
International Journal on Software Tools for Technology Transfer (2021) 23:741–763
https://doi.org/10.1007/s10009-020-00601-z

GENERAL

Special Issue: MeTRID

Correct program parallelisations

S. Blom1 · S. Darabi2 ·M. Huisman3 ·M. Safari3

Accepted: 10 December 2020 / Published online: 14 February 2021
© The Author(s) 2021

Abstract
A commonly used approach to develop deterministic parallel programs is to augment a sequential program with compiler
directives that indicate which program blocks may potentially be executed in parallel. This paper develops a verification
technique to reason about such compiler directives, in particular to show that they do not change the behaviour of the
program. Moreover, the verification technique is tool-supported and can be combined with proving functional correctness of
the program. To develop our verification technique, we propose a simple intermediate representation (syntax and semantics)
that captures the main forms of deterministic parallel programs. This language distinguishes three kinds of basic blocks:
parallel, vectorised and sequential blocks, which can be composed using three different composition operators: sequential,
parallel and fusion composition. We show how a widely used subset of OpenMP can be encoded into this intermediate
representation. Our verification technique builds on the notion of iteration contract to specify the behaviour of basic blocks;
we show that if iteration contracts are manually specified for single blocks, then that is sufficient to automatically reason about
data race freedom of the composed program. Moreover, we also show that it is sufficient to establish functional correctness on
a linearised version of the original program to conclude functional correctness of the parallel program. Finally, we exemplify
our approach on an example OpenMP program, and we discuss how tool support is provided.

Keywords Software verification · Deterministic parallel programming · Parallelisation

1 Introduction

Acommon approach to handle the complexity of parallel pro-
gramming is to write a sequential program augmented with
parallelisation compiler directives that indicate which part
of the code might be parallelised. A parallelising compiler
consumes the annotated sequential program and automati-
cally generates a parallel version. This parallel programming
approach is often called deterministic parallel programming,

B M. Safari
m.safari@utwente.nl

S. Blom
sblom@betterbe.com

S. Darabi
saeed.darabi@gmail.com

M. Huisman
m.huisman@utwente.nl

1 BetterBe, Enschede, The Netherlands

2 ASML Veldhoven, Veldhoven, The Netherlands

3 University of Twente, Enschede, The Netherlands

as the parallelisation of a deterministic sequential program
augmented with correct compiler directives is always deter-
ministic. Deterministic parallel programming is supported
by different languages and libraries, such as, for example,
OpenMP [20], and is often used for financial and scientific
applications (see e.g. [4,11,17,21]).

Although it is relatively easy to write parallel programs
in this way, careless use of compiler directives can easily
introduce data races1 and consequently non-deterministic
program behaviour. This paper proposes a tool-supported
static verification technique to prove that parallelisation as
indicated by the compiler directives does not introduce such
non-determinism. Our technique is not fully automatic: the
user has to add some additional annotations, and verifica-
tion of these annotations gives the guarantee that program
behaviour is not changed by the compiler directives. More-
over, we also show that it is sufficient to prove functional
correctness on a sequential version of the program, in order

1 A data race is a situation when two or more threads may access the
same memory location simultaneously where at least one of them is a
write.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-020-00601-z&domain=pdf

742 S. Blom et al.

to conclude functional correctness of the parallel program.
We develop a verification technique to reason about data race
freedom and functional correctness on an intermediate rep-
resentation language, called PPL (for Parallel Programming
Language), which captures the core features of determinis-
tic parallel programming. We then show that a commonly
used subset of a deterministic programming language such
asOpenMP can be encoded into this intermediate representa-
tion, and thus, our verification technique allows us to reason
about the correctness of compiler directives in OpenMP. The
verification technique is implemented as part of our program
verifier VerCors. That means, if we (manually) annotate an
OpenMP programwith specifications, data race freedom and
functional correctness canbeverified automatically.We illus-
trate this approach on some characteristic examples.

In essence, our intermediate representation language PPL
is defined in terms of the composition of code blocks.
We identify three kinds of basic blocks: a parallel block,
a vectorised block and a sequential block. Basic blocks
are composed by three binary block composition opera-
tors: sequential composition, parallel composition and fusion
composition where the fusion composition allows two par-
allel basic blocks to be merged into one. An operational
semantics for PPL is presented.

Our verification technique requires that users specify each
basic block by an iteration contract that describes which
memory locations are read and written by a thread. We intro-
duce these contracts and present verification rules for basic
blocks. Moreover, the program itself can be specified by a
global contract. To verify the global contract, we show that
the block compositions are memory safe (i.e. data race free)
by proving that for all the iterations that might run in parallel,
all accesses to shared memory are non-conflicting, meaning
that they are disjoint or they are read accesses. If all block
compositions are memory safe, then it is sufficient to prove
that the sequential composition of all the basic blocks w.r.t.
program order is memory safe and functionally correct to
conclude that the parallelised program is functionally cor-
rect.

The main contributions of this paper are the following:

– An intermediate representation language PPL that cap-
tures the core features of deterministic parallel program-
ming, with a suitable operational semantics.

– An algorithm that encodes a commonly used subset of
OpenMP into its PPL intermediate representation.

– A tool-supported verification approach for reasoning
about data race freedom and functional correctness of
OpenMP programs by using the encoding of OpenMP
into PPL.

This paper is an extended version of our paper presented
at NFM 2017 [12]. In addition, it contains (1) a rephrasing of

the verification rules for parallel and vectorised loops, pre-
sented at FASE 2015 [5] in the setting of PPL, i.e. rephrasing
them for basic blocks, and (2) an algorithm that encodes a
commonly used subset of OpenMP into PPL.

This paper is organised as follows.After somebackground
information on OpenMP and our program specification lan-
guage, Sect. 3 introduces our intermediate representation
languagePPL, presenting syntax and semantics. Then, Sect. 4
shows how OpenMP programs are encoded into PPL. Sec-
tion 5 presents the verification rules for basic blocks, while
Sect. 6 presents the verification rules for block compositions.
Section 7 provides more information on how the tool support
is provided, while Sect. 8 uses our technique on an OpenMP
program. Finally, Sect. 9 presents related work, and Sect. 10
concludes the paper and discusses future work.

2 Background

This section provides some background information on the
OpenMP compiler directives and briefly introduces syntax
and semantics of our program specification language.

2.1 OpenMP

As mentioned above, in this paper we consider a frequently
used subset of OpenMP constructs, using only the following
pragmas: omp parallel, omp for, omp simd, omp for simd,
ompsections, andompsingle, aswell as all allowed clauses.
We illustrate these OpenMP features by means of examples.
For full details on OpenMP, we refer to [20]. Later, Sect. 4
shows how programs in this subset are encoded into our core
parallel programming language, and Sect. 8 shows how to
verify that these programs can safely be parallelised, after
the user has added the necessary program contracts.

Example 1 Figure 1 presents a sequential C program aug-
mented by OpenMP compiler directives (called pragmas).
The pivotal parallelisation annotation in OpenMP is omp
parallel which denotes a parallelisable code block (called
parallel region). Threads are forked upon entering a parallel
region and joined back into a single thread at the end of the
region.

This example shows a parallel region with three for-loops
L1, L2, and L3. The loops are marked as omp for meaning
that they are parallelisable (i.e. their iterations are allowed
to be executed in parallel). To precisely define the behaviour
of threads in the parallel region, omp for annotations are
extended by clauses. For example the combined use of the
nowait and schedule(static) clauses indicates the fusion of the
parallel loops L1 and L2, meaning that the corresponding iter-
ations of L1 and L2 are executed by the same thread without
waiting. The clause nowait implies that the implicit barrier at

123

Correct program parallelisations 743

Fig. 1 OpenMP example

the end of omp for is eliminated. The clause schedule(static)
ensures that the OpenMP compiler assigns the same thread
to corresponding iterations of the loops.

In OpenMP, all variables which are not local to a parallel
region are considered as shared by default unless they are
explicitly declared as private (using the private clause) when
they are passed to a parallel region.

Since OpenMP 4.0, support for the single instruction mul-
tiple data (SIMD) execution model has been added to the
OpenMP standard. The SIMD execution model is a well-
known technique to speed up vector arithmetics, specifically
in scientific applications.

Example 2 Figure 2 presents an OpenMP example to illus-
trate this. The first loop uses the omp simd annotation to
vectorise the for-loop L1, which partitions the iterations of
the loop into smaller chunks, where the size of each chunk
is equal to the vectorisation size given by the extra clause
simdlen (i.e.M in this example). The loop execution is defined
as the sequential execution of chunks, where each chunk is
executed in a vectorised fashion.

The second for-loop (L2) shows the other formofOpenMP
vectorisation using the omp for simd annotation. In this case,
the loop execution is defined similarly, however the itera-
tion chunks are executed in parallel rather than sequentially.
Figure 3 visualises the execution of these loops.

Example 3 Figure 4 presents how the parallel execution of
two parallel regions is defined in OpenMP. The example
consists of three parallel regions: P1 in lines 4–11, P2 in
lines 14–23 and P3 in lines 26–29. Similar to the previous
examples, the behaviour of each thread is defined by fur-
ther OpenMP compiler directives. We use the omp sections

Fig. 2 Vectorised loops in OpenMP

annotation, which defines the blocks of the code (marked by
omp section) which are executed in parallel. For example,
two threads are forked upon entering the parallel region P1,
one executes the method add and the other one executes the
methodmul. Note that the bodies of themethods are also par-
allel regions. Therefore, the threads executing the add and
mul methods fork more threads upon entering the parallel
region P2 and P3. The parallel region P2 is a fusion and the
parallel region P3 is a single parallel loop where omp parallel
for is a shorthand for an omp parallel with a single omp for.

Example 4 Figure 5 shows an OpenMP program using incor-
rect compiler directives, which results in data races. As there
is a data dependence between the two loops, we need a bar-
rier between them when we parallelise the loops. However
the clause schedule(static) nowait explicitly removes the bar-
rier, which results in an erroneous parallelisation. Using our
approach, as a user has to specify iteration contracts for the
two loops, we can detect that parallelisation of this program
would lead to data races.

2.2 Program specifications: syntax and semantics

Our program specification language is based on permission-
based separation logic, combined with the look-and-feel of
the java modeling language (JML) [18]. In this way, we
exploit the expressiveness and readability of JML, while
using the power of separation logic to support thread-modular
reasoning.We briefly explain the syntax and semantics of the
permission-based separation logic formulas and how they
extend the standard JML-program annotations in first-order
logic.
Syntax Threads hold permissions to access memory loca-
tions. Permissions are encoded by fractional values, as
introduced by Boyland [9]: any fraction in the interval (0, 1)
denotes a read permission, while 1 denotes a write permis-
sion. Permissions can be split and combined, but soundness

123

744 S. Blom et al.

Fig. 3 Thread execution of the program in Fig. 2

of the logic ensures that for every memory location the total
sum of permissions over all threads to access this location
does not exceed 1. This guarantees that if the permission
specifications can be verified, the program is data-race-free.
The set of permissions that a thread holds are typically called
its resources.

Formulas F in our program specification language are
built from first-order logic formulas b, permission predicates
Perm(e1, e2), conditional expressions (·?· : ·), separating
conjunction �, and universal separating conjunction � over
a finite set I . The syntax of formulas is formally defined as
follows:

F : :=b | Perm(e1, e2) | b?F : F | F � F | �i∈I F(i)
b : :=true | false | e1 == e2 | e1 ≤ e2 | ¬b | b1 ∧ b2 | . . .

e : :=v | n | [e] | e1 + e2 | e1 − e2 | . . .

Fig. 4 Parallel regions in OpenMP

Fig. 5 A simple OpenMP program that has a data race

where b is a side-effect free Boolean expression, e is a side-
effect free arithmetic expression, [.] is a unary dereferencing
operator—thus [e] returns the value stored in the address e in
shared memory—v ranges over variables and n ranges over
numerals. We assume the first argument of the Perm(e1, e2)
predicate is always an address and the second argument is
a fraction. For convenience, we often use the keyword read
instead of an explicit fraction to specify an arbitrary read

123

Correct program parallelisations 745

Fig. 6 Semantics of formulas in permission-based separation logic

permission, and the keyword write instead of 1 to denote a
write permission.

We use the array notation a[e] as syntactic sugar for [a+e]
where a is a variable containing the base address of the array
a and e is the subscript expression; together they point to the
address a + e in shared memory.
SemanticsOur semanticsmixes concepts of implicit dynamic
frames [25] and separation logic with fractional permissions,
which makes it different from the traditional separation logic
semantics andmore aligned towards the way separation logic
is implemented using traditional first order logic tooling. For
further reading on the relationship between separation logic
and implicit dynamic frames, we refer to the work of Parkin-
son and Summers [22].

To define the semantics of formulas, we assume the exis-
tence of the following domains: Loc, the set of memory
locations, VarName, the set of variable names, Val, the set of
all values, including memory locations, and Frac, the set of
fractions ([0, 1]).

We define memory as a map from locations to values h :
Loc → Val. A memory mask is a map from locations to
fractions π : Loc → Frac with unit element π0 : l �→ 0 with
respect to the point-wise addition of heap masks. A store is
a function from variable names to values: σ : VarName →
Val.

Formulas can access the memory directly; the fractional
permissions to access the memory are provided by the Perm
predicate. A strict form of self-framing is enforced, meaning
that the Boolean formulas expressing the functional prop-
erties in pre- and postconditions and invariants should be
framed by sufficient resources (i.e. there should be suffi-
cient access permissions for the memory locations that are
accessed by the Boolean formula, in order to evaluate this
formula).

The semantics of an expression e depends on a store σ ,
a memory h, and a memory mask π and yields a value:
σ, h, π [e〉 v. The store σ and the memory h are used to
determine the value v, and the memory mask π is used to

determine if the expression is correctly framed, i.e. sufficient
access permissions are available. For example, the rule for
array access is:

σ, h, π [e〉 i π(σ(a) + i) > 0

σ, h, π [a[e]〉 h(σ (a) + i)

where σ(a) is the initial address of array a in the memory
and i is the array index that is the result of evaluating of
index expression e. Apart from the check for correct framing
as explained above, the evaluation of expressions is standard
and we do not explain it any further.

The semantics of a formula F , given in Fig. 6, depends on
a store, a memory, and a memory mask and yields a memory
mask: σ, h, π [F〉π ′. The given mask π denotes the permis-
sions bywhich the formula F is framed. The yieldedmaskπ ′
denotes the additional permissions provided by the formula.
Thus, a Boolean expression is valid if it is true and yields
no additional permissions, (rule Boolean), while evaluating
a Perm(e1, e2) predicate yields additional permissions to the
location, provided the expressions e1 and e2 are properly
framed (rule Permission). Note that evaluation of expres-
sion e1 results in a location l, while evaluation of expression
e2 results in a fraction f. The rule checks that the permis-
sions already held on location l plus the additional fraction
f does not exceed 1. The rules for evaluation of a condi-
tional formula are standard (rules Cond 1 and Cond 2). We
overload standard addition +, summation Σ , and compari-
son operators to be, respectively, used as pointwise addition,
summation and comparison over the memory masks. These
operators are used in the rules SepConj and USepConj. In
the rule SepConj, each formula F1 and F2 yields a separate
memorymask, π ′ and π ′′, respectively, where the final mem-
ory mask is calculated by pointwise addition of two memory
masks, π ′ + π ′′. The rule checks if F1 is framed by π and
F2 is framed by π + π ′. Note that since F2 is framed by
π + π ′, this implicitly guarantees that the permissions per
location never exceed 1. Finally, the rule USepConj extends
the similar evaluation by quantifying over a set of formulas
conjoined by the universal separating conjunction operator.
Again, rule USepConj checks that the permission fractions
on any location in the memory cannot exceed 1.

Finally, a formula F is valid for a given store σ , memory
h and memory mask π if starting with the empty memory
mask π0, the required memory mask of F is less than π :

σ, h, π |	 F , if (σ, h, π0 [F〉π ′) ∧ (π ′ ≤ π)

Example 5 Figure 7 presents an example of how we anno-
tate a sequential program using our specification language.
The formulas in the annotations are interpreted using the
semantics as defined in Fig. 6. The program logic rules are

123

746 S. Blom et al.

Fig. 7 An example of an annotated sequential program

the basic proof rules from separation logic (an extension of
Hoare logic).

This sequential program has a loop (lines 11–17) that
adds the corresponding elements of two arrays (named a
and b) and stores it in a different array (named c) in line
17. Annotations are provided to give a function specifica-
tion (lines 1–7) and a loop invariants (lines 12–16). Note that
\forall* indicates universal separating conjunction, �i∈I ,
over permission predicates and \forall denotes standard uni-
versal conjunction over logical predicates. Preconditions and
postconditions, using keywords requires and ensures (lines
3–6), should hold at the beginning and the end of the func-
tion, respectively. We use the keyword context to abbreviate
both requires and ensures clause. This is convenient to have,
because permission pre- and postconditions are often the
same. The keyword context_everywhere is used to specify
an invariant property (lines 1–2) that must hold throughout
the function. As pre- and postcondition, we have read per-
missions over all elements in arrays a and b (lines 3–4) and
write permissions over all elements in array c (line 5). The
loop invariants specifies the permissions that are used in the
loop (lines 12–14). Further the loop invariant specifies that
when iteration i starts, we have added the elements from a
and b from the beginning up to location i−1 (line 15). There-
fore, at the end of the loop (and the function), we have added
all elements (specified as a postcondition in line 6).

Fig. 8 Abstract syntax for parallel programming language

3 Syntax and semantics of deterministic
parallelism

As mentioned before, we define our verification technique
over an intermediate representation language that captures
precisely the main features of deterministic parallelism. This
section presents the abstract syntax and semantics of PPL,
our Parallel Programming Language. In Sect. 4, we show
how an important fragment of OpenMP can be encoded into
this intermediate representation language.

3.1 Syntax

Figure 8 presents the PPL syntax. The basic building block
of a PPL program is a block. Each block has a single entry

123

Correct program parallelisations 747

point and a single exit point. Blocks are composed using three
binary composition operators:

– parallel composition ||;
– fusion composition ⊕; and
– sequential composition �.

The entry block of the program is the outermost block. Basic
blocks are:

– a parallel block Par (N) S;
– a vectorised block Vec (N) V; and
– a sequential block S,

whereN is a positive integer variable that denotes the number
of parallel threads, i.e. the block’s parallelisation level, S is
a sequence of statements and V is a sequence of guarded
assignments b ⇒ assg.

In the grammar, we define a vectorised block at a different
level than the other basic blocks, because this allows us to
define the semantics in a more convenient way, while it does
not prevent us from writing programs such as the parallel or
fusion composition of a parallel and a vectorised block.

We assume a restricted syntax for fusion composition such
that its operands are parallel basic blockswith the same paral-
lelisation levels. This is checked by an extra well-formedness
condition over PPL programs. Each basic block has a local
read-only variable tid ∈ [0..N) called thread identifier,where
N is the block’s parallelisation level.We (ab)use the term iter-
ation to refer to the computations of a single thread in a basic
block. So a parallel or vectorised block with parallelisation
level N has N iterations. For simplicity, but without loss of
generality, threads have access to a single shared array which
we refer to as heap. We assume all memory locations in the
heap are allocated initially. A thread may update its local
variables by performing a local computation (v := e), or by
reading from the heap (v :=mem(e)). A thread may update
the heap by writing the value of one of its local variables
to it (mem(e):= v). For the arrays, we use notation a[e] as
syntactic sugar for [a+e] where a is a variable containing the
base address of the array a and e is the subscript expression.

Example 6 Figure 9, line 1 and 2, contains a PPL expression
that captures the program in lines 4–13. In this example, the
two basic blocks are composed using (||). Figure 10 shows
another example of a PPL expression and its corresponding
OpenMP program where the basic parallel and vectorised
blocks are composed sequentially (lines 1–3). Note that tid1
refers to the thread identifier of the parallel block, while tid2
refers to the thread identifier of the vectorised block.

Fig. 9 PPL of an OpenMP program

Fig. 10 PPL of another OpenMP program

3.2 Semantics

The behaviour of PPL programs is described using a small
step operational semantics. For a convenient and understand-
able definition, the operational semantics is defined in several
layers, as defined below. Throughout, we assume existence
of the finite domains:

– VarName, the set of variable names,
– Val, the set of all values, which includes the memory
locations,

– Loc, the set of memory locations, and
– [0..N) for thread identifiers.

Wewrite++ to concatenate two statement sequences (S++S).
Program State To define the program state, we use the fol-
lowing definitions.

123

748 S. Blom et al.

h ∈ SharedMem
Δ= Loc → Val

(heap, modeled as a single shared array)

� ∈ Store
Δ= VarName → Val

(program store, accessible to all threads)

σ ∈ PrivateMem
Δ= VarName → Val

(private memory, accessible to a single thread)

We model the program state as a triple of block state,
program store and heap (EB, �, h) and thread state as a pair
of local state and heap (LS, h). The program store is constant
within a block and it contains all global variables (e.g. the
initial addresses of arrays).
BlockState We distinguish various kinds of block states: an
initial state Init, composite block states ParC and SeqC, a
state in which a parallel basic block should be executed Par,
a local state Local in which a vectorised or a sequential basic
block should be executed, and a terminated block stateDone.
EB ∈ BlockState

Δ=
Init(P)| initial block states

ParC(EB, EB)| composite block states

SeqC(EB,P)| composite block states

Par(LS)| parallel basic block states

Local(LS)| thread local states

Done terminated block state

The Init state consists of a block statement P. The ParC
state consists of two block states, while the SeqC state con-
tains a block state and a block statement P; they capture all
the states that a parallel composition and a sequential compo-
sition of two blocksmight be in, respectively. The basic block
state Par captures all the states that a parallel basic block Par
(N) Smight be in during its execution. It contains a mapping
LS ∈ [0..N) → LocalState, which maps each thread to its
local state, to model the parallel execution of the threads.
There are three kinds of local states: a vectorised state Vec, a
sequential state Seq, and a terminated sequential state Done.
LS ∈ LocalState

Δ=
Vec(Σ, E,V, σ, S)| vectorised basic block states

Seq(σ, S)| sequential basic block states

Done terminated sequential basic block
states

The Vec block state captures all states that a vectorised
basic block Vec (N) V might be in during its execution. It
consists of Σ ∈ [0..N) → PrivateMem, which maps each
thread to its private memory, the body to be executed V, a
private memory σ , and a statement S. As vectorised blocks
may appear inside a sequential block, keeping σ and S allows
continuation of the sequential basic block after termination
of the vectorised block. To model vectorised execution, the
state contains an auxiliary set E ⊆ [0..N) that models which
threads have already executed the current instruction. Only
when E equals [0..N), the next instruction is ready to be exe-

cuted. Finally, the Seq block state consists of privatememory
σ and a statement S.

To simplify our notation, each thread receives a copy of the
program store as part of its privatememorywhen it initialises.
This is captured in rules Init Par and Init Seq (Fig. 11),
where the local store γ is passed as an argument to the Seq
block state.
Operational Semantics The operational semantics is defined
as a transition relation between program states: →p⊆
(BlockState×Store×SharedMem)×(BlockState×Store×
SharedMem), (Fig. 11), and using an auxiliary transition
relation between thread local states: →s⊆ (LocalState ×
SharedMem) × (LocalState × SharedMem), (Fig. 12), and
then a standard transition relation: →assg⊆ (PrivateMem ×
S × SharedMem) × (PrivateMem × SharedMem) to eval-
uate assignments (Fig. 13). The semantics of expression e
and Boolean expression b over private memory σ , written
E�e�σ and B�b�σ , respectively, is standard and not discussed
any further.We use the standard notation for function update:
given a function f : A → B, a ∈ A, and b ∈ B:

f [a:=b] = x �→
{
b , x = a
f (x), otherwise

As mentioned, the main transition relation between pro-
gram states is defined in Fig. 11. Program execution starts
in a program state (Init(P), �, h) where P is the program’s
entry block. Depending on the form ofP, a transition is made
into an appropriate block state, leaving the heap unchanged
(see rules Init ParC, Init SeqC, Init Fuse, Init Par and Init
Seq).

The evaluation of a ParC state non-deterministically eval-
uates one of its block states (i.e. EB1 or EB2), until both blocks
are done (rule ParC Done).

Evaluation of a sequential block is done by evaluating the
local state. The evaluation of a SeqC state evaluates its block
state EB step by step.When this evaluation is done, evaluation
of the subsequent block is initialised.

Rule Lift Seq captures that evaluation of a thread local
state is defined in terms of the local thread execution (as
defined in Fig. 12). When the local thread state is fully eval-
uated, this results in a terminated block state (rule Local
Done).

The evaluation of a parallel basic block is defined by the
rulesPar Step and ParDone. To allow all possible interleav-
ings of the threads in the block’s thread pool, each thread has
its own local state LS, which can be executed independently,
modelled by the mapping LS. A thread in the parallel block
terminates if there are no more statements to be executed and
a parallel block terminates if all threads executing the block
are terminated.

The evaluation of sequential basic block’s statements as
defined in Fig. 12 is standard except when it contains a vec-

123

Correct program parallelisations 749

Fig. 11 Operational semantics for program execution

Fig. 12 Operational semantics for thread execution

Fig. 13 Operational semantics
for assignments

123

750 S. Blom et al.

Fig. 14 OpenMP core grammar

torised basic block. A sequential basic block terminates if
there is no instruction left to be executed (Seq Done). The
execution of a vectorised block (defined by the rules Init
Vec, Vec Step1, Vec Step2, Vec Sync and Vec Done in
Fig. 12) is done in lock-step, i.e. all threads execute the
same instruction no thread can proceed to the next instruc-
tion until all are done, meaning that they all share the same
program counter. As explained, we capture this by main-
taining an auxiliary set, E, which contains the identifier of
the threads that have already executed the vector instruction
(i.e. the guarded assignment b ⇒ assg). When a thread exe-
cutes a vector instruction, its thread identifier is added to E
(rules Vec Step). The semantics of vector instructions (i.e.
guarded assignments) is the semantics of assignments if the
guard evaluates to true and it does nothing otherwise. When
all threads have executed the current vector instruction, the
condition E = dom(Σ) holds, and execution moves on to
the next vector instruction of the block (with an empty aux-
iliary set) (rule Vec Sync). The semantics of assignments as
defined in Fig. 13 is standard and does not require further
discussion.

4 Encoding OpenMP into PPL

In order to show that PPL indeed captures the core of deter-
ministic parallel programming languages, this section shows
how a widely used subset of OpenMP can be encoded into
PPL.

4.1 Subset of OpenMP

Figure 14 defines a grammar which captures a commonly
used subset of OpenMP [2]. This grammar defines the
OpenMP programs that can be encoded into PPL (and thus
can be verified using the verification technique presented
below).

Our grammar supports the following OpenMP annota-
tions: omp parallel, omp for, omp simd, omp for simd,
omp sections, and omp single. Every program is a finite
and non-empty list of Jobs enclosed by omp parallel. The
body of omp for, omp simd, and omp for simd, is a for-

Fig. 15 Translation of a commonly used subset of OpenMP programs
into PPL programs

loop. The body of omp single is either a program in our
OpenMP subset or it is a sequential code block SpecS. The
omp sections block is a finite list of omp section sub-
blocks, where the body of each omp section is either a
program in our OpenMP subset or it is a sequential code
block SpecS. For our translation, the relevant clauses are
simdlen(M), schedule static, and nowait, all other clauses
are ignored.

4.2 OpenMP to PPL encoding

This section discusses the encoding of OpenMP programs
that can be derived from the grammar in Fig. 14 into PPL.

123

Correct program parallelisations 751

The encoding algorithm is presented in Fig. 15 in a functional
programming-like style.

Line 2 to 7 of the algorithm define some syntactic macros
of several program patterns, to improve readability of the
algorithm. Note that in the macro ParVec, tid1 refers to the
thread identifier of the parallel block, while tid2 refers to
the thread identifier of the vectorised block. The algorithm
consists of two steps: a recursive translate step, and a com-
pose step. The translation step recursively encodes all Jobs
into their equivalent PPL code blocks without caring about
how they will be composed. Later, the compose step con-
joins the translated code blocks together to build a PPL
program.

The translation step is a map, which applies the function
match to the list of input jobs and returns a list of equiva-
lent PPL code block. The input jobs are encoded in the form
(A,C) where A is an OpenMP annotation and C is a code
block written in C. The translation returns a list of the form
(P, [A]), where P is the PPL program corresponding to the
C code, and [A] are the OpenMP annotations that are needed
to decide how to combine this PPL block with the other code
blocks. Notice that the resulting PPL program is not nec-
essarily a single basic block. The function match works as
follows:

– anOpenMP for annotation for a for-loop is translated into
a parallel block;

– an OpenMP simd annotation for a for-loop is translated
into a loop of vectorised statements (taking into account
the simdlen(M) argument);

– an OpenMP for simd annotation for a for-loop is trans-
lated into a parallel composition of several vectorised
statements (taking into account the simdlen(M) argu-
ment);

– anOpenMP sections annotation is translated into the par-
allel composition of the individual statements; and

– an OpenMP single annotation encodes the statements in
the single block recursively.

The match function uses the function sec which recur-
sively calls match on nested parallel blocks. A sequence of
sequential statements with a contract is encoded as a parallel
block with a single thread. Notice that in these cases, any
nested OpenMP clauses are passed on; therefore, the match
function returns a pair of a PPLprogramand a list ofOpenMP
annotations.

The compose step takes as its input a list of tuples in
the form (P, [A]) (the output of the translate step); then it
inserts appropriate PPL composition operators between adja-
cent program blocks in the list, provided certain conditions
hold. To properly bind tuples to the composition operators,
the operators are inserted in three individual passes; one
pass for each composition operator, based on the binding

precedence of the operators from high to low as follows:
⊕ > || > �.

Operator insertion is done by the function bundle (lines
40–44). In each pass, bundle consumes the input list recur-
sively. Each recursive call takes the two first tuples of the list
and inserts a composition operator if the tuples satisfy the
conditions of the composition operator; otherwise, it moves
one tuple forward and starts the same process again. Notice
that ultimately the head of the list x is composedwith the head
of the recursive call, rather than with the second element of
the list. This is okay, because the composition to be applied
is determined locally, and not affected by the compositions
of the other blocks.

For each composition operator, the conditions are differ-
ent. The conditions for parallel and fusion compositions are
checked by the functions fusible and par_able. As explained
in Sect. 2, fusion of two parallel loops L1 and L2 means that
the corresponding iterations of L1 and L2 are executed by
the same thread without waiting. Therefore, fusion compo-
sition is inserted between two consecutive tuples (Pi , [Ai])
and (Pj , [A j]) if:

– both [Ai] and [A j] are single-element lists containing an
omp for annotation,

– the clauses of both annotations include schedule(static),
and

– the clauses of [Ai] include nowait.2

The parallel composition is inserted between any two tuples
in the program where the clauses of the first tuple include
a nowait. Otherwise, the sequential composition is inserted.
The final outcome is a single merged tuple (P, [A]) where
P is the result of the encoding and [A] can be eliminated.

4.3 Example translations

To illustrate the encoding, we discuss the translation of two
small OpenMP programs into PPL.

Example 7 To translate the OpenMP program in Fig. 1 (in
Sect. 2.1), we first apply the translate function to it:

1 B1 = translate
(
omp for schedule(static) nowait,

2 for(int i =0;i <L;i ++){c[i]=a[i];}
)

3 =
(
Par(L) (c[tid]=a[tid];),
[omp for schedule(static) nowait])

2 Note that this condition is independent of whether Ai is actually an
omp for annotation.

123

752 S. Blom et al.

1 B2 = translate
(
omp for schedule(static) nowait,

2 for(int i =0;i <L;i ++){c[i]=c[i]+b[i];}
)

3 =
(
Par(L) (c[tid]=c[tid]+b[tid];),
[omp for schedule(static) nowait])

1 B3 = translate
(
omp for,

2 for(int i =0; i <L; i ++){d[i]=a[i]∗b[i];})
3 =

(
Par(L) (d[tid]=a[tid]*b[tid];), [omp for])

Next, applying the compose function results in the following
PPL program:

compose([B1, B2, B3]) = (B1 ⊕ B2) || B3 =
(
Par(L) (c[tid]=a[tid];)︸ ︷︷ ︸

B1

⊕ Par(L) (c[tid]=c[tid]+b[tid];)︸ ︷︷ ︸
B2

)

||
Par(L) (d[tid]=a[tid]*b[tid];)︸ ︷︷ ︸

B3

Example 8 As another example, we translate the OpenMP
program in Fig. 2 (in Sect. 2.1) into PPL. First we use the
translate function:

1 B1 = translate
(
omp simd simdlen(M),

2 for(int i =0;i <L;i ++){c[i]=a[i]∗b[i];})
3 =

(
while(i ∈ [0,L/M)) Vec(M)
(c[i*M+tid]=a[i*M+tid]*b[i*M+tid];) , [omp simd])

1 B2 = translate
(
omp for simd simdlen(M),

2 for(int i =0;i <L;i ++){c[i]=a[i]∗b[i];})
3 =

(
Par(L/M) Vec(M)
(c[tid1*M+tid2]= a[tid1*M+tid2]*b[tid1*M+tid2];) ,

4 [omp for simd])

Using the compose function on the list with these two pairs
results in the following PPL program:

1 compose([B1, B2]) = (B1 � B2) =
2

(
while(i ∈ [0,L/M)) Vec(M)

(c[i*M+tid]=a[i*M+tid]*b[i*M+tid];)
)

3 �

4
(
Par(L/M) Vec(M)

5 (c[tid1*M+tid2]=a[tid1*M+tid2]*b[tid1*M+tid2];)
)

5 Verification of basic blocks

The first step of our verification technique deals with the
verification of basic blocks. As mentioned above, there are

Fig. 16 Proof rule for the verification of a parallel block

three types of basic blocks: a sequential block, a vectorised
block and a parallel block.

For each basic block, we specify an iteration contract,
which is a contract for each thread executing in the block.
Thus, for a sequential block, the iteration contract coincides
with a standard block contract (as there is only one thread exe-
cuting the block), while for parallel and vectorised blocks,
the iteration contract specifies the behaviour of one single
thread executed in parallel or in lock-step, respectively. We
call this an iteration contract, as it corresponds to the specifi-
cation of a single iteration of a parallelisable or vectorisable
block.

5.1 Iteration contracts

An iteration contract consists of: a resource contract rc(i),
and a functional contract fc(i), where i is the block’s itera-
tion variable.A resource contract indicates the permissions to
access memory locations and a functional contract is related
to values in the memory locations. Both the resource con-
tract and the functional contract consist of a precondition and
a postcondition. We use P(i) to denote the functional pre-
condition, and Q(i) to denote the functional postcondition.
In case the resource pre- and postcondition are the same,
we simply write rc(i); otherwise, we distinguish them by
rcpre(i) and rcpost(i).

Example 9 Consider the PPL program in Example 7. An iter-
ation contract for basic block B1 would be:
/*@ requires Perm(c[tid] , write) ∗∗ Perm(a[tid] , read) ;

ensures Perm(c[tid] , write) ∗∗ Perm(a[tid] , read) ;
ensures c[tid]==a[tid];

@*/

where the first two lines show a resource contract and the
last line indicates a functional contract. Note that ∗∗ is the
ASCII-notation for �.

5.2 Verification rules for basic blocks

As mentioned above, a sequential block is executed by a
single thread, thus its iteration contract coincides with its
block contract, and no special verification rule is needed.

Parallel basic blocks are verified by the ruleParBlock pre-
sented in Fig. 16, where S(i) is the body of the i th iteration
of the parallel basic block. This rule states that if each single
thread respects its iteration contract, the contract for the basic
block is composed by the universal separating conjunction

123

Correct program parallelisations 753

of the iteration contract’s precondition and postcondition,
respectively. As the threads execute completely indepen-
dently, there is no permission transfer, and the resource pre-
and postcondition coincide. Notice further that soundness
of this rule implies that all threads in a parallel block must
be independent, because otherwise the universal separating
conjunction would not be satisfiable.

For vectorised blocks, the ParBlock rule can be used in
case there are no inter-iteration data dependencies. If there are
inter-iteration data-dependencies, we need to provide extra
annotations that indicate how permissions are transferred
inside the vectorised block. In a vectorised block, implic-
itly all threads synchronise between every instruction.During
such a synchronisation, permissions may be transferred from
the iteration containing the source of a dependence to the iter-
ation containing the sink of that dependence. To specify such
a transfer we introduce send and receive ghost statements.3

Remember that according to the PPL grammar, the body
of a vectorised block is a sequence of guarded assignments
b ⇒ assg. A guard bs(i) denotes the guard of statement s in
iteration i .

//@ Ls : if(bs(i)) { send φ(i) to Lr , d ; }
//@ Lr : if(br (i)) { receive ψ(i) from Ls , d ; }

A send annotation specifies that at label Ls , if a guard bs(i)
is true, the permissions and properties denoted by formula φ

are transferred to the statement labelled Lr in iteration i +d,
where i is the current iteration and d is the distance of depen-
dence. A receive annotation specifies that the permissions and
properties denoted by formula ψ are received by the current
iteration from iteration i−d. These annotations always come
in pairs. In practice, the information provided by either the
sendor receive annotation is sufficient to infer the other. There-
fore, to reduce the annotation overhead, optionally only one
of them has to be provided by the developer. However, by
providing them both, we make the specifications easier to
understand.

Example 10 Suppose we have a basic block

Vec(N)(x[tid + 1] = tid; a[tid] = x[tid] + 3;)

where N − 1 == x.length. We can verify that this block
annotated with send and receive respects the following itera-
tion contract:
/*@ requires N − 1 == x. length;

requires Perm(x[tid + 1] , write) ∗∗ Perm(a[tid] , write) ;
requires tid == 0 ==> Perm(x[tid] , write) ;
ensures Perm(x[tid] , write) ∗∗ Perm(a[tid] , write) ;
ensures tid == N − 1 ==> Perm(x[tid+ 1] , write) ;
ensures tid > 0 ==> a[tid] = tid − 1 + 3;

@*/

3 Ghost statements are specification-only statements. They are not part
of the program, but are used purely for verification purposes.

Fig. 17 Proof rule for the verification of vectorised block

Vec(N)
(
x[tid + 1] = tid ;
//@ L1: if(tid < N − 1)
send Perm(x[tid + 1] , write) ∗∗
x[tid + 1] == tid
to L2 , 1;
//@ L2 : if(tid > 0)
receive Perm(x[tid] , write) ∗∗
x[tid] == tid − 1
from L1, 1;
a[i] = x[tid] + 3;
)

In order to verify this example, we need a proof rule for
vectorised blocks, as well as for the send and receive ghost
statements.

The rule for the verification of vectorised blocks is given
in Fig. 17. It is similar in spirit to the ParBlock rule, but
does not require the resource pre- and postcondition to be
the same.

The rules for the send and receive ghost statements are sim-
ilar in spirit to the rules that are typically used for permission
transfer upon lock acquiring and release (see e.g. [15]). In
particular, send is used to give up resources that the receive

acquires. This is captured by the following two proof rules:

[send]{P} send P to L, d {true}
[receive]{true} receive P from L, d {P}

(1)

Receiving permissions and properties that were not sent
is unsound. Therefore, send and receive annotations have to
be properly matched, meaning that:

(i) send and receive annotations always come in pairs;
(ii) if the receive is enabled in iteration j , then d iterations

earlier, the send should be enabled, i.e.,

∀ j ∈ [0..N).br (j) 	⇒ j ≥ d ∧ bs(j − d) (2)

(iii) the information and resources received should be implied
by those sent:

∀ j ∈ [d..N).φ(j − d) 	⇒ ψ(j) (3)

In other words, the rules in Eq. 1 cannot be used unless the
syntactic criterion (i) and the proof obligations (ii) and (iii)
hold.

123

754 S. Blom et al.

5.3 Soundness

This section discusses the soundness of the proof rules Par-
Block and VecBlock above. To show soundness of these
rules, we have to show that in order to prove correctness
of a parallel or vectorised block, it is sufficient to reason
about the body of the block, and to prove independence or
inter-iteration data dependence of that body. As always, the
interpretation of a Hoare triple {P}S{Q} is the following:
if the precondition P holds in a state s, and if execution of
statement S from state s terminates in a state s′, then the
postcondition Q holds in this state s′. As the proof rules are
adapted from the proof rules for parallel and vectorised loops
presented in [5], the soundness argument is also similar.

To construct the proof, we define the set of possible exe-
cution traces of atomic steps over the vectorised and parallel
blocks. In addition, we also define the instrumented sequen-
tialised execution traces for those blocks, which are the
executions (1) if all iterations are executed in order and
(2) such that validity of each iteration contract is checked
for each separate iteration.

To prove soundness of the rule ParBlock, we show that
the all execution traces of this statement are equivalent to the
instrumented sequentialised execution trace of the parallel
block. To prove soundness of the rule VecBlock, we show
that all execution traces of this statement are equivalent to the
instrumented sequentialised execution trace of the vectorised
block.

Functional equivalence of the two traces is shownby trans-
forming the computations in one trace into the computations
in the other trace by swapping adjacent independent execu-
tion steps.

5.3.1 Denotational semantics of blocks

To phrase the soundness proof, we prefer to use a denota-
tional semantics for the parallel and vectorised blocks, where
the semantic domain is a set of traces, seen as sequences
of instructions. The denotational semantics that is defined
in this section is equivalent to the operational semantics as
defined in Sect. 3, but the proof is omitted from the paper.
We develop our formalisation for non-nested blocks with K
guarded statements. We instantiate the block body for each
iteration of the block; thus, we have (L j

i : if(b
j
i) I

j
i ;) as the

instantiation of the i th instruction in the j th iteration of the
block. We refer to this instance of statements as S j

i .

Definition 1 The semantics of a statement instance �S j
i � is

defined as the atomic execution of the instruction I ji labelled

by L j
i provided its guard condition b j

i holds; otherwise, it
behaves as a skip.

Definition 2 An execution trace c is a finite sequence
t1, t2, . . . , tm of statement instances such that t1 is executed
first, then t2 is executed and so on until the last statement tm .
We write ε for an empty execution trace.

To characterise the set of execution traces for parallel and
vectorised blocks, we define auxiliary operators concatena-
tion and interleaving.

First, we define two versions of concatenation, plain con-
catenation (++) and synchronised concatenation (#).

Definition 3 The plain concatenation (++) operator is
defined as C1 ++ C2 = {c1 · c2 | c1 ∈ C1 ∧ c2 ∈ C2}.
Plain concatenation takes two sets of execution traces and
creates a new set that concatenates all execution traces in the
first set with all execution traces in the second set.

Definition 4 The synchronised concatenation (#) operator
inserts a barrier b between the execution traces. It is defined
as C1 # C2 = {c1 · b · c2 | c1 ∈ C1 ∧ c2 ∈ C2}.

The intuition here is that the insertion of a barrier b indi-
cates an implicit synchronisation point. When defining the
interleaving of traces, the barrier restricts what interleavings
are possible.

We lift concatenation to multiple sets as follows:

ConcatNi=1Ci = C1 ++ · · · ++ CN

SyncConcatNi=1Ci = C1 # · · · # CN

Next, interleaving defines how to weave several execution
traces into a single execution trace. This uses a happens-
before order <, in order not to violate restrictions imposed
by the program semantics. This happens-before order <

is defined such that it maintains program order (PO), i.e.
it maintains the order of statements executed by the same
thread, and it also maintains synchronisation order (SO), i.e.
it maintains the order between a barrier and the statements
preceding and following it.

To define the interleaving operator (Interleave), we first
define an auxiliary operator Interleavei that denotes inter-
leaving with a fixed first statement s of thread i :

Interleavei (ε, · · · , ε) = {ε}
Interleavei (c1, · · · , ci−1, ε, ci+1, · · · , cN) = ∅, if ∃c j �=i �= ε

Interleavei (c1, · · · , ci−1, s · ci ′, ci+1, · · · , cN) =
{s1 · x | x ∈ Interleave(c1, · · · , ci−1, ci ′, ci+1, · · · , cN) ∧

�s′ ∈ x .s′ < s}

If the complete execution trace of thread i has been inter-
leaved, there are two possible cases. If all other threads are
also done, then this returns an empty execution trace (as a
base case). If any other thread can still take a step, then this
call for thread i returns an empty set of interleavings. If thread

123

Correct program parallelisations 755

i has a non-empty execution trace to interleave, i.e. it is of the
form s1 ·ci ′ , then we obtain all interleavings that start with s1,
extended with the (recursive) interleaving of all other execu-
tion traces and the remainder of this execution trace ci ′ . Note
that this extension is only allowed if it does not violate the
happens-before order <. Next we define the full interleaving
operator, which basically considers all interleavings for all
threads.

Interleavei=1..Nci =
Interleave(c1, · · · , cN) =⋃N

i=1 Interleave
i (c1, · · · , cN)

Now we can define the denotational semantics of paral-
lel and vectorised blocks. The semantics of a parallel block
is any interleaving of all statement instances that preserve
the program order PO. The semantics of a vectorised block
is any interleaving of the synchronised concatenation of the
execution traces of the individual traces, thus with an implicit
barrier added after the execution steps of each statement
instance. Formally, these are defined as follows.

Definition 5 The denotational semantics of a parallel block
is defined as

�Par(N)S� = Interleave j=1..NConcatKi=1�S
j
i �

Definition 6 The denotational semantics of a vectorised
block is defined as

�Vec(N)S� = Interleave j=1..NSynchConcatKi=1�S
j
i �

Next, we define the sequentialised execution trace of a
parallel and vectorised block. This is the sequential execution
of all iterations in a parallel and vectorised block.

Definition 7 The sequential execution trace of a parallel and
vectorised block is

�Par(N)S�
Seq = ConcatNj=1Concat

K
i=1�S

j
i �

�Vec(N)S�
Seq = ConcatNj=1SynchConcat

K
i=1�S

j
i �

Finally, we define the instrumented sequentialised exe-
cution trace of a parallel and vectorised block. This is
the sequential execution of all iterations, where in addition
all precondition and postcondition are checked. Below we
will show that all parallel and vectorised execution traces
are equivalent to this instrumented sequentialised execution
trace.

Definition 8 The instrumented sequentialised execution traces
of a parallel and vectorised block are

�Par(N)S�
Seq
Spec = ConcatNj=1(Assert rc(j) �P(j) ++

ConcatKi=1�S
j
i � ++

Assert rc(j) �Q(j))

�Vec(N)S�
Seq
Spec = ConcatNj=1(Assert rc(j) �P(j) ++

SynchConcatKi=1�S
j
i � ++

Assert rc(j) �Q(j))

where Assert checks the pre- and postcondition before and
after each iteration. If the asserted property φ holds, Assertφ
behaves as a skip; otherwise, it aborts (i.e. there is no
execution). Note that the sequential execution trace is in
happens-before order.

5.3.2 Correctness of parallel blocks

In the previous section, we defined a denotational semantics
of parallel and vectorised blocks in terms of possible traces
of atomic steps. In addition, we defined the instrumented
sequentialised execution of parallel and vectorised blocks.
Now, we argue correctness of the rules for parallel and vec-
torised blocks (Figs. 16 and 17).

We prove that every execution trace in �Par(N) S� is
functionally equivalent to the single execution trace �Par(N)
S�

Seq
Spec if all contracts hold, by showing that any execution

trace can be reordered until it is the sequential execution
order.

Theorem 1 All execution traces in �Par(N) S� and �Par(N)
S�

Seq
Spec are functionally equivalent only if all contracts hold.

Proof sketch 1 Assume that the first n steps of the given exe-
cution trace are in the same order as the sequential execution
trace. Then, step tn+1 in the sequential execution has to be
somewhere in the given sequence. Because each sequence
contains the same steps and the sequential execution trace
is in happens-before order, all the steps that have to happen
before tn+1 are already included in the prefix. Hence, in the
given sequence, all the steps between the end of the prefix
and tn+1 are independent of step tn+1 itself. Therefore, step
tn+1 can be swapped with all these intermediate steps. We
then repeat until the whole sequence matches.

We proved that any legal execution trace of parallel
block can be reordered into the sequential one, i.e. �Par(N)
S� = S0 � S1 � S2 � . . . � SN . Now suppose that in the ini-
tial state P0 �P1 � . . . �PN holds. Since all instructions
are independent, after the execution of S0, Q0 holds and
P1 �P2 � . . . �PN is preserved. After the execution of S1, Q1

holds and P2 �P3 � . . . �PN is preserved. Moreover, S1 will
not makeQ0 invalid. After the execution of S2,Q2 holds and
P3 �P4 � . . . �PN is preserved. In addition, S2 will not make

123

756 S. Blom et al.

Q0 �Q1 invalid. By continuing in this way, in the final state
of the execution trace Q0 �Q1 � . . . �QN holds. Therefore,
we can conclude for any legal execution trace in �Par(N) S�

starting in the precondition, the postcondition will hold for
the final state.

As a corollary of Theorem 1, we can also conclude that all
executions in �Par(N) S� are data-race-free.We can apply the
same argument for the vectorised blocks, but as the vectorised
blocks is defined in terms of SynchConcat, swapping past
barriers is never necessary.

Theorem 2 All execution traces in �Vec(N) S� and �Vec(N)
S�

Seq
Spec are functionally equivalent.

Note that the sequentialised instrumented execution trace
now also contains send/receive ghost annotations and barri-
ers between each iteration.

6 Verification of block composition

Now that we have seen how correctness of a basic block can
be verified in isolation, the next step is to verify their compo-
sition.We showhow this can be done on the basis of the block
iteration contracts only, by proving that all the heap accesses
of all iterations which are not ordered sequentially are non-
conflicting (i.e. they are disjoint or they are read accesses).
If this condition holds, correctness of the PPL program can
be derived from the correctness of a linearised variant of the
program.

We first discuss how we can verify programs where the
resources in the iteration contracts are constant, i.e. the
resource pre- and postconditions are always the same. Next,
we sketch how to extend the approach to the case where the
resource pre- and postconditions of an iteration contract dif-
fer.

6.1 Verification of block composition without
resource transfers

Asmentioned above, we first assume that each basic block of
a program is specified by an iteration contract with constant
resources rc(i) for iteration i . Further, we assume that the
program is globally specified by a contract G which consists
of the program’s resource contract RCP and the program’s
functional contract FCP with the program’s precondition PP
and the program’s postcondition QP.

Let P be the set of all PPL programs and P ∈ P

be an arbitrary PPL program assuming that each basic
block in P is identified by a unique label. We define
BP = {b1, b2, . . . , bn}, as the finite set of basic block labels
of the program P. For a basic block b with parallelisa-
tion level m, we define a finite set of iteration labels Ib =

{0b, 1b, . . . , (m − 1)b} where ib indicates the ith iteration of
the block b. Let IP = ⋃

b∈BP Ib be the finite set of all itera-
tions of the program P.

To state our proof rule, we first define the set of all iter-
ations that are not ordered sequentially, the incomparable
iteration pairs, IP⊥ as:

IP⊥ = {(ib1, jb2)|ib1 , jb2 ∈ IP ∧ b1 �= b2 ∧ ib1 ⊀e jb2 ∧
jb2 ⊀e i

b1}

where≺e⊆ IP × IP is the least partial orderwhich defines an
extended happens-before relation. The extension addresses
the iterations which are happens-before each other because
their blocks are fused. We define ≺e based on two partial
orders over the program’s basic blocks: ≺⊆ BP × BP and
≺⊕⊆ BP × BP. The former is the standard happens-before
relation of blocks where they are sequentially composed by
�, and the latter is an happens-before relation w.r.t. fusion
composition ⊕. They are defined by means of an auxiliary
partial order generator functionG(P, δ) : P×{�,⊕} → BP×
BP such that: ≺= G(P, �) and ≺⊕= G(P,⊕). We define G
as follows:

G(P, δ) =
⎧⎨
⎩

∅, if P ∈ {Par (N) S, S}
G, if P = P′δP′′ �= •
G ∪ (BP′ × BP′′), otherwise

where G = G(P′, δ) ∪ G(P′′, δ).
The function G computes the set of all iteration pairs of

the input program P which are in relation w.r.t. the given
composition operator . This computation is basically a syn-
tactical analysis over the input program. Now we define the
extended partial order ≺e as:

∀ib, jb′ ∈ IP.ib ≺e jb
′ ⇔ (b ≺ b′) ∨ (

(b ≺⊕ b′) ∧ (i = j)
)

This means that the iteration ib happens-before the iteration
jb

′
if b happens-before b′ (i.e. b is sequentially composed

with b′) or if b is fused with b′ and i and j are corresponding
iterations in b and b′.

We define the block level linearisation (b-linearisation
for short) blin : P → P� as a program transformation which
substitutes all non-sequential compositions by a sequential
composition. We define P� as a subset of P in which only
sequential composition � is allowed as composition operator.

Example 11 As an example, the b-linearisation of the PPL
in Example 7 is as follows:

(
Par(L) (c[tid]=a[tid];)�Par(L) (c[tid]=c[tid]+b[tid];)

)
�

Par(L) (d[tid]=a[tid]*b[tid];)

123

Correct program parallelisations 757

Fig. 18 Proof rule for
b-linearisation reduction of PPL
programs

Figure 18 presents the rule b-linearise. In this rule, rcb(i)
and rcb′(j) are the resource contracts of two different basic
blocks b and b′ where ib ∈ Ib and jb

′ ∈ Ib′ . Application of
the rule results in two newproof obligations. The first ensures
that all heap accesses of all incomparable iteration pairs (the
iterations that may run in parallel) are non-conflicting (i.e.
all block compositions in P are memory safe). This reduces
the correctness proof of P to the correctness proof of its
b-linearised variant blin(P) (the second proof obligation).
Then, the second proof obligation is discharged in two steps:
(1) proving the correctness of each basic block against its
iteration contract (using the proof rules discussed above) and
(2) proving the correctness of blin(P) against the program
contract.

6.2 Soundness

Nowwe are ready to show that a PPL programwith provably
correct iteration contracts and a global contract that is prov-
able in our logic (including the rule b-linearise) is indeed
data race free and functionally correct w.r.t. its specifications.
To show this, we prove (i) soundness of the b-linearise rule
and (ii) that each verified program is free of data races.

For the soundness proof, we show that for each program
execution there exists a corresponding b-linearised execu-
tion with the same functional behaviour (i.e. they end in the
same terminal state if they start in the same initial state)
if all independent iterations are non-conflicting. From the
rule’s assumption, we know that if the precondition holds for
the initial state of the b-linearised execution (which is also
the initial state of the program execution), then its terminal
state satisfies the postcondition. As both executions end in
the same terminal state, the postcondition thus also holds for
the program execution. To prove that there exists a matching
b-linearised execution for each program execution, we first
show that any valid program execution can be normalised
w.r.t. program order and second that any normalised execu-
tion can be mapped to a b-linearised execution. To formalise
this argument, we first define: an execution, an instrumented
execution, and a normalised execution.

We assume all program’s blocks including basic and com-
posite blocks have a block label and program’s statements are
labelled by the label of the block to which they belong. Also
there exists a total order over the block labels.

Definition 9 (Execution). An execution of a program P
is a finite sequence of state transitions Init(P), �, h →∗

p
Done, �, h′.

To distinguish between valid and invalid executions, we
instrument our operational semantics with heap mas-ks
(memory masks). A heap mask models the access permis-
sions to every heap location. It is defined as a map from
locations to fractions π : Loc → Frac where Frac is the
set of fractions ([0, 1]). Any fraction (0, 1) is a read and 1
is a write permission. The instrumented semantics ensures
that each transition has sufficient access permissions to the
heap locations that it accesses. We first add a heap mask
π to all block state constructors (Init, ParC, SeqC and so
on) and local state constructors (Vec, Seq and Done). Then,
we extend the operational semantics rules such that in each
block initialisation state with heap mask π an extra premise
should be discharged, which states that there are n ≥ 2 heap
masks π1, . . . , πn , one for each newly initialised state such
that Σn

i πi ≤ π . The heap masks are carried along by the
computation and termination transitions without any extra
premises, while in the termination transitions heap masks of
the terminated blocks are forgotten as they are not required
after termination. As an example, Fig. 19 presents the instru-
mented versions of the rules Init ParC, ParC Done, rdsh,
and wrsh, where →p,i and →assg,i denote program and
assignment transition relations in the instrumented seman-
tics, respectively. If a transition cannot satisfy its premises,
it blocks.

Definition 10 (Instrumented Execution). An instrumented
execution of a program P is a finite sequence of state transi-
tions Init(P, π), �, h →∗

p,i Done(π), �, h′ where the set of
all instrumented executions of P is written as IEP.

Lemma 1 Assuming that (1). ∀(ib, jb
′
) ∈ IP⊥.RCP →

rcb(i) � rcb′(j) and (2). ∀b ∈ BP.{�i∈[0..Nb)rcb(i)}
Pb{�i∈[0..Nb)rcb(i)} are valid for a program P (i.e. every
basic block in P respects its iteration contract), for any exe-
cution E of the program P, there exists a corresponding
instrumented execution.

Proof sketch 2 Given an execution E , we assign heap masks
to all program states that the execution E might be in. The
program’s initial state is assigned by a heap mask π ≤ 1.
Assumption (1) implies that all iterations which might run
in parallel are non-conflicting which implies that for all Init
ParC transitions, there existπ1 andπ2 such thatπ1+π2 ≤ π ′
where π ′ is the heap mask of the state in which Init ParC
evaluates. In all computation transitions the successor state
receives a copy of the heap mask of its predecessor. Assump-
tion (2) implies that all iterations of all parallel and vectorised
basic blocks are non-conflicting. This implies that for an arbi-
trary Init Par or Init Vec transition which initialises a basic

123

758 S. Blom et al.

Fig. 19 The instrumented
versions of the rules Init ParC,
ParC Done, rdsh, and wrsh

block b, there exists π1, . . . , πn such that Σn
i πi ≤ πb holds

in b’s initialisation transition and in all computation transi-
tions of an arbitrary iteration i of the block b the premises of
rdsh and wrsh transitions is satisfiable by πi . ��
Lemma 2 All instrumented executions of a program P are
data-race-free.

Proof sketch 3 The proof proceeds by contradiction. Assume
that there exists an instrumented execution that has a data
race. Thus, there must be two parallel threads such that one
writes to and the other one reads from or writes to a shared
heap location e. Because all instrumented executions are
non-blocking, the premises of all transitions hold. There-
fore, π1(e) = 1 holds for the first thread, and π2(e) > 0
for the second thread either it writes or reads. Also because
the program starts with one single main thread, both threads
should have a single common ancestor thread z such that
πx (e)+πy(e) ≤ πz(e)where x and y are the ancestors of the
first and the second thread, respectively. A thread only gains
permission from its parent; therefore π1(e) + π2(e) ≤ πz(e)
holds. Permission fractions are in the range [0, 1] by defini-
tion; therefore, π1(e)+π2(e) ≤ 1 holds. This implies that if
π1(e) = 1, then π2(e) ≤ 0 which is a contradiction. ��

A normalised execution is an instrumented execution that
respects the program order, which is defined using an auxil-
iary labelling function L : T → B

all
P × L where T is the set

of all transitions, L is the set of labels {I ,C, T }, and B
all
P is

the set of block labels (including both composite and basic
block labels).

L(t) =
⎧⎨
⎩

(LB(block), I), if t initialises a block block
(LB(s),C), if t computes a statement s

(LB(block),T), if t terminates a block block

where LB returns the label of each block or statement in the
program. We say transition t with label (b, l) is less than t ′
with label (b′, l ′) if (b ≤ b′) ∨ (l ′ = T ∧ b ∈ LBsub(b′))
where LBsub(b) returns the label set of all blocks of which
b is composed.

Definition 11 (NormalisedExecution).An instrumented exe-
cution labelled by L is normalised if the labels of its
transitions are in non-decreasing order.

We transform an instrumented execution to a normalised one
by safely commuting the transitions whose labels do not
respect the program order.

Lemma 3 For each instrumented execution of a program P,
there exists a normalised execution such that they both end
in the same terminal state.

Proof sketch 4 Given an instrumented execution IE = IE1 :
(s1, t1) : (s2, t2) : IE2, if L(t1) > L(t2), a state sx exists
such that a new instrumented execution IE′ = IE1 : (s1, t2) :
(sx , t1) : IE2 can be constructed by swapping two adjacent
transitions t1 and t2. As the swap is on an instrumented exe-
cution, from Lemma 2 we know that this is data-race-free,
thus any accesses of t1 and t2 to a shared heap location must
be reads. Because t1 and t2 are adjacent transitions, no other
write may happen in between; therefore, the swap preserves
the functionality of IE, yielding the same terminal state for
IE and IE′. Thus, the corresponding normalised execution of
IE obtained by applying a finite number of such swaps yields
the same terminal state as IE. ��
Lemma 4 For each normalised execution of a program P,
there exists a b-linearised execution blin(P), such that they
both end in the same terminal state.

Proof sketch 5 An execution of blin(P) is constructed by
applying the map M : BlockState → BlockState to each
state of a normalised execution. M is defined as:

M(s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Init(blin(P)), if s = Init(P)

SeqC(M(EB1),P2), if s = ParC(EB1,
Init(P2))

M(EB2), if s = ParC(Done, EB2)
SeqC(Par(LS1),P2), if s = Par(LS1 ++ LS

0
2)

s, otherwise

where LS
0
2 is the initial mapping of thread local states of P2

and Par(LS1++LS
0
2) indicates the state of two fused parallel

123

Correct program parallelisations 759

blocks Par(LS1) and Par(LS
0
2) where ++ is overloaded and

indicates pairwise concatenation of statements in the local
states LS1 and LS

0
2 (i.e. S1 ++ S2). ��

Definition 12 (Validity of Hoare Triple). The Hoare triple
{RCP � PP}P{RCP � QP} is valid if for any execution E (i.e.
Init(P), �, h →∗

p Done, �, h′) if �, h, π � RCP � PP is valid
in the initial state of E, then �, h′, π � RCP � QP is valid in
its terminal state.

The validity of �, h, π � RCP � PP and �, h′, π �
RCP � QP is defined by the semantics of formulas presented
in 2.2.

Theorem 3 The rule b-linearise is sound.

Proof sketch 6 Assume that (1). ∀(ib, jb
′
) ∈ IP⊥.RCP →

rcb(i) � rcb′(j) and (2). {RCP � PP} blin(P){RCP � QP}.
From assumption (2) and the soundness of the program
logic used to prove it [5], we conclude (3). ∀b ∈ BP.

{�i∈[0..Nb)rcb(i)}Pb {�i∈[0..Nb)rcb(i)}. Given a programP,
implication (3), assumption (1) andLemma1 imply that there
exists an instrumented execution IE for P. Lemma 3 and
Lemma 4 imply that there exists an execution E ′ for the b-
linearised variant ofP, blin(P), such that both IE and E ′ end
in the same terminal state. The initial states of both IE and
E ′ satisfy the precondition {RCP � PP}. From assumption
(2) and the soundness of the program logic used to prove it
[5], {RCP � QP} holds in the terminal state of E ′ which thus
also holds in the terminal state of IE as they both end in the
same terminal state. ��
Finally, we show that a verified program is indeed data-race-
free.

Proposition 1 A verified program is data-race-free.

Proof sketch 7 Given a program P, with the same reasoning
steps mentioned in Theorem 3, we conclude that there exists
an instrumented execution IE forP. FromLemma2all instru-
mented executions are data-race-free. Thus, all executions of
a verified program are data-race-free. ��

6.3 Verification of block composition with resource
transfers

Next we look at how to adapt this rule in case there are
intra-block dependencies; thus, the resource pre- and post-
conditions of individual iterations are different, and we need
send/receive annotations in order to verify the blocks.

This makes the independence check more involved:
instead of just checking that the resource contracts for
independent iterations are non-conflicting (∀(ib, jb

′
) ∈

IP⊥.(RCP → rcb(i) � rcb′(j))), we now need to check the
absence of conflicts for all combinations of resource pre- and

Fig. 20 VerCors tool set overall architecture

postconditions. In case there is only a single resource trans-
fer, we can replace this condition in the rule b-linearise by
the following condition:

∀(ib, jb
′
) ∈ IP⊥.(RCP → rcpre,b(i) � rcpre,b′(j) ∧

rcpre,b(i) � rcpost,b′(j) ∧
rcpost,b(i) � rcpre,b′(j) ∧
rcpost,b(i) � rcpost,b′(j))

This new version of the rule b-linearise is sound, because:

1. the check guarantees that the resource precondition of
iteration i is disjoint from the resource pre- and postcon-
dition of iteration j ;

2. the check also guarantees that the resource postcondi-
tion of iteration i is disjoint from the resource pre- and
postcondition of iteration j ;

3. the resources specified in the resource precondition of
iteration i either are send to another iteration (say k) in
the same block or they should be part of the resource
postcondition of iteration i . The rule guarantees that it
will also be checked that the resource pre- and postcon-
ditions of iteration k are disjoint from the resource pre-
and postconditions of iteration j (because if i and j are
independent, then also k and j will be independent.

However, if multiple resource transfers happen within a
block, it can happen that at an intermediate point in the block,
the thread holds more permissions than it holds at the begin-
ning and the end of the block. To address this, we need to
define the intermediate maximal resource contract for an
intermediate statement S as the universal separating conjunc-
tion of the iteration’s precondition, and all the resources that
are received by all statements that happen-before S. Absence
of conflicts is then defined as a check over all intermediate
resource contracts. It is future work to define this formally.

7 Tool support

As mentioned above, our verification technique is supported
by the VerCors program verifier.4 This section briefly dis-
cusses how our approach is implemented in VerCors.

4 The tool and a list of case studies and verified examples is available
at: https://github.com/utwente-fmt/vercors.

123

https://github.com/utwente-fmt/vercors

760 S. Blom et al.

VerCors is a verifier to specify and verify (concurrent and
parallel) programs written in a high-level language such as
(subsets of) Java, C, OpenCL, OpenMP and PVL, where
PVL is VerCors’ internal language for prototyping new fea-
tures. The programs are annotated with pre-/postconditions
in permission-based separation logic [1,6]. Then, VerCors
encodes annotated programs via several program transfor-
mation steps into the intermediate representation language
(Silver) of theViper framework [19,26], and then the encoded
program is verified using the Viper technology (Fig. 20).

Using this approach, OpenMP programs are verified with
VerCors in the following steps:

1. Specify the OpenMP program (i.e. provide an iteration
contract for each block and write the program contract
for the outermost OpenMP parallel region.

2. Encode the specified OpenMP program into its PPL
counterpart (carrying along the original OpenMP speci-
fications) (as discussed in Sect. 4).

3. Check the PPL program against its specifications, by
transforming the PPL program into a Viper program.

Steps 2 and 3 are fully automatic, the user only has to provide
the specifications for theOpenMPprogram. This section pro-
vides more details about the encoding of PPL programs into
Viper.

7.1 Encoding of basic blocks into viper

To verify our iteration contracts using Viper, we encode the
behaviour of the basic blocks and the send/receive anno-
tations as method contracts. The idea is that every block
annotatedwith an iteration contract is encoded by a call to the
method basic_block, whose contract encodes the application
of the suitable Hoare Logic rule for basic blocks, instantiated
for the specific iteration contract.

/∗@ requires (\ forall∗ int j ; 0<=j && j<N; pre(j)) ;
ensures (\forall∗ int j ; 0<=j && j<N; post(j)) ;

@∗/
basic_block(int N, free(S));

We also need to verify that every iteration respects the
iteration contract. This is encoded by amethod, parametrised
by the thread identifier, containing the basic block’s body, and
specified by the iteration contract.

/∗@ requires (0<=j && j<N) ∗∗ pre(j) ;
ensures post(j);

@∗/
block_body(int j,int N, free(S)){ body; }

Within the body of the basic block there may be send and
receive statements.

// @ Ls : if (bs(j)) { send φ(j) to Lr , d ;}
// @ Lr : if (br (j)) { receive ψ(j) from Ls , d ;}

The guards are untouched, but the statements are replaced
by method calls

// @ Ls : if (bs(j)) { send_s_to_r(j,N,free(φ(j));}
// @ Lr : if (br (j)) { receive_r_from_s(j,N,free(ψ(j));}

where

requires φ(j);
send_s_to_r(int j, int N, free(S));
ensures ψ(j);
receive_r_from_s(int j, int N, free(S));

Finally, we need to check that the proof obligations in
Eq. 2 and 3 hold.

7.2 Encoding of the b-linearise rule into viper

Finally, for the verification of block composition, we imple-
mented the ruleb-linearize as part of the encoding intoViper.
This means we implemented in VerCors:

– a function to compute the set IP⊥, and
– the program transformation blin, resulting in aViper pro-
gram called blin_program().

This implementation basically follows the formal definition
as presented above in Sect. 6.

Next, as part of the Viper encoding, we encode the first
proof obligation

∀(ib, jb
′
) ∈ IP⊥.(RCP → rcb(i) � rcb′(j))

as lemmas for all independent iteration pairs (ib, jb
′
), i.e.

these are encoded as specifications for empty method bodies
of the following form:

/∗@ requires RCP;
ensures rcb(i) � rcb′(j);

@∗/
indep_iteration (b,b’ ,i,j) ;

Finally, for the b-linearised program, we prove that it sat-
isfies the global method specification.

/∗@ requires {RCP � PP};
ensures {RCP � QP}

@∗/
blin_program();

8 Example: verification of an OpenMP
program

To conclude,we showhowour verification technique for PPL
and the encoding of OpenMP into PPL can be used to ver-
ify OpenMP programs. As mentioned above, our approach

123

Correct program parallelisations 761

requires the user to specify a program contract and an itera-
tion contract for each SpecS block in the OpenMP program,
from which all the required PPL contracts can be obtained.
We demonstrate this in detail on two of the OpenMP pro-
grams presented in Sect. 2.1, which are successfully verified
by VerCors.

Figure 21 shows the required contracts for the example
discussed in Fig. 1 (in Sect. 2.1). There are four specifica-
tions. The first one is the program contract attached to the
outermost parallel block. The other contracts are the itera-
tion contracts of the loops L1, L2 and L3, where the context
keyword is used as a shorthand notation for both requiring
and ensuring the same predicate, and \forall∗ denotes the
universal separating conjunction �i∈I . Example 7 already
showed how this OpenMP program was encoded into PPL.
After adding the annotations in Fig. 21 to the OpenMP pro-
gram, VerCors generates the following PPL program P:
/∗@ Program Contract @∗/

P

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
Par(L) /*@IC1@*/ c[tid]=a[tid];︸ ︷︷ ︸

B1

⊕ Par(L) /*@IC2@*/ c[tid]=c[tid]+b[tid];︸ ︷︷ ︸
B2

)

||
B3︷ ︸︸ ︷

Par(L) /*@IC3@*/ d[tid]=a[i]*b[tid];

Program P contains three parallel basic blocks B1, B2 and
B3. The fusion of B1 and B2 creates a composite block that
is enclosed by the parentheses. Then, the composite block is
composed with the basic block B3 using the parallel com-
position operator. It is verified by discharging two proof
obligations:

1. prove that all heap accesses of all incomparable iteration
pairs (i.e. all iteration pairs except the identical iterations
of B1 and B2) are non-conflicting, which implies that the
fusion of B1 and B2 and parallel composition of B1 ⊕ B2
and B3 are memory safe, and

2. prove that each parallel basic block by itself satisfies
its iteration contract ∀b ∈ {1, 2, 3}.{�i∈[0..L)ICb(i)}Bb
{�i∈[0..L)ICb(i)}, and second proving the correctness of
the b-linearised variant of P against its program contract
{RCP � PP} B1�B2�B3{RCP � QP}.

Figure 22 illustrates the necessary contract for the other
example in Sect. 2.1 (Fig. 2).We have implemented a slightly
more general variant of PPL in our VerCors tool, which sup-
ports variable declarations and method calls. To check the
first proof obligation in the tool we quantify over pairs of
blocks which allows the number of iterations in each block
to be a parameter rather than a fixed number. Our implemen-
tation successfully verified the example in 25 seconds.

9 Related work

Botincan et al. propose a proof-directed parallelisation syn-
thesis, which takes as input a sequential program with a
proof in separation logic and outputs a parallelised counter-
part by inserting barrier synchronisations [7,8]. Hurlin uses a
proof-rewriting method to parallelise a sequential program’s
proof [16]. Compared to them, we prove the correctness
of parallelisation by reducing the parallel proof to a b-
linearised proof. Moreover, our approach allows verification
of sophisticated block compositions, which enables reason-
ing about state-of-the-art parallel programming languages
(e.g. OpenMP), while their work remains rather theoretical.

Raychev et al. use abstract interpretation to make a non-
deterministic program (obtained by naive parallelisation of
a sequential program) deterministic by inserting barriers
[23]. This technique over-approximates the possible pro-
gram behaviours which ends up in a determinisation whose
behaviour is implied by a set of rules which decide between
feasible schedules rather than the behaviour of the original
sequential program. Unlike them, we do not generate any
parallel program. Instead we prove that parallelisation anno-
tations can safely be applied and the parallelised program is
functionally correct and exhibits the same behaviour as its
sequential counterpart.

Barthe et al. synthesise SIMD code given pre- and post-
conditions for loop kernels in C++ STL or C# BCL [3]. We
alternatively enable verification of SIMD loops, by encoding
them into vectorised basic blocks. Moreover, we address the
parallel or sequential composition of those loops with other
forms of parallelised blocks.

Dodds et al. introduce a higher-order variant of concur-
rent abstract predicates (CAP) to support modular verifica-
tion of synchronisation constructs for deterministic paral-
lelism [13]. While their proofs make explicit use of nested
region assertions and higher-order protocols, they do not
address the semantic difficulties introduced by these features.
As mentioned in the paper, the reasoning is unsound in cer-
tain corner cases, which was fixed in an expanded version of
their paper using iCAP [14]. Their approach relies on a pow-
erful program logic and focuses much less on automation of
the verification process.

Salamanca et al. [24] propose a run-time loop-carried
dependence checker as an extension to OpenMPwhich helps
programmers to detect hidden data dependencies in omp par-
allel for. Compared to them,we statically detect any violation
of data dependencies without any run-time overhead and we
address a larger subset of OpenMP constructs.

Bubel et al. [10] provide a formal trace semantics for data
dependences and a program logic to analyse and reason about
dependences in imperative programming languages. They
benefit from ghost variables to extend the program states to
keep track of heap memories. The authors implement their

123

762 S. Blom et al.

Fig. 21 Required contracts for verification of the OpenMP example in Fig. 1

Fig. 22 Required contracts for verification of the vectorised loops in OpenMP example in Fig. 2

approach in the KeY verifier and show the effectiveness of
their approach by experimenting on Java programs. Their
approach for loop-free programs is highly automatic, but for
programs containing loops, user interaction is required. In
comparison with our work, for programs with loops, users
need to provide loop invariants, while we only require itera-
tion contracts (which we believe are often easier to specify).

Praun et al. [27] propose an abstract model to capture data
dependences. The model represents these dependences as a
density metric to predict potential concurrency of programs.
This metric categorises the programs into high, medium and
low densities. Programs with high density are good candi-
dates for parallelism, while those with low density are not.
Programs with medium density requires a scheduler that is

aware of the algorithmic dependences. In contrast to our
approach, their model abstracts from runtime aspects such
as the number of threads and concurrency control and does
not prove correctness of parallelised programs. Their work
can benefit from our approach to guarantee correctness after
discovering dependencies and parallelising the programs.

10 Conclusion and future work

We have presented the PPL language that captures the main
forms of deterministic parallel programming, and we have
shown how a commonly used subset of OpenMP can be
encoded into PPL. Then, we proposed a verification tech-

123

Correct program parallelisations 763

nique to reason about data race freedom and functional
correctness of PPL programs. The verification technique
consists of two parts: reasoning about the correctness of
basic blocks, and reasoning about the composition of blocks.
Finally, we illustrate the technique to verify the correctness
of an example OpenMP program.

As future work, we plan to look into adapting annota-
tion generation techniques to automatically generate iteration
contracts, including both resource formulas and functional
properties. This will lead to fully automatic verification of
deterministic parallel programs. Moreover, our technique
can be extended to address a larger subset of OpenMP pro-
grams by supporting more complex OpenMP patterns for
scheduling iterations and omp task constructs. We also plan
to identify the subset of atomic operations that can be com-
binedwith our technique that allowsverificationof thewidely
used reduction operations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Amighi, A., Haack, C., Huisman,M., Hurlin, C.: Permission-based
separation logic for multithreaded Java programs. LMCS 11(1),
(2015)

2. Aviram, A., Ford, B.: Deterministic OpenMP for Race-free Paral-
lelism. In HotPar’11 (2011)

3. Barthe, G., Crespo, J.M., Gulwani, S., Kunz, C., Marron, M.: From
relational verification to SIMD loop synthesis. In: PPoPP, pp. 123–
134 (2013)

4. Berger, M.J., Aftosmis, M.J., Marshall, D.D., Murman, S.M.: Per-
formance of a new CFD flow solver using a hybrid programming
paradigm. J. Parallel Distrib. Comput. 65(4), 414–423 (2005)

5. Blom, S., Darabi, S., Huisman, M.: Verification of loop paralleli-
sations. In: Egyed, A., Schaefer, I. (eds.) FASE, Volume 9033 of
LNCS. Springer, pp. 202–217 (2015)

6. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission
accounting in separation logic. In: POPL, pp. 259–270 (2005)

7. Botincan,M., Dodds, M., Jagannathan, S.: Resource-sensitive syn-
chronization inference by abduction. In: Field, J., Hicks, M. (eds.)
Principles of Programming Languages (POPL 2012), pp. 309–322
(2012)

8. Botinčan, M., Dodds, M., Jagannathan, S.: Proof-directed paral-
lelization synthesis by separation logic. ACM Trans. Program.
Lang. Syst. 35, 1–60 (2013)

9. Boyland, J.: Checking interference with fractional permissions. In:
SAS, Volume 2694 of LNCS. Springer, pp. 55–72 (2003)

10. Bubel, R., Hähnle, R., Heydari Tabar, A.: A program logic for
dependence analysis. In: Ahrendt,W., Tapia Tarifa, S.L. (eds.) Inte-
grated Formal Methods. Springer International Publishing, Cham,
pp. 83–100 (2019)

11. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.-
H., Skadron, K.: Rodinia: A benchmark suite for heterogeneous
computing. In Workload Characterization. IISWC 2009, pp. 44–
54 (2009)

12. Darabi, S., Blom, S., Huisman, M.: A verification technique for
deterministic parallel programs. In: Barrett, C., Davies,M., Kahsai,
T. (eds.) NASA Formal Methods (NFM), Volume 10227 of LNCS,
pp. 247–264 (2017)

13. Dodds, M., Jagannathan, S., Parkinson, M.J.: Modular reasoning
for deterministic parallelism. InACMSIGPLANNotices, pp. 259–
270 (2011)

14. Dodds, M., Jagannathan, S., Parkinson, M.J., Svendsen, K.,
Birkedal, L.: Verifying custom synchronization constructs using
higher-order separation logic. ACM Trans. Program. Lang. Syst.
38(2), 4:1–4:72 (2016)

15. Haack, C., Huisman, M., Hurlin, C.: Reasoning about Java’s reen-
trant locks. In: Ramalingam, G., (ed.) Programming Languages
and Systems, 6th Asian Symposium, APLAS 2008, Bangalore,
India, December 9–11, 2008. Proceedings, Volume 5356 of LNCS.
Springer, pp. 171–187 (2008)

16. Hurlin, C.: Specification and Verification of Multithreaded Object-
Oriented Programs with Separation Logic. PhD thesis, Université
Nice Sophia Antipolis (2009)

17. Jin, H.-Q., Frumkin, M., Yan, J.: The OpenMP Implementation of
NAS Parallel Benchmarks and its Performance (1999)

18. Leavens, G., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D.R.,
Müller, P., Kiniry, J., Chalin, P.: JML Reference Manual (2007).
Dept. of Computer Science, Iowa State University. http://www.
jmlspecs.org

19. Müller, P., Schwerhoff, M., Summers, A.: Viper—a verification
infrastructure for permission-based reasoning. In VMCAI (2016)

20. OpenMP architecture review board, OpenMPAPI specification for
parallel programming. Last accessed 18 Oct 2016. http://openmp.
org/wp/

21. LLNL OpenMP Benchmarks. Last accessed 28 Nov 2016. https://
asc.llnl.gov/CORAL-benchmarks/

22. Parkinson, M., Summers, A.: The relationship between separation
logic and implicit dynamic frames. In Barthe, G. (ed.) Program-
ming Languages and Systems—20th European Symposium on
Programming, ESOP 2011, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2011,
Saarbrücken, Germany,March 26–April 3, 2011. Proceedings, vol-
ume 6602 of LNCS. Springer, pp. 439–458 (2011)

23. Raychev, V., Vechev, M., Yahav, E.: Automatic synthesis of
deterministic concurrency. In: Static Analysis—20th International
Symposium, SAS 2013, Seattle,WA, USA, June 20–22, 2013. Pro-
ceedings. Springer, pp. 283–303 (2013)

24. Salamanca, J., Mattos, L., Araujo, G.: Loop-carried dependence
verification in OpenMP. In: International Workshop on OpenMP
2014, pp. 87–102 (2014)

25. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames. ACM
Trans. Program. Lang. Syst. 34(1), 2:1–2:58 (2012)

26. Viper project website. http://www.pm.inf.ethz.ch/research/viper
27. von Praun, C., Bordawekar, R., Cascaval, C.: Modeling optimistic

concurrency using quantitative dependence analysis. In: Proceed-
ings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 185–196 (2008)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.jmlspecs.org
http://www.jmlspecs.org
http://openmp.org/wp/
http://openmp.org/wp/
https://asc.llnl.gov/CORAL-benchmarks/
https://asc.llnl.gov/CORAL-benchmarks/
http://www.pm.inf.ethz.ch/research/viper

	Correct program parallelisations
	Abstract
	1 Introduction
	2 Background
	2.1 OpenMP
	2.2 Program specifications: syntax and semantics

	3 Syntax and semantics of deterministic parallelism
	3.1 Syntax
	3.2 Semantics

	4 Encoding OpenMP into PPL
	4.1 Subset of OpenMP
	4.2 OpenMP to PPL encoding
	4.3 Example translations

	5 Verification of basic blocks
	5.1 Iteration contracts
	5.2 Verification rules for basic blocks
	5.3 Soundness
	5.3.1 Denotational semantics of blocks
	5.3.2 Correctness of parallel blocks

	6 Verification of block composition
	6.1 Verification of block composition without resource transfers
	6.2 Soundness
	6.3 Verification of block composition with resource transfers

	7 Tool support
	7.1 Encoding of basic blocks into viper
	7.2 Encoding of the b-linearise rule into viper

	8 Example: verification of an OpenMP program
	9 Related work
	10 Conclusion and future work
	References

