International Journal on Software Tools for Technology Transfer (2021) 23:155-156

https://doi.org/10.1007/s10009-021-00610-6

GENERAL

Special Issue: RV 2018

Preface

Martin Leucker' - Christian Colombo?

Accepted: 11 January 2021/ Published online: 1 February 2021

®

Check for
updates

© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

One of the driving forces for introducing runtime verifica-
tion was the difficulties in performing model checking on
large systems. Faced with the so-called state-space explosion
problem when trying to check all sequences of an underly-
ing system, runtime verification considers (only) the actual
execution or a finite set of recorded executions.

Based on ideas from model checking, it comes natural that
the specification languages used in runtime verification are
linear-time temporal logic or variations thereof. These have
the limitation that only atomic propositions along the state
sequences can be specified and consequently checked. For
practical applications, however, it is desirable that one can
reason about data and its changes during the execution. This
has led to the development of richer specification language
formalism allowing to deal with data and computations.

In this special issue, we have three papers falling into this
category. The first paper is titled Stream Runtime Verifica-
tion of Real-Time Event-Streams with the Striver Language,
written by Felipe Gorostiaga and César Sdnchez: Stream
runtime verification has been active within the runtime veri-
fication community at least since the seminal work on LOLA
in 2005, with other languages including TeSSLa and STL.
The appeal of this area is that over and above the simplicity
and economy of available operators, the reasoning about time
is kept separate from computation of data values. This paper
proposes a version of Striver, which building on these princi-
ples, generalises the time assumption to cover real-time event
streams. Effectively, the existing languages mentioned above
are shown to be translatable into Striver, which ships with an
implementation whose empirical evaluation is reported in the

paper.

B Christian Colombo
christian.colombo @um.edu.mt

Martin Leucker

leucker @isp.uni-luebeck.de

University of Liibeck, Liibeck, Germany
2 University of Malta, Msida, Malta

The second paper in this special issue is written by Joshua
Schneider, David Basin, Frederik Brix, Srdan Krstic, and
Dimitry Traytel and titled as Scalable Online First-Order
Monitoring. It considers runtime verification with data using
a first-order logic based approach. While the authors have
developed an underlying formal framework over the past
decade, the current paper deals with speeding up the verifica-
tion process by parallelization. To this end, they use slicing
techniques to obtain sub-streams that can be monitored inde-
pendently. As the technique may lead to data duplication,
hash-based partitioning techniques used in databases are
adapted to and applied in their setting. The authors imple-
ment their slicing approach based on Apache Flink and the
two RV tools MonPoly and DejaVu, showing that substantial
scalability improvements for both tools can be obtained.

The third paper From Parametric Trace Slicing to Rule
Systems by Giles Reger and David Rydeheard also looks at
parametric runtime monitoring, focusing on the correspon-
dence between the automata-based and rule-based flavours.
This involves a Scala implementation of the translation of
parametric trace-slicing-based Quantified Event Automata
into a rule-based in the style of RuleR, a proof of correct-
ness, and an optimisation based on a notion of redundancy
observed during the development of the translation.

Whenever a model of the underlying system is given, one
may trace an execution of the system within the model, allow-
ing to check if or to predict when an error has occurred. If the
underlying system is only partially observable, such tracing
can only give an approximate answer, in saying that a fault
must, may be, or may not have occurred. Within the field
of diagnosis, one aims at constructing such a diagnoser that
identifies the current state (approximately) of an underlying
system within a given model. For example, for finite-state
models, a diagnoser can be built by keeping track of all pos-
sible states that can be reached after each observable step of
the system. This set can then answer the question if a failure
state is, may be, or is not, reached and computing the reach-
able states from this set of states in the model may be used

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-021-00610-6&domain=pdf

156

M. Leucker, C. Colombo

to predict the same answer for the ongoing execution of the
underlying system.

The paper Diagnosing timed automata using timed mark-
ings, written by Patricia Bouyer, Léo Henry, Samy Jaziri,
Thierry Jéron, and Nicolas Markey studies the diagnosis
problem within the setting of timed systems, which typi-
cally have an infinite state space. More precisely, they study
the problem for one clock timed automata (as model) and
introduce timed markings to keep track of the configurations
reachable over time. They show how timed markings can be
used to efficiently represent the closure under silent transi-
tions of such automata. They report on their implementation
of this approach, compare it to the seminal work by Tripakis
on Fault diagnosis for timed automata (2002), and discuss
possible generalizations to n-clock timed automata.

@ Springer

The runtime verification community has been actively
developing tools for since its inception, some 20 years ago.
Going forward, it is crucial to look back and be aware of the
vast experience accumulated with the available tools. There-
fore, we think it is appropriate to conclude this special issue
with the paper A Taxonomy for Classifying Runtime Veri-
fication Tools by Ylies Falcone, Srdan Krsti¢, Giles Reger,
and Dmitriy Traytel, which provides an in depth classifica-
tion across several dimensions of 60 state-of-the-art tools!

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.



	Preface



