed an approximation of WCET
which works on an ALF representation of the program, with-
out analyzing the executable. They automatically identified
a timing model of the intermediate instruction set through
execution and measurement of training programs. As an ef-
fect, the analysis is very efficient, but the result is a possibly
unsafe WCET estimate.

Program Slicing, Acceleration and Abstraction. Hatcliff [27]
was the first to suggest the use of program slicing to help
scale up Model Checking. In this work, we have build on
the acceleration and abstraction capabilities of LABMC [14].
Different abstractions for improving the precision of WCET
computation or determining loop bounds have been explored
by other researchers. Ermedahl et al. [19] show precision
improvement in WCET computations by clustering basic
blocks in a program. Knoop et al. [34] use recurrence rela-
tions to determine loop bounds in programs. Blazy et al. [7]
use program slicing and loop bound calculation techniques
to formally verify computed loop bounds. Černý et al. [10]
apply a segment abstraction technique to improve the pre-
cision of WCET computations. While in these abstractions
could be used in some situations, in general they are either
too restrictive because they do not work for a large class of
programs, or they fail to address the scalability issue aris-
ing in the context of using a model checker to compute the
WCET. Al-Bataineh et al. [1] use a precise acceleration of
timed-automata models (with cyclic behavior) for WCET
computation, to scale up their IPET technique. However,
these ideas are not readily applicable to loop acceleration
in C programs in the absence of suitable abstractions.

Timing Debugging. Understanding how the worst-case tim-
ing is produced is very important for practitioners, but there
is only a small body of work on this topic. Reconstructing
the inputs leading to WCET has been done before by Er-
medahl [18], and is perhaps the closest work in respect to
the degree of detail that is provided on the WCET path. Our
approach, however, uses entirely different methods. While
Ermedahl applies a mixture of static analysis and measure-
ments to perform a systematic search over the value space

Scalable and Precise Estimation and Debugging of the Worst-Case Execution Time for Analysis-Friendly Processors 23

with WCET estimation, and only provides the inputs to the
WCET path, our approach is leveraging the output of the
model checker that witnesses the WCET estimate, performs
only a single run of the application, and reconstructs the
WCET inputs, as well as the precise path being taken to-
gether with a timing profile. It is thus less expensive and
better integrated with the actual WCET estimation.

Making the worst-case (and best-case) timing visible in
the source code is a rather old idea, first appeared around
1995 [35]. The authors highlighted WCET/BCET paths in
the source code, allowing the user to visually see the WCET
path and how time passes on that path. This work was later
extended in [60] to apply genetic algorithms for minimizing
WCET, and still later to introduce compiler transformations
to reduce the WCET (this is, however, beyond the scope of
this article). A similar, but interactive tool was presented in
[26]. This was also a tree-based approach for it was focusing
on analysis speed instead of precision. All these approaches
did not provide tight results, as they were based on timing
trees which did not consider data dependencies; they can
only reconstruct the WCET path w.r.t. locations and time
spent there, but lack a specific trace including variable values.
Furthermore, trivial loop bounds had to be given manually
by the user.

The commercial WCET tool RapiTime [5] estimates the
timing of software, and enables the user to identify timing
bottlenecks at source-code level. For that, the tool provides a
simple path highlighting, but also allows predicting what
would happen if a specific function would be optimized.
However, the tool is measurement-based and thus cannot
give any guarantees. The commercial tool AbsInt [20] pro-
vides time debugging capabilities at the assembly level, e.g.,
a call graph and a timing profile. It is also capable of mapping
back this timing information to a high-level model, where
the building blocks of the model are annotated with their
contribution to the WCET. Further, the tool allows to make
changes to the model, and compare the results with the pre-
vious ones, essentially enabling a trial-and-error approach
to improve the WCET. Finally, a similar toolset that realizes
a generic formal interface between a modeling tool and a
timing analysis tool has been presented in [21], but relies
on external tools for the actual analysis. All of these tools
enable timing debugging to some extent, but they cannot pro-
vide a specific trace with values, or even allow the user to
interactively step through the same. In contrast, our WCET
path has the maximum level of detail, and can be inspected
in a well-known debugger environment, thus offers deeper
and more intuitive explanation of how the WCET path came
to be.

Possible Enhancements. One approach that could be com-
bined with ours to further speed up Model Checking, is that
of Henry et al. [29]. They also employ an SMT solver to
compute the WCET (just like our back-end), but they pro-

pose additional constraints to have the solver ignore infeasi-
ble paths. This helps to further increase the scalability, but
under the assumption that the programs are loop-free, or that
loops have been unrolled. This is therefore an enhancement
that fits well our approach. Brandner [8] computed time criti-
cality information on all parts of a program, to help focus on
optimizing paths that are close to WCET, and not only those
on it. However, this work only provides a relative ranking of
all code blocks (not absolute numbers on time consumption),
and requires an external WCET analyzer that annotates code
blocks with individual WCETs. It can therefore be viewed
as another possible extension for our work.

8 Concluding Remarks

We have shown that Model Checking can be a competitive ap-
proach to Worst-Case Execution Time Analysis, in particular
when an analysis-friendly processor is used. The estimates
are comparable to and sometimes even more precise than
estimates of the widely-used ILP technique, but with several
practical advantages. Additional to a precise estimate, we
also reconstruct and replay the WCET path, while providing
profiling data and a well-known debugger interface, allow-
ing the user to inspect arbitrary details on the WCET path at
both source code and machine code level. Although our ap-
proach does not entirely remove the need for manual inputs
from the user, WCET analysis is no longer prone to human
error coming from there, because the model checker also
verifies whether such inputs are sound. If too small bounds
are given, an error is flagged. Too large bounds, on the other
hand, only influence the analysis time, but not the outcome.
In summary, we therefore arrive at a safer WCET analysis
and a more intuitive understanding of the outcome.

An essential part of our approach is the shift of the anal-
ysis from machine instructions to the source code. Through
this, data and control flows can be tracked more precisely,
and source code transformation techniques can be applied to
summarize loops, to remove statements not related to timing,
and to over-approximate larger programs. As a result, the
analysis time can be reduced significantly, making Model
Checking a viable approach to the Worst-Case Execution
Time problem.

What we have shown in this article is merely the first
step of reintroducing Model Checking to Worst-Case Exe-
cution Time Analysis. However, there is substantially more
work to be done to catch up with the proven approaches of
combining AI and ILP: Here, we assumed processors with al-
most constant instruction timing. While certainly processors
for real-time applications should be simplified to address the
self-made and acknowledged problem of processors becom-
ing more and more unpredictable, the approach presented
here must be extended to meet current processors half way.
Specifically, we plan to include a register-level value analysis

24 Becker et al.

to be able to handle variable timing due to memory-mapped
I/O, and to propose a specific source-level model for scratch-
pad memories. This will result in support for a much wider
range of processors. The challenge in these extensions will
mainly be how to lift models for these architectural behav-
iors to the source code, without impairing the scalability of
Model Checking too much. Nevertheless, pursuing this route
should be worth the efforts that are on the way, by reason
of the practical benefits over existing approaches, such as
higher automation and usability.

–

References

1. Al-Bataineh, O., Reynolds, M., French, T.: Accelerating worst case
execution time analysis of timed automata models with cyclic be-
haviour. Formal Aspects of Computing 27(5), 917–949 (2015)

2. Altenbernd, P., Gustafsson, J., Lisper, B., Stappert, F.: Early ex-
ecution time-estimation through automatically generated timing
models. Real-Time Systems 52(6), 731–760 (2016)

3. Axer, P., Ernst, R., Falk, H., Girault, A., Grund, D., Guan, N.,
Jonsson, B., Marwedel, P., Reineke, J., Rochange, C., Sebastian,
M., von Hanxleden, R., Wilhelm, R., Yi, W.: Building timing pre-
dictable embedded systems. ACM Trans. Embedded Comput. Syst.
13(4), 82:1–82:37 (2014)

4. Becker, M., Neumair, M., Söhn, A., Chakraborty, S.: Approaches
for Software Verification of an Emergency Recovery System for
Micro Air Vehicles. In: F. Koornneef, C. van Gulijk (eds.) Proc.
Computer Safety, Reliability, and Security - 34th International Con-
ference (SAFECOMP), Lecture Notes in Computer Science, vol.
9337. Springer (2015)

5. Bernat, G., Davis, R., Merriam, N., Tuffen, J., Gardner, A., Ben-
nett, M., Armstrong, D.: Identifying opportunities for worst-case
execution time reduction in an avionics system. Ada User Journal
28(3), 189–195 (2007)

6. Beyer, D.: Status report on software verification - (competition
summary SV-COMP 2014). In: E. Ábrahám, K. Havelund (eds.)
Proc. 20th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), Lecture Notes
in Computer Science, vol. 8413, pp. 373–388. Springer (2014)

7. Blazy, S., Maroneze, A.O., Pichardie, D.: Formal verification of
loop bound estimation for WCET analysis. In: E. Cohen, A. Ry-
balchenko (eds.) Proc. 5th International Conference on Verified
Software: Theories, Tools, Experiments (VSTTE), Lecture Notes
in Computer Science, vol. 8164, pp. 281–303. Springer (2014)

8. Brandner, F., Hepp, S., Jordan, A.: Static profiling of the worst-
case in real-time programs. In: L. Cucu-Grosjean, N. Navet,
C. Rochange, J.H. Anderson (eds.) Proc. 20th International Con-
ference on Real-Time and Network Systems (RTNS), pp. 101–110.
ACM (2012)

9. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: A binary
analysis platform. In: G. Gopalakrishnan, S. Qadeer (eds.) Proc.
23rd International Conference on Computer Aided Verification
(CAV), Lecture Notes in Computer Science, vol. 6806, pp. 463–
469. Springer (2011)

10. Cerný, P., Henzinger, T.A., Kovács, L., Radhakrishna, A., Zwirch-
mayr, J.: Segment abstraction for worst-case execution time analy-
sis. In: J. Vitek (ed.) Proc. 24th European Symposium on Program-
ming Languages and Systems (ESOP), Lecture Notes in Computer
Science, vol. 9032, pp. 105–131. Springer (2015)

11. Chattopadhyay, S., Roychoudhury, A.: Scalable and precise re-
finement of cache timing analysis via path-sensitive verification.
Real-Time Systems 49(4), 517–562 (2013)

12. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C
programs. In: K. Jensen, A. Podelski (eds.) Proc. 10th Interna-
tional Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), Lecture Notes in Computer
Science, vol. 2988, pp. 168–176. Springer (2004)

13. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking.
MIT Press, Cambridge, MA, USA (1999)

14. Darke, P., Chimdyalwar, B., Venkatesh, R., Shrotri, U., Metta,
R.: Over-approximating loops to prove properties using bounded
model checking. In: W. Nebel, D. Atienza (eds.) Proc. Design,
Automation & Test in Europe Conference & Exhibition (DATE),
pp. 1407–1412. ACM (2015)

15. Demyanova, Y., Pani, T., Veith, H., Zuleger, F.: Empirical soft-
ware metrics for benchmarking of verification tools. In: D. Kroen-
ing, C.S. Pasareanu (eds.) Proc. 27th International Conference on
Computer Aided Verification (CAV), Lecture Notes in Computer
Science, vol. 9206, pp. 561–579. Springer (2015)

16. Ding, H., Liang, Y., Mitra, T.: Wcet-centric partial instruction
cache locking. In: P. Groeneveld, D. Sciuto, S. Hassoun (eds.) Proc.
49th Annual Design Automation Conference (DAC), pp. 412–420.
ACM (2012)

17. Edwards, S.A., Kim, S., Lee, E.A., Liu, I., Patel, H.D., Schoeberl,
M.: A disruptive computer design idea: Architectures with repeat-
able timing. In: Proc. 27th International Conference on Computer
Design (ICCD), pp. 54–59. IEEE Computer Society (2009)

18. Ermedahl, A., Fredriksson, J., Gustafsson, J., Altenbernd, P.: De-
riving the worst-case execution time input values. In: Proc. 21st
Euromicro Conference on Real-Time Systems (ECRTS), pp. 45–
54. IEEE Computer Society (2009)

19. Ermedahl, A., Stappert, F., Engblom, J.: Clustered worst-case
execution-time calculation. IEEE Trans. Computers 54(9), 1104–
1122 (2005)

20. Ferdinand, C., Heckmann, R., Le Sergent, T., Lopes, D., Martin,
B., Fornari, X., Martin, F.: Combining a high-level design tool for
safety-critical systems with a tool for wcet analysis of executables.
In: Proc. 4th European Congress on Embedded Real Time Software
(ERTS). SIA/AAAF/SEE (2008)

21. Fuhrmann, I., Broman, D., von Hanxleden, R., Schulz-
Rosengarten, A.: Time for reactive system modeling: Interac-
tive timing analysis with hotspot highlighting. In: A. Plantec,
F. Singhoff, S. Faucou, L.M. Pinho (eds.) Proc. 24th International
Conference on Real-Time Networks and Systems (RTNS), pp. 289–
298. ACM (2016)

22. Furber, S.: ARM System-on-Chip Architecture. Addison Wesley
(2000)

23. Gulwani, S., Jain, S., Koskinen, E.: Control-flow refinement and
progress invariants for bound analysis. In: M. Hind, A. Diwan
(eds.) Proc. Conference on Programming Language Design and
Implementation (PLDI), pp. 375–385. ACM (2009)

24. Gustafsson, J., Betts, A., Ermedahl, A., Lisper, B.: The mälardalen
WCET benchmarks: Past, present and future. In: B. Lisper
(ed.) Proc. 10th International Workshop on Worst-Case Execution
Time Analysis (WCET), OASICS, vol. 15, pp. 136–146. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2010)

25. Gustafsson, J., Ermedahl, A., Sandberg, C., Lisper, B.: Automatic
derivation of loop bounds and infeasible paths for wcet analysis
using abstract execution. In: Proc. 27th International Real-Time
Systems Symposium (RTSS), pp. 57–66 (2006)

26. Harmon, T., Klefstad, R.: Interactive back-annotation of worst-case
execution time analysis for java microprocessors. In: Proc. 13th
International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pp. 209–216. IEEE Computer
Society (2007)

27. Hatcliff, J., Dwyer, M.B., Zheng, H.: Slicing software for model
construction. Higher-Order and Symbolic Computation 13(4), 315–
353 (2000)

Scalable and Precise Estimation and Debugging of the Worst-Case Execution Time for Analysis-Friendly Processors 25

28. Healy, C.A., Sjödin, M., Rustagi, V., Whalley, D.B., van Enge-
len, R.: Supporting timing analysis by automatic bounding of loop
iterations. Real-Time Systems 18(2/3), 129–156 (2000)

29. Henry, J., Asavoae, M., Monniaux, D., Maiza, C.: How to compute
worst-case execution time by optimization modulo theory and a
clever encoding of program semantics. In: Y. Zhang, P. Kulkarni
(eds.) Proc. 15th Conference on Languages, Compilers and Tools
for Embedded Systems (LCTES), pp. 43–52. ACM (2014)

30. Holsti, N.: Computing time as a program variable: a way around
infeasible paths. In: R. Kirner (ed.) Proc. 8th Intl. Workshop on
Worst-Case Execution Time (WCET) Analysis, OASICS, vol. 8.
Internationales Begegnungs- und Forschungszentrum fuer Infor-
matik (IBFI), Schloss Dagstuhl, Germany (2008)

31. Holsti, N., Saarinen, S.: Status of the Bound-T WCET tool. Space
Systems Finland Ltd (2002)

32. Kim, S., Patel, H.D., Edwards, S.A.: Using a Model Checker to
Determine Worst-Case Execution Time. Tech. rep., Columbia Uni-
versity (2009). CUCS-038-09

33. Kirner, R., Puschner, P.P.: Obstacles in worst-case execution time
analysis. In: Proc. 11th IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC), pp. 333–
339. IEEE Computer Society (2008)

34. Knoop, J., Kovács, L., Zwirchmayr, J.: Symbolic loop bound com-
putation for WCET analysis. In: E.M. Clarke, I. Virbitskaite,
A. Voronkov (eds.) Proc. 8th International Conference Perspec-
tives of Systems Informatics (PSI), Revised Selected Papers, Lec-
ture Notes in Computer Science, vol. 7162, pp. 227–242. Springer
(2012)

35. Ko, L., Healy, C.A., Ratliff, E., Arnold, R.D., Whalley, D.B., Har-
mon, M.G.: Supporting the specification and analysis of timing
constraints. In: Proc. 2nd Real-Time Technology and Applications
Symposium (RTAS), pp. 170–178. IEEE Computer Society (1996)

36. Kuhnel, C.: AVR RISC Microcontroller Handbook, first edn.
Newnes (1998)

37. Kuo, M.M.Y., Yoong, L.H., Andalam, S., Roop, P.S.: Determining
the worst-case reaction time of IEC 61499 function blocks. In:
Proc. 8th IEEE International Conference on Industrial Informatics,
pp. 1104–1109. IEEE (2010)

38. Li, Y.T., Malik, S.: Performance analysis of embedded software
using implicit path enumeration. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 16(12) (1997)

39. Lickly, B., Liu, I., Kim, S., Patel, H.D., Edwards, S.A., Lee, E.A.:
Predictable programming on a precision timed architecture. In:
E.R. Altman (ed.) Proc. International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, (CASES), pp.
137–146. ACM (2008)

40. Lv, M., Gu, Z., Guan, N., Deng, Q., Yu, G.: Performance compar-
ison of techniques on static path analysis of WCET. In: C. Xu,
M. Guo (eds.) Proc. International Conference on Embedded and
Ubiquitous Computing (EUC), pp. 104–111. IEEE Computer So-
ciety (2008)

41. Marref, A.: Fully-automatic derivation of exact program-flow
constraints for a tighter worst-case execution-time analysis. In:
L. Carro, A.D. Pimentel (eds.) Proc. International Conference on
Embedded Computer Systems: Architectures, Modeling, and Sim-
ulation (SAMOS), pp. 200–208. IEEE (2011)

42. Metta, R., Becker, M., Bokil, P., Chakraborty, S., Venkatesh, R.:
TIC: a scalable model checking based approach to WCET estima-
tion. In: T. Kuo, D.B. Whalley (eds.) Proc. 17th Conference on
Languages, Compilers, Tools, and Theory for Embedded Systems
(LCTES), pp. 72–81. ACM (2016)

43. Metzner, A.: Why model checking can improve WCET analysis.
In: R. Alur, D.A. Peled (eds.) Proc. 16th International Conference
on Computer Aided Verification (CAV), Lecture Notes in Com-
puter Science, vol. 3114, pp. 334–347. Springer (2004)

44. Mitra, T., Teich, J., Thiele, L.: Adaptive Isolation for Predictability
and Security (Dagstuhl Seminar 16441). Dagstuhl Reports 6(10),
120–153 (2017)

45. Mittal, S.: A survey of techniques for cache locking. ACM Trans.
Design Autom. Electr. Syst. 21(3), 49:1–49:24 (2016)

46. Park, C.Y., Shaw, A.C.: Experiments with a program timing tool
based on source-level timing schema. IEEE Computer 24(5), 48–
57 (1991)

47. Pingali, K., Bilardi, G.: APT: A data structure for optimal control
dependence computation. In: D.W. Wall (ed.) Proc. Conference on
Programming Language Design and Implementation (PLDI), pp.
32–46. ACM (1995)

48. Puschner, P.: Is WCET Analysis a Non-Problem? – Towards New
Software and Hardware Architectures. In: G. Bernat (ed.) Proc.
2nd International Workshop on Worst-Case Execution Time Anal-
ysis (WCET), pp. 89–92. Technical University of Vienna, Austria
(2002)

49. Puschner, P.P.: A tool for high-level language analysis of worst-
case execution times. In: Proc. 10th Euromicro Conference on
Real-Time Systems (ECRTS), pp. 130–137. IEEE Computer Soci-
ety (1998)

50. Puschner, P.P., Koza, C.: Calculating the maximum execution time
of real-time programs. Real-Time Systems 1(2), 159–176 (1989)

51. Puschner, P.P., Prokesch, D., Huber, B., Knoop, J., Hepp, S.,
Gebhard, G.: The T-CREST approach of compiler and wcet-
analysis integration. In: Proc. 16th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Com-
puting, (ISORC), pp. 1–8. IEEE Computer Society (2013)

52. Raymond, P., Maiza, C., Parent-Vigouroux, C., Carrier, F.: Timing
analysis enhancement for synchronous program. In: M. Auguin,
R. de Simone, R.I. Davis, E. Grolleau (eds.) Proc. 21st Interna-
tional Conference on Real-Time Networks and Systems (RTNS),
pp. 141–150. ACM (2013)

53. Robertson, N., Seymour, P.: Graph minors .xiii. the disjoint paths
problem. Journal of Combinatorial Theory, Series B 63(1), 65 –
110 (1995)

54. Schoeberl, M.: JOP: A Java Optimized Processor. In: R. Meers-
man, Z. Tari (eds.) Proc. International Workshop On The Move
to Meaningful Internet Systems (OTM), pp. 346–359. Springer
Berlin Heidelberg (2003)

55. Souyris, J., Pavec, E.L., Himbert, G., Jégu, V., Borios, G., Heck-
mann, R.: Computing the Worst Case Execution Time of an Avion-
ics Program By Abstract Interpretation. In: Proc. 5th Intl Workshop
on Worst-Case Execution Time (WCET) Analysis (2005)

56. Sun Microsystems Inc.: The SPARC Architecture Manual, Version
7. Sun Microsystems Inc. (1987)

57. Weiser, M.: Program slicing. In: S. Jeffrey, L.G. Stucki (eds.) Proc.
5th International Conference on Software Engineering (ICSE), pp.
439–449. IEEE Computer Society (1981)

58. Wilhelm, R.: Why AI + ILP is good for WCET, but MC is not, nor
ILP alone. In: B. Steffen, G. Levi (eds.) Proc. 5th International
Conference on Verification, Model Checking, and Abstract Inter-
pretation (VMCAI), Lecture Notes in Computer Science, vol. 2937,
pp. 309–322. Springer (2004)

59. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S.,
Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T.,
Mueller, F., Puaut, I., Puschner, P., Staschulat, J., Stenström, P.:
The Worst-Case Execution Time Problem – Overview of Methods
and Survey of Tools. ACM Trans. Embed. Comput. Syst. 7(3),
36:1–36:53 (2008)

60. Zhao, W., Kulkarni, P.A., Whalley, D.B., Healy, C.A., Mueller, F.,
Uh, G.: Tuning the WCET of embedded applications. In: Proc.
10th Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), pp. 472–481. IEEE Computer Society (2004)

	1 Introduction
	2 Technical Background
	3 Finding the Worst/Case Execution Time
	4 Reconstructing the WCET Trace
	5 Experiments
	6 Discussion
	7 Related Work
	8 Concluding Remarks

