International Journal on Software Tools for Technology Transfer (2021) 23:853-856

https://doi.org/10.1007/510009-020-00574-z

COMPETITIONS AND CHALLENGES

Special Issue: TestComp 2019

®

Check for
updates

CPA /Tiger-MGP: test-goal set partitioning for efficient multi-goal

test-suite generation

Sebastian Ruland’ - Malte Lochau' . Oliver Fehse' - Andy Schiirr’

Published online: 3 June 2020
© The Author(s) 2020

Abstract

Software model checkers can be used to generate high-quality test cases from counterexamples of a reachability analysis.
However, naively invoking a software model checker for each test goal in isolation does not scale to large programs as a
repeated construction of an abstract program model is expensive. In contrast, invoking a software model checker for reaching
all test goals in a single run leads to few abstraction possibilities and thus to low scalability. Therefore, our approach pursues
a test-suite generation technique that incorporates configurable multi-goal set partitioning (MGP) including configurable
partitioning strategies and simultaneous processing of multiple test goals in one reachability analysis. Our approach employs
recent techniques from multi-property verification in order to control the computational overhead for tracking multi-goal
reachability information. Our tool, called CPA/Tiger-MGP, uses predicate-abstraction-based program analysis in the model-

checking framework CPACHECKER.

Keywords CPAchecker - Test-goal partitioning - Multi-goal test coverage

1 Software architecture

Our tool CPA/Tiger-MGP is implemented in JAVA and
is based on the CPACHECKER framework [3]. The CPA-
CHECKER framework for software verification is based on
CONFIGURABLE PROGRAM ANALYSIS (CPA) [2] and allows
developers to easily integrate new program-analysis tech-
niques by implementing additional CPAs. A CPA defines a
program analysis technique consisting of an abstract domain
and the analysis operators post, merge and stop. All CPAs
can be used in any combination with other CPAs in a sin-
gle analysis, by specifying the corresponding configuration
parameters. Additionally, different verification algorithms
are implemented in CPACHECKER, such as counterexample-

B< Sebastian Ruland
sebastian.ruland @es.tu-darmstadt.de

Malte Lochau
malte.lochau @es.tu-darmstadt.de

Andy Schiirr
andy.schuerr @es.tu-darmstadt.de

Department of Electrical Engineering and Information
Technology, Real-Time Systems Lab, Technical University of
Darmstadt, Darmstadt, Germany

guided abstraction refinement (CEGAR), which enables
dynamic adaptation of precision (i.e., the precision of
the abstract representation) during runtime [6]. Our tool
CPA/Tiger-MGP uses predicate analysis as main CPA, which
uses in our configuration MathSATS as SMT Solver [5]. The
predicate analysis uses predicate abstraction with adjustable
block encoding [4]. Additionally, CPACHECKER provides us
with a built-in parser for C programs using the Eclipse CDT
project.!

Our automated multi-goal test-generation algorithm
CPA/Tiger-MGP is implemented on top of the CPACHECKER
framework. CPA/Tiger-MGP is able to derive sets of test
goals from input programs with respect to a given test-goal
specification and to repeatedly execute CPACHECKER reach-
ability analysis queries until every reachable test goal is
covered by at least one test case. CPACHECKER is originally
used to verify correctness properties (e.g., non-reachability
of error locations) of input programs. If such a property is
violated, a witness (i.e., counterexample) is returned, oth-
erwise the return value is true. CPA/Tiger-MGP uses this
representation by encoding each test goal into a respective
(non-)reachability property (e.g., a test goal corresponding

1 https://www.eclipse.org/cdt/

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-020-00574-z&domain=pdf
https://www.eclipse.org/cdt/

854 S.Ruland et al.
1. CFA 2. Test-Goal 3. Partitioning 4. Reachability 5. Test-Case
Construction Derivation Analysis Extraction

Partition1

{020}

Fig.1 Overview of CPA/Tiger-MGP

1 ..

2 if(y<x) {

3 x=y

4 }else{

5 X = X;

6}

7 do{

8 X++;

9 } while(x<=2)
10

Fig.2 C Code Example

to a particular line of code of the input program is converted
into a property requiring non-reachability of this program
location in all possible program-execution paths). If this
property is violated (e.g., the line of code is reachable by
a valid program-execution path), CPACHECKER returns this
execution as a counterexample from which CPA/Tiger-MGP
extracts a test case consisting of a vector of input-variable
value assignments together with an (optional) output value
for those inputs. Otherwise, if the property holds, the test
goal is infeasible (i.e., there exists no valid test case being
able to reach the test goal) [1].

2 Test-generation approach

CPA/Tiger-MGP uses as input a C program under test and
transforms the program into a so-called control-flow automa-
ton (in the following referred to as CFA), as well as a property
specification (i. e., a description of the test goals to be reached
within the resulting CFA representation). The CFA is a
labeled graph whose nodes correspond to program locations

@ Springer

! ¢) Partition2

and whose edges correspond to control flows between pro-
gram locations, being labeled with respective assumptions
and assignments over program variables according to the data
flows in the program. An example of a CFA representation
is provided in Fig. 1 on the left, which corresponds to the C
program source code in Fig. 2.

In CPA/Tiger-MGP, each test-goal description consists of
a list of CFA edges, which must all be reached by a test case
in order to satisfy that goal. During program analysis, the
CFA is traversed and an abstract reachability graph (ARG)
is built by all CPAs selected by the current configuration. In
our approach, we use predicate analysis as main CPA. To
keep track of the test goals, we implemented an additional
CPA called multi-goal CPA. This CPA contains the set of test
goals to be covered. For each edge traversed during reach-
ability analysis, the multi-goal CPA checks for each goal if
this edge is the next edge required for covering the goal. If
a test goal is completely covered after a traversed edge, a
counterexample for its non-reachability can be constructed.
If the counterexample is not spurious (i.e., it corresponds
to a valid program-execution path), a test case by means
of input-variable value assignment can be derived from the
corresponding path condition. Furthermore, the test goal is
removed from the set of remaining goals and the reachability
analysis continues for the remaining test goals. Otherwise,
a further CEGAR iteration will be invoked to further refine
the abstract representation and the reachability analysis is
restarted on the refined ARG.

Since CEGAR has to be performed for multiple goals, the
more goals we process simultaneously, the more information
we have to track during reachability analysis. Additionally,
if a test goal comprises multiple CFA edges (e. g., Goal 3 in



CPA/Tiger-MGP: test-goal set partitioning for efficient multi-goal test-suite generation 855

the second block of Fig. 1), we must track the current state
of all not-yet-covered goals, which might become intractable
in case of larger programs and/or larger sets of test goals. To
tackle this problem, we allow to divide the overall set of test
goals into smaller subsets, called partitions. The main idea
of the CPA/Tiger-MGP algorithm is illustrated in Fig. 1.

1. The CFA representation is created for the input program,

2. the list of test goals is derived from the CFA according
to the given test-goal specification,

3. the test goals are assigned to partitions depending on the
selected partitioning strategy,

4. for each partition, a multi-goal reachability analysis is
performed by constructing the respective ARG,

5. for each successfully reached test goal, a counterexample
is generated, from which a test case (i. ., program inputs
corresponding to the program path of the counterexam-
ple) is extracted, and

6. finally, all test cases are integrated into a single test suite,
where redundant test cases should be removed (e. g., TC2
in Fig. 1).

CPA/Tiger-MGP supports various strategies for multi-
goal set partitioning. First, it is possible to use partitions with
either random or fixed sizes with either a fixed or random
number of partitions. Additionally, it is possible to employ
further context information from the CFA to select test goals,
which are more likely to be assigned to the same partition
(e.g., test goals sharing a particular fraction of CFA paths).
We evaluated the performance of different strategies and
observed for the Test-Comp benchmarks that dividing the set
of test goals into four subsets with randomly distributed test
goals leads to the best results on average. For each of these
partitions, we run a reachability analysis and try to cover
as many test goals of the partition as possible as described
above. For every counterexample found for a particular goal,
we further check if this counterexample additionally covers
other not-yet-discovered goals from the current partition as
well as every other not-yet-processed partition. If so, those
test goals can also be removed from the respective partitions.
For each analysis of a single partition, we grant a limited
amount of CPU time, given by the timeout value configured
for the whole analysis divided by the number of partitions. To
keep track of analysis timeouts, we additionally implemented
a timeout CPA. In this way, we are able to manually termi-
nate individual analysis runs without the need to terminate
the whole test-suite generation process altogether.

3 Strengths and weaknesses

The multi-goal analysis potentially leads to a significantly
reduced number of reachability analysis runs as compared

to a goal-by-goal approach. Despite the additional CPU time
needed for a single analysis, the reduced amount of analysis
runs provides a considerable trade-off in terms of total CPU
time. Additionally, using test-goal set partitioning further
increases the performance of CPA/Tiger-MGP, as compared
to analyzing all test goals simultaneously.

One weakness of CPA/Tiger-MGP is the current restric-
tion of using predicate analysis as main CPA as for some
input programs, explicit-value analysis would perform sig-
nificantly better. Recent research has shown that a com-
bination of multiple configurations into a single analysis
leads to further performance improvements [7]. Addition-
ally, CPA/Tiger-MGP is currently not explicitly tailored to
handle recursion thus potentially leading to poor perfor-
mance or even no results at all in case of recursive programs.
CPA/Tiger-MGP is, by intention, only able to play its full
strength if applied to programs with multiple test goals.
Therefore, for tasks such as finding single error location in a
program, CPA/Tiger-MGP will not be able to apply any par-
titioning strategy and therefore not being able to achieve any
increase in performance as compared to processing single
goals per reachability analysis.

Results As expected, CPA/Tiger-MGP performs better on
programs consisting of many test goals during Test-Comp19.
CPA/Tiger-MGP managed to reach the 4th rank in the Code
Coverage category while reaching the 6th place in the Find-
ing Bugs category. In contrast, CPA/Tiger-MGP did not
perform well on event-condition-action (ECA) programs
which consist of large amounts of variables and branches
thus being quite expensive for a predicate-based abstraction
analysis.

4 Setup and configuration

The submitted version of CPA/Tiger-MGP is built from revi-
sion 30601 from the official CPACHECKER repository, branch
tigerIntegration2.” Additionally, the submitted version is
archived at https://gitlab.com/sosy-lab/test-comp/archives-
2019.

To run CPA/Tiger-MGP on a single file, enter the follow-
ing command:

1 scripts/cpa.sh —benchmark —heap 10000M —tigertestcomp19
—spec spec.prp task

where spec is either the path to the coverage-error-call
or coverage-branches property file and task specifies the C
file or the intermediate file to be analyzed. CPA/Tiger-MGP

2 https://svn.sosy-lab.org/software/cpachecker/branches/
tigerIntegration2

@ Springer


https://gitlab.com/sosy-lab/test-comp/archives-2019
https://gitlab.com/sosy-lab/test-comp/archives-2019
https://svn.sosy-lab.org/software/cpachecker/branches/tigerIntegration2
https://svn.sosy-lab.org/software/cpachecker/branches/tigerIntegration2

856

S.Ruland et al.

prints statistics of the run on the console and writes meta-data
on generated test cases and test suites to the output folder. To
reproduce our results, use a Linux system with Java § run-
time environment, BenchExec? and SV—Benchmarks,4 and
run Benchexec with the following files:

— the benchmark definition cpa-tiger.xml which is archived
athttps://gitlab.com/sosy-lab/test-comp/bench-defs/tree/
master/benchmark-defs, and

— the tool-info module cpachecker.py which can be found at
https://github.com/sosy-lab/benchexec/tree/master/benc
hexec/tools.

CPA/Tiger-MGP has participated in the categories Finding
Bugs and Code Coverage.

5 Project and contributors

CPACHECKER is an open-source project for software veri-
fication maintained by the Software Systems Lab from the
Ludwig-Maximilian University in Munich. The developers
are members of an international research group from Ludwig-
Maximilian University of Munich, the University of Passau,
the TU Darmstadt and the Institute for System Programming
of the Russian Academy of Sciences. More information about
CPACHECKER can be found at https://cpachecker.sosy-lab.
org/.

Acknowledgements Open Access funding provided by Projekt DEAL.
This work was funded by the Hessian LOEWE initiative within the
Software-Factory 4.0 project.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

3 https://github.com/sosy-lab/benchexec
4 https://github.com/sosy-lab/sv-benchmarks

@ Springer

References

1. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.:

Generating tests from counterexamples. In: Proceedings of the 26th

International Conference on Software Engineering. pp. 326-335.

International Conference on Software Engineering, IEEE Com-

puter Society, Washington, DC, USA. http://dl.acm.org/citation.

cfm?id=998675.999437 (2004)

Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software

verification: concretizing the convergence of model checking and

program analysis. In: Damm, W., Hermanns, H. (eds.) Computer

Aided Verification, pp. 504-518. Springer, Berlin (2007)

3. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable
software verification. In: Gopalakrishnan, G., Qadeer, S. (eds.) Com-
puter Aided Verification, pp. 184—190. Springer, Berlin (2011)

4. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with
adjustable-block encoding. In: Proceedings of the 2010 Confer-
ence on Formal Methods in Computer-Aided Design. pp. 189-198.
FMCAD ’10, FMCAD Inc, Austin, TX. http://dl.acm.org/citation.
¢fm?id=1998496.1998532 (2010)

5. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The Math-
SATS SMT solver. In: Piterman, N., Smolka, S.A. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems, pp. 93—
107. Springer, Berlin (2013)

6. Clarke, E., Grumberg, O., Jha, S.,Lu, Y., Veith, H.: Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM
50(5), 752-794 (2003). https://doi.org/10.1145/876638.876643

7. Lowe, S., Mandrykin, M., Wendler, P.: CPAchecker with sequential
combination of explicit-value analyses and predicate analyses. In:
Abraham, E., Havelund, K. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems, pp. 392-394. Springer, Berlin
(2014)

N

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.


https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/master/benchmark-defs
https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/master/benchmark-defs
https://github.com/sosy-lab/benchexec/tree/master/benchexec/tools
https://github.com/sosy-lab/benchexec/tree/master/benchexec/tools
https://cpachecker.sosy-lab.org/
https://cpachecker.sosy-lab.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/sosy-lab/benchexec
https://github.com/sosy-lab/sv-benchmarks
http://dl.acm.org/citation.cfm?id=998675.999437
http://dl.acm.org/citation.cfm?id=998675.999437
http://dl.acm.org/citation.cfm?id=1998496.1998532
http://dl.acm.org/citation.cfm?id=1998496.1998532
https://doi.org/10.1145/876638.876643

	CPA/Tiger-MGP: test-goal set partitioning for efficient multi-goal test-suite generation
	Abstract
	1 Software architecture
	2 Test-generation approach
	3 Strengths and weaknesses
	4 Setup and configuration
	5 Project and contributors
	Acknowledgements
	References




