International Journal on Software Tools for Technology Transfer (2021) 23: 369-410
https://doi.org/10.1007/s10009-020-00584-x

GENERAL f')

Check for
updates

Special Issue: FASE 2019

A logic-based incremental approach to graph repair featuring delta
preservation

Sven Schneider'® - Leen Lambers'® - Fernando Orejas?

Published online: 7 July 2021
© The Author(s) 2021

Abstract

We introduce a logic-based incremental approach to graph repair, generating a sound and complete (upon termination)
overview of least-changing graph repairs from which a user may select a graph repair based on non-formalized further
requirements. This incremental approach features delta preservation as it allows to restrict the generation of graph repairs to
delta-preserving graph repairs, which do not revert the additions and deletions of the most recent consistency-violating graph
update. We specify consistency of graphs using the logic of nested graph conditions, which is equivalent to first-order logic on
graphs. Technically, the incremental approach encodes if and how the graph under repair satisfies a graph condition using the
novel data structure of satisfaction trees, which are adapted incrementally according to the graph updates applied. In addition
to the incremental approach, we also present two state-based graph repair algorithms, which restore consistency of a graph
independent of the most recent graph update and which generate additional graph repairs using a global perspective on the
graph under repair. We evaluate the developed algorithms using our prototypical implementation in the tool AUTOGRAPH and
illustrate our incremental approach using a case study from the graph database domain.

Keywords Nested graph conditions - Graph repair - Model repair - Consistency restoration - Delta preservation - Graph
databases - Model-driven engineering

1 Introduction

Numerous approaches on model inconsistency and repair
(see [28] for an excellent recent survey) operate in vary-
ing frameworks with diverse assumptions on the underlying
model and consistency conditions. In our framework, we con-
sider a typed directed graph (cf. [15]) to be inconsistent if it
does not satisfy a given finite set of constraints, which are
expressed by graph conditions [19], a specification formal-
ism with the expressive power of first-order logic on graphs.
A graph repair in this setting then describes an update of the

X Sven Schneider
sven.schneider @hpi.de

Leen Lambers
leen.lambers @hpi.de

Fernando Orejas

orejas @lsi.upc.edu

Hasso Plattner Institute, University of Potsdam, Potsdam,
Germany

Universitat Politecnica de Catalunya, Barcelona, Spain

given graph that results in a graph that is consistent. We con-
sider the more involved problem of deriving a suitable set
of graph repairs from which the user then selects the desired
graph repair to be applied. Since the set of viable graph repairs
is usually infinite, we develop suitable classifications result-
ing in a finite number of graph repairs. Such a restriction
of all graph repairs is already given by only deriving least-
changing graph repairs, which do not include other smaller
viable graph repairs. The developed graph repair algorithms
rely on the model generation technique for graph conditions
implemented in the tool AUTOGRAPH from [40].

We consider two scenarios. In the first scenario, which is
supported by two state-based graph repair algorithms, the aim
is to repair a given graph using one global graph repair, which
fixes all problems at once. In the second scenario, which is
supported by a delta-based graph repair algorithm, a graph
update that changes a given graph to another possibly incon-
sistent graph is given. Such an inconsistent graph is then to
be repaired incrementally using multiple local graph repairs,
which fix one problem each. To this end, we track precisely
if and how a graph satisfies the consistency constraint by

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-020-00584-x&domain=pdf
http://orcid.org/0000-0001-9828-618X
http://orcid.org/0000-0001-6937-5167
http://orcid.org/0000-0002-3023-4006

370

S. Schneider et al.

relying on so-called satisfaction trees, which are stored for
this purpose in the local state of the process that (a) moni-
tors the current graph, (b) computes graph repairs when the
graph is inconsistent and (c) applies a selected graph repair to
reestablish consistency. Finally, the delta-based graph repair
algorithm allows via a Boolean parameter the generation of
only delta-preserving graph repairs, which not only result in
a consistent graph no longer violating consistency but which
also preserve the changes of the provided graph update by
not reverting any of its additions or deletions.
Our contributions are as follows.

— Formal definitions of the key notions of graph updates,
graph repairs and graph repair classifications such as
least-changing graph repairs.

— Formal definitions of two state-based graph repair algo-
rithms and an (incremental) delta-based graph repair
algorithm. For these three algorithms, we demonstrate
soundness (each computed graph repair results in a con-
sistent graph) and completeness (upon termination, our
algorithms return all desired graph repairs).

— The notion of satisfaction trees (STs), which formalizes
if and how a graph satisfies a consistency constraint. In
particular, we develop (a) the adaptation of an ST when
a graph update is applied to the underlying graph and (b)
the derivation of violations from an ST, which represent
in a detailed way why a consistency constraint is not
satisfied.

— Support via parameterization for delta preservation in the
delta-based case, ensuring—if this feature is selected—
that all generated graph repairs preserve the modifica-
tions of the most recent graph update that resulted in a
consistency-violating graph.

In comparison, most other repair techniques do not pro-
vide guarantees for the functional semantics of the graph
repairs computed (see conclusion of the survey [28]). With
our logic-based graph repair approach, we aim at alleviating
this weakness by formally presenting its functional semantics
and by describing the details of the underlying graph repair
algorithms.

Moreover, while other repair techniques return only one
graph repair, we construct a complete set of graph repairs
from which the user may select one graph repair based on
further requirements.

This paper represents a considerable extension of our pre-
vious work presented in [41]. In particular, we added the
following contributions. The paper is now self-contained by
(a) reintroducing also preliminaries on typed directed graphs
together with categorical notions used throughout the paper,
(b) providing known results on the reasoning approach that
is used for the generation of models for graph conditions in
our graph repair algorithms, and (c) presenting proofs for

@ Springer

all theorems in an appendix. We have added further exam-
ples as well as explanations to the technical contributions
throughout the paper. Moreover, in addition to a running
example used for demonstration purposes, we illustrate our
approach on a case study from the graph database domain
and evaluate our algorithms based on a novel prototypical
implementation. Technically, we added details (a) for the
notion of isomorphic graph updates as we compute graph
repairs up to isomorphism, (b) for the notion of a reduction
in a graph update concisely describing graph updates that
are smaller than a given graph update with the same effect,
and (c) for both state-based graph repair algorithms, which
were described informally in [41], also including a mecha-
nism to obtain only least-changing graph repairs without a
posteriori filtering. We formalized the notion of violations of
a satisfaction tree to precisely determine and formally cover
precise reasons for the non-satisfaction of a given consis-
tency constraint. Finally, we added support to generate only
delta-preserving graph repairs in the delta-based case, which
required substantial modifications of the underlying notions
in the incremental approach.

The paper is organized as follows. We introduce prelimi-
naries in Sect. 2 for typed graphs, in Sect. 3 for the employed
graph logic on typed graphs, and in Sect. 4 for the reused
model generation procedure for the graph logic. Afterwards,
we proceed in Sect. 5 by defining graph updates and graph
repairs. In Sect. 6, we formally introduce and discuss two
state-based graph repair algorithms. We continue with intro-
ducing satisfaction trees in Sect. 7, which are needed for
the delta-based graph repair algorithm featuring delta preser-
vation in Sect. 8. We evaluate and compare the developed
algorithms using our prototypical implementation and dis-
cuss matters of resource requirements in Sect. 9. In Sect. 10,
we illustrate our approach using a case study from the graph
database domain. Finally, we close with a comparison with
related work in Sect. 11 and conclusion with outlook in
Sect. 12. For proofs of theorems, we refer to “Appendix A”.

2 Typed graphs

We provide a self-contained definition of the well-known
formalism of typed graphs (see e.g. [15] for an in-depth
introduction) including our notation used subsequently. We
introduce typed graphs by first introducing plain graphs and
plain graph morphisms for the untyped case. Plain graphs
contain two sets of nodes and edges and two mappings
associating to each edge its source and target node. In this
formalization, two edges may have the same source and tar-
get, which means that we permit parallel edges. See Fig. 1
for an example of a plain graph (top left).

A logic-based incremental approach to graph repair featuring delta preservation 371

Fig.1 The plain graph G (top =
left) and a plain type graph 7G

(top right), a typing morphism

T : G — TG (dashed arrows),

and the use of our simplified

notation (bottom) for G, TG,

nfF-------- » nodeTypel e
“ TG.sg
———————— ~| edgeType
TG.tg
Mpp-------- - nodel.;"ypeZ

G |n1 :nodeTypell —————————————— —>| :nodeTypel | IG

ep:edgeType - - - - - - - - - - - - - >

-edgeType

Y

|n 2 :nodeTypeZl —————————————— —>| :nodeType2 |

and ©
Y
Gl| G E--coceo____ G, E G2
Gisg | | Gy.tg Go.tg | | Ga.sg
Yy f‘N Yy
GIN----------- » Go.N

Fig.2 Plain graphs G and G, (solid arrows) and plain graph morphism
f : G1 — G, (dashed arrows) with their components

Definition 1 (Plain Graph)

If (see Fig. 2 for a visualization) G.N and G.E are two
disjoint sets of nodes and edges (i.e., they satisfy G.N N
GE=9),Gsg : GE—~G.Nand G.tg : GE— G.N
assign source and target nodes to each edge, and G =
(G.N,G.E, G.sg, G.tg), then G is a plain graph, written
G € Seraphs,

Moreover, we define the following abbreviation.

o SN _ (G € SEPhs | finite(G.NUG.E)} contains all
finite plain graphs.

Plain graph morphisms between plain graphs are then given
by two maps between the corresponding sets of nodes and
edges. A visualization of the required compatibility with the
source and target functions for edges is also given in Fig. 1

(top).

Definition 2 (Plain Graph Morphism)

If
e G and G, are typed graphs from S&aphs,

fN:G.N— G\,
fE:G.E— GyE,

f.N o Gl.SE = GZ.SE @) f.E,
f.NoGj.tg = Go.tgo f.E and
f =N, 1B,

then f is a plain graph morphism from G| to G, written
f:G1— Ga.

The binary composition of two of these plain graph mor-
phisms is defined as usual for both components of nodes and
edges.

Definition 3 (Binary Composition for Plain Graph Mor-
phisms)

Iff1 : G] 4>G2, f2 . GZHG3,andf3 . G1 4>G3 are
plain graph morphisms and, moreover, f3.N = f,.No f|.N
and f3.E = f,.E o f1.E, then f3 is the composition of f>
and f1, written f3 = f op fi.

Technically, the typing of typed graphs is formalized by
means of an additional plain graph morphism that has a type
graph TG as a target. See Fig. 1 for an example of a typed
graph, a typing morphism, a type graph, and the simplified
notation for typed graphs that we use in the remainder.

@ Springer

372

S. Schneider et al.

Definition 4 (Typed Graph)
If r : G — TG is a plain graph morphism, then 7 is also a
typed graph over TG, written T € S%‘phs.
Moreover, we define the following abbreviation.
. Sf%;f%s ={t:G—TG| G € S;?:;aphs} contains all
finite graphs typed over 7G.

Morphisms between typed graphs are then required to pre-
serve the typing for all elements.

Definition 5 (Typed Graph Morphism)

If 1 : G — TG € S5 1) : Gy — TG € SE™, and
f + G1 — G, are plain graph morphisms and, moreover,
7 o f = 11, then f is a (typed) graph morphism from 11 to
Tp, written f : T — 3.

We define the binary composition of typed graph morphisms
along the lines of the composition of plain graph morphisms.

Definition 6 (Binary Composition for Typed Graph Mor-
phism)

Iffi:71—1n, /: 17— 13,and f3 : 71 — 13 are typed
graph morphisms and, moreover, f3 = f2 op f1, then f3 is
the composition of f> and f, written f3 = f, o fi.

To ease presentation, we handle typing of graphs and typed
graph morphisms implicitly in the remainder of the paper and
refer to typed graphs as graphs and to typed graph morphisms
as morphisms.

A morphism f : A — Bisaninclusion morphism,if f.N
and f.E are inclusions, which is denoted by f = inc(A, B).
A morphism f : A — B is an identity morphism, if f is
an inclusion morphism and A = B, which is denoted by
f =id(A).

Typed graphs as introduced here with morphisms, the
composition operation and identity morphisms determine a
category.

Theorem 1 (Typed Graphs are a Category)

If Ob is the class of graphs from Definition 4, Mor(A, B)
is the set of morphisms of type A — B from Definition 5,
o is the binary composition operation from Definition 6,
and id(A) is the unique identity morphism, then TGraphs =
(Ob, Mor, o, id) is a category.

See Fig. 3 for a class diagram representing a type graph that
is used later on in Sect. 10 in the context of our case study.
Since the inheritance relations of this class diagram are not
directly supported in typed graphs, we flatten the inheritance
hierarchy in our examples using this class diagram. Note that
type graphs serve as natural formalization of the notion of
class diagrams as demonstrated in previous literature mainly
from the graph transformation domain, see e.g. [2,25,36].
This relationship is in particular studied more extensively
also in the context of the Eclipse Modeling Framework in

[9].

@ Springer

We now discuss some categorical notions and construc-
tions for the category TGraphs of typed graphs used through-
out the paper.

The empty graph, which has no nodes or edges, is denoted
@. Also, the empty graph is initial and therefore there is a
unique morphism of type @ — G denoted by i(G) to any
graph G.

A morphism f : A — B is amonomorphism of TGraphs,
if f.Nand f.E areinjective, whichisdenotedby f : A — B
or mono(f). A morphism f : A — B is an epimorphism
of TGraphs, if f.N and f.E are surjective, which is denoted
by f : A — B or epi(f). Finally, a morphism f : A— B
is an isomorphism of TGraphs, if f.N and f.E are bijective,

which is denoted by f : A Bor isom(f).

The pushout (g : B— D, gy : C — D) of two mor-
phisms (f; : A— B, f» : A— C), abbreviated subse-
quently by PO(g1, g2, f1, f2), captures on an intuitive level
with graph D the union of the two graphs B and C where the
morphisms f] and f, are used to identify common elements
in B and C (i.e., only considering the edge component here,
f1.E(x) and f>.E(x) are to be understood equal when com-
puting the union and g;.E(x) = g>.E(y) means that x and y
are identified when constructing the union). See Fig. 4a for
an example of a pushout in TGraphs.

The pullback (f; : A— B, f : A— C) of two mor-
phisms (g; : B— D, g» : C — D), abbreviated subse-
quently by PB(f1, f2, g1, 82), captures on an intuitive level
with graph A the intersection of the two graphs B and C
where the morphisms are used to identify common elements
in B and C (i.e., only considering the edge component here,
g1-E(x) = g2.E(y) means that x and y are to be under-
stood equal when computing the intersection and f1.E(x)
and f7.E(x) are identified when constructing the intersec-
tion). See Fig. 4b for an example of a pullback in TGraphs.

3 Graph logic GL

Graph logics are used to specify different kinds of graphs
in terms of their graph elements, which are the nodes and
edges for typed graphs. In this paper, we use the graph logic
GL of nested graph conditions, which is equivalent to first-
order logic on graphs [14] as shown in [19,35]. Hence, on
the one hand, GL is well applicable as it can express many
relevant properties but, on the other hand, problems such as
satisfiability are undecidable in general (see Sect. 4 where
we also discuss an existing semi-decision procedure for this
problem). A basic limitation of the first-order logic GL is that
transitive reachability cannot be expressed but extensions of
GL in this directions are ongoing work [33].

A more expressive and commonly used logic for the
specification of graphs is OCL [31], for which partial transla-

A logic-based incremental approach to graph repair featuring delta preservation 373
Fig.3 Class diagram from the TheeC i
social network benchmark [44]
:likes
isSubclassOf [|:TagClass
Y
:hasInterest hasTag
s :hasModerator
:knows |_:|:Persom|‘—l —|
-hasMember :containerOf
:isLocatedIn |
> I_Cl_ty| : > Countr — |
\ :isPartOf ; 1 :isPartOf
:Organisation 5
T :isLocatedIn
:isLocatedIn
:studyAt
> I:University Company
:workAt

Fig.4 Examples of pushout and
pullback in TGraphs: note that
the two diagrams are not
identical because f; and f> are
not jointly surjective (i.e., f]
and f> do not map together to
all nodes and edges of their
common target graph) in b
whereas f1 and f; are
constructed to be jointly
surjective in a. a The pushout
construction identifies and
therefore overlaps the node a in
the target graphs of f1 and f>. b
The pullback construction only
includes an :A node because
only the a nodes in the source
graphs of g| and g, are mapped
to the same node by g; and g»

tions to GL have been considered in [4,29,34]. In particular,
Kleppe and Rensink moreover elaborate how typical meta-
model or class diagram constraints such as bidirectionality
constraints, containment constraints, indexing constraints,
containment constraints and multiplicities can be formalized
using type graphs in combination with graph constraints.
We employ GCs in Sect. 10 in the context of the Social
Network Benchmark [44] of the Linked Data Benchmark

<

“erenn A ——— BBl AT O

(a)

f 81

B e e
J gz

eZ:eAA

(b)

Council (LDBC) using the type graph presented in Fig. 3 stat-
ing desired meta-model constraints. Also see [1] for a survey
considering graph repair in the context of graph databases
that are expected to satisfy various forms of integrity con-
straints.

The graph conditions (GCs) of GL are used later on to
specify properties on graphs. GCs are constructed induc-
tively using the propositional operators for finite conjunction

@ Springer

374

S. Schneider et al.

and negation from which further propositional operators
can be derived as usual. Moreover, GCs feature an exists
operator to state facts about the existence or nonexistence
of finite graph patterns in a possibly infinite given graph,
called host graph. These graph patterns are formalized using
monomorphisms of which the target graph, which is thereby
an extension of the possibly empty source graph, represents
the graph pattern. Extensions of patterns are then given again
by monomorphisms from one pattern to another. Using only
monomorphisms in GCs ensures that the patterns described
by graphs cannot shrink in size (non-injective mappings in
morphisms merge nodes or edges). For the base case, the
empty pattern can be trivially found in a host graph G using
the initial morphism i(G). In general, monomorphisms from
graph patterns to the host graph G are called matches.

Definition 7 (Graph Conditions)

If H e SE;"?I%}IGS is a finite typed graph, then ¢ is a graph
condition over H, written ¢ € S?GC - if one of the following
items applies.

e ¢ = AS and S is a finite set of GCs over H.

e ¢ =—¢and ¢ isa GC over H.

e ¢ =3(f:H<H' ¢)and ¢ is a GC over H'.
Moreover, we define the following abbreviations.

o true: T = AQ
e false: L = =T
e disjunction: VS = —-(A{—«zs | (]3 e ShH
e universal quantification: V(f, ¢) = —=3(f, —¢)

The abbreviations in the previous definition can also be

understood as operators that are derived from the three

defined operators —, A, and 3. In the remainder, we only
define operations for the defined operators but not for derived
operators to avoid cluttering.

In our examples, for improved readability, we only
employ inclusion morphisms in GCs and for the case of
3(f : H < H’, ¢), we visualize the inclusion morphism f
by all nodes and edges thatare in H' — H or that are connected
to such elements. Also, for the delta-based graph repair algo-
rithm in Sect. 8, we require that no isomorphisms are used
in the consistency constraint given by a GC. See Fig. 5 for
an example of a GC demonstrating the use of nesting and
propositional operators.

We now define the set of all subconditions of a GC as
follows for later use.

Definition 8 (Subconditions of a Graph Condition)
IfH e Sf%;a}}Gs is a finite typed graph, and ¢ € Sg’g gisa
GC over H, then sub(¢) = R is the set of all subconditions
of ¢, if one of the following items applies.

e ¢ = ASand R = {¢} U {sub(¢p) | ¢ € S}.

e ¢» =—¢and R = {¢} Usub(¢).

e ¢ =3(f: H H',¢)and R = {¢} Usub(¢).

@ Springer

The satisfaction relation for GL is given below in the form
of a recursive definition that follows the inductive defini-
tion of GCs. Its definition follows [19] and is as expected
for the operators conjunction and negation. For the case
of A(f : @ — H, q_b), we first consider an extension of the
empty pattern given by a monomorphism f :@ < H. For
the satisfaction, we then need to be able to find a match
m : H < G into the host graph that also has to satisfy the
subcondition ¢. When ¢ contains an extension of the pattern
H from before using a monomorphism f’ : H < H’', we
need to be able to find a match m’ : H < G into the host
graph that is an extension of the previous matchm : H — G
and that then again satisfies the next-level subcondition ¢'.
This means for m’ that it must match all elements accord-
ing to m w.r.t. the renaming given by f: formally, we must
ensure that the new monomorphism m’ satisfies m’ o f = m.
Note that the satisfaction check for the exists operator may
not succeed when there is no suitable extension monomor-
phism m’.

Definition 9 (Satisfaction of Graph Conditions)
IfH e Sg;ams is a finite typed graph, ¢ € S5, isa GC over
H,and m : H— G is amatch of H in G, then m satisfies ¢,
written m [=gc ¢, if one of the following items applies.

° ¢_ASandV¢€S ml:Gc¢

e ¢ = —¢ and not m =gc ¢.

e ¢ = 3A(f:H < H' ¢) and Im’

m'o f Am' Ege ¢.

cH «—~G. m =

H(—>H’

N

Also, if ¢ € SGC(Zj is a GC defined over the empty graph and
¢ is satisfied by the initial morphismto G (i.e., i(G) Egc ¢),
then G satisfies ¢, written G =gc ¢.

See Fig. 5e for an example of a satisfaction proof for a GC,
which follows the nested structure of the GC by applying the
satisfaction relation defined above.

Finding matches m : H < G of a pattern H in a given
host graph G according to the satisfaction relation above is
NP-complete (note that both graphs G and H vary in typi-
cal applications) but the development of static and dynamic
heuristics for matching graphs is an active field of research
[3,6,8,11,18,23]. For example, if the graphs H and G are
connected, then a partial match of H in G can be extended
to a match by local extension.

A logic-based incremental approach to graph repair featuring delta preservation 375

4 Automated reasoning for GL

We now present automated reasoning support for GL in the
form of the algorithm A from [39,40] for which tool support
is available in AUTOGRAPH. While satisfiability is undecid-
able for GL as pointed out before, this problem can be solved
for many relevant instances. The algorithm A takes a GC
¢ as an input and attempts to rewrite ¢ into an equivalent
GC ¢'. The computation of A may not terminate possi-
bly computing a continuously growing GC. However, if the
computation terminates, the resulting condition is of the fol-
lowing restricted form. Firstly, ¢’ is a finite disjunction of
GCs of the form 3(f : @ < H, ¢). Secondly, each ¢ is a
finite conjunction of GCs of the form —3(f’ : H < H’, ¢)
where f’ is no isomorphism. For soundness, it is known
that the GC ¢ and the resulting GC ¢’ are satisfied by
the same graphs, which means that the two conditions are
indeed equivalent. Note that during any computation of A,
elements of the resulting disjunction are computed incremen-
tally, which means that the condition computed so far at any
point in the computation invariantly implies the input condi-
tion ¢.

Moreover, as the main feature of A, it has been shown
that each graph H that can be directly obtained from an
element 3(f : @ < H, ¢) of the returned disjunction sat-
isfies the given input condition. Also, the finite conjunction
¢ describes in each case how the graph H can or cannot
be extended to graphs H still satisfying the given GC. Note
that the property that f’ is no isomorphism is essential for
this extraction of models to ensure that H indeed satisfies
the GC. The set of graphs H obtained from the resulting
disjunction is by construction complete in the case of ter-
mination in the sense that all minimal graphs satisfying the
given condition are represented by one element of the dis-
junction. See Fig. 6a for an example of a GC resulting in
a terminating application of .4 where the graphs given in
Fig. 6b can be obtained from the returned GC and Fig. 6¢
for a GC resulting in a nonterminating computation. Nev-
ertheless, we point out that the computation performed by
A always proceeds in a reasonable direction (attempting
to construct the smallest graphs satisfying the given GC by
incrementally enlarging candidates for such a smallest graph)
but may not terminate because the smallest graph satisfy-
ing a given GC may be an infinite graph, which can’t be
generated by incrementally adding a finite number of ele-
ments.

From the computation of such minimal graphs satisfying
the GC, we can deduce that a GC is satisfiable when Areturns
a non-empty disjunction. Moreover, it has been shown that
A terminates and returns the empty disjunction when the
GC is not satisfiable meaning that the procedure is refuta-
tionally complete. Note that several other problems such as
determining useless subconditions, equivalence and entail-

ment can be checked (up to termination of the procedure) as
a consequence of the discussed results.

In subsequent sections, we employ the presented algo-
rithm A for computing the finite set M(¢) of all finite
minimal models of ¢.

Definition 10 (Minimal Models)

Ifgp e S?gg is a GC defined over the empty graph, then the

finite set of finite typed graphs M (¢) Cgp Sglrf‘;}g satisfies’

e soundness: each graph in the returned set satisfies the GC
(i.e., G € M(¢) implies G E=gc @),

e completeness: for each graph satisfying the GC, there is a
smaller graph in the returned set (i.e., G| =gc ¢ implies
that there is some f : G, < G for some G, € M(¢)),
and

e uniqueness: two different returned graphs cannot be
included in each other (i.e., G| € M(¢), G2 € M(¢),
and G| # G implies that there is no monomorphism
f:G1— Gy).

5 Graph updates and graph repairs

We now define graph updates to formalize arbitrary modifica-
tions of graphs that are executed by an external process such
as a user or another process. Afterwards, we define graph
repairs as the desired graph updates that modify a graph such
that the resulting graph satisfies a given GC. Moreover, we
further classify graph updates and graph repairs by means of
desirable properties that should be satisfied.

Arbitrary graph modifications are well known in the
domain of graph transformation (see e.g. [15] for a thorough
introduction) where graph transformation rules are used to
generate such modifications. We abstract here from the con-
crete procedure that leads to graphs not satisfying a given
GC but rely on the following definition in which a graph
update of G resulting in a graph G is represented by a
span (i.e., a pair of two morphisms with common domain)
of two monomorphisms ({ : D «— G1,r : D — G»).
In this span, the graph D represents the part of G that
is preserved by the update, the monomorphism ¢ describes
the preserved/removed graph elements, and the monomor-
phism r describes the preserved/added graph elements. In
particular, the elements in £(D) are preserved, the elements
in G1 — ¢(D) are removed, the elements in r(D) are pre-
served and the elements in G, — r (D) are added. See Fig. 7a
for an example of a graph update that deletes and also adds
elements.

Definition 11 (Graph Update)
Ifl: D < Gjandr : D < G5 are monomorphisms, then
(€, r) is a graph update, written (¢, r) € S'd,

I Here, A Cn B means that A is a finite subset of B.

@ Springer

376

S. Schneider et al.

(a)
) _'EI[- [{- e;:eAB

(b)
{- {- e;:eAB

B8], 7| n~3[E8 exens, 7]

J/\—EI[] @reAA,TH

(0
pwyes | PR

O

pey 1

(e) C

o . [

m11 mzl 1"13

Fig. 5 Example of a GC, a graph, and a satisfaction proof. a A GC
stating that every node of type :A has an edge of type :eAB to a node
of type :B but no self loop of type :eAA. See also b for the same con-
dition using the abbreviation for forall. b The GC from a where the
abbreviation for forall has been used. ¢ A graph that does not satisfy
the GC from a because the node a;:A has no connected :B node and
also a self loop. d A graph that satisfies the GC from a according to the
proof in e. e For verifying that the graph (called G here) from d satis-
fies the GC (called ¢ here) from b, written G |=gc ¢, we prove that

We now define graph repairs (to be computed in subsequent
sections) as those graph updates that result in a graph that
satisfies a consistency constraint, which is given in the form
of a GC ¢.

Definition 12 (Graph Repair)

If (£ :D <Gy, r:D <> Gy) € S is a graph update,

¢ € SGC G.0 is a GC defined over the empty graph, and G»
satisﬁes ¢ (i.e., G2 =gc @), then (€, r) is a graph repair of
G 1 with respect to ¢, written (£, r) € S*PY (G, ¢).

Note that we do not require the input graph G to be incon-
sistent in this definition, which permits the graph update
(id(G1),1d(G1)) with the identity morphism on G to be
a graph repair as well in this case. See Figs. 7b and 7¢ for
two examples of graph repairs.

We now introduce notions for classifying graph updates
and graph repairs. Note that the properties defined for graph
updates immediately translate to graph repairs as well.

We define that two graph updates u; = (£1,r1) and
uy = (€2, rp) with common input graph are isomorphic when
there are two isomorphisms that show that the same modifi-
cations are applied in both graph updates up to renaming. The

@ Springer

- e1:eAB

m/ﬁS
“ens £ [l

¥

] ey:eAA

m1 = i1(G) Egc ¢. We find two possible match morphisms m, and m3
matching the node a to ag and a;. Because of the universal quantifica-
tion in ¢, we must consider both. For m,, we can find an extension m4
that matches e; to e; and b to bg. Also, we do not find an extension of
my that matches the self loop on ag as required. For m3, we can find
an extension ms that matches e to e; and b to by. Also, we do not find
an extension of m3 that matches the self loop on a; as required. This
completes the proof and shows that G satisfies ¢

graph repair algorithms that we introduce in Sects. 6 and 8
compute graph repairs up to isomorphism. However, to ease
presentation, we avoid a detailed technical handling as usual
in the remainder.

Definition 13 (Isomorphic Graph Updates)
If uy and ur are two graph updates from S"PY,

i . i . .

D) < D and i : G| < G, are two isomorphisms sat-
isfying £ = €y 0ij and iy ory = rp o iy, then uy and up are
isomorphic, written u1 = u;.

1
Dy —— G

e o u = 4

fz D2 [S G2
2

Two graph updates u| = (£1, r1) and uy = (€2, rp) describe
the same modification when they agree on the input graph
and the output graph. In this scenario, we define that u» is
a reduction of u; when (a) the two graph updates obtain
their common modification in a compatible way but (b) u,

A logic-based incremental approach to graph repair featuring delta preservation 377

_'El{- e;:eAB
/\El{- e1:eAB

ﬁa[

ey:eBA /TH
{- e2:eBC

TJVH{Z‘ e3:eBB TH

(b)
- e1:eAB - ¢:eBC - - e1:0AB -] e3:eBB

"
WELE L

/\—la[- e AA

Fig.6 Example of two GCs and the application of M and A for com-
puting minimal graphs for the GCs. a A GC ¢ stating that (a) for every
edge from an :A node to a :B node there is also an edge in reverse direc-
tion and (b) there is an edge from an :A node to a: B node such that (b1)
there is also an edge from the :B node to a :C node or (b2) the :B node
has a self-loop. b The two minimal graphs G| and G, obtained using

performs less deletions and additions of nodes and edges.
That is, #1 may delete additional elements (¢ deletes at least
those elements deleted by £,) but restores the additionally
deleted elements afterwards (r; adds all elements added by
ro and also those additionally removed by £1). Note that the
reduced graph update u» has a bigger graph D, because it
preserves more elements.

Definition 14 (Reduction in Graph Update)
If u; and u5 are two graph updates from S ;i Dy Dy
is a monomorphism satisfying £; = ¢, oi,andr; =rp o1,
then uy is a reduction of uy according to i, written uy cluy
or simply uy C uj.
Agl/ - \

Gy i G2

_) /

EZ D,)

1

Moreover, we define the following abbreviation.

e 1 isastrict reduction of uy according to i, written u; c!
uy or simply uy C uy, when up €' 1y and not u; C us.

Note that the graph repair presented in Fig. 7b is a strict
reduction in the graph repair from Fig. 7c.

We now introduce canonical graph updates, which have
a maximal graph D preserving as many nodes and edges
as possible from G to G,, which means that the monomor-
phism r does not undo deletions of the monomorphism £. For
example, for anonempty graph G, the graphupdate u; = (£ :
@~ i(G),r : @ < i(G)) is noncanonical because it first

e:eAA / TJ

M(¢) from the GC ¢ from a. ¢ A GC ¢ formalizing the Peano axioms
stating that (a) there is a first : A node without a predecessor, (b) every
:A node has a successor, and (c) no :A node has two predecessors. The
computation .A(¢) does not terminate for the GC ¢ as it first constructs
a graph with one node of type :A and then incrementally extends this
graph adding one additional successor in every step

deletes all elements from G and then restores these elements
afterwards using r. In this case, (id(G), id(G)) is the unique
canonical reduction of u.

Definition 15 (Canonical Graph Update)

If u; € 8" is a graph update and there is no graph update
uy € S that is a strict reduction of u (i.e., u» C uy), then
u1 is a canonical graph update, written u; € Ség)n .

Note that the graph repair presented in Fig. 7b is canonical.
We state that every graph update can be reduced to a canon-
ical graph update.

Theorem 2 (Existence of Canonical Graph Update)

If uy € S is a graph update, then there is a canonical
graph update u, € ng,? that is a reduction of u (i.e., up C
up).

We now relate two graph updates u#; and u# with the same
input graph but different output graphs. In this case, u is a
sub-update (see [32] and the similar notion of a derived span
in [16, Definition 4.1, p. 44]) of u whenever the modifications
defined by u; are fully contained in the modifications defined
by u. This is the case when every element deleted by u; is
also deleted by u and every element added by u is also added
by u while u is permitted to delete further elements and to
add further elements. Technically, u1 is a sub-update of u, if
there is another graph update u5 such that (a) u has the same
output graph as u, (b) u; and u; can be applied sequentially
resulting in the graph update u, and (c) u, does not delete
any element that was added before by u.

@ Springer

378

S. Schneider et al.

] e1:eAA <€—) ' . ey:eAB

) G

e1:eAB

Y

b;:B

1

] ey:eAA

a7 A A1 A
e;:eAB e1:eAB

Y " Y

|b1 :Bl % by :Bl

e3:eAB

(U
() a1:A IZIZA
e;:eAB e;:eAB
Y e r Y
b;:B - 2 > |by:B) ¢ 2, [b]ZBl
A
e3:eAB
] ey:eAA |a2:A|
d
() |1111A| 1112A
e1:eAB e;:eAB
Y Y
0 " l3
by:B by:B 1, [b1:13| «~> > [oB SRE |b |:| ¢4:eBB
A A
e;:eAB e3:eAB e3:eAB

] ey:eAA

Fig.7 Examples of graph updates and graph repairs. a A graph update
that deletes the edge e; and then adds node b; and edge e;. b A graph
repair for the graph from Fig. 5¢ w.r.t. the GC from Fig. 5a. Also, accord-
ing to Definition 14, the graph repair is a strict reduction of the graph
repair from ¢. Moreover, according to Definition 15, the graph repair is

(a) >
- e;:eAB - ‘—) - e;:eAB - L @ e;:eAB

(b)
- e;:eAB

Fig.8 Comparison of least changing graph repairs and minimal atomic
graph repairs. a A first least changing graph repair w.r.t. the GC from
Fig 6a that is not a minimal atomic graph repair because the graph
repair from b requires only one atomic edit operation whereas the one

@ Springer

- e1:eAB

a canonical graph update. Lastly, according to Definition 17, the graph
repair is a least changing graph repair. ¢ A graph repair for the graph
from Fig 5c w.r.t. the GC from Fig 5a. d An example of a graph repair
(¢, r) using the graph repair (€1, r1) from b as a first step. That is, the
graph repair from b is a sub-update

> =1

b:B

ey:eBC " El

i,] €22€BB

e1:eAB

depicted here requires two atomic edit operations. b A second least
changing graph repair w.r.t. the GC from Fig 6a, which requires one
atomic edit operation

A logic-based incremental approach to graph repair featuring delta preservation 379

Definition 16 (Sub-update [32])

Ifu = (r),u = (l,r1), and up = (€, ry) are graph
updates in S"PY, (1) and (3) commute, and (2) is a pushout
and pullback, then u is a sub-update of u w.r.t. up, written
up <"2yoru; <u.

/ r Y4 r
Gl —— Dy G2 Dy 2+ Gy

@ ()y
*E/r

Moreover, we define the following abbreviations.

e u isastrict sub-update of u,writtenu| <"2 uoru; < u,
when u; <2 yandnotu < u;.

e The composition of u1 and us, written u o us, is some
u satisfying u; <"? u (if it exists) and L otherwise.

In this definition, the existence of r{ and the commutation
of (1) means that u; does not delete more than u, the exis-
tence of 2/2 and the commutation of (3) means that u; does
not add more than u, the commutation of (2) means that
graph elements in D are equally identified in D and D, the
requirement that (2) is a pullback means that #; and u» do
not preserve more than u, and the requirement that (2) is a
pushout means that u, preserves all elements added by u;.
Also note that a graph update u resulting from the composi-
tion of u1 and u, does not need to be canonical as r, ma add
elements that have been deleted by ¢; before.

See Fig. 7d for an example where the graph repair from
Fig. 7b is a sub-update of another graph repair.

We now introduce least changing graph repairs, which are
those graph repairs for which no strict sub-updates exists (in
a given set U of graph repairs) and which already repair
the graph at hand. Stated differently, these graph repairs
determine successful modifications establishing consistency
preserving as many nodes/edges from the input graph as pos-
sible compared to the graph repairs in U.

Definition 17 (Least Changing Graph Repair)

Ifg e S?GC @ is @ GC defined over the empty graph, u €
S™PAT(G, ¢) is a graph repair of G with respect to ¢, U C
S™PUT(G, ¢) is a set of graph repairs, and there is no graph
update u’ € U that is a strict sub-update of u (i.e., u’ < u),
then u is a least changing graph repair of G w.r.t. ¢ and U,

repair

writtenu € S, (G, ¢, U).

When U = S™PAT(G, ¢), we also call graph repairs in
S]r:‘ PU(G, ¢, U) least changing without mentioning the set
U for comparison. For example, the graph repair presented
in Fig. 7b is least changing.

Finally, we define the notion of delta-preserving graph
updates u». Such graph updates are constructed by appli-
cation of the delta-based graph repair algorithm Repair 4,
presented in Sect. 8 and which are graph updates that pre-

serve the modification of a previously applied graph update

u1. This means that u, does not delete elements that were
added by u and that u; does not recreate elements that were
deleted by u. Formally, this means that the composition of
u1 and u» is a canonical graph update u.

Definition 18 (Delta-Preserving Graph Update)

fu, =, r) €S and us = €y, rp) € S are graph
updates, u = (€, r) € ngf is a canonical graph update, and
u1ouy = u, then uj is a delta preserving graph update w.r.t.

. d
uy, written uy € SZF]’)res(ul).

Other graph repair algorithms (see [28]) attempt to obtain
graph repairs that modify the given inconsistent graph by a
minimal number of deletions/additions. It turns out that the
set of all these minimal atomic graph repairs based on a min-
imal distance is a strict subset of the set of all least changing
graph repairs. The statement on the inclusion holds because
if a minimal atomic graph repair would not be least changing,
then there would be another graph repair with fewer modi-
fications contradicting also the property of being a minimal
atomic graph repair. Moreover, the statement on the inclusion
being strict holds as demonstrated by the example in Fig. 8.
However, as also demonstrated by the example in Fig. 8, the
least changing graph repairs provide a more diverse set of
graph repairs, which is obtained by our algorithms by incor-
porating the GC in the construction procedure.

Graph repair algorithms discussed in the remainder of this
paper are intended to (a) be sound by only returning graph
repairs, (b) be as complete as possible by returning as many
least changing graphs repairs as possible, and (c) to always
terminate.

We consider two further properties of graph repair algo-
rithms discussed in [28].

Firstly, stable graph repair algorithms return the identity
update (id(G), id(G)) when the graph G is already con-
sistent. Obviously, graph repair algorithms for consistency
conditions formalized as GCs can easily satisfy this condi-
tion by first checking whether the given graph satisfies the
GC.

Secondly, fotal graph repair algorithms return at least one
repair for every inconsistent graph G, which is a weaker
requirement compared to completeness. We consider this
property for each of our three graph repair algorithms in the
following sections.

6 State-based graph repair

We now introduce two state-based graph repair algorithms for
the restoration of consistency, which adhere to the following
general interface.

Definition 19 (State-based Graph Repair Algorithm)

A state-based graph repair algorithm takes a finite graph
G € Sﬁrrlaf}lg and a satisfiable consistency constraint ¢ €

@ Springer

380

S. Schneider et al.

Sggg as inputs and returns a finite set of graph repairs from
Srepair(G7 o).

We rely on the tool AUTOGRAPH as discussed in Sect. 4 to
determine, using the operation M, the finite set of all min-
imal graphs satisfying a given GC ¢. To ease presentation,
we assume for the two state-based graph repair algorithms
introduced subsequently that the operation M terminates for
all provided inputs and discuss this issue in more detail in
subsect. 6.3.

For the demonstration of our algorithms, we make use of a
simple running example in which we compute graph repairs
for the graph G}, from Fig. 5c, which is inconsistent w.r.t. the
GC ¢ from Fig. Sa.

6.1 State-based repair algorithm Repairy, ,

The state-based algorithm Repairg, ; is designed for the
special case that only non-deleting graph repairs are to
be constructed. That is, the graph repairs computed by
Repairg, | are always of the form (id(G),r : G <— G)
where G is the current graph under repair and where r
describes the addition of elements leading to graphs G’ sat-
isfying the consistency constraint at hand.

The algorithm Repairg, ; computes, as a first step, the set
M(¢ A 3I((G), T)) of all minimal graphs that (a) satisfy the
consistency constraint given by the GC ¢ and (b) also include
a copy of the graph G to be repaired.” As a consequence of
the construction of this input condition to M, it is guaranteed
that every minimal graph G’ contained in this set then gives
rise to at least one extension monomorphism r : G < G’
from which we obtain one graph repair without deletion.

Definition 20 (Graph Repair Algorithm Repairy, ;)

If G is afinite typed graph from Sﬁ;ar}lg and¢ € Sg’g pisaGC
defined over the empty graph, then Repairg, ; (G, ¢) returns
the set {(id(G),r : G— G') | G' € M(¢ A3[{(G), T))}

of graph repairs.

For our running example (¢ from Fig. 5a and graph G, from
Fig. 5¢), we do not obtain any graph repair because the loop
on node a; makes the graph G/, inconsistent and any exten-
sion of G{, also includes this self loop. Hence, there are no
non-deleting graph repairs for our running example.
Observe that Repairy, | is stable because we only obtain
the non-changing graph repair (id(G),id(G)) whenever
applying Repairg, | to consistent graphs G. Moreover, we
compute only least changing graph repairs due to the mini-
mality of the graphs obtained using M as discussed in Sect. 4

2 We present our recursive algorithms using a mathematical notation
as it is more flexible than functional programming and more precise
than pseudo code. Moreover, the presented algorithms are constructive,
which is demonstrated by our prototypical implementation in AUTO-
GRAPH.

@ Springer

and, vice versa, all graph repairs computed are least changing
graph repairs because M computes the complete set of such
minimal graphs.

We state that Repairg, | computes precisely the set of all
non-deleting least changing graph repairs.

Theorem 3 (Functional Semantics of Repairg, ;)

The graph repair algorithm Repairg, | is sound and com-
plete w.r.t. non-deleting least changing graph repairs, upon
termination. Formally, Repairg, 1(G,$) = {(d(G),r) |

(d(G), r) € SEP(G, ¢, S*TPI (G,).

Ic

Note that Repairg, ; is not total as it is only complete w.r.t.
the non-deleting least changing graph repairs. In fact, the
running example demonstrates that Repairg, ; is not total
already.

6.2 State-based repair algorithm Repair,, ,

We now introduce our second state-based graph repair
algorithm Repairg, 5, which computes all least chang-
ing graph repairs. For Repair, ,, we refine the approach
used for the repair algorithm Repairg, ; by computing
M(¢p A3(GI(Ge), T)) where suitable inclusion morphisms
£ : G, — G describe how G can be restricted to one of its
subgraphs G.. Every graph G’ obtained from the application
of Mfor one of these graphs G, then results in at least one
monomorphism r : G, < G’ resulting in one graph repair
returned by Repairg, , (unless it is not a least restrictive
graph repair compared to another graph repair computed).
That is, £ describes the deletion carried out by the resulting
graph repair and we apply M to the graph G obtained by the
deletion to obtain additions as for the algorithm Repairg, ;.

We introduce to this extent restriction trees (see Fig. 9 for
the restriction tree computed for G{, from our running exam-
ple in simplified notation) that allow to extract such inclusion
morphisms £. Given a graph G and a fixed subgraph G,;;, of
G, the nodes of the restriction tree are all subgraphs G, of
G that include the graph G,;,. Note that G,;;, is the empty
graph @ in the state-based algorithm Repairy, , introduced
here but not in the algorithm Repairy, introduced later on in
Sect. 8. The edges of the restriction tree are given by inclu-
sions that add precisely one node or edge. Obviously, the
restriction tree is exponential in G — G, Which is prob-
lematic when G, is the empty graph @ because the graph
G must be assumed to be often not small. Later on in Sect. 8§,
we use the construction of restriction trees for cases where
G is small and G — G,;;;; is even smaller. Since the restric-
tion tree is not entirely used in the suboperation Repair . of
Repairg, ,, we may reduce runtime and memory usage by
constructing the restriction tree on-the-fly during an applica-
tion of Repair,,,.

Technically, we first construct restrictions trees by first
obtaining the set S of all inclusions that are no isomorphisms

A logic-based incremental approach to graph repair featuring delta preservation 381

@{11 — b] bz)

<1>a1 Hbl a D G{l

k)

@Day —> by ~—ay

@ﬂ1 — b1

ay —» h1©

Fig.9 The restriction tree RT(G/,, @) (enclosed by the polygon) and four graph repairs (marked 3-6) generated using Repairg, »

between two graphs G, and G, that are enclosed by G,
and G. Then, we obtain the set § € S in which all inclu-
sions add precisely one node or edge. Finally, we derive the
resulting set S” € S’ in which we ensure that each graph in
the resulting restriction tree is reachable from the root graph
G on precisely one path.

Definition 21 (Restriction Tree)

If G and G, are finite typed graphs from SES?E, S =
{inc(Ge, Gp) | Guin € G C G, € G}, § is the least
subset of § s.t. the closure of S’ under o equals S, and S”
is a least subset of §’ s.t. when £; : G <— G| € S and
lr : G «— G, € §',then atmost one of themisin S”, then S”
is the restriction tree for G and G i, written RT(G, G pin) =
S,

While this definition is a rather declarative, we point out
that the construction of restriction trees can be implemented
easily.

The algorithm Repairg, , is defined using the following
operation Repair,. to consider different inclusion mor-
phisms ¢ describing removals of graph elements from the
graph to be repaired. In principle, composing all inclusions
that constitute one path through the restriction tree from
its root describes one viable removal in terms of one such
inclusion morphisms £. The operation Repair,,,. recursively
considers for this purpose the graphs in the restriction tree
RT(G, @) starting with id(G), denoting the “root” graph G
(note that for this initial call to Repair ., the used monomor-
phism id(G) is not in the restriction tree). More precisely,
‘Repair . has four inputs: a graph G to be repaired, a GC ¢ to
be satisfied by the repaired graph, an inclusion £ : G, <— G
that describes an intended removal of graph elements, and
a set S of already computed graph repairs using fewer dele-
tions. The recursive traversal computes for the graph G,
which does not satisfy the GC ¢, a set of graph repairs
by executing M (¢ A 3(1(G.), T)) as explained above and

then descends to the children of G, to obtain further graph
repairs that then include an even more extensive removal
upfront. This recursive traversal procedure terminates when
the graph G, already satisfies the GC ¢, which then leads
to the deletion-only graph repair (¢ : G, <— G,id(G,)),
since smaller graphs would always lead to graph repairs that
are not least changing graph repairs in comparison with the
graph repair obtained from G.. Moreover, we ensure that all
computed graph repairs are least changing graph repairs by
checking that graph repairs computed deeper in the recur-
sive computation are not sub-updates of any of those graph
repairs computed already.

Definition 22 (Repair Operation Repair,,.)
IfG e Sﬁrghg is a finite typed graph, ¢ € S?GC g isaGC
defined over the empty graph, £ = inc(G, G) : G, < G is
an inclusion morphism, S is a finite set of graph repairs for G
w.r.t. ¢ from Srepair(G, ¢), then Repair,..(G, ¢, £, S) =R,
if one of the following items applies.
e deletion-only graph repair found.:
G. Ecc ¢ (case of satisfaction)
and R = {(£,1d(G,))}.
e recursive application:
G. F=Gc ¢ (case of non-satisfaction),
S ={lr:G. G| G € M(p A3((G,),)}
(all graph repairs for current £),
S = {ur € 81 | fur € S. uy < uy} (retain those
without prior computed sub-update),
Sy = U{Repair.(G, ¢, Lo t/,SUS)) |
¢’ =inc(Gy, G.) € RT(G, 0))
(apply recursively with S U S| as found graph repairs),
and R =S US,
(return additional graph repairs computed).

@ Springer

382

S. Schneider et al.

The operation Repair,,,. is guaranteed to terminate because
it considers one further graph contained in the finite restric-
tion tree in every recursive application.

For our running example (¢ from Fig. 5a and graph G},
from Fig. 5c), we recursively compute the restriction tree
depicted in Fig. 9 in simplified notation. We then traverse this
restriction tree recursively using Repair . except for the four
graphs without a border such as the graph marked 8§, which
are not traversed because they have the common supergraph
that is marked 9, which satisfies the consistency constraint ¥
already. Therefore, traversing those four graphs would gen-
erate repairs that are not least changing graph repairs. Hence,
the recursive procedure does not reach these graphs and ends
in their parents. The resulting graph repairs for our running
example are given by the pairs of graphs marked by (2,3),
(2,4), (9,5), and (10,6) in Fig. 9. Also note that the graph
repair that is given by the two graphs that are marked (11,6)
is not a least changing graph repair because of the previously
computed graph repair (10,6), which does not delete the b
node in between. We therefore do not return this graph repair
in the final set Repair,..(G, ¢, 1(G), &). Another example
of such a situation occurs at the graph marked 7 from which
the graphs 3 and 4 could also be obtained as extensions: also
in this case graph repairs are obtained and then discarded that
are not least changing graph repairs.

We now define our second state-based graph repair algo-

rithm Repairgy, , based on Repair .

Definition 23 (Graph Repair Algorithm Repairy, ;)

If G is a finite typed graph from Sg;?r}lz;s and ¢ € Sg’g glisa
GC defined over the empty graph, then Repairg, , (G, ¢) =
Repair,..(G, ¢,1d(G), @) is the set of returned graph

repairs.

We state that Repairg, , computes precisely the set of all
least changing graph repairs.

Theorem 4 (Functional Semantics of Repairy, 5)
The graph repair algorithm Repairy, , is sound and com-
plete w.r.t. least changing graph repairs, upon termination.

Formally, Repairg, ,(G, ¢) = S0 (G, ¢, S®PU(G, ¢)).

Note that the totality of the algorithm Repairy, , follows
immediately from completeness.

6.3 Discussion on state-based repair algorithms

The two state-based graph repair algorithms introduced in
this section are independent from the history of the graph
to be repaired, which means that no additional informa-
tion is required for computing the graph repairs. Also, they
are able to generate a complete set of all (in the case
of Repairg, ; deletion-only) least changing graph repairs,
which is a stronger property compared to our delta-based
graph repair algorithm presented in Sect. 8.

@ Springer

However, the use of AUTOGRAPH for computing M
is costly in these two algorithms especially for cases where
the graphs to be repaired are big (an in-depth discussion on
the computational complexity of the graph repair algorithms
is presented later on in Sect. 9). Moreover, since AUTOGRAPH
is not known to terminate for all inputs (cf. Sect. 4), it may
happen that the two state-based graph repair algorithms also
do not terminate. This is of particular relevance for these
algorithms because AUTOGRAPH is used in these two algo-
rithms at runtime on conditions including the graph to be
repaired.

Hence, we develop subsequently an incremental delta-
based graph repair algorithm for the scenario where a graph
is subject to a sequence of updates leading to inconsistent
graphs that require the computation of graph repairs after
every step. We introduce to this extend an additional data
structure in the form of a satisfaction tree (introduced in the
next section) to enable incrementality to reduce the computa-
tional cost for computing graph repairs when a graph update
is provided.

7 Satisfaction trees

‘We now introduce satisfaction trees (STs), which store infor-
mation on if and how a graph G satisfies a given GC ¢
(according to Definition 9). We first introduce STs, cover
their recursive construction for a given GC ¢ and a graph G,
introduce the notion of violations of an ST capturing why the
constraint is not satisfied, and finally discuss the propagation
of an ST over graph updates to enable its incremental usage
in the delta-based graph repair algorithm introduced in the
next section.

For the demonstration of satisfaction trees and the delta-
based graph repair algorithm from the next section, we extend
our running example by also considering the graph update
u given in simplified notation in Fig. 10a that results in the
graph G, from Fig. 5c, which is inconsistent w.r.t. the GC ¢
from Fig. 5a.

The structure of an ST corresponds to the structure of
its corresponding GC, which means that STs are also con-
structed using the same three operators for conjunction,
negation, and existential quantification. In fact, STs can be
understood as GCs that are enriched by all of the monomor-
phisms that could be used during a satisfaction check. In
particular, for a given match m : H < G into the host
graph G and a GC ¢ = 3(f: H < H', $), we store
the monomorphisms m’ : H’ < G that let the triangle
m = m’ o f commute. Moreover, for each such monomor-
phism m’, we construct and record the ST for m’ and the
subcondition ¢.

More precisely, for the case of existential quantification,
the corresponding ST is of the forms 3(f : H— H’, ¢_>, mg,

A logic-based incremental approach to graph repair featuring delta preservation 383

J4 I
e e e
u1—1>b1<62—a2 — Ell—l>b1 ap - ﬂ1—1>b1 ap Hes (a)
Gu Dy G,

yu=-3(a,~(3(a—C>b, T)A~3(a5>e, 7)), @ {22 = 7uz, a1 = Yu2}) (b)
Yur = (I a—+b, T, {a2-2 by — T},@) A -I(a=<2e, T, 2,9))

Yuz = ~(3a—>b, T, {a1—Le by — T}, @) A=3(a=2e, T,2,9))

72 = ~3(a,~(3(a—>b, T)A~3(a=e, T)), {a2 = ¥Ea}, {mr > 7)) (©
Yo =-3(a—E+b,T,8,2)A-3(a<e, T, {3 — T},9))

Py = —(3(a—~b,T, {02+ b — T},) A -3(a<e,T,2,2))

R1 (d)
74 = =3(a,~(3(a—E+b, T)A=3(a=2e, T)), {12 & yir} {ar = 7h2})
R3
i1 = (30—, T, B, @) A - ae, T, {mres ' T},2))
yh2 = ~(3(a—C—b, T, {1 -2 by — T},2) A-3(a<2e, T, 2,9))

Fig. 10 A graph update and an ST with its propagation over the graph
update where GCs are underlined in STs for readability. a A graph
update u = (£y : Dy <> Gy, ry : Dy < G). b The ST y,, for Gy
(see a) and ¢ (see Fig. 5a). ¢ The ST yE for Dy (see a) and ¥ (see Fig.
Sa) that is obtained as the backward propagation ppgB(y,,, €u) from

my) where m; and m, are partial mappings (we use
support(g) to denote the elements actually mapped by a
partial map g) that map matches m’ : H' < G that sat-
isfy m = m’ o f (for a previously known monomorphism
m : H < G) to an ST for the subcondition ¢. The map
m; maps matches m’ to STs for which m’ =gc ¢ while my
maps match m’ to STs for which m’ e ¢.

The following definition describes the syntax of STs.
While GCs are defined over their context graph H in Defini-
tion 7, we define STs over match morphisms m : H < G
of these context graphs into the given host graph.

Definition 24 (Satisfaction Trees)

If H and G are finite typed graphs from Sg:}l;hcs, m:H—G

is a monomorphism, then y € S?Gci? is a satisfaction tree

(ST) over m, if one of the following items applies.
e y=ASand S Cqp STG((;:’%T.
e y=—andj e ST
e y=3(f:H—H ¢p,m,myp),S={m :H — G |
m = m’of} contains the monomorphisms that let the
resulting triangle commute, m; and m are finite subsets

of {((m',7) |m' € SAy € S555T), and ¢ € ST, isa
GC over H'.

Moreover, we define the following abbreviations.
e true: T = AQD

Y. (see b) and £, (see a). d The ST p| for G (see a) and ¥ (see
Fig 5a) that is obtained as the forward propagation png(yE, ry) from
lel) (see b) and ry (see a). Also p, is the result of ppgU(y,, u) that
applies backward and forward propagation. The viable points for the
delta-based repair discussed in Sect. 8 are indicated by (R1)—(R3)

e false: L =T

e disjunction: VS = =(A{—y | y € §})

e universal quantification:
Y(f.p,my,myp) ==3(f, —¢, my, m’f)
where m; = {(m, =y) | (m,y) € my}
andm’y = {(m,=y) | (m,y) € m}

We now define a satisfaction predicate =gt for STs for defin-
ing when an ST y defined for a monomorphismm : H — G
states that the contained GC ¢ is satisfied by m.

Definition 25 (Satisfaction of Satisfaction Trees)
If H and G are finite typed graphs from Sg:}l;hcs, m:H—G

isamonomorphism,andy € S?gfnT is a satisfaction tree over

m, then y is satisfied, written =gt ¥, if one of the following
items applies.

e y=ASandVy € S. st 7.
e y = —y and not =g Y.
b y=a(f9¢smt1mf) andml ;ﬁ@

Note that the recursive satisfaction predicate does not check
the ST underneath an existential quantification as it assumes
that the ST is properly constructed. To obtain such properly
constructed STs y, we employ the following recursive opera-
tion for a graph G and a condition ¢ so that j represents how

@ Springer

384

S. Schneider et al.

G satisfies (or not satisfies) q; ‘We construct the ST from the
STs for the subconditions for the GC operators conjunction
and negation. For the case of existential quantification, we
obtain all morphisms m’ : H' < G for which the triangle
m = m’ o f commutes and construct the STs for the sub-
condition ¢ under this extended match m’. The resulting STs
are inserted into m, and m ; according to whether they are
satisfied.

Definition 26 (Construction of Satisfactioil Trees)

. graphs .
If H and G are finite typed graphs from Sg /' 75.m : H <— G
is amonomorphism, and ¢ € 8%: 1s a graph condition over
H, then cst(¢p, m) = y is the constructed satisfaction tree

for ¢ and m, if one of the following items applies.

e ¢ =ASand y = Alcst(p, m) | ¢ € S).

e ¢ =—¢andy = —cst(¢p, m).

e ¢$=3(f:H—H.§),
S={m':H'~ G | m=m'o f} contains the monomor-
phisms that let the resulting triangle commute,
may = {(m’, 7) | m" € S Acst(¢p, m’) = 7} contains the
STs constructed for the monomorphisms in S,
m; = {(m',y) € myy |=sT 7} contains the STs that
prove satisfaction of ¢ by m, my = mgy \ m, contains
the STs that do not prove satisfaction of ¢ by m, and
y = 3(f, ¢, m;, my) is the resulting ST.

Also,if¢ € Sgg ¢ 18 a GC defined over the empty graph, then

cst(¢, G) is equal to the construction of the ST cst(¢, i1(G))
for the initial monomorphism i(G).

This recursive construction procedure of STs ensures, for a
given graph G and a GC ¢, that the resulting ST is satisfied if
and only if ¢ is satisfied by G. Note that the ST satisfaction
relation =g is applied here only on STs that were generated
properly using recursive applications of the operation cst.

For our running example, we observe that the ST p, given
in Fig. 10b, which is constructed for the GC ¥ from Fig. 5a
and the graph Gy from Fig. 10a, is satisfied.

Theorem 5 (Soundness of the Construction of Satisfac-
tion Trees)

If H and G are finite typed graphs from Sg:jr%}g, mH «— G
is a monomorphism, ¢ € S%’GC g 1S a graph condition over H,
and cst(¢, m) = y is the constructed ST for ¢ and m, then
Est v iff m =g ¢

We now introduce also a detailed handling of the case when
an ST y that is defined for a monomorphismm : H — G
states that the contained GC ¢ is not satisfied by m. This will
allow us to reason about the possible points for repairs of a
given ST. In particular, we now define a recursive operation
(called violations) that determines the set of all violations V
contained in an ST. Note that it may be sufficient to repair
a single violation to obtain a graph repair that leads to a
consistent graph G’ from an inconsistent graph G because,

@ Springer

intuitively, the operation identifies violations in the form of
potential points for repair. Hence, each violation guarantees
already on its own that the ST is not satisfied.

The recursive operation violations considers all STs main-
tained in the ST y and checks whether such a subcondition is
falsely satisfied or falsely not satisfied. The operation uses a
Boolean parameter b that is frue if and only if the current ST
is expected to be satisfied. This Boolean parameter is inverted
(from true to false or from false to true), when the recursion
proceeds into a negation.

Before providing the formal definition of the operation
violations below, we now discuss the underlying idea in more
detail. Note that the cases of conjunction and negation are
straightforward as expected and that the cases 3 and 5 from
the definition below are not discussed here as they return an
empty set of violations for STs that are correctly satisfied or
correctly not satisfied.

e A non-empty conjunction AS that is falsely satisfied has
only STs in § that are all falsely satisfied. To ensure
that any of these STs is no longer satisfied would be
a viable repair. Similarly, a non-empty conjunction AS
that is falsely not satisfied has at least one ST in § that is
falsely not satisfied. To ensure that each of these STs is
satisfied would be a viable repair.

e A negation —y that is falsely satisfied has an ST y that is
falsely non-satisfied. To ensure that this ST is no longer
non-satisfied would be a viable repair. Similarly, a nega-
tion —y that is falsely non-satisfied has an ST y that is
falsely satisfied. To ensure that this ST is no longer sat-
isfied would be a viable repair. Hence, the value of the
Boolean b has to be inverted for the ST y.

e AnST3(f: H < H',¢,m;, my) that is falsely non-
satisfied has no element in m,. The resulting violation
(®, f: H—H' ¢,m : H < G) describes that ele-
ments have to be added to the graph (denoted using @) to
result in an additional match that can be used to satisfy
the subcondition ¢. Also, each match m" mapped by m ¢
toan ST y can’t be used to satisfy the subcondition ¢ but
graph repairs may affect the STs in y resulting in a pair
(m’, 7’) that would then be inserted into m, proving the
satisfaction of the subcondition ¢.

e AnST3(f : H < H', ¢, m;, my) that is falsely satis-
fied has at least one element in ;. The resulting violation
©, f:H < H,¢,m : H — G) describes that ele-
ments have to be removed from the graph (denoted using
©) to result in all these matches to be invalidated by
removing elements matched by such a monomorphism
m’. Also, each match m’ mapped by m; to an ST 7 can be
used to satisfy the subcondition ¢ but graph repairs may
affect the STs in ¥ possibly resulting in a pair (m’, ')
that would then be inserted into m y for not proving the
satisfaction of the subcondition ¢ anymore.

A logic-based incremental approach to graph repair featuring delta preservation 385

We now provide the definition of the operation for obtaining
violations from an ST.

Definition 27 (Violations of a Satisfaction Tree)
If H and G are finite typed graphs from Sg;?l;}g, m:H—G
is a monomorphism, y € Sggf’nT is an ST over m, and beB
is a Boolean value, then violations(y, b) = V is the set of
violations of y for b, if one of the following items applies.
y = AS and V = | J{violations(y, b) | y € S}.
y = —y and V = violations(y, —b).
y=3(f,¢.m,myg),b=true,m; # J,and V = &.
y =3(f,¢,m;,myg), b = true,m; = &, and
V=A@ f.¢,m}

U U{Violations()?, by | (m',7) € my}.

o y=3(f,p,my,my), b =false,m; = @,and V = @.
o y=3(f,¢,my,my), b= false,m; # &, and

v=[Je. f.¢.m | mp) em)
U U{Violations()?, b) | (m',y) € m;).

We state that the set of violations derived using this operation
from an ST is compatible with the satisfaction predicate =gt
from Definition 25. This means that an ST is satisfied if and
only if no violation can be obtained from it.

Theorem 6 (Compatibility of Satisfaction of Satisfaction
Trees and Computation of Violations) .

. rapns
If H and G are finite typed graphs from SEH’I%G, mH — G
is a monomorphism, y € S?gfnT

iff violations(y, true) = Q.

is an ST over m, then \=st y

Subsequently, we define the operation ppgU for the propa-
gation of a given ST y that is constructed for a graph G over
a graph update (¢ : D < G,r : D < G’) to obtain an
ST y’ such that y’ = cst (¢, G’) whenever y = cst (¢, G).
That is, the propagation of the ST results in the same ST that
would have been constructed directly using the operation cst
from above. This update propagation over an update using the
operation ppgU is performed in two steps. The first step is a
backward propagation of y for £ : D < G using the opera-
tion ppgB (defined later in Definition 29) and the second step
is a forward propagation of the resulting ST forr : D < G’
using the operation ppgF (defined later in Definition 30).
For backward propagation, we describe how the deletion
of elements in G by £ : D — G affects its associated ST
y. To this end, we first explain how matches m : H — G
occurring in an ST are propagated over £ : D < G. The
outcome of this match propagation is a monomorphism m’ :
H < D satisfying Lom’ = m. Thatis, m’ is the restriction of
m to D, which exists uniquely when every element matched
by m is also matched (i.e., preserved) by £ (formally, m(G) <
£(D)). Matches m : H < G where some elements matched
by m are deleted by £ cannot be preserved by the propagation;

the operation ppgMatch is therefore a partial map returning
the undefined element L in this case.

Definition 28 (Propagation of Match)
If H, G, and D are finite typed graphs from Sé;ej}%tg and
m : H <G and £ : D < G are monomorphisms, then
ppgMatch(m, £) = m’ : H < D is the propagation of m
over £, if m’ satisfies £ om’ = m if such a monomorphism m’
exists. Otherwise, if such a monomorphism m’ : H < D
does not exist, then we define ppgMatch(m, £) = L to return
the “undefined element” L.

The following recursive operation for the backward prop-
agation defines how deletions given by a monomorphism
¢ : D < G affect the maps m; and m s of the given ST.
That is, when y = 3(f, ¢, m;,mys) and (m, y) is a map-
ping contained in m, or m s, we have two cases. If the match
m can not be propagated (i.e., ppgMatch(m, £) = 1), we
remove the mapping. Alternatively, if the match m can be
propagated to a match m’ (i.e., ppgMatch(m, £) = m’ # 1),
we construct the mapping pair (m’, ppgB (¢, y)) and check
whether this updated pair belongs to the resulting map m} or
m’, of the resulting ST. Note that matches that were used to
show that the subcondition was (or was not) satisfied may be
matches that can be used to show that the subcondition is not
(or is) satisfied.

Definition 29 (Backward Propagation)

If H, G, and D are finite typed graphs from Sﬁ:‘;lg m :
H < G is a monomorphism, y € SggfnT is an ST over
m, £ : D — G is a monomorphism describing a deletion,
ppgMatch(m, £) = m’ : H < D is the propagation of m
overf,and y € S?gi} is an ST over m’, then ppgB(y, £) =
y is the backward propagation of y over £, if one of the

following items applies.
e y =ASand y = A{ppgB(y’, 0) | y' € S}.

e y=—y and y = —ppgB(y’, ¢).
o y=3(f:H<—H ¢,m,my),

man = {(m’, ppgB(y’, 0)) |
(m,y)emUmys A
ppgMatch(m, £) = m' # 1},

my = {(m', y') € may |=st ¥’}

m/f = may \ m},

and 7 = 3(f. . m}, m')).

Note that the initial monomorphism i(G) : @ < G can be
propagated over any deletion monomorphism £ : D — G

@ Springer

386

S. Schneider et al.

resulting in the monomorphism i(D), and, hence, the oper-
ation ppgB is applicable to all STs y € S%:?(TG), which is
sufficient as we define consistency constraints using GCs
only over the empty graph and hence obtain STs contained

: GCST
in STG’ (G) later on.

For our running example, we construct the ST yl? given
in Fig. 10c using backward propagation of the ST y,, over
the monomorphism £, of the considered graph update.

For soundness of the operation ppgB, we state that the ST
obtained using ppgB equals the one that would be obtained
when constructing the ST from scratch using the operation
cst from before.

Lemma 1 (Compatibility of Satisfaction Tree Construc-
tion and Backward Propagation)
If G and D are finite typed graphs from SESI}IE, £:D—>G
is a monomorphism describing a deletion, and ¢ € 5%,@ is
a GC defined over the empty graph,

then ppgB(cst(¢, G), £) = cst(¢, D).

For the second step of propagation, we consider now a
monomorphism r : D < G’ and apply the subsequently
defined forward propagation on the ST constructed for D to
obtain an ST constructed for G’. In this case of forward prop-
agation, where additions are given by r : D < G’, we can
preserve all matches m : H < D resulting in monomor-
phisms r o m : H < G’. However, as for the backward
propagation, we note that the addition of further elements
specified by r : D < G can affect the satisfaction of the
propagated match r o m, which requires again that the result-
ing ST is checked for satisfaction in each case to ensure
that the adapted mappings are inserted into the right partial
map m) and m’f. Also, the addition of elements can result in
matches that were not available before; for these additional
matches, we must construct STs from scratch using the oper-
ation cst.

Definition 30 (Forward Propagation)
If H, D, and G’ are finite typed graphs from Sfrr]al;th m :
H — D is a monomorphism, y € S%‘gfnT is an ST over m,
r : D < G’ isamonomorphism descril;ing an addition, and
y € S?GCEIm is an ST over r o m, then ppgF(y,r) = y is
the forwa’rd propagation of y over r, if one of the following
items applies.

e y=nSandy = AlppgF(y',r) | y' € S}.

e y ==y andy = —ppgF(y’, 7).

o y=3(f:H<H ¢, my,my),

@ Springer

Madapted = {(rom, Png()’/7 r) | (m, V/) ems U mf}
Mpew = {(m/s cst(g, m/)) |
rom=m'o fA
m' ¢ support(mudapted)},

Mali = Madapted Y Mpew,

my; = {(m',y") € may |=sT V'), m/f = mgy \ my,
and 7 = 3(f. ¢ mj. m'y).

For our running example, we derive the ST p, given in
Fig. 10d using forward propagation of the ST yB over the
monomorphism ry of the considered graph update.

As for the operation ppgB, we state that the operation
ppgF incrementally computes the ST that would be obtained
when constructing the ST for the target graph G’ from scratch
using the operation cst.

Lemma 2 (Compatibility of Satisfaction Tree Construc-
tion and Forward Propagation)
If D and G’ are finite typed graphs from Sﬁ;al;}g r:D—G’

SGC

is a monomorphism describing an addition, and ¢ € Sy

is a GC over the empty graph,
then ppgF(cst(¢, G), r) = cst(¢p, G).

To obtain the propagation operation ppgU that propagates
a given ST constructed for a graph G over a graph update
(¢ :D < G,r: D < G’), which modifies G into G’, we
now compose the operation for backward propagation and
the operation for forward propagation.

Definition 31 (Update Propagation)

If H is a finite typed graph from Sﬁ;al%lg u = (¢
D<>G,r : D> G') € 8 is a graph update, m :
H < G is a monomorphism, y € S?GCEHT is an ST over m,
and ppgMatch(m, £) = m’ is the propagation of m over £,
then ppgU(y, u) = ppgF(ppgB(y, £), r) is the propagation

b ’ GCST
of v over u, which is an ST over r o m’ from STG’rom,.

Finally, we state that the operation ppgU returns the ST that
would be obtained when constructing the ST from scratch
using the operation cst.

Theorem 7 (Compatibility of Satisfaction Tree Construc-
tion and Update Propagation)

Ifu=:D<G,r: DG e 8 is a graph
update and ¢ € S?GC @ is a GC over the empty graph,

then ppgU (cst(¢, G), u) = cst(¢, G').

Note that finding matches m H — G into a given
graph G according to the satisfaction relation of GCs is
NP-complete but the development of static and dynamic
heuristics for matching graphs is an active field of research
[3,6,8,11,18,23]. However, note that the efficiency of match-
ing algorithms depends primarily on the size of the host graph
G since the subgraph isomorphism problem has polynomial

A logic-based incremental approach to graph repair featuring delta preservation 387

complexity for a fixed pattern H [45,46] and because the
graph pattern H can be assumed to be small compared to the
host graph G. Still, we consider the overall propagation given
by ppgU to be incremental in the sense that the operation cstis
only used in the forward propagation on parts of the graph
G’ where the addition of graph elements via r results in addi-
tional matches m’. These additional matches must then map
to at least one element that was added by the monomorphism
r. The time that is required for deriving all such additional
matches m’ can be greatly reduced when all elements in the
graphs to be matched are connected. The resulting search for
matches is then local to the addition and therefore more effi-
cient in general. However, this connectedness condition is
not satisfied by consistency constraints given by GCs in gen-
eral. Also, as discussed later on in more detail, the addition
of a single graph element may result in a single match, which
then triggers the construction of an exponential number of
additional STs (as demonstrated in Fig. 17).

Based on the STs introduced in this section, we introduce
our delta-based graph repair algorithm in the next section,
which determines graph repairs from ST that are not satisfied.

8 Delta-based graph repair

We now introduce a delta-based graph repair algorithm for
the restoration of consistency, which adheres to the following
general interface.

Definition 32 (Delta-based Graph Repair Algorithm)
A delta-based graph repair algorithm takes a finite graph G €

Sé;a}%tg, agraphupdate u = (£ : D <~ G,r : D — G’) €
8UPd, a satisfiable consistency constraint ¢ € So- o and a

finite state ¢ as inputs and returns a finite set of pairs (', g’)
of a graph repair u’ € S™P¥"(G, ¢) and a finite state g’.

In contrast to the two state-based graph repair algorithms, we
permit that delta-based graph repair algorithms make use of a
storage recording a finite state ¢ to maintain knowledge about
the graph that is monitored. In our delta-based graph repair
algorithm, this finite state value ¢ = (y, M) is given by (a)
the ST y that is equal to the ST that would be constructed for
the current graph G and the user-provided consistency con-
straint ¢ and (b) an offline constructed map M that assigns
to each subcondition ¢’ € S%jﬂ of ¢ (i.e., ¢’ € sub(¢)) the
finite set of minimal graphs satisfying ¢’ as computed using
M@EG(H), ¢)) according to Definition 10. The ST is propa-
gated at runtime over the externally controlled graph updates,
which may result in inconsistency, as well as over the graph
repairs computed by our delta-based graph repair algorithm.
While this maintenance of the ST imposes additional costs,
it also greatly reduces the time required to determine viola-
tions of consistency for an adapted graph. The map M is not

modified at runtime but used for the computation of graph
repairs as discussed in detail later on.

The procedure for obtaining violations as given in Sect. 7
and our discussion before Definition 27 already indicate how
additions and removals of graph elements can be used to
repair an inconsistent graph by repairing its violations. In
particular, our delta-based graph repair algorithm Repairgy,
has the inputs of a finite graph G, a graph update u =
€ : D—G,r D < G’), and a satisfiable consis-
tency constraint given by a GC ¢ € S?GC @ and uses the ST
y = cst(¢, G) in its state variable (y, M). Firstly, it prop-
agates the ST y using the operation ppgU for the provided
graph update u to obtain the ST y’ = cst(¢, G') used in
the updated state variable (y’, M). Secondly, it computes the
set of all violations from the ST y’. Thirdly, if necessary,
it employs the single-step graph repair algorithm Repair g,
to obtain a repair for a violation. That is, Repair 4, handles
only a single violation of the graph G’ and thereby operates
at the local level determined by the considered violation.
A consequence of this local repair approach is that a graph
update derived for a single violation does not repair the entire
graph in general because it may be necessary that multiple
violations require a treatment in the final graph repair to be
computed. Hence, we employ Repair g, iteratively to obtain
a sequence of graph updates for repairing a sequence of vio-
lations until a consistent graph is obtained; in this case, we
define the composition of the computed graph updates to be
the final graph repair.

However, the repair of a single violation may result in a
graph with more, less, or the same number of violations in
general. See Fig. 12 for an example where the number of
violations rises with graph updates computed for violations
before the number of violations is successfully reduced to
zero. Hence, there is no guarantee that the iterative com-
putation of repairs for violations terminates in a consistent
graph. For this reason, we employ Repairy,; in Repairg, in
breadth-first manner to ensure that every graph repair that can
be obtained using this multi-step approach is indeed obtained
eventually. That is, using breadth-first search ensures that we
gradually compute the desired set of graph repairs.’

For our running example from Fig. 10a, such a multi-step
repair of GJ, is given in Fig. 13 where the obtained graph
updates result in the graphs marked 1-3, of which only the
graph marked 1 already satisfies the consistency constraint ¥.
The delta-based graph repair algorithm Repairy, then con-
tinues to apply Repairy,; for the inconsistent graphs marked
2-3 to compute further graph updates resulting in the graphs
marked 1 and 4 where the graph marked 4 also satisfies .
The graph y,, has two violations: on the one hand, there is

3 In Sect. 9, we also discuss the impact on runtime when using depth-
first search instead for the special case when only a single graph repair
is to be obtained.

@ Springer

388

S. Schneider et al.

(a) H / H’ H
a c » g—C 4 p k - g—C »p
m
o s
€1 (%) gl 5 5] " ¢ "2 e
a —> by —ay a — by ap a — by ap O3 a — by szﬂz:D
Gy Dy G/ G"
(b) H H’ ; "
a 5 ap :363 -— ()]
lml lms
"
m’ Xo ap Hes3 - 2 X3
lmz PO 1’”4
l r 12
e e 1 @ N e1 2, e
ul—]>b1<iu2‘—)a1—l>b1 ap ﬂ1—>b1 ay 3 a1—1>b1

G \ .

ay —> b]
X
() ”
H H
f K
a « - + g @ %)
1"11 lms
’ k//
m Xy pel gemp b b
1m2 PO 1”14
e e b, e RN e) e . b e
ay —> by «—ap a—>b 1 T A —b bhh~—1 D ay —= by b
G D

Fig. 11 Applications of local graph repair operations Repair,qq and
Repairg,;. a An application of the local addition-based graph repair
according to Definition 34. The repair step R2 (see the marking in
Fig. 10d) results in the graph marked 2 in Fig. 13. “It adds the node
by and an edge ey from ay to by to establish a graph G” satisfying ¥ .
The repair is necessary because for the match m, there is no consistent
extension with respect to the monomorphism f. Then AUTOGRAPH is
used to create the monomorphism k that leads to a graph H (H’ and H are
identical here because the subcondition of the considered GC 3(f, T)
is T not requiring further graph elements). Finally, to integrate these
additional elements into the current graph G, we construct the pushout.
b An application of the local deletion-based graph repair according to
Definition 35. The repair step R1 (see the marking in Fig. 10d) results
in the graph marked 1 in Fig. 13. It removes the node a, with the loop

@ Springer

T v

”l"bl

X

to obtain the graph G” satisfying ¥. The ST p, contains the match m’
that is consistent with the previous match m and the morphism f from
the existential quantification. Note that the additional construction of
X, and X is not required here because the node a; has no further edges
attached that would need to be deleted in addition. ¢ Another application
of the local deletion-based graph repair according to Definition 35. The
given graph update is obtained as the composition of the graph update
u from Fig. 10a and the graph update leading to the graph marked 2 in
Fig. 13. The graph G’ is inconsistent because of the loop on the node a;.
The presented diagram describes a derived local deletion-based graph
repair that removes the node a; with the two attached edges. Note that
this local graph repair is not delta-preserving because the pullback (1)
is not a pushout (the local graph repair removes in ¢, the edges that
were added in ry)

A logic-based incremental approach to graph repair featuring delta preservation 389

(|20 (72 pwey 2 pweg = |
AV([EB], 3([BB]S) eBB , T))

W e1:eAB - ey:eAB
@

Fig. 12 An example of an iterated computation of local graph repairs.
a A GC representing a consistency constraint stating that every :A node
should have two connected :B nodes and that every :B node has a self-
loop. b A successful local graph repair computation that increases the
number of violations before reducing the number of violations to zero
afterwards. Given the graph marked 1 with a single violation, we obtain a

Fig. 13 An example for
delta-based graph repair using
‘Repair g,

apy —> by by ~—a D

ap —> by by <—a

i

/ J

ap —= b a2 D

- -eeAB

b1 :B bz:B
3 ey:eAB

e3:eBB

e3:eBB

unique local repair that adds two :B nodes resulting in the graph marked
2. Given the graph marked 2 with two violations, we obtain two unique
local repairs that add self-loops to each of the two :B nodes resulting
in the graph marked 3 and 4. Finally, each of the two graphs marked 3
and 4 is then repaired by adding the missing self-loop resulting in the
same graph marked 5

€1 €2
Gu oy — b ~—0a

o]

€1
Du gy — b o

PN

Ty

G, a1—b 1D

/

g —> b a2 D
0 o !

ay — by a

ay — by

ap — by

ap — by ay —= by a

\

ap—> by b ~—a

@ Springer

390

S. Schneider et al.

a missing :B node that must be connected to a; and, on the
other hand, there is a forbidden self-loop on the a; node. The
graphs marked 1, 2, 3, and 4 have zero, one (again, the for-
bidding self-loop on a3), one (again, the missing connected
:B node), and zero violations, respectively.

We now first introduce least changing local graph repairs
u for a graph G with a violation v, which we expect to be
computed by Repairy,;, as the graph updates that remove
the corresponding violation v’ from a minimal context graph
G/, that is contained in G such that the graph update u’ per-
formed on G can be embedded into G resulting in the graph
update u via a double pushout diagram such that the same
violation is repaired for G (see [15,37] for a thorough intro-
duction to the DPO approach to typed graph transformation).
For this purpose, we distinguish between local repairs using
addition and local repairs using deletion. In both cases, we
ensure that the local repair that modifies the minimal context
G/, into aresulting graph GY also translates to the embedding
where the same local repair is executed due to the DPO step
and where we require in addition that the translated repair
also succeeds in removing the violation at hand.

Definition 33 (Least Changing Local Graph Repairs)
Ife¢ e S 6.0 is a GC defined over the empty graph and
u=({:D < Gi,r:D < G,) € S isagraphupdate,
then u is a least changing local graph repair of G w.rt. ¢,
repalr(G , §), if there is a minimal restriction of

written u € S|
G given by a monomorphism e : G| < G s.t.

e u' =W :D — G, r
update,

y = cst(¢, G1) is the ST constructed for ¢ and G1,
y' = cst(¢, G)) is the ST constructed for ¢ and G/,
v € violations(y, true) is a violation of y,

v/ € violations(y’, true) is a violation of y’,

the squares in the diagrams below are pushouts,

: D' «— G%) € §"PM is a graph

and one of the following items applies.

e local graph repair by addition (see Fig. 14a for a visual-
ization):
e v = (B f: H <~ H,é¢ m
violation requiring an addition,
eV = (&, f: H < H,¢,m
violation requiring an addition,
my = ejomj,
ppgMatch(m, £') = m/), : Hy < D/,
r"om) e A(f,),
ppgMatch(m, £) = my : Hy < D, and
romy =gc 3(f, ¢).
e local graph repair by deletion (see Fig. 14b for a visual-
ization):
=@, f:Hi—H,¢,m :
violation requiring a deletion,

: HH<—Gp)isa

: H—G))isa

Hy — G)) is a

@ Springer

(a)
- H,
L\\:D/ ‘ > G
el 1 PO €
Gy = > D ¢ > Gy
(b) /
H &——— 1:12
m
- G, A) < ' e
€1 PO }d PO €
G opet g

Fig. 14 Visualization for Definition 33. a Visualization for local graph
repair by addition. b Visualization for local graph repair by deletion

eV = (O, f: H — Hy, ¢, m]
violation requiring a deletion,

e m| = e om|, and

e ppgMatch(m/, ¢') = L

: Hy —G))isa

Now we describe how to obtain such least changing local
graph repairs for violations by addition or deletion. The oper-
ation Repairy, therefore depends on two local graph repair
operations Repair, y and Repairy, for deriving single-step
repairs that add and delete elements from the graph under
repair.

For Repair,qq, a GC 3(f : H <— H', ¢') occurring as a
subcondition in the consistency constraint ¢ may be vio-
lated because, for the match m : H < G’, which locates a
copy of H in the graph G’ under repair, no suitable match

" : H' < G’ can be found for which m = m’ o f and
m' Egc ¢ are satisfied. The local graph repair opera-
tion Repair,qq resolves this violation by (a) using the map
M generated using AUTOGRAPH to select a suitable graph
H, (b) integrating this graph H into G’ resulting in G”
such that a suitable match m’ : H' < G” can be found
(where m’ = m o k o f in the following definition), and (c)
checking whether the monomorphism r, : G’ < G” adds
elements that were removed in the provided graph update

A logic-based incremental approach to graph repair featuring delta preservation 391

H(f ;H/(

k _
> H
" PO }m
f] 1 R G”

GA)D(;G/(72

Fig. 15 Visualization for Definition 34

u = : D>G,r; : DG’ e S uysing the
monomorphism £ by checking whether the composition of
u with the computed graph update is canonical.

Definition 34 (Addition-based Local Graph Repair)
If (see Fig. 15 for a visualization)
eu= (U :D<—>G,ri: DG e S isa graph

update,

f : H < H’is a monomorphism,

¢ € Sgg 18 @ GC defined over H ’,

m : H < G’ is a monomorphism,

H € M@A(f, ¢)) is an addition recorded by M,

k : H < H isamonomorphism describing the addition

to H,

(m, rp) is the pushout of (m, k o f),

e b € B states whether the graph update is a canonical
graph update,

o b=trueiff (¢;,r,0r) € S, and

e m ok =gc ¢ states that the addition results in a locally
satisfied GC ¢,

then ((id(G”), r2), b) € Repair,yq(u, f, ¢, m).
Note that the Boolean value b is used to check whether the

graph update obtained by Repair, gy is delta preserving w.r.t.
the provided graph update u.

Lemma 3 (Addition-based Local Graph Repair Results
in Delta Preserving Graph Updates)

Ifu = : D<~G,r; : D G’) and uy are graph
updates from S*™, f : H < H' is a monomorphism,
¢ € S?&H, is a GC defined over H, m : H <~ G’ is a
monomorphism, b € B states whether the graph update uy
is a canonical graph update, and (uy, b) is a pair returned
by Repair,qq(u, f, ¢, m),

. upd
then b = true iff up € SApres(u).

In our running example, the local graph repair operation
‘Repair,y, determines a graph update resulting in the graph
marked 2 in Fig. 13. See Fig. 11a for how this local graph
repair is obtained using the ST marked by (R2) in Fig. 10d,
where the morphism m matches the node a from ¢ to the node
ar in G{l, but where no extension of m can also match a node
of type :B and an edge between these two nodes. The obtained
graph update then uses @ —= b for the graph H, resulting in
the addition of the node b; and the edge ¢, from a; to b;.

For Repairy.;, a GC 3(f : H < H’, ¢') occurring as a
subcondition in the consistency constraint ¢ may be satis-
fied even though it should not be when occurring underneath
some negation. Such a violation is determined, again for a
given match m : H < G’, by some matchm’ : H' < G’
satisfying m = m’ o f and m’ =gc ¢’'. The local graph
repair operation Repairy, (see Fig. 11b for an example)
resolves this violation by (a) selecting a graph H such that
H C H C H’ using a restriction tree (see Definition 21)
where k' : H < H’ describes this removal (without loss of
generality, we assume that every f : H < H’ used in the
consistency constraint is no isomorphism to ensure that suit-
able graphs H exist), (b) extending m’(H') to X, such that
X5 contains also all edges (including their source and target
nodes) that are connected to nodes in m’(H') — m'(k'(H))
resultinginmy : Xp < G/, (¢) restricting X, to X resulting
in k" according to k', (d) computing the pushout comple-
ment of k” and m to remove elements according to k” from
G’ to obtain £ : G” < G/, and (e) checking whether £,
removes elements that were added in the provided graph
update u = ({1 : D <> G,r; : D < G') € 8" using
the monomorphism r; by checking whether the pullback of
r1 and ¢; is also a pushout. Note that we can’t construct the
pushout complement of k" and m’ as it does not exists when
edges are attached to nodes in m’(H’) that are not in m’(H').

Definition 35 (Deletion-based Local Graph Repair)
If (see Fig. 16 for a visualization)

eu=(U :D—>G,ri:D—G) e S isa graph
update,

e f: H < H'isamonomorphism,

e m' : H < G’ is a monomorphism,

e k' : H < H' € RT(H', H) is a monomorphism from
the restriction tree for H” and H describing a deletion,

e mj : H < X5 is a monomorphism,

e m; : Xp < G’ is a monomorphism,

e m' = mjy omy is a commuting triangle stating that m’ is
decomposed into m| and m>,

e k" oms = m ok’ is a commuting square further charac-
terized subsequently,

e X contains the subgraph m’(H') and all edges (including
their source and target nodes) that are connected to nodes
inm'(H') —m'(k'(H)),

e X contains the subgraph k’(m (H)) and all nodes of X
that are not in m(H'),

e (my, £2) is the pushout of (K", my4 : X1 < G”),

e b € Bis a Boolean recording whether the returned graph
repair is a delta preserving graph repair, and

e b = true iff (1) is a pushout and pullback,

then ((€2, id(G”)), b) € Repairgy (u, f,m’).

Note that the Boolean value b is used to check whether the
graph update obtained by Repair g, is delta preserving w.r.t.

@ Springer

392

S. Schneider et al.

H C f > H/ < k/ b I:I
mq ms

k' 4

m| Xo+—>X
my PO My

D ¢ " > G/ - €2 b) G//
, 1)
7 6
X
Fig. 16 Visualization for Definition 35

the provided canonical graph update u. For our applications,
we can safely assume in the following lemma that the given
graph update u is canonical because a noncanonical graph
update can be converted into an equivalent canonical graph
update according to Theorem 2.

Lemma 4 (Deletion-based Local Graph Repair Results in
Delta Preserving Graph Updates)
Ifu={:D<G,ri: DG € ng,? is a canoni-
cal graph update, uj is a graph update, f : H < H' is a
monomorphism, m' : H' < G’ is a monomorphism, b € B
states whether the graph update uy is a canonical graph
update, and (uz, b) is in Repairgy (u, f, m’),

then b = true iffup € SZ};ies(u).

In our running example, Repair 4, determines a repair result-
ing in the graph marked 1 in Fig. 13. See Fig. 11b for a
diagram that is used to compute this local repair where we
considered the sub-ST marked by (R1) in Fig. 10d where the
mono m matches the node a from ¢ to the node a; in G.
The local repair performed then uses H = @ for the removal
of the node a; along with its adjacent loop.

We now consider Repairg;,;, which first computes viola-
tions according to Definition 27 and then uses Repair, 4 and
Repairy; on each of these violations to obtain a local graph
repair.

Definition 36 (Single-step Delta-based Graph Repair
Algorithm)
Ifu=(:D<G,r : DG e S is a graph

update, ¢ € S?GC @ is a GC defined over the empty graph,

y =cst(¢p, G) € S?g?(TG,) is the ST constructed for ¢ and
G’, and V = violations(y, true) is the set of violations of
v, then Repairy, (4, y) = S1 U S; returns graph repairs for

addition and deletion using

@ Springer

¢S = U{Repairadd(u, fid,m)|

@, f:H—H ¢,m: H—G)eV)
and

o Sy = | J(Repairgy u, f.m) |
©,f:HeH ¢,m:H < G)e V).

For our running example, see again Fig. 13 for the three graph
updates obtained in the first step for the ST p;, and the graph
G/, from Fig. 10d.

Repairg,; indeed generates least changing local graph
repairs as stated in the following lemma.

Lemma5 (Repairg,; Generates the Least Changing Local
Graph Repairs)

Ifu = :D<G,r : DG’ e S is a graph
update, ¢ € Sg(g@ is a GC defined over the empty graph,

y = cst(¢p, G') € S?GC?(TG,) is the ST constructed for ¢ and
G', and V = violations(y, true) is the set of violations of y,

then {u' | (', b') € Repairgy; (u, ¥)} = S (G, ¢).

We now define locally least changing graph repairs by firstly
computing the composition of a sequence of least changing
local graph repairs where precisely the last graph update in
this sequence is a graph repair that results in a consistent
graph w.r.t. the consistency constraint at hand and, secondly,
retaining only those obtained graph repairs that are least
changing graph repairs w.r.t. the obtained set.

For our running example, see Fig. 13 for the two locally
least changing graph repairs that are given by the two graphs
marked 1 and 4.

Definition 37 (Locally Least Changing Graph Repair)

If
e G| € Sg;?l;}g is a finite typed graph,

° ¢€S$GC’Q

e S is the set of all spans (0, 7) s.t.

is a GC defined over the empty graph,

— there is a non-empty finite sequence # = (¢
Dy —Gi,r1 : Dy <—Gy)...({, : D, — Gy,
7n: Dy <> Gpyq) s.t. _

- (ti : Di <> Gj,ri : Dj =~ Gip1) € S (Gi, §)
(foreach 1 <i < n),

- G; e ¢ (foreach 1 <i <n),

- Gny1 Foc ¢, and

— (: D — Gy,7 : D < Gp41) is the iterated com-
position of the graph updates in 7, and

o (t.1) € STG, 9, 9),
then (€, r) is a locally least changing graph repair of G
w.rt. ¢, written (€, r) € ST (G1, ¢).

We now define the recursive algorithm Repairg, generating
such locally least changing graph repairs. It takes the most
recent graph update u from graph G to graph G’, the ST for

A logic-based incremental approach to graph repair featuring delta preservation 393

the graph G before the graph update u was applied, and a
Boolean instrumentation parameter b that specifies when
it is true that only graph repairs should be computed that
are also delta-preserving graph updates. The returned set of
tuples (1, y’, b’) contains graph repairs u’ to be applied on
G’ resulting in graphs G” where y’ is the ST for the resulting
graph G” and where b’ indicates when it is true that the graph
repair is a delta-preserving graph update.

Technically, the recursive delta-based repair algorithm
Repairg, (a) uses the operation ppgU to propagate the given
ST y across the provided graph update to obtain the ST y, (b)
checks whether the obtained ST y is satisfied and returns in
this case only the identity graph repair in this case to ensure
stability (see our discussion on this at the end of Sect. 5),
(c) for the case of non-satisfaction of y, uses Repairy,| to
compute all local graph repairs resulting in set S| and fil-
ters those that are delta-preserving graph updates w.r.t. the
provided graph update u when by = true (note that graph
updates that are not delta-preserving could be repaired later
on but that the same graph repair could then be obtained using
a sequence with fewer local graph repairs), (d) propagates the
ST y across each local graph repair in S to obtain the set S»
of pairs (u’, y’, b’) with local graph repair u’, propagated ST,
and preserved Boolean b/, (e) constructs the set S3 of tuples
of local graph repairs u’, resulting STs y’, and preserved
Booleans b’ for the case of when the local graph repair u’
was successful in establishing consistency, and (f) constructs
the set S4 from the pairs (u', y’, b’) € S4 that do not repre-
sent successful local graph repairs by (f1) applying Repair g,
recursively on these elements (composing the graph update u
to ensure that its modifications are also preserved when delta-
preservation is required) and (f2) composing the successful
repairs obtained using this recursive call with the local graph
repair u’ at hand.

Definition 38 (Delta-based Graph Repair Algorithm)

If G and G’ are finite typed graphs from SE;"?I;}]GS, u=(:
D < G,r : D — G') € §"? is a graph update, b € B
is a Boolean that determines whether only delta-preserving
graphrepairs are to be constructed, ¢ € S?GC ¢ isaGCdefined

over the empty graph, y = cst(¢, G) € S%??(TG) is the ST
constructed for ¢ and G, and y = ppgU(y, u) is the propa-
gation of y over u, then Repairg, (1, ¥, ba) = S, if one of

the following items applies.

e |=sT Y (case of satisfaction)
and S = {((id(G"), 1d(G")), v, true)}.

e |[~sT ¥ (case of non-satisfaction),
S1 = {(u/, ') € Repairgy; (u, 7) | ba— b’} (all single
step local graph repairs),
Sy = {@',ppgU(y,u'), ") | (', b") € Si} (all single
step local graph repairs with propagated ST),
S3 = {@,y\b) | W,y b) € San st V') (the

local graph repairs with propagated ST from S3),
Sy ={w" ou',y", b AD") |
',y b) € San st v/
A", y", b") € Repairg,(u' ou,y’, ba)
Au” ou' # L) (add further local

graph repairs recursively),

and S = S3 U Sy (return additional local graph repairs
computed).

As pointed out before, this computation does not terminate
when local graph repairs trigger each other ad infinitum (see
again Fig. 6¢ for an example of such a GC). However, the
breadth-first-computation implemented in Repairy, gradu-
ally computes a set of graph repairs. Note that the problem
of detecting GCs that trigger such nonterminating compu-
tations is undecidable and, hence, no sound and complete
algorithm for detecting such GCs can be obtained.

‘We finally state that our delta-based graph repair algorithm
‘Repair g, returns precisely the desired locally least changing
graph repairs upon termination. Moreover, it precisely com-
putes the delta-preserving graph updates that are locally least
changing graph repairs.

Theorem 8 (Functional Semantics of Repairg;,)

The graph repair algorithm Repair g, is sound and complete
w.r.t. (delta preserving) locally least changing graph repairs,
upon termination.

Formally, ifu = (£ : D < G,r : D <> G') € S"™ jsa
graph update, ¢ € Sgg o s a GC defined over the empty
graph, and y = cst(¢, G) € S?GC?(TG)
for ¢ and G, then

is the ST constructed

{u' | W', b) € Repairy, (u, y, false)}

repair

=Sy (G, ¢) and, moreover,

{u' | (W, b) € Repairg,(u, y, true)}

= ST (G. §) N Sphs ().

9 Evaluation

We now compare the delta-based graph repair algorithm
Repairg, from Sect. 8 and the two state-based graph repair
algorithms Repairg, | and Repairgy, , as presented in Sect. 6
w.r.t. their resource requirements. As a first step, we dis-
cuss their runtime complexity in subsect. 9.1. As a second
step, in subsect. 9.2, we evaluate the efficiency of our pro-
totypical implementation of the algorithms Repairy, and
Repairg, in the tool AUTOGRAPH demonstrating that delta-
based graph repair is much faster compared to state-based

@ Springer

394

S. Schneider et al.

graph repair.* Moreover, we also discuss details of our pro-
totypical implementation impacting execution time, which
could be resolved in the future. Lastly, in subsect. 9.3, we
compare the three presented graph repair algorithms inter-
preting their characteristics regarding resource requirements
(runtime and memory consumption) and functionality.

9.1 Runtime complexity

The three presented graph-repair algorithms do not termi-
nate for all their inputs resulting in an infinite worst-case
execution time (see again the GC in Fig. 6¢ for which the
three algorithms do not terminate when trying to repair the
empty graph). To discuss the computational complexity of
the algorithms in a meaningful way nonetheless, we implic-
itly consider in this subsection their restriction to inputs
for which they terminate. With this restriction in place,
we note that the algorithms may generate an exponential
number of graph repairs as demonstrated by the exam-
ple in Fig. 17 triggered by an atomic modification adding
a single loop. We now further discuss why each of the
three algorithms has an exponential worst-case execution
time.

The runtime complexity of the graph repair algorithm
Repairg, | basically depends on its application of the algo-
rithm A from [39,40]. This algorithm A, which constructs
all minimal graphs satisfying a given GC, has an exponen-
tial runtime as it internally computes certain overlappings
of the graph under repair with graphs that are contained
in the consistency constraint. For example, two graphs G
and G, containing nodes a; and ay of type A may be
overlapped in a; and ap resulting in a graph containing
G1 and G; but only a single node representing a; and
ap. Similarly, a pushout of the two initial monomorphisms
i(G1) and i(G>) describes an overlapping of G and G
where no graph elements are identified. As another example,
the pushout of the two monomorphisms m; : Gy < G
and my : Go < G results in an overlapping where G
and G, overlap in the elements of Go. The number of
such overlappings is exponential in the size of G; and
G, and, moreover, these overlappings are computed in
algorithm A recursively resulting in a tree of computed over-
lappings (which grows exponentially in width in the example
given in Fig. 17). While the algorithm A4 is thereby only
suitable for GCs with reasonably small graphs, it gradu-
ally generates the mentioned sound and complete set of
minimal graphs satisfying a given GC. Hence, Repairy, ;
can only be applied to small graphs given a limited time-
frame.

4 Note that Repairgy, , is slower than Repair, | as discussed in sub-
sect. 9.1 and we therefore only compare Repairg, with Repairg, ;.

@ Springer

The runtime complexity of the graph repair algorithm
Repairg, ; is even worse compared to the runtime complexity
of Repairg, | because Repairg, ; is applied to each subgraph
of the graph under repair in the worst case. This means that
(a) the restriction tree (see Definition 21) of the graph under
repair may need to be constructed entirely (resulting in a
restriction tree that is exponential in the size of the graph
under repair) and (b) Repairg, ; is applied to each subgraph
obtained using this procedure. See Fig. 9 for a restriction tree
where we need to apply Repairg, | for 11 outof 15 subgraphs.
Again, Repairg, , can only be applied to even smaller graphs
compared to Repairg, | when runtime is a critical factor.

The runtime complexity of the graph repair algorithm
‘Repair g, depends on (a) the offline construction of the map
M mapping each subcondition of the consistency constraint
to a set of minimal graphs, (b) the offline construction of
the ST for the initial graph before graph updates are applied,
(c) the propagation of the ST for a given graph update, (d)
the construction of graph repairs for the graph update and
the propagated ST, and (e) the propagation of the ST over a
selected graph repair.

For step (a), we need to apply the algorithm 4 from
[39,40] but we expect consistency constraints to be written
by humans resulting in reasonably small consistency con-
straints, with an acceptable number of subconditions using
sufficiently small graphs. In principle, this step has already
an exponential runtime but with the assumption on small
consistency constraints and an offline execution, we expect
that this step is not likely to be the dominating factor when
employing the delta-based graph repair approach based on
Repair gy,.

For step (b), we need to recursively compute all matches
that may play a role in a satisfaction proof when consider-
ing the given initial graph and the consistency constraint.
As pointed out at the end of Sect. 3, the computation of
these matches requires an exponential amount of time but
with standard heuristics for typed graphs, the runtime is often
acceptable. Again, since this initial ST construction is per-
formed offline, we expect that the runtime required for this
step is tolerable whenever the following steps are sufficiently
fast.

For step (c), we need to propagate the ST backwards and
then forwards for the two monomorphisms describing the
removal and the addition of graph elements given by the
graph update. The backward propagation deletes matches
from the ST that match graph elements removed by the graph
update. Note that we can determine whether a considered

5 In our prototypical implementation, we provide special support for
the case when the graph under repair and the graphs in the consistency
constraint are all connected: in this case, the construction of STs can
be performed more efficiently since partial matches of graph patterns
from the consistency constraint can be extended to matches using local
search throughout the recursive construction of the ST.

A logic-based incremental approach to graph repair featuring delta preservation 395

(a) Se— T — [
e;:eAB IE' ey:eAB

e:eAC

\vd] eeAA ,Y

g—

— e

}
— {0

/El e3:eBC /T V3 e3:eBC /T

Al o] <D s oAl o <o L el g~

—{a
!
— {50

B9

Fig. 17 An example for an exponential number of least changing local
graph repairs. a A GC representing a consistency constraint stating that
if two :B nodes and a :C node are connected to an :A node that has
a self-loop, then at least one of the :B nodes is connected to the :C
node. b A local graph repair (¢1, r1) for the graph update ({g, r9) and
the consistency constraint from a where edge types have been omitted

match must be removed from the ST with linear cost in the
number of matches that need to be considered and deleted
elements.® The forward propagation may result in the com-
putation of additional matches that must match at least one
added graph element. However, when only a small number
of graph elements is added, only a small number of matches
need to be constructed.’

For step (d), we iteratively compute least-changing and
(when required by the user using the corresponding param-
eter) delta-preserving local graph repairs. The algorithm
computes sequences of local graph updates using the oper-
ation Repairy,; leading to a local graph repair each.’
Essentially, we compute a directed acyclic graph (DAG) of

6 In our prototypical implementation, we reduce the number of matches
to be considered during backward propagation by storing for each ST
the set of graph elements matched by any match contained in it, which
allows to abort the recursive backward propagation for unaffected sub-
STs.

7 In our prototypical implementation, local search as in step (b) can
be used to more efficiently construct STs required for each additional
match.

8 Consider Fig. 17 for an example where each local graph repair is
obtained in five steps for each of the five :C nodes.

—{a — [

—
N

} }
_>j

. [R=

for readability. In general, when the graph contains n nodes of type C
instead of just 5, there are 2" graph repairs just adding edges between
contained nodes. Further local graph repairs may add additional C nodes
with suitable edges. Moreover, when delta-preservation is not required,
the self-loop can be removed in another graph repair

such local graph updates as in Fig. 13 where local graph
updates leading to graphs earlier obtained may be discarded.’
In the construction of this DAG, we may obtain a set of local
graph updates that is exponential in the size of the graph under
repair for each violation that is to be repaired (cf. Fig. 17
again). Also note that each graph update computation using
the operation Repair g, involves the check whether the graph
update is delta-preserving w.r.t. the last graph update and the
local graph updates computed so far on the current path in
the DAG.!?

For step (e), we refer again to step (c), which performs
the same procedure for a graph update instead of a computed
graph repair.

9 In our prototypical implementation, this check for isomorphic graph
updates according to Definition 13 requires the computation of addi-
tional isomorphisms resulting in a runtime leak that may be fixed by an
in-situ implementation as discussed in subsection 9.2.

10 In our prototypical implementation, determining whether a graph
update is delta-preserving according to Definition 18 requires the com-
putation of an isomorphism, which results in the same runtime leak as
for the check for isomorphic graph updates.

@ Springer

396

S. Schneider et al.

Table 1 Overview of

applications of Repair g, or Test Algorithm DFS/BFS Delta-preservation Suitable fit

Repairg, | Test 1 (noise test) Repairgy, DFS Yes Quadratic
Repairy, DFS No Quadratic
Repairy, BFS Yes Quadratic
Repairy, BFS No Quadratic
Repairg, | DFS — Unclear*
Repairg, | BFS — Exponential*

Test 2 (violations test) Repairy, DFS Yes Cubic

Repairy, DFS No Linear
Repairy, BFS Yes Cubic
Repairy, BFS No Cubic
Repairg, | DFS — Cubic*
Repairy, | BFS — Cubic*

*: only small number of (comparably large) values

We conclude that efficiency analysis and optimizations for
Repair g, should therefore focus on the two online steps of
ST propagation and computation of local graph repairs.

9.2 Tool-based evaluation

We now report on a tool-based evaluation performed on
the basis of our prototypical implementation in the tool
AUTOGRAPH. We performed two tests for the state-based
algorithm Repairy, |, the delta-based algorithm Repairy,
requiring delta-preservation, and the delta-based algorithm
Repairy, without requiring delta-preservation. We omit
a performance evaluation for the state-based algorithm
Repairg, , as we are primarily interested in showing that
state-based graph repair may be infeasible even for rather
small graphs (recall that Repair, ; is less expensive com-
pared to Repairg, 5).!!

For each test, we used a machine with 8 GB memory and
an i5-4570 CPU @ 3.4 GHz. Subsequently, we discuss the
inputs of the two test cases, which are given by a GC specify-
ing a consistency constraint and a most recent graph update
that resulted in an inconsistent graph, which depends on a
size parameter N. This parameter N affects the most recent
graph update in a way that makes graph repair computation-
ally more expensive with growing N.!> For each element

I However, note that Repairg, ; and Repairy, , may perform much
better than in the following tests depending on the consistency con-
straints and graphs under repair. Also, the runtime for these two
algorithms is dominated by the call to M and, hence, every optimiza-
tion of M would directly translate to the two state-based algorithms.
An example of a possible application would be a given initial graph
of a graph transformation system that is to be repaired w.r.t. a set of
consistency constraints. Such a graph may often be of a rather small
size and obtaining all possible graph repairs may be crucial.

12 1 the first test, we add N noise patterns. In the second test, we add
N patterns that need repair.

@ Springer

of this sequence, we applied the corresponding graph repair
algorithm (i.e., Repairy, or Repairg, ;) 10 times and then
computed the average time needed in 30 further runs. See
Table 1 for an overview of the applications of both graph
repair algorithms where the column suitable fit contains
information on which kind of polynomial/exponential regres-
sion appears to have an appropriate fit in terms of a small
residual sum of squares. We employed depth-first search
(DFS) as well as breadth-first search (BFS) for each case
as follows. We employed DFS to allow for a fair compari-
son of the runtimes of Repairy, and Repair, ;: since they
do not generate the same set of graph repairs in general, we
have opted to use DFS returning at most one graph repair. We
also employed BFS as described in the previous sections, as
BFS guarantees the eventual computation of a graph repair
when one exists. However, since BFS also results in a termi-
nating computation for the considered tests, we can conclude
that DFS also terminates no matter which computation path
is chosen (for the given two examples here). Hence, for the
considered tests, DFS comes with a reduced memory foot-
print and generates a graph repair faster compared to BFS.
To evaluate how the use of DFS and BFS affects their run-
time, we also applied Repairg, and Repairg, | using BFS in
both tests. Lastly, for the delta-based graph repair algorithm
Repairg,, we also applied two executions in which we do
and do not require delta-preservation. Hence, we obtain the
12 test cases from Table 1.

In the first test (also called noise-test subsequently), we
checked how a growing host-graph impacts runtime of the
graph repair algorithms when only a single violation needs to
be repaired. Ideally, graph repair does not depend on the size
of the host graph but only on the number of violations that
need to be repaired, i.e., the additional elements (related to
the parameter V) were just noise in this test, which should not
affect the computation. We used the consistency constraint

A logic-based incremental approach to graph repair featuring delta preservation 397

@ {- {- o oAD -,TJAH{:J ezreAA,Tﬂ

B G U ey 27 DR 7 e

(©) 250 T T T T T T T
—— TRepairgy, (-, -, true) (lower)
200 || —— Repairgy (-, -, false) (upper) |

150 |-

100 |-

duration in ms

50 - n

() o T | | | | |
0 25 50 75 100 125 150 175 200

number of noise patterns N

(d) 500 T T T I I I T
450 |{ —— Repairgy (-, -, true) (lower) .
400 1 Repairgy (-, -, false) (upper) |
350 |-
300 |-
250 |-
200 [~
150 |-
100 |-

duration in ms

0 I | | | |
0 25 50 75 100 125 150 175 200

number of noise patterns N

Fig. 18 Applications of Repairg, and Repairg, ; for testing their
resilience against noise. a The graph condition used for the test (repeated
for readability from Fig. 5b). b The graph update used for the test
where N = 0 graph patterns a — b have been added to all three
graphs. ¢ Runtime for the delta-based graph repair algorithm with delta-
preservation (i.e., Repairgy(-, -, true)) and without delta-preservation

from Fig. 18a (equivalent to the GC ¢ from Fig. 5a) and
the graph update from Fig. 18b (which is similar to the graph
update from Fig. 10a) where N additional copies of the graph
pattern a — b are added to each of the three graphs of the
graph update. The graph resulting from this graph update can
be repaired by (a) adding an edge from a; to a new node of
type B when delta-preservation is required, (b) adding an
edge from ay to by, or (¢) by removing the a, node when
Repairy,, is used.

ypg | 72 PR 7 e 7 | 22

500
400
[}
g
g 300
=
8
€ 200
3
!
100
0 A N I N A S N
0 1 2 3 4 5 6 7 8 9
number of noise patterns N
5 I I I I T T T T
15-10 W Repairg, (-,) a
E
51 |
= 1-10
=
8
£
5 50,000 | i
0 | | I S I |

o 1 2 3 4 5 6 7 8 9

number of noise patterns N

(i.e., Repairg(-, -, false)) and the state-based graph repair algorithm
‘Repairg, ; using depth-first search. d Runtime for the delta-based graph
repair algorithm with delta-preservation (i.e., Repairyy(-, -, true)) and
without delta-preservation (i.e., Repair g, (-, -, false)) and the state-based
graph repair algorithm Repairg, | using breadth-first search

For this first test, the runtimes of the six applications
are given in Fig. 18. Firstly, Repairy, ; is faster using DFS
than when using BFS (which is expected because BFS has
to compute all results and because the tableau-based pro-
cedure also has to follow computation paths that do not
lead to graph repairs) but runtime grows with the number
N quite fast in both cases. Secondly, Repair g, is much faster
than Repairy, | for DFS as well as for BFS, which also
holds for both cases of (not) requiring delta-preservation (see
different x-axes). For Repairy,, we observe that requiring

@ Springer

398

S. Schneider et al.

delta-preservation reduces runtime a little bit (by prevent-
ing some additional computations that would lead to further
graph repairs). Moreover, Repair, is slower using BFS than
when using DFS (which is expected since the test using DFS
only computes one graph repair whereas the test using BFS
computes the complete set of graph repairs). Also, note that
‘Repair gy, returns three results using BFS and only one result
using DFS and, hence, when considering the numbers, the
runtime of BFS is about three times higher than the runtime
of DFS.

Based on these results, we performed some profiling to
determine why Repairy, has no constant runtime in this test.
Firstly, the ST propagation requires some time growing lin-
early with N where we need to determine which sub-STs
need to be adapted (note that each of the N additional noise
patterns results in a match recorded in the ST). Secondly,
graph repairs are not computed in-situ in our implementation
of Repairg,, which means that clones of the graphs and STs
are constructed throughout the algorithm leading to another
linear factor. These two factors result together in an appar-
ently quadratic curve in all four applications of Repair g,.

In the second test (also called violations-test subse-
quently), we checked how multiple violations that must be
repaired sequentially impact the runtime of the graph repair
algorithms. Ideally, graph repair depends linearly on the num-
ber of local violations for delta-based graph repair, i.e., each
further local graph repair (related to the parameter N) takes
the same amount of time (i.e., N describes in this test how
many violations need to be repaired). We used the consis-
tency constraint from Fig. 19a and the graph update from
Fig. 19b where N nodes of type B (each connected to a pre-
decessor) are contained in the resulting graph. The graph
resulting from this graph update can be repaired by adding
a loop edge to each node of type B. Also, when Repairy,, is
used and delta-preservation is not required, some of the given
edges may be removed to shorten the length of the chain to
be repaired by adding such loops to nodes of type B.

For this second test, the runtimes of the six applications
are given in Fig. 19. Firstly, Repairg, ; exhibits the same
runtime using DFS and BFS probably due to the fact that
only one repair (only adding elements) can be obtained.!?
This fact also indicates that Repairg, ; performs no relevant
amount (if at all) of irrelevant computations in the case of BFS
for the considered example. Secondly, as in the first test, the
algorithm Repair g, is much faster than Repairg, ; for DFS as
well as BFS, which holds again for both cases of (not) requir-
ing delta-preservation (see different x-axes). For Repairyy,,
we also observe that not requiring delta-preservation results

13 Note that the GC used in this second test (as opposed to the GC in the
first test) has been carefully constructed such that Repairg, ; computes
only a small number of nonessential overlappings for each node of type
B resulting here in an apparently nonexponential runtime.

@ Springer

(a) for the case of using DFS in an apparently constant run-
time (since the removal of the edge from a; to b is a viable
graph repair as well) and (b) for the case of using BES in an
apparently cubic runtime when using BFS (stemming from
the apparently quadratic curve from the previous test with the
expected additional linear factor from the number of viola-
tions to be repaired). Lastly, Repair 4, using BFS is just as fast
as DFS when requiring delta-preservation for the considered
example, which is due to the fact that only one computa-
tion path is to be followed to obtain the unique graph repair.
As for Repairg, |, this indicates that Repair g, also executes
basically the same computations for DFS and BFS for the
considered test.

We believe that our prototypical implementation of
Repairy, in the tool AUTOGRAPH can be improved in some
aspects (resulting in a constant and linear runtime in the
first and second test instead of a quadratic and cubic run-
time). Firstly, the local graph repairs resulting in a DAG as
in Fig. 13 may be computed in parallel where each process
generates one path through that DAG independently. Sec-
ondly, an in-situ implementation in which graph inclusions
are represented throughout the implementation by storing
only the added/deleted graph elements should speed up our
implementation by fixing the runtime leaks, which lead to the
increased runtime of Repairy, in the two tests performed.
For example, such a reimplementation would not require the
cloning of STs and graphs and would improve the runtime of
the steps of checking for isomorphic graph updates, check-
ing canonical graph updates, checking for delta-preserving
graph updates, and composing graph updates. Thirdly, as a
minor change, we believe that the computation of all local
graph repairs is often not necessary and we expect that users
may specify an upper bound on local graph repairs to be
constructed.

9.3 Resource requirements and functionality

For a comparison of the three algorithms, we now summarize
our results.

Firstly, for soundness, we have verified for each of the
three algorithms that the graph updates computed are indeed
graph repairs resulting in consistent graphs.

Secondly, for completeness, we note that each of the three
algorithms computes a different set of graph repairs: where
the algorithm Repairy, , derives a superset of those com-
puted by Repairg, ; and where the graph repairs obtained
using Repair g, are incomparable to the two former sets. This
is due to the local nature of the graph repairs computed by
‘Repair g, where the locality is induced by the provided con-
sistency constraint. Hence, some graph repairs computed by
Repairg, | and Repairg, , are not returned by Repair g, when
the global perspective on the graph is required. As an exam-
ple, the graph repair leading to the graph marked 4 in Fig. 9 is

A logic-based incremental approach to graph repair featuring delta preservation

399

(a)
(R o s

], SR BRI o0, 7]

/\v{ez BB E-—'- 3{-3 e3:eBB TH

SN 77 prrs T paprns U papeme

(¢) 5,000 T T I I
—— Repairgy(+, -, true) (upper)
4,000 | | — Repairgp (-, -, false) (lower)
£
& 3,000
o
2
2,000 |-
5
o)
1,000
0 . I |
0 10 20 30 40 50
number of violations N
(d) 5,000 I I T T
—— Repairgy, (-, -, true) (lower)
4,000 Repairgp(-, -, false) (upper) a
&
& 3,000
o
e
‘= 2,000
3
!
1,000
0 ‘ | |
0 10 20 30 40 50

number of violations N

Fig. 19 Applications of Repairg, and Repairg, ; for testing their
resilience against multiple violations. a The graph condition used for
the test. b The graph update used for the test (N = 3 nodes of type B
are added here). ¢ Runtime for the delta-based graph repair algorithm
with delta-preservation (i.e., Repairy, (-, -, true)) and without delta-
preservation (i.e., Repair g (-, -, false)) and the state-based graph repair

such a graph repair that is obtained by Repairg, , but not by
‘Repairgy, as it requires a global view. The degree of locality
used for the delta-based graph repair is given by the graph
patterns used in the consistency constraint. To increase the
number of graph repairs, it is therefore possible to explic-
itly employ bigger graph patterns in equivalent consistency
constraints to ensure the additional computation of less-local

10,000

8,000

T

6,000

T

T

4,000

duration in ms

2,000

T

0 [| | | | |
o 1 2 3 4 5 6 7 8 9

number of violations N

10,000 T T T T T T T T
Repairg, (-, -)

8,000

T

6,000

T

T

4,000

duration in ms

2,000

T

0 I | | | | |
o 1 2 3 4 5 6 7 8 9

number of violations N

algorithm Repairg, | using depth-first search. d Runtime for the delta-
based graph repair algorithm with delta-preservation (i.e., Repair g (-, -,
true)) and without delta-preservation (i.e., Repairy, (-, -, false)) and the
state-based graph repair algorithm Repairg, | using breadth-first search

graph repairs. Hence, the user has the freedom to determine
a suitable degree of locality that results in a tradeoff between
required runtime and the number/kinds of repairs that are
computed. For example, the condition ¥ may be rephrased
into ¥’ = ¥ AV(ab, I(a—%> b, T)) to also obtain the graph
repair marked 4 in Fig. 9. However, in this adapted con-
sistency constraint ¥’, the entire graph would need to be

@ Springer

400

S. Schneider et al.

checked for all combinations of an :A node and a :B node,
which would result in an increased runtime.

Thirdly, as pointed out in subsect. 6.3 and as supported
by our tool-based evaluation in the previous subsection, the
two state-based algorithms have an undesirable runtime espe-
cially when used for online repair in a scenario where the
graph at hand is subject to a sequence of graph updates that
invalidate consistency over and over again. The delta-based
graph repair algorithm RRepair 4, on the other hand has proven
to be much faster compared to the state-based graph repair
algorithms according to our evaluation. As a side note, we
point out that a brute-force algorithm enumerating all graph
updates (e.g. sorted by the number of atomic changes) will
also be able to generate the same set of graph repairs as gen-
erated by Repairg, , but such an algorithm would exhibit a
much worse runtime compared to Repairgy, ,, which com-
putes these graph repairs in a systematic way exploring only
modifications that may lead to graph repairs subsequently.

However, due to the expressiveness of the underlying
graph logic, the state-based graph repair algorithms do not
terminate since AUTOGRAPH may not terminate and the
delta-based graph repair algorithm Repairy, , may not ter-
minate (even though it uses AUTOGRAPH only in the offline
phase) since an infinite sequence of local graph repairs would
be computed. Also note that it is not easy to syntactically
restrict the underlying graph logic in a least-restrictive way to
obtain terminating graph repair algorithms. For example, the
three presented algorithms do not terminate when the empty
graph is to be repaired w.r.t. the GC from Fig. 6¢ as a con-
sistency constraint. This example demonstrates that limiting
the nesting depth to 2 is insufficient and, obviously, limiting
nesting depth to 1 would drastically reduce the expressive-
ness of the logic. Also note that the computations of all three
algorithms do not get stuck in cycles and do not skip results
to be returned: they always proceed in a reasonable direction
but may not terminate because they are forced on a path to
an infinite graph, which they can’t generate by incrementally
adding a finite number of elements. Note that the state-based
graph repair algorithm Repairyy, , exhibited out-of-memory
errors in our two tests for N = 10.

Lastly, we point out that the ST for a graph and a con-
sistency constraint used in the delta-based graph repair
algorithm may need to store a large number of matches
therefore requiring a large amount of memory. From this
perspective, the delta-based graph repair algorithm is also a
tradeoff between execution time and memory consumption.
Note that memory consumption was no problem in our tool-
based evaluation but further evaluations using bigger graphs
and an implementation designed for such bigger graphs may
provide further insights in implementation challenges. Any-
way, the two state-based graph repair algorithms with their
online application of the algorithm A require much more
memory even for the rather small examples presented.

@ Springer

We conclude that the three presented graph repair algo-
rithms determine different choices for the tradeoff between
required runtime on the one hand and required memory and
completeness w.r.t. the set of all least changing (local) graph
repairs on the other hand. Moreover, the novel notion of delta-
preserving graph repairs is important for the delta-based
graph repair algorithm Repairy, and helps to further restrict
the resulting set of graph repairs to support the user in making
a choice between the possible repairs.

10 Case study

For an additional application of the delta-based graph repair
algorithm Repairy, presented in the previous section, we
consider the scenario described in the social network bench-
mark (SNB) from [44], which is maintained and developed by
the Linked Data Benchmark Council (LDBC). This bench-
mark describes an online social network in which users are
members of moderated forums where posts can be liked
and commented. The general aim of the benchmark is the
evaluation and comparison of approaches for the manage-
ment of graph-based systems such as query languages and
their implementations in query engines. Consider the class
diagram given in Fig. 3 of this benchmark where we have
omitted node and edge attributes that are not covered yet by
our approach. For graphs that are typed over this class dia-
gram, we can express meta-model consistency constraints
using GCs.

One of the typical meta-model constraints for class dia-
grams, also listed in [44, pp. 16—17], relates to multiplicity
constraints for relations. We consider here, for simplicity,
only the following two multiplicity constraints.

e M1 Each comment is the source of some :replyOf edge
to some comment or post.

e M2 Each post is the target of some :hasCreator edge from
some person.

The encoding of such consistency constraints using GCs is
straightforward as already demonstrated previously in [40].
In addition, we consider the informal meta-model consis-
tency constraint given in [44, p. 12], which refers to multiple
relations.

e P Postsin aforum can be created by anon-member person
if and only if that person is a moderator.

Consider the formalization of the property P in the form
of a GC in Fig. 20a, which is violated in the resulting graph
database whenever a moderator or a member cancels a sub-
scription to a forum in which it is the creator of a post.

The consistency constraint “comments of a post are con-
tained in the same forum”, which is not included in [44],
is also not required for the given class diagram because the

A logic-based incremental approach to graph repair featuring delta preservation 401

containment relation for comments is not covered explicitly
in the class diagram. However, the removal of a post from
a forum can then be expected to also invoke the removal of
all comments directly or indirectly connected to the removed
post. Hence, in a social network of realistic size, the removal
of a moderator or member (i.e., removing elements of the
hasMember or :hasModerator relation) with all its posts may
affect an enormous amount of graph elements (i.e., nodes of
types :Post and :Comment) to re-establish consistency, which
may not be desirable in general. For the example at hand,
consider the graph update Fig. 20b in which a moderator Pel
leaves a forum. The resulting graph is inconsistent w.r.t. the
property P while it still satisfies the multiplicity constraints
M1 and M2.

An application of Repairy;, for this example now results
in several local graph repairs as follows.

e Local Graph Repair 1

— Action: Recreation of the e1: hasModerator edge that
was removed by the graph update:

— Result: This local graph repair results in a consistent
graph.

— Evaluation: Every graph repair including this local
graph repair would not be delta preserving.

e Local Graph Repair 2

— Action: Creation of a: hasMember edge from Pel to
F.

— Result: This local graph repair results in a consistent
graph.

— Evaluation: The local graph repair is a locally least
changing and delta-preserving graph repair to be
returned.

e Local Graph Repair 3

— Action: Deletion of the matched F : Forum node and
all connected edges {e3, ea}.

— Result: This local graph repair results in a consis-
tent graph since we did not include all multiplicity
constraint from the benchmark (in particular, we can
expect that every post should be contained in a forum
by means of an edge of type :containerOf).

— Evaluation: The local graph repair is a locally least
changing and delta-preserving graph repair to be
returned.

e Local Graph Repair 4

— Action: Deletion of the matched Pel : Person node
and all connected edges {e>, eg}.

— Result: This local graph repair results in a consistent
graph but, again, it contains a post for which no forum
is the container.

— Evaluation: The local graph repair is a locally least
changing and delta-preserving graph repair to be
returned.

e Local Graph Repair 5

— Action: Deletion of the matched Po : Post node and
all connected edges {ez, e3, e¢, €7}.

— Result: This local graph repair results in a graph that
is satisfying P but not the multiplicity constraint M1.

— Evaluation: Further applications of the single-step
algorithm ‘Repairy,; would remove also the two
nodes Col : Comment and Co2:Comment as well
as the edges {es, eg}.

e Local Graph Repair 6

— Action: Deletion of the edge e;:hasCreator. This local
graph repair is depicted in Fig. 21.

— Result: This local graph repair results in a graph that
is satisfying P and M1 but not the multiplicity con-
straint M2.

— Evaluation: Further applications of the single-step
algorithm Repairg,; would, amongst other local
graph repairs that are computed, remove also the node
Po : Post with the attached edges (this local graph
repair is depicted in Fig. 22) and then, amongst other
local graph repairs that are computed, also remove
the nodes Col:Comment and Co2:Comment with
attached edges (this local graph repair is depicted in
Fig. 23).

e Local Graph Repair 7

— Action: Deletion of the edge e3:containerOf.

— Result: This local graph repair results in a graph sat-
isfying P and M1 but not the multiplicity constraint
M2.

— Evaluation: Further applications of the single-step
algorithm Repairy,; would remove further elements
not leading to additional least-changing delta-
preserving graph repairs.

Note that some of these graph repairs may be undesirable as
for example the removal of the entire forum. Hence, we argue
that graph repair requires in this setting user interaction to
determine the desired graph repair.

11 Related work

The recent survey on model repair [28] and the correspond-
ing exhaustive classification of primary studies selected in
the literature review [27] discusses a huge amount and wide
variety of existing approaches that renders a detailed com-
parison with all of them infeasible.

@ Springer

402 S. Schneider et al.

(a) 1 .
F:Forum " | Po:Post " |Pe:Person|
v“: e7:containerOf I—I e,:hasCreator :l’
F:Forum >|Pe:Person
| T pweymrong T Y
F:Forum *>[Pe:Person
NE | ST prwevseng 22 |
b
(®) e4:hasMember
| F:Forum I| <
e1:hasModerator
eg:hasCreator \
[Pe1:Person e3:containerOf Pe2:Person
L
e,:hasCreator e5:hasCreator
Y Y Y
Co2:Comment] = rl Po:Post | S rCol:Comment
el eg:replyOf
ZJ
eg:hasMember
| F:Forum I <
eg:hasCreator
LI Pel:Person | e3:containerOf | Pe2:Person |
ep:hasCreator e5:hasCreator
Y Y Y
CoZ:CommentI = rl Po:Post | > rCOI:Commentl
27 el eg:replyOf
rl
es:hasMember
| F:Forum I <
eg:hasCreator
LI Pel:Person I e3:containerOf | Pe2:Person I
ey:hasCreator es5:hasCreator
Y Y Y
CoZ:CommentI > rl Po:Post | S rCOI:Commentl
27 el eg:TeplyOf
Fig.20 A consistency constraint P formalized as GC and a graph update straint P from Sect. 10 stating that “Posts in a forum can be created by
used in Sect. 10 in an application of the delta-based graph repair algo- a non-member person if and only if that person is a moderator”. b A
rithm to the social network benchmark (SNB) [44] of the Linked Data graph database update where a moderator Pe/ leaves a forum in which
Benchmark Council (LDBC). a A formalization of the consistency con- it has a post Po

@ Springer

A logic-based incremental approach to graph repair featuring delta preservation

403

| F:Forum Il <

e1:hasModerator

eg:hasCreator \

A 4 Yy

A
CoZ:CommentI > rI Po:Post

e7:replyOf

eg-hasMember

[Pel:Person |

ey:hasCreator

D

<

e3:containerOf

| Pe2:Person |

e5:hasCreator

Y

rCOI :Comment

<

5

| F:Forum I <

eg:hasCreator

Y

|C02 :Comment'I

e7:replyOf

eg:replyOf

eg:hasMember

I Pel:Person |

» II Po:Post |

D

e3:containerOf

| Pe2:Person |

e5:hasCreator

Y

|C01 :Commentl

<
<

|

| F:Forum I <

eg:hasCreator

Y

Co2 :CommentI

e7:replyOf

eg:replyOf

eg:hasMember

I Pel:Person |

|~ —

> |I Po:Post | D)

e3:containerOf

| Pe2:Person |

e5:hasCreator

Y
rCol :Comment]|

eg:replyOf

Fig.21 A local graph repair (£1, r1) computed using Repairgy,; for the graph update from Fig. 20

We consider our approach to be innovative since it
addresses the important issues of completeness and least
changing for incremental graph repair in a precise and formal
way.'* Only two other approaches [26,42] that are men-
tioned in the survey [27,28] address these two properties and
also employ existing constraint-solving technology. How-
ever, the main difference with our approach is that these
approaches are not incremental. In particular, a logic pro-
gramming approach is proposed in [42], which allows for
the exploration of model repair solutions for re-establishing
conformance of a model with its metamodel. These possible

14 Our approach additionally addresses delta preservation, which is not
considered in the survey [27].

repairs are ranked in this approach according to some qual-
ity criteria but neither soundness nor completeness of these
model repair solutions is formally verified. Moreover, the
least changing bidirectional model transformation approach
in [26] only obtains repairs of a bounded size by relying on a
bounded constraint solver. Also, the least-changing principle
in these approaches is based on some distance metrics, count-
ing the number of deletions/additions necessary to reach the
other model. Our repair algorithm returns all repairs based
on such a minimal distance, but it is more diverse by consid-
ering all modifications establishing consistency preserving
as many nodes/edges as possible compared to other repairs.

@ Springer

404

S. Schneider et al.

| F:Forum Il <

e1:hasModerator

eg:hasCreator Y

Y

Co2:Comment]

e7:replyOf

;

| F:Forum I

eg:hasCreator

Y

|C02 :Commentl

!

| F:Forum I

eg:hasCreator

A 4

|C02 :Commentl

eg:-hasMember

| Pel:Person |

:II Po:Post |'

e3:containerOf

| Pe2:Person |

e5:hasCreator
Y

rCol :Comment

<

eg:replyOf

eg-hasMember

I Pel:Person |

<

| Pe2:Person |

e5:hasCreator
L4

|C01:Commentl

eg-hasMember

I Pel:Person |

<

| Pe2:Person |

e5:hasCreator
L4

|C01:Commentl

Fig. 22 A local graph repair (€2, r2) computed using RRepairg,; for the graph update from Fig. 20 continuing from the local graph repair from

Fig. 21

Some recent work on rule-based graph repair [20] (not
covered by the survey) addresses the least changing princi-
ple by developing so-called maximally preserving (items are
preserved whenever possible) repair programs. This state-
based approach considers a subset of consistency constraints
(up to nesting depth 2) handled by our approach, and is not
complete, since it produces repairs including only a min-
imal amount of deletions. The same authors continue this
line of research with a modified approach [38], where a
repair program is derived from a given set of repair rules.
These repairs however in general do not follow the least-
changing principle any more. Some other recent rule-based
graph repair approach [30,43] (also not covered by the sur-
vey) proposes so-called change preserving repairs (similar to
what we define as delta-preserving). Finally, Chengetal. [13]

@ Springer

also present a rule-based approach to graph repair, where they
in particular concentrate on repairing specific properties such
asincompleteness, conflicts, and redundancies. The main dif-
ference of all these rule-based approaches with our work is
that we do not require the repair operations to be given in the
form of rules, since we derive repairs using constraint solving
techniques directly from the desired consistency constraints.
Moreover, most of these rule-based approaches are neither
concerned explicitly with the least-changing principle, nor
with completeness. Another recent work [47] concentrates
on automated repair of Alloy models, which uses a first order
relational logic with transitive closure. This approach is in
line with traditional automated program repair techniques,
using a generate-and-validate technique. A generated model
repair is declared to be valid as soon as all tests pass for the

A logic-based incremental approach to graph repair featuring delta preservation 405

Fig.23 A local graph repair
(€3, r3) computed using
‘Repairgy,; for the graph update
from Fig. 20 continuing from the
local graph repair from Fig. 22
eg:hasCreator

e4g:hasMember

| F:Forum I <

4

|C02:Comment|

repaired model. Neither completeness, nor the least-changing
principle are addressed explicitly by this approach.

Another line of related work is the research on repair
methods for multi-models. As described in the model repair
survey [27,28] these repair methods provide dedicated sup-
port for multi-model scenarios and inter-model consistency
constraints (as opposed to the intra-model consistency con-
straints considered in this paper). A special case of multi-
model repair is model synchronization. More precisely, in the
area of model transformation (see [22]) two or more models
are synchronized if they describe (different two views of)
the same artifact. In this context, when one or more mod-
els are modified such that these models become inconsistent,
then model synchronization is the repair process that makes
them consistent again. Multi-model techniques often impose
restrictions on the user updates as well as on the generated
repairs. For example, usually user updates are allowed either
on the source or on the target model, whereas the repair is then
restricted to the target model or source model, respectively.
Moreover, model synchronization and, in general, the inter-

I Pel:Person | Pe2:Person |

e5:hasCreator

|C01 :Commentl

~
w
>

es:hasMember
F:Forum <

I |

| Pe2:Person |

r3

—

es:hasMember
F:Forum |

Pel:Person

|

| Pe2:Person |

model consistency constraints can be described by means of
relations (ase.g.in [26] using QVT Relationsorase.g.in [17]
using triple graph grammars), or more implicitly by means
of unidirectional operational definitions (as e.g. in [10]).
Anyhow, the literature on model synchronization and multi-
model consistency is also quite large and, as pointed out in
[28], even if model repair overlaps with multi-model consis-
tency, there are several topics that are specific for just one of
these areas. Our approach could be used in such multi-model
scenarios by defining the inter-model consistency constraint
by a graph condition that expresses the relation between the
different models, but it is up to future work to elaborate a ded-
icated multi-model procedure and work out the advantages
of such a constraint-based approach.

Finally, a wide variety of work on incremental evaluation
of graph queries (seee.g. [5,7]) aims at supporting an efficient
re-evaluation of a given graph query after a graph update has
been performed on the graph at hand. Although not employed
with the specific aim of complete and least changing graph
repair, this work is related to our newly introduced concept

@ Springer

406

S. Schneider et al.

of satisfaction trees, also using specific data structures to
record with some detail the set of answers to a given query
(as described for graph conditions, for example, also in [6]). It
is part of ongoing work to evaluate how STs can be employed
similarly in this field of incremental query evaluation.

12 Conclusion

We presented a logic-based incremental approach to graph
repair. Itis the first approach to graph repair returning a sound
and complete overview of the set of least-changing repairs
with respect to graph conditions equivalent to first-order logic
on graphs. Moreover, our incremental approach has built-in
support for delta-preservation, ensuring that only repairs are
generated preserving the modifications of the graph update
that resulted in the violation of consistency. Technically,
our approach relies on an existing model generation proce-
dure for graph conditions together with the newly introduced
notion of satisfaction trees, which encode if and how a graph
satisfies a graph condition. In particular, the set of violations
of a satisfaction tree represents in a detailed way the parts of
the consistency constraint that are violated.

As future work, we aim at supporting attributes in consis-
tency constraints. We are confident to be able to realize this
extension, since the underlying model generation procedure
used for generating repairs supports such graph attributions
already. Ongoing work is the support of more expressive
consistency constraints, allowing path-related properties.
Moreover, we are in the process of evaluating our approach on
more case studies. This evaluation also pertains to the over-
all efficiency (for which we employ techniques for localized
and incremental pattern matching) and includes a compar-
ison with other approaches for graph repair. We plan to
work out a dedicated multi-model procedure in line with
our constraint-based approach by defining the inter-model
consistency constraint by a graph condition that expresses
the relation between the different models. Finally, we aim at
presenting more properties going beyond delta preservation
or least-change (e.g. also address least-surprise as elaborated
in the field of bidirectional transformations [12]) allowing for
an even more diverse distinction between all possible repairs
supporting the implementation of a powerful (interactive)
repair selection procedure.

Acknowledgements We would like to express our great appreciation
for the insightful comments made by the anonymous reviewers, which
helped to improve our contribution considerably.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as

@ Springer

long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A proofs

We provide proofs for the lemmas and theorems of the main
part of the paper.

Proof of Theorem 1: Typed Graphs are a Category See
[15, Example 2.12, pp.25-26]. O

Proof of Theorem 2: Existence of Canonical Graph Update An
incremental computation of a strict reduction is guaranteed
to terminate for graph updates with a finite graph D resulting
in a canonical graph update in these cases. However, since
reductions can increase the graph D arbitrarily, we can also
deduce that every graph update can be restricted to a canon-
ical graph update in general.

For a direct construction, we obtain the graph D, of the
canonical graph update u; = (£2, r2) such that it contains
the maximally preserved subgraph of the given graph update

up = Ly, r1).
D "
PN

G > DZ C Gz
! éz 2
\ /
kl X kz

We construct u7 in two steps.

e We construct a smallest overlapping X of the graphs
G and G, formally represented by a pair (k;
G — X,ky : G2 — X) of two jointly epimorphic
monomorphisms (i.e., every node or edge of X is mapped
to by either k| or k) satisfying ky o £1 = ky o ry.

e We construct the pair (€2, 1) as the pullback of this over-
lapping (k1, k2).

e We have k1 0 £y = kp orp from the pullback construction.

e We have a morphismi : D1 — D; satisfying £1 = {01
and r; = rp o i by the pullback property.

e Lastly, i is a monomorphism because £; and ¢, are
monomorphisms. O

Proof of Theorem 3: Functional Semantics of Repairg, ; The
soundness of Repair, ; follows directly from the formal
results on AUTOGRAPH from [40]. For completeness con-
sider that Repairgy, ; only returns repairs (/, r) where [is the

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

A logic-based incremental approach to graph repair featuring delta preservation 407

identity. Hence, Repairg, | only returns non-deleting repairs.
For the monomorphism » we also rely on the completeness
guaranteed by AUTOGRAPH according to from [40]. O

Proof of Theorem 4: Functional Semantics of Repairg, ,
Since the definition of Repairg, , ensures that non-least
changing repairs are removed prior to returning the derived
set, we only have to show that the updates obtained are
indeed repairs. This proof proceeds by induction follow-
ing the traversal of the generates restriction tree RT(G, @).
The soundness of Repairg, , then again follows immedi-
ately from the formal results on AUTOGRAPH from [40] as
for Repairg, ;. Moreover, on the one hand, when we would
traverse the entire restriction we would clearly consider all
possible restrictions / of the given graph G and, on the other
hand, AUTOGRAPH ensures again the completeness of the
morphisms r using the repairs. Hence, for completeness we
argue that the stopping condition for graphs G, that sat-
isfy the condition ¥ does not limit completeness. For this,
observe that every repair that would be obtained by some
direct or indirect child of a graph G from the restriction tree
satisfying ¢ would not be least changing due to the repair
(Il :G; — G,id(G,)) constructed for G.. O

Proof of Theorem 5: Soundness of the (Recursive) Construc-
tion of Satisfaction Trees By induction on ¢ mainly showing
that m} and m’, are defined in the case of the exists operator
for the correct matches ¢ : H; < G, which follows from
the fact that all matches are considered by construction and
that the check for satisfaction on the corresponding ST is
performed as required.

Proof of Theorem 6: Compatibility of Satisfaction of Satisfac-
tion Trees and Computation of Violations The only step that
needs to be verified is that at least one violation is returned
iff the ST is not satisfied. We apply induction on the structure
of the ST at hand and only consider the case of existential
quantification.

If a violation is found, this means that the partial map m;,
is not empty and b is false or that the partial map m; is empty
and b is true according to Definition 27. Correspondingly, a
ST is not satisfied when m; is empty.

This means that a violation is obtained using an applica-
tion violations(—=3(f, ¢, m,, m), true) for elements in m,,
which then results in nonsatisfaction of the ST due to the
enclosed negation. Vice versa, if a violation is obtained using
an application violations(3(f, ¢, m,, m r), true) this means
that m, is empty, which then also results in nonsatisfaction
of the ST. O

Proof of Lemma 1: Compatibility of Satisfaction Tree Con-
struction and Backward Propagation By induction on the

common structure of the two STs and ¢ mainly showing that
the mappings m, and m s are equal in the case of the exists
operator. This means that they are both defined for the correct
matches g : H; <— G, which follows from the fact that no
additional matches can be found since [restricts the graph,
that only matches are removed that could not be preserved,
and that the preserved matches have been inserted in the cor-
rect map m; or m’ ’ depending on whether the corresponding
ST is satisfied.

Proof of Lemma 2: Compatibility of Satisfaction Tree Con-
struction and Forward Propagation By induction on the
common structure of the two STs and ¢ mainly showing
that the mappings m, and m s are equal in the case of the
exists operator. This means that they are both defined for the
correct matches g : H; < G, which follows from the fact
that all old matches can be preserved and that all additional
matches are contained for newly constructed STs, and that
the obtained matches have been inserted in the correct map
m) or m/f depending on whether the corresponding ST is
satisfied. O

Proof of Theorem 7: Compatibility of Satisfaction Tree Con-
struction and Update Propagation From Lemma 1 and
Lemma 2. O

Proof of Lemma 3: Addition-based Local Graph Repair
Results in Delta Preserving Graph Updates Because no ele-
ments are deleted using id(G’), the diagram in Definition 18
is simplified as follows. When X is constructed as the PB of
r1 and £, we know that the graph X equals D, ri =1id(Dy),
6’2 =r1, (2)is also a PO, and £ and r can be constructed such
that (1) and (3) commute. The only remaining condition to be
checked is whether (¢1 o7, 2 0 £,) = (£1, r2 0ry) is canon-
ical. By Definition 34 this property is checked and returned
as b. O

Proof of Lemma 4: Deletion-based Local Graph Repair
Results in Delta Preserving Graph Updates According to
Definition 18, we have to construct the pullback of r; and
£> and check whether it is a pushout. This condition is also
checked according to Definition 35. Moreover, the compo-
sition of both graph updates is canonical as required when
the graph update u is canonical, which holds by assumption
because the constructed graph update does not add elements
by using the monomorphism id(G”).

Proof of Lemma 5: Repairg;,,; Generates the Least Chang-
ing Local Graph Repairs Repairg,; performs a recursive
descent throughout the provided ST to determine sub-STs
that are incorrectly violated or incorrectly satisfied. For the
case of conjunction, Repair,; considers all possible repairs

@ Springer

408

S. Schneider et al.

of sub-STs independently from each other by selecting one
sub-ST that needs repair or by selecting some sub-ST that
can be broken to achieve the desired repair result. Repairs
are obtained from existential quantifications only: we have
the two cases given by Repair,qq and Repairy, discussed
below but also the possible recursive cases where viola-
tions are resolved for the sub-ST given for some existing
matches. Thereby the recursive procedure descents to an arbi-
trary violation of the given ST leading to completeness when
‘Repair,yq and Repair 4, are complete in this respect. These
two cases correspond to the two cases for least changing local
graph repairs as well as for Repair, 4 and ‘Repair 4. Subse-
quently we show that the least changing local graph repairs
by addition are obtained using Repair,yy and that the least
changing local graph repairs by deletion are obtained using
Repairy,;.

For Repair, 44, we clearly only obtain least changing local
repairs by addition where the monomorphism e; in the defini-
tion of least changing locally graph repairs corresponds to the
monomorphism m o k where in both cases the corresponding
pushouts are constructed. Also, due to the construction using
AUTOGRAPH and again relying on the formal results from
[40], we also obtain completeness with respect to the addi-
tion of elements computed in this step using M beforehand.

For Repairy,, we clearly only obtain least changing
locally repairs by deletion where the monomorphism e in the
definition of least changing locally graph repairs corresponds
then to the monomorphism m». Also, due to the construction
of the restriction tree employed in this step, we obtain a com-
plete consideration of possible restrictions of the graph H'.

O
Proof of Theorem 8: Functional Semantics of Repairy, By
induction on the recursive execution of Repairy,, we con-
clude that only iterated compositions of updates are returned.
Moreover, as shown subsequently, these graph updates are
locally least changing graph updates as defined in Defini-
tion 37 due to the operation Repair g, according to Lemma 5.
Similarly, the entire enumeration of all possible updates
obtained from Repairgy,; is then sufficient for overall com-
pleteness when Repairy,; is complete with respect to the
locally least changing updates according to Lemma 5. O

References

1. Angles, R., Gutiérrez, C.: Survey of graph database models.
ACM Comput. Surv. 40(1), 1-39 (2008). https://doi.org/10.1145/
1322432.1322433

2. Bardohl, R., Ehrig, H., de Lara, J., Taentzer, G.: Integrating meta-
modelling aspects with graph transformation for efficient visual
language definition and model manipulation. In: M. Wermelinger,
T. Margaria (eds.) Fundamental Approaches to Software Engineer-
ing, 7th International Conference, FASE 2004, Held as Part of the
Joint European Conferences on Theory and Practice of Software,
ETAPS 2004 Barcelona, Spain, March 29-april 2, 2004, Proceed-

@ Springer

10.

11.

12.

13.

ings, Lecture Notes in Computer Science, vol. 2984, pp. 214-228.
Springer (2004). https://doi.org/10.1007/978-3-540-24721-0_16

. Barkowsky, M., Giese, H.: Hybrid search plan generation for gener-

alized graph pattern matching. In: E. Guerra, F. Orejas (eds.) Graph
Transformation—12th International Conference, ICGT 2019, Held
as Part of STAF 2019, Eindhoven, The Netherlands, July 15-16,
2019, Proceedings, Lecture Notes in Computer Science, vol. 11629,
pp. 212-229. Springer (2019). https://doi.org/10.1007/978-3-030-
23611-3_13

. Bergmann, G.: Translating OCL to graph patterns. In: J. Dingel,

W. Schulte, I. Ramos, S. Abrahio, E. Insfran (eds.) Model-Driven
Engineering Languages and Systems—17th International Confer-
ence, MODELS 2014, Valencia, Spain, September 28—October 3,
2014. Proceedings, Lecture Notes in Computer Science, vol. 8767,
pp- 670-686. Springer (2014). https://doi.org/10.1007/978-3-319-
11653-2_41

. Bergmann, G., Okros, A., Rith, I, Varr6, D., Varré, G.: Incremental

pattern matching in the viatra model transformation system. In: Pro-
ceedings of the Third International Workshop on Graph and Model
Transformations, GRaMoT ’08, pp. 25-32. ACM, New York, NY,
USA (2008). https://doi.org/10.1145/1402947.1402953

. Beyhl, T., Blouin, D., Giese, H., Lambers, L.: On the operational-

ization of graph queries with generalized discrimination networks.
In: R. Echahed, M. Minas (eds.) Graph Transformation - 9th
International Conference, ICGT 2016, in Memory of Hartmut
Ehrig, Held as Part of STAF 2016, Vienna, Austria, July 5-6,
2016, Proceedings, Lecture Notes in Computer Science, vol. 9761,
pp. 170-186. Springer (2016). https://doi.org/10.1007/978-3-319-
40530-8_11

. Beyhl, T., Giese, H.: Incremental view maintenance for deduc-

tive graph databases using generalized discrimination networks.
In: A. HeuBner, A. Kissinger, A. Wijs (eds.) Proceedings Second
Graphs as Models Workshop, GaM@ETAPS 2016, Eindhoven,
The Netherlands, April 2-3, 2016., EPTCS, vol. 231, pp. 57-71
(2016). https://doi.org/10.4204/EPTCS.231.5

. Bi, F, Chang, L., Lin, X., Qin, L., Zhang, W.: Efficient sub-

graph matching by postponing cartesian products. In: F. Ozcan, G.
Koutrika, S. Madden (eds.) Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016,
San Francisco, CA, USA, June 26-July 01, 2016, pp. 1199-1214.
ACM (2016). https://doi.org/10.1145/2882903.2915236

. Biermann, E., Ermel, C., Taentzer, G.: Precise semantics of EMF

model transformations by graph transformation. In: K. Czarnecki,
1. Ober, J. Bruel, A. Uhl, M. Volter (eds.) Model Driven Engineering
Languages and Systems, 11th International Conference, MoDELS
2008, Toulouse, France, September 28—October 3, 2008. Proceed-
ings, Lecture Notes in Computer Science, vol. 5301, pp. 53-67.
Springer (2008). https://doi.org/10.1007/978-3-540-87875-9_4
Boronat, A.: Offline delta-driven model transformation with depen-
dency injection. In: Hihnle and van der Aalst [21], pp. 134-150.
https://doi.org/10.1007/978-3-030-16722-6_8

Bur, M., Ujhelyi, Z., Horvath, A., Varr6, D.: Local search-based
pattern matching features in emf-incquery. In: F. Parisi-Presicce, B.
Westfechtel (eds.) Graph Transformation - 8th International Con-
ference, ICGT 2015, Held as Part of STAF 2015, L’ Aquila, Italy,
July 21-23, 2015. Proceedings, Lecture Notes in Computer Sci-
ence, vol. 9151, pp. 275-282. Springer (2015). https://doi.org/10.
1007/978-3-319-21145-9_18

Cheney, J., Gibbons, J., McKinna, J., Stevens, P.: On principles of
least change and least surprise for bidirectional transformations. J.
Object Technol. 16(1), 3:1-31 (2017). https://doi.org/10.5381/jot.
2017.16.1.a3

Cheng, Y., Chen, L., Yuan, Y., Wang, G.: Rule-based graph repair-
ing: Semantic and efficient repairing methods. In: 34th IEEE
International Conference on Data Engineering, ICDE 2018, Paris,

https://doi.org/10.1145/1322432.1322433
https://doi.org/10.1145/1322432.1322433
https://doi.org/10.1007/978-3-540-24721-0_16
https://doi.org/10.1007/978-3-030-23611-3_13
https://doi.org/10.1007/978-3-030-23611-3_13
https://doi.org/10.1007/978-3-319-11653-2_41
https://doi.org/10.1007/978-3-319-11653-2_41
https://doi.org/10.1145/1402947.1402953
https://doi.org/10.1007/978-3-319-40530-8_11
https://doi.org/10.1007/978-3-319-40530-8_11
https://doi.org/10.4204/EPTCS.231.5
https://doi.org/10.1145/2882903.2915236
https://doi.org/10.1007/978-3-540-87875-9_4
https://doi.org/10.1007/978-3-030-16722-6_8
https://doi.org/10.1007/978-3-319-21145-9_18
https://doi.org/10.1007/978-3-319-21145-9_18
https://doi.org/10.5381/jot.2017.16.1.a3
https://doi.org/10.5381/jot.2017.16.1.a3

A logic-based incremental approach to graph repair featuring delta preservation

409

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

France, April 16-19, 2018, pp. 773-784. IEEE Computer Society
(2018). https://doi.org/10.1109/ICDE.2018.00075

Courcelle, B.: The expression of graph properties and graph trans-
formations in monadic second-order logic. In: Rozenberg [37], pp.
313-400

Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of
Algebraic Graph Transformation. Springer, Berlin (2006)

Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M-
adhesive transformation systems with nested application condi-
tions. part 2: Embedding, critical pairs and local confluence.
Fundam. Inform. 118(1-2), 35-63 (2012). https://doi.org/10.3233/
FI-2012-705

Fritsche, L., Kosiol, J., Schiirr, A., Taentzer, G.: Efficient model
synchronization by automatically constructed repair processes. In:
Hihnle and van der Aalst [21], pp. 116-133. https://doi.org/10.
1007/978-3-030-16722-6_7

Giese, H., Hildebrandt, S., Seibel, A.: Improved flexibility and
scalability by interpreting story diagrams. ECEASST 18, (2009).
https://doi.org/10.14279/tuj.eceasst.18.268

Habel, A., Pennemann, K.: Correctness of high-level trans-
formation systems relative to nested conditions. Math. Struct.
Comput. Sci. 19(2), 245-296 (2009). https://doi.org/10.1017/
S0960129508007202

Habel, A., Sandmann, C.: Graph repair by graph programs. In:
M. Mazzara, 1. Ober, G. Salaiin (eds.) Software Technologies:
Applications and Foundations - STAF 2018 Collocated Workshops,
Toulouse, France, June 25-29, 2018, Revised Selected Papers, Lec-
ture Notes in Computer Science, vol. 11176, pp. 431-446. Springer
(2018). https://doi.org/10.1007/978-3-030-04771-9_31

Hihnle, R., van der Aalst, W.M.P. (eds.): Fundamental Approaches
to Software Engineering—22nd International Conference, FASE
2019, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2019, Prague, Czech Republic,
April 6-11,2019, Proceedings, Lecture Notes in Computer Science,
vol. 11424. Springer (2019). https://doi.org/10.1007/978-3-030-
16722-6

Hidaka, S., Tisi, M., Cabot, J., Hu, Z.: Feature-based classifi-
cation of bidirectional transformation approaches. Softw. Syst.
Model. 15(3), 907-928 (2016). https://doi.org/10.1007/s10270-
014-0450-0

Horvath, A., Varr6, G., Varrd, D.: Generic search plans for matching
advanced graph patterns. ECEASST 6, (2007). https://doi.org/10.
14279/tuj.eceasst.6.49

Huisman, M., Rubin, J. (eds.): Fundamental Approaches to Soft-
ware Engineering - 20th International Conference, FASE 2017,
Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings, Lecture Notes in Computer Science, vol. 10202.
Springer (2017). https://doi.org/10.1007/978-3-662-54494-5
Kuske, S., Gogolla, M., Kollmann, R., Kreowski, H.: An inte-
grated semantics for UML class, object and state diagrams based
on graph transformation. In: M.J. Butler, L. Petre, K. Sere (eds.)
Integrated Formal Methods, Third International Conference, IFM
2002, Turku, Finland, May 15-18, 2002, Proceedings, Lecture
Notes in Computer Science, vol. 2335, pp. 11-28. Springer (2002).
https://doi.org/10.1007/3-540-47884-1_2

Macedo, N., Cunha, A.: Least-change bidirectional model transfor-
mation with QVT-R and ATL. Softw. Syst. Model., pp. 783-810.
(2016). https://doi.org/10.1007/s10270-014-0437-x

Macedo, N., Tiago, J., Cunha, A.: Systematic literature review of
model repair approaches. http://tinyurl.com/hv7eh6h. Accessed:
2018-11-14

Macedo, N., Tiago, J., Cunha, A.: A feature-based classification of
model repair approaches. IEEE Trans. Softw. Eng. 43(7), 615-640
(2017). https://doi.org/10.1109/TSE.2016.2620145

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Nassar, N., Kosiol, J., Arendt, T., Taentzer, G.: OCL2AC: automatic
translation of OCL constraints to graph constraints and appli-
cation conditions for transformation rules. In: L. Lambers, J.H.
Weber (eds.) Graph Transformation—11th International Confer-
ence, ICGT 2018, Held as Part of STAF 2018, Toulouse, France,
June 25-26, 2018, Proceedings, Lecture Notes in Computer Sci-
ence, vol. 10887, pp. 171-177. Springer (2018). https://doi.org/10.
1007/978-3-319-92991-0_11

Ohrndorf, M., Pietsch, C., Kelter, U., Kehrer, T.: Revision: a tool
for history-based model repair recommendations. In: M. Chau-
dron, I. Crnkovic, M. Chechik, M. Harman (eds.) Proceedings
of the 40th International Conference on Software Engineering:
Companion Proceeedings, ICSE 2018, Gothenburg, Sweden, May
27—7June 03, 2018, pp. 105-108. ACM (2018). https://doi.org/10.
1145/3183440.3183498

OMG: Object Constraint Language (2014). http://www.omg.org/
spec/OCL/

Orejas, F., Boronat, A., Ehrig, H., Hermann, F., Scholzel, H.: On
propagation-based concurrent model synchronization. ECEASST
57 (2013). http://journal.ub.tu-berlin.de/eceasst/article/view/871
Orejas, F., Pino, E., Navarro, M., Lambers, L.: Institutions for nav-
igational logics for graphical structures. Theor. Comput. Sci. 741,
19-24 (2018). https://doi.org/10.1016/j.tcs.2018.02.031

Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Trans-
lating essential OCL invariants to nested graph constraints for
generating instances of meta-models. Sci. Comput. Program. 152,
38-62 (2018). https://doi.org/10.1016/j.scico.2017.08.006
Rensink, A.: Representing first-order logic using graphs. In: H.
Ehrig, G. Engels, F. Parisi-Presicce, G. Rozenberg (eds.) Graph
Transformations, Second International Conference, ICGT 2004,
Rome, Italy, September 28—October 2, 2004, Proceedings, Lec-
ture Notes in Computer Science, vol. 3256, pp. 319-335. Springer
(2004). https://doi.org/10.1007/978-3-540-30203-2_23

Rensink, A., Kleppe, A.: On a graph-based semantics for UML
class and object diagrams. ECEASST 10, (2008). https://doi.org/
10.14279/tuj.eceasst.10.153

Rozenberg, G. (ed.): Handbook of Graph Grammars and Com-
puting by Graph Transformations, vol. 1. Foundations World
Scientific, Singapore (1997)

Sandmann, C., Habel, A.: Rule-based graph repair. In: R. Echa-
hed, D. Plump (eds.) Proceedings Tenth International Workshop
on Graph Computation Models, GCM@STAF 2019, Eindhoven,
The Netherlands, 17th July 2019, EPTCS, vol. 309, pp. 87-104
(2019). https://doi.org/10.4204/EPTCS.309.5

Schneider, S., Lambers, L., Orejas, F.: Symbolic model generation
for graph properties. In: Huisman and Rubin [24], pp. 226-243.
https://doi.org/10.1007/978-3-662-54494-5_13

Schneider, S., Lambers, L., Orejas, F.: Automated reasoning
for attributed graph properties. Int. J. Softw. Tools Technol.
Transf. 20(6), 705-737 (2018). https://doi.org/10.1007/s10009-
018-0496-3

Schneider, S., Lambers, L., Orejas, F.: A logic-based incremental
approach to graph repair. In: Hiahnle and van der Aalst [21], pp.
151-167. https://doi.org/10.1007/978-3-030-16722-6_9
Schoenboeck, J., Kusel, A., Etzlstorfer, J., Kapsammer, E.,
Schwinger, W., Wimmer, M., Wischenbart, M.: CARE -
A constraint-based approach for re-establishing conformance-
relationships. In: G. Grossmann, M. Saeki (eds.) Tenth Asia-Pacific
Conference on Conceptual Modelling, APCCM 2014, Auck-
land, New Zealand, January 2014, CRPIT, vol. 154, pp. 19-28.
Australian Computer Society (2014). http://crpit.com/abstracts/
CRPITV154Schoenboeck.html

Taentzer, G., Ohrndorf, M., Lamo, Y., Rutle, A.: Change-preserving
model repair. In: Huisman and Rubin [24], pp. 283-299. https:/
doi.org/10.1007/978-3-662-54494-5_16

@ Springer

https://doi.org/10.1109/ICDE.2018.00075
https://doi.org/10.3233/FI-2012-705
https://doi.org/10.3233/FI-2012-705
https://doi.org/10.1007/978-3-030-16722-6_7
https://doi.org/10.1007/978-3-030-16722-6_7
https://doi.org/10.14279/tuj.eceasst.18.268
https://doi.org/10.1017/S0960129508007202
https://doi.org/10.1017/S0960129508007202
https://doi.org/10.1007/978-3-030-04771-9_31
https://doi.org/10.1007/978-3-030-16722-6
https://doi.org/10.1007/978-3-030-16722-6
https://doi.org/10.1007/s10270-014-0450-0
https://doi.org/10.1007/s10270-014-0450-0
https://doi.org/10.14279/tuj.eceasst.6.49
https://doi.org/10.14279/tuj.eceasst.6.49
https://doi.org/10.1007/978-3-662-54494-5
https://doi.org/10.1007/3-540-47884-1_2
https://doi.org/10.1007/s10270-014-0437-x
http://tinyurl.com/hv7eh6h
https://doi.org/10.1109/TSE.2016.2620145
https://doi.org/10.1007/978-3-319-92991-0_11
https://doi.org/10.1007/978-3-319-92991-0_11
https://doi.org/10.1145/3183440.3183498
https://doi.org/10.1145/3183440.3183498
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/OCL/
http://journal.ub.tu-berlin.de/eceasst/article/view/871
https://doi.org/10.1016/j.tcs.2018.02.031
https://doi.org/10.1016/j.scico.2017.08.006
https://doi.org/10.1007/978-3-540-30203-2_23
https://doi.org/10.14279/tuj.eceasst.10.153
https://doi.org/10.14279/tuj.eceasst.10.153
https://doi.org/10.4204/EPTCS.309.5
https://doi.org/10.1007/978-3-662-54494-5_13
https://doi.org/10.1007/s10009-018-0496-3
https://doi.org/10.1007/s10009-018-0496-3
https://doi.org/10.1007/978-3-030-16722-6_9
http://crpit.com/abstracts/CRPITV154Schoenboeck.html
http://crpit.com/abstracts/CRPITV154Schoenboeck.html
https://doi.org/10.1007/978-3-662-54494-5_16
https://doi.org/10.1007/978-3-662-54494-5_16

410

S. Schneider et al.

44. The Linked Data Benchmark Council (LDBC): Social network
benchmark. https://github.com/Idbc/ldbc_snb_docs. Accessed:
2019-08-27

45. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM
23(1), 31-42 (1976). https://doi.org/10.1145/321921.321925

46. Ullmann, J.R.: Bit-vector algorithms for binary constraint sat-
isfaction and subgraph isomorphism. ACM Journal of Experi-
mental Algorithmics 15, (2010). https://doi.org/10.1145/1671970.
1921702

47. Wang, K., Sullivan, A., Khurshid, S.: Automated model repair for
alloy. In: M. Huchard, C. Késtner, G. Fraser (eds.) Proceedings
of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, ASE 2018, Montpellier, France, Septem-
ber 3-7, 2018, pp. 577-588. ACM (2018). https://doi.org/10.1145/
3238147.3238162

@ Springer

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

https://github.com/ldbc/ldbc_snb_docs
https://doi.org/10.1145/321921.321925
https://doi.org/10.1145/1671970.1921702
https://doi.org/10.1145/1671970.1921702
https://doi.org/10.1145/3238147.3238162
https://doi.org/10.1145/3238147.3238162

	A logic-based incremental approach to graph repair featuring delta preservation
	Abstract
	1 Introduction
	2 Typed graphs
	3 Graph logic GL
	4 Automated reasoning for GL
	5 Graph updates and graph repairs
	6 State-based graph repair
	6.1 State-based repair algorithm mathcalRepairsb,1
	6.2 State-based repair algorithm mathcalRepairsb,2
	6.3 Discussion on state-based repair algorithms

	7 Satisfaction trees
	8 Delta-based graph repair
	9 Evaluation
	9.1 Runtime complexity
	9.2 Tool-based evaluation
	9.3 Resource requirements and functionality

	10 Case study
	11 Related work
	12 Conclusion
	Acknowledgements
	A proofs
	References

