International Journal on Software Tools for Technology Transfer (2021) 23:679-684
https://doi.org/10.1007/s10009-021-00632-0

GENERAL f')

Check for
updates

Special Issue: MeTRID

On methods and tools for rigorous system design

Simon Bliudze' - Panagiotis Katsaros? - Saddek Bensalem3 - Martin Wirsing*

Accepted: 8 June 2021/ Published online: 22 June 2021
© The Author(s) 2021

Abstract

Full a posteriori verification of the correctness of modern software systems is practically infeasible due to the sheer complexity
resulting from their intrinsic concurrent nature. An alternative approach consists of ensuring correctness by construction. We
discuss the Rigorous System Design (RSD) approach, which relies on a sequence of semantics-preserving transformations
to obtain an implementation of the system from a high-level model while preserving all the properties established along the
way. In particular, we highlight some of the key requirements for the feasibility of such an approach, namely availability of
(1) methods and tools for the design of correct-by-construction high-level models and (2) definition and proof of the validity
of suitable domain-specific abstractions. We summarise the results of the extended versions of seven papers selected among
those presented at the 1st and the 2nd International Workshops on Methods and Tools for Rigorous System Design (MeTRiD

2018-2019), indicating how they contribute to the advancement of the RSD approach.

Keywords System design - High-level modelling - Correct-by-construction - Domain-specific abstraction

Rigorous System Design

Modern software systems are inherently concurrent. They
consist of components running simultaneously and sharing
access to resources provided by the execution platform. For
instance, embedded control software in various domains,
ranging from household robotics through operation of smart
power-grids to on-board satellite software, commonly com-

B Martin Wirsing
wirsing @ifi.lmu.de

Simon Bliudze
simon.bliudze @inria.fr

Panagiotis Katsaros
katsaros @csd.auth.gr

Saddek Bensalem
Saddek.Bensalem @univ-grenoble-alpes.fr

1 University of Lille, Inria, CNRS, Centrale Lille, UMR 9189
CRIStAL, 59000 Lille, France

School of Informatics, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece

3 Université Grenoble Alpes, CNRS, Grenoble INP, Verimag,
38000 Grenoble, France

Ludwig-Maximilians-Universitit Miinchen, Munich,
Germany

prises, in addition to components responsible for taking the
control decisions, a set of components driving the operation
of sensing and actuation devices. These components inter-
act through buses, shared memories and message buffers,
leading to resource contention and potential deadlocks com-
promising mission- and safety-critical operations. Similar
problems are observed in various kinds of software, includ-
ing system, work-flow management, integration software,
web services, etc. Essentially, any software entity that goes
beyond simply computing a certain function necessarily has
to interact and share resources with other such entities.

The intrinsic concurrent nature of such interactions is the
root cause of the sheer complexity of the resulting software.
Indeed, in order to analyse the behaviour of such a soft-
ware system, one has to consider all possible interleavings of
the operations executed by its components. Thus, the com-
plexity of software systems is exponential in the number of
their components, making a posteriori verification of their
correctness practically infeasible. An alternative approach
consists of ensuring correctness by construction, through the
application of well-defined design principles [4,20], impos-
ing behavioural contracts on individual components [7] or
by applying automatic transformations to obtain executable
code from formally defined high-level models [33].

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-021-00632-0&domain=pdf

680

S.Bliudze et al.

eRequirements
eFunctional
decomposition

Functional
design

Model
transformation

eApplication model
ePlatform
architecture

*Mapping

model

primitives

eAbstract system

eCommunication

Model
transformation

eGenerated code

Simulation and
execution

Code
generation

eConcrete system
model

Fig.1 A simplified example of the RSD flow instantiation (the blue items are the result of the previous stage; the black ones are provided as new

input at the current stage)

The Rigorous System Design (RSD) [33] approach
enforces multiple levels of separation of concerns. It relies
on a sequence of semantics-preserving transformations to
obtain an implementation of the system from a high-level
model while preserving all the properties established along
the way.

Figure 1 illustrates a simplified instantiation of the RSD
flow. One starts by designing the application model. The
application model is verified to prove the elementary proper-
ties that are not assured by construction, such as absence of
local deadlock, and satisfaction of basic requirements. These
elementary properties, serve as a basis for the proof of global
properties, obtained by construction.

The application model is then extended with additional
components modelling the target platform to obtain the
system model, which is used to perform platform specific
analyses and the optimisation of performance through the
exploration of the design space (memories, buses, mapping
of software components to hardware elements, etc.).

Finally, the model is enriched with platform specific infor-
mation (e.g.communication primitives) and, after removing
components modelling hardware elements, executable code
is automatically generated.

Proving that the assumptions made at the modelling level
to justify the separation of concerns hold, indeed, at the
platform level, guarantees that all the properties established
throughout the design process also hold for the generated
code.

Thus, the RSD approach applies—on the higher abstrac-
tion level of the system design process—the same principles
as those provided by standard compilers for the generation
of machine-executable code from programs written in lan-
guages such as Java or C++. It consists in decomposing the
argument justifying the correctness of the entire process into
several independent arguments justifying the correctness of
individual transformations. Furthermore, it provides flexibil-
ity w.r.t.the target platforms by postponing design choices
as far as possible and allowing for different transforma-

@ Springer

tions of the same model to be applied at every design stage.
However, in drawing this parallel, it is appropriate to dif-
ferentiate between commonly used compilers such as gcc,
where the public trust originates mainly from the extensive
usage experience, and verified compilers such as CompCert
[29], where preservation of semantics at the various stages is
formally verified. Although the second scenario is currently
preferable for RSD tool sets due to lack of usage history
comparable to that of compilers such as gcc, both can be
relevant in practice.

Applications. Although the RSD approach as formulated by
Sifakis [33] originates from the development of the BIP
framework for the Embedded Software design (see, for exam-
ple, [5,6]), it is applicable in a much broader variety of
domains, whereof we will mention below just a few.

Key issues of applying the RSD approach to the Cyber-
Physical Systems (CPSs), which comprise components with
both discrete and continuous underlying dynamics, are dis-
cussed in [11]. The authors argue that the objective of
cyber-physical system modelling is twofold: providing the
means for (1) the validation of the system design through sim-
ulation of such models and (2) the generation of executable
code for the discrete control sub-system. The key point here
is that the two design artefacts, i.e.the simulator and the code
of the control sub-system are obtained through two branches
of the design flow sharing a substantial prefix. Thus, the gen-
erated control sub-system is equivalent to—i.e.satisfies the
same properties as—the corresponding components of the
simulator by construction.

Expanding on the above idea, it is clear that the RSD
approach can be of great benefit for system design and oper-
ation involving the so-called Digital Twins where simulation
becomes “a core functionality of systems by means of seam-
less assistance along the entire life cycle” [32].

Autonomous and (self-)adaptive systems constitute another
significant domain for the application of the RSD approach.
These include, for example, autonomous vehicles, Cloud
and IoT applications. Indeed, such systems must react to

On methods and tools for rigorous system design

681

changing environmental constraints and user requirements.
Therefore, they are characterised by high dynamicity both of
their behaviour and their structure. In particular, this implies
that many of the underlying verification problems are unde-
cidable [12,19] emphasising the need for by-construction
correctness provided by the RSD approach.

Key elements. The RSD approach relies on several fundamen-
tal elements, among which we highlight two. Firstly, methods
and tools for the design of correct-by-construction high-level
models are necessary to initiate the process. Although it is
difficult to imagine a unique approach that would fit all the
various application domains, it seems reasonable to expect
that these approaches will share a common core, comprising,
at the very least, some form of

(1) Requirement elicitation and formalisation and
(2) (semi-)automatic synthesis of parts of the models in order
to discharge these requirements [34].

Secondly, defining and proving the validity of suitable
domain-specific abstractions, such as architectures, proto-
cols or design patterns (e.g.[1,30,31]), is key for implement-
ing an RSD flow. Such abstractions are used to facilitate
the design of correct-by-construction high-level models.
The transformations along the RSD flow can then rely on
platform-specific implementations of these abstractions to
automatically generate refined models or executable code.
Although these platform-specific implementations would
have to be proven correct, such proofs need only be carried
out once, reducing the overall complexity of the process and
ensuring the trustworthiness of the resulting artefacts.

This issue

This special issue contains the extended versions of selected
papers presented at the 1st and the 2nd International Work-
shops on Methods and Tools for Rigorous System Design
(MeTRiD 2018-2019) held as satellite events of the cor-
responding European Joint Conferences on Theory and
Practice of Software (ETAPS 2018-2019).

The goal of the MeTRiD workshop is to promote cross-
fertilisation between research in academia and practical
applications in the industry. On the one hand, we hope that,
through the publication of research and tool papers, the work-
shop will contribute to raising awareness of the methods and
tools available among the industrial players. On the other
hand, presentation and exchange of realistic case studies
should allow academic researchers to better fit their tools
to industrial needs, thereby improving the dissemination of
results.

The first, 2018 edition was a traditional workshop with
peer-reviewed proceedings published as volume 272 of the

Electronic Proceedings in Theoretical Computer Science
(EPTCS) [10]. MeTRiD 2018 accepted three categories of
papers: regular, tool and case-study papers. MeTRiD 2019
was by invitation with presentations of, both, already pub-
lished results and ongoing work, and no proceedings.

This issue comprises 7 papers addressing the key elements
outlined above. Papers [3,18] contribute to the design of
correct-by construction high-level models by defining a high-
level modelling formalism [18] and by providing an approach
for debugging CPS models [3]. Papers [9,14,22,24,28] con-
tribute to the design and proof of domain-specific abstrac-
tions. They provide techniques for ensuring the correctness
of randomised consensus protocols [9], program block paral-
lelisation [14], usage control policies [22], and for ensuring
optimality of partition schedules [24] and energy consump-
tion [28].

Each of these papers was reviewed by at least three review-
ers and extends one of the papers presented at MeTRiD 2018
or 2019.

— The paper “Specifying and verifying usage control mod-
els and policies in TLA™” by Grompanopoulos, Goug-
lidis, and Mavridou [22] is an extension of the MeTRiD
2018 paper by the same authors [21]. It presents a case
study on specification and model checking of usage con-
trol models and policies. The focus of the paper is on
demonstrating how to express control policies in TLA™T.
By doing so the authors also introduce their own policy
model called UseCON.

— The paper “Programming dynamic reconfigurable sys-
tems” by El Ballouli, Bensalem, Bozga, and Sifakis [18]
is an extension of the ISoLA 2018 and FACS 2018
papers [16,17] by the same authors. The paper focuses
on programming dynamic reconfigurable systems. It
presents an extension of Behaviour-Interaction-Priority
(BIP) framework called Dynamic-Reconfigurable BIP
(DB-RIP), which allows dealing with reconfigurable
systems including different types of dynamism. The tech-
nical contribution of the paper consists of the formal
definition of DR-BIP, i.e. its syntax and semantics. In
addition, the paper describes a prototype implementation
of the language in Java and illustrates the application of
the approach to model 3 different examples from different
domains.

— The paper “Model-based optimization of ARINC-653

partition scheduling” by Han, Zhai, Nielsen, and Nyman [24]

is an extension of the MeTRiD 2018 paper [23], by
the same authors. This work introduces a framework
for generating optimal ARINC-653 partitioned sched-
ules, i.e.system partitions scheduled in mutual exclusion
in order ensure temporal isolation of applications in
safety-critical systems. The main challenge in synthe-

@ Springer

682

S.Bliudze et al.

sising optimal period and budget parameters for the
partitions is the scalability problem, since the parameter
space for larger systems rapidly grows in size and can-
not be exhaustively explored. The proposed framework
excludes, as early as possible, non-schedulable combi-
nations of parameters by applying (in order of sequence)
global schedulability tests, statistical model-checking
and model-checking in Uppaal. Finally, an evolutionary
algorithm for parameter exploration is applied that gen-
eralises the yes/no verdict of the schedulability question
into a numeric fitness evaluation.

— The paper “Correct Program Parallelisations” by Blom,
Darabi, Huisman, and Safari [14] is an extension of the
FASE 2015 and NFM 2017 [13,15] papers by the first
three authors. This paper presents a verification technique
to reason about the correctness of compiler directives
indicating which program blocks may potentially be exe-
cuted in parallel without changing the behaviour of the
program. To this end, the authors introduce an intermedi-
ate language for representing such programs, its formal
semantics and a soundness proof for deductive proof rules
that build on that semantics. The paper also discusses how
OpenMP programs can be translated into the intermedi-
ate language and how the verification methodology can
be implemented on top of the VerCors/Viper verification
tool infrastructure.

— The paper “Energy characterization of IoT systems
through design aspect monitoring” by Lekidis, and Kat-
saros [28] is an extension of the MeTRiD 2018 paper [27]
and a related presentation in MeTRiD 2019, by the same
authors. This work proposes a model-driven approach for
the energy cost estimation of Internet of Things design
aspects (availability, reliability, dynamicity and security),
by monitoring them. This paves the way to identify fea-
sible architecture solutions that satisfy energy footprint
requirements.

— The paper “CPSDebug: Automatic failure explanation in
CPS models” by Bartocci, Manjunath, Mariani, Mateis
and Nickovié¢ [3] is an extension of the SEFM 2019
paper [2] by the same authors. In particular, the authors
introduce an approach for the detection of faults and
their localisation in Stateflow/Simulink models of cyber-
physical systems. This is challenging, when there are
mixed discrete and continuous signals, while the faults
may not physically manifest immediately. The method
rests on simulation traces that satisfy or violate desired
properties expressed in Signal Temporal Logic. Those
traces that satisfy the properties are then used to mine
additional specifications, and the method produces expla-
nations from the analysis of failed traces with respect to
the properties mined.

— The paper “Verification of Randomized Consen-
sus Algorithms under Round-Rigid Adversaries” by

@ Springer

Bertrand, Konnov, Lazi¢, and Widder [9] is an
extension of paper [8] by the same authors. This
work is focused on obtaining a fully automated
proof of correctness—encompassing validity, agreement
and almost-sure termination—of randomised consensus
algorithms involving arbitrarily many (faulty) processes
and rounds under round-rigid adversaries, i.e.adversaries
that are weakly fair and that select actions in a “round-
based” manner. The approach is based on the threshold
automata formalism introduced in [25,26].

We would like to thank all the authors of these papers for
their contributions and the reviewers that we have solicited
for their thorough evaluations. Furthermore, we would like
to acknowledge the help of the OCS team and, particularly,
Markus Frohme, whose help and reactivity throughout the
preparation of the issue were crucial to its successful reali-
sation.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Attie, P, Baranov, E., Bliudze, S., Jaber, M., Sifakis, J.: A general
framework for architecture composability. Formal Aspects Com-
put. 18(2), 207-231 (2016). https://doi.org/10.1007/s00165-015-
0349-8

2. Bartocci, E., Manjunath, N., Mariani, L., Mateis, C., Nickovié, D.:
Automatic failure explanation in CPS models. In: P.C. Olveczky,
G. Salaiin (eds.) Proceedings of the 17th International Conference
Software Engineering and Formal Methods (SEFM 2019), Lecture
Notes in Computer Science, vol. 11724, pp. 69-86. Springer (2019).
https://doi.org/10.1007/978-3-030-30446-1_4

3. Bartocci, E., Manjunath, N., Mariani, L., Mateis, C., Nickovic, D.:
CPSDebug: Automatic failure explanation in CPS models. Int. J.
Software Tools Technol. Transf. (2021). https://doi.org/10.1007/
$10009-020-00599-4

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Prac-
tice, 3rd edn. SEI Series in Software Engineering. Addison-Wesley
Professional (2012)

5. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time
components in BIP. In: 4'" TEEE Int. Conf. on Software Engineer-
ing and Formal Methods (SEFM06), pp. 3—12 (2006). https://doi.
org/10.1109/SEFM.2006.27. Invited talk

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00165-015-0349-8
https://doi.org/10.1007/s00165-015-0349-8
https://doi.org/10.1007/978-3-030-30446-1_4
https://doi.org/10.1007/s10009-020-00599-4
https://doi.org/10.1007/s10009-020-00599-4
https://doi.org/10.1109/SEFM.2006.27
https://doi.org/10.1109/SEFM.2006.27

On methods and tools for rigorous system design

683

10.

11.

12.

13.

14.

15.

16.

17.

18.

Basu, A., Gallien, M., Lesire, C., Nguyen, T.H., Bensalem, S.,
Ingrand, F., Sifakis, J.: Incremental component-based construction
and verification of a robotic system. In: ECAI, pp. 631-635 (2008)
Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet,
J.B., Reinkemeier, P., Sangiovanni-Vincentelli, A., Damm, W.,
Henzinger, T., Larsen, K.G.: Contracts for system design. Research
Report RR-8147, INRIA (2012). https://hal.inria.fr/hal-00757488
Bertrand, N., Konnov, 1., Lazic, M., Widder, J.: Verification of ran-
domized consensus algorithms under round-rigid adversaries. In:
W.J. Fokkink, R. van Glabbeek (eds.) 30th International Confer-
ence on Concurrency Theory, (CONCUR 2019), LIPIcs, vol. 140,
pp- 33:1-33:15. Schloss Dagstuhl — Leibniz-Zentrum fiir Infor-
matik (2019). https://doi.org/10.4230/LIPIcs. CONCUR.2019.33
Bertrand, N., Konnov, 1., Lazic, M., Widder, J.: Verification of
randomized consensus algorithms under round-rigid adversaries.
Int. J. Software Tools Technol. Transf. (2021). https://doi.org/10.
1007/510009-020-00603-x

Bliudze, S., Bensalem, S. (eds.): Proceedings of the 1st interna-
tional workshop on methods and tools for rigorous system design,
MeTRiD@ETAPS 2018, EPTCS, vol. 272. Thessaloniki, Greece
(2018). https://doi.org/10.4204/EPTCS.272

Bliudze, S., Furic, S., Sifakis, J., Viel, A.: Rigorous design of
cyber-physical systems: linking physicality and computation. Int.
J. Software Syst. Model. 18(3), 1613-1636 (2019). https://doi.org/
10.1007/s10270-017-0642-5

Bloem, R., Jacobs, S., Khalimov, A., Konnov, 1., Rubin, S., Veith,
H., Widder, J.: Decidability of Parameterized Verification. Syn-
thesis Lectures on Distributed Computing Theory, Morgan &
Claypool, California (2015)

Blom, S., Darabi, S., Huisman, M.: Verification of loop paralleli-
sations. In: A. Egyed, I. Schaefer (eds.) Proceedings of the 18th
International Conference on Fundamental Approaches to Software
Engineering (FASE 2015), Lecture Notes in Computer Science, vol.
9033, pp. 202-217. Springer (2015). https://doi.org/10.1007/978-
3-662-46675-9_14

Blom, S., Darabi, S., Huisman, M., Safari, M.: Correct program par-
allelisations. Int. J. Software Tools Technol. Transf. (2021). https://
doi.org/10.1007/s10009-020-00601-z

Darabi, S., Blom, S.C.C., Huisman, M.: A verification technique
for deterministic parallel programs. In: C.W. Barrett, M. Davies,
T. Kahsai (eds.) Proceedings of the 9th NASA Formal Methods
International Symposium (NFM 2017), Lecture Notes in Computer
Science, vol. 10227, pp. 247-264. Springer (2017). https://doi.org/
10.1007/978-3-319-57288-8_17

El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Four exercises
in programming dynamic reconfigurable systems: Methodology
and solution in DR-BIP. In: T. Margaria, B. Steffen (eds.) Proceed-
ings of the 8th International Symposium on Leveraging Applica-
tions of Formal Methods, Verification and Validation. Distributed
Systems (ISoLA 2018), Lecture Notes in Computer Science, vol.
11246, pp. 304-320. Springer (2018). https://doi.org/10.1007/978-
3-030-03424-5_20

El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Programming
dynamic reconfigurable systems. In: K. Bae, P.C. Olveczky (eds.)
Proceedings of the 15th International Conference Formal Aspects
of Component Software (FACS 2018), Lecture Notes in Computer
Science, vol. 11222, pp. 118-136. Springer (2018). https://doi.org/
10.1007/978-3-030-02146-7_6

El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Programming
dynamic reconfigurable systems. Int. J. Software Tools Technol.
Transf. (2021). https://doi.org/10.1007/s10009-020-00596-7
Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: Pro-
ceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’95, pp. 85-94.
Association for Computing Machinery, New York, NY, USA
(1995). https://doi.org/10.1145/199448.199468

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns:
Elements of Reusable Object-Oriented Software, 1stedn. Addison-
Wesley Professional, Boston (1994)

Gouglidis, A., Grompanopoulos, C., Mavridou, A.: Formal veri-
fication of usage control models: a case study of UseCON using
TLA+. In: S. Bliudze, S. Bensalem (eds.) Proceedings of the 1st
International Workshop on Methods and Tools for Rigorous System
Design (MeTRiD), Electronic Proceedings in Theoretical Com-
puter Science, vol. 272, pp. 52—64. Open Publishing Association
(2018). https://doi.org/10.4204/EPTCS.272.5

Grompanopoulos, C., Gouglidis, A., Mavridou, A.: Specifying
and verifying usage control models and policies in TLA™. Int. J.
Software Tools Technol. Transf. (2021). https://doi.org/10.1007/
$10009-020-00600-0

Han, P, Zhai, Z., Nielsen, B., Nyman, U.: A compositional
approach for schedulability analysis of distributed avionics sys-
tems. In: S. Bliudze, S. Bensalem (eds.) Proceedings of the 1st
International Workshop on Methods and Tools for Rigorous System
Design (MeTRiD), Electronic Proceedings in Theoretical Com-
puter Science, vol. 272, pp. 39-51. Open Publishing Association
(2018). https://doi.org/10.4204/eptcs.272.4

Han, P, Zhai, Z., Nielsen, B., Nyman, U.: Model-based opti-
mization of ARINC-653 partition scheduling. Int. J. Software
Tools Technol. Transf. (2021). https://doi.org/10.1007/s10009-
020-00597-6

Konnov, L., Veith, H., Widder, J.: On the completeness of bounded
model checking for threshold-based distributed algorithms: Reach-
ability. In: P. Baldan, D. Gorla (eds.) Proceedings of the 25th Inter-
national Conference on Concurrency Theory (CONCUR 2014),
Lecture Notes in Computer Science, vol. 8704, pp. 125-140.
Springer (2014). https://doi.org/10.1007/978-3-662-44584-6_10
Konnov, I.V., Veith, H., Widder, J.: On the completeness of bounded
model checking for threshold-based distributed algorithms: reach-
ability. Inf. Comput. 252, 95-109 (2017). https://doi.org/10.1016/
j.1¢.2016.03.006

Lekidis, A., Katsaros, P.: Model-based design of energy-efficient
applications for iot systems. In: S. Bliudze, S. Bensalem (eds.) Pro-
ceedings of the 1st International Workshop on Methods and Tools
for Rigorous System Design (MeTRiD), Electronic Proceedings in
Theoretical Computer Science, vol. 272, pp. 24—38. Open Publish-
ing Association (2018). https://doi.org/10.4204/eptcs.272.3
Lekidis, A., Katsaros, P.: Energy characterization of IoT systems
through design aspect monitoring. Int. J. Software Tools Technol.
Transf. (2021). https://doi.org/10.1007/s10009-020-00598-5
Leroy, X., Blazy, S., Késtner, D., Schommer, B., Pister, M., Ferdi-
nand, C.: CompCert — A formally verified optimizing compiler. In:
ERTS 2016: Embedded Real Time Software and Systems, 8th Euro-
pean Congress. SEE, Toulouse, France (2016). https://hal.inria.fr/
hal-01238879

Marmsoler, D.: Hierarchical specification and verification of archi-
tectural design patterns. In: A. Russo, A. Schiirr (eds.) Proceedings
of the 21st International Conference Fundamental Approaches to
Software Engineering (FASE 2018), Lecture Notes in Computer
Science, vol. 10802, pp. 149-168. Springer (2018). https://doi.org/
10.1007/978-3-319-89363-1_9

Mavridou, A., Stachtiari, E., Bliudze, S., Ivanov, A., Katsaros, P.,
Sifakis, J.: Architecture-based design: a satellite on-board software
case study. In: 13th International Conference on Formal Aspects
of Component Software (FACS 2016), Lecture Notes in Computer
Science, vol. 10231, pp. 260-279 (2016). https://doi.org/10.1007/
978-3-319-57666-4_16

Rosen, R., von Wichert, G., Lo, G., Bettenhausen, K.D.: About the
importance of autonomy and digital twins for the future of manu-
facturing. IFAC-PapersOnLine 48(3), 567-572 (2015). https://doi.
org/10.1016/j.ifacol.2015.06.141. 15th IFAC Symposium on Infor-
mation Control Problems in Manufacturing

@ Springer

https://hal.inria.fr/hal-00757488
https://doi.org/10.4230/LIPIcs.CONCUR.2019.33
https://doi.org/10.1007/s10009-020-00603-x
https://doi.org/10.1007/s10009-020-00603-x
https://doi.org/10.4204/EPTCS.272
https://doi.org/10.1007/s10270-017-0642-5
https://doi.org/10.1007/s10270-017-0642-5
https://doi.org/10.1007/978-3-662-46675-9_14
https://doi.org/10.1007/978-3-662-46675-9_14
https://doi.org/10.1007/s10009-020-00601-z
https://doi.org/10.1007/s10009-020-00601-z
https://doi.org/10.1007/978-3-319-57288-8_17
https://doi.org/10.1007/978-3-319-57288-8_17
https://doi.org/10.1007/978-3-030-03424-5_20
https://doi.org/10.1007/978-3-030-03424-5_20
https://doi.org/10.1007/978-3-030-02146-7_6
https://doi.org/10.1007/978-3-030-02146-7_6
https://doi.org/10.1007/s10009-020-00596-7
https://doi.org/10.1145/199448.199468
https://doi.org/10.4204/EPTCS.272.5
https://doi.org/10.1007/s10009-020-00600-0
https://doi.org/10.1007/s10009-020-00600-0
https://doi.org/10.4204/eptcs.272.4
https://doi.org/10.1007/s10009-020-00597-6
https://doi.org/10.1007/s10009-020-00597-6
https://doi.org/10.1007/978-3-662-44584-6_10
https://doi.org/10.1016/j.ic.2016.03.006
https://doi.org/10.1016/j.ic.2016.03.006
https://doi.org/10.4204/eptcs.272.3
https://doi.org/10.1007/s10009-020-00598-5
https://hal.inria.fr/hal-01238879
https://hal.inria.fr/hal-01238879
https://doi.org/10.1007/978-3-319-89363-1_9
https://doi.org/10.1007/978-3-319-89363-1_9
https://doi.org/10.1007/978-3-319-57666-4_16
https://doi.org/10.1007/978-3-319-57666-4_16
https://doi.org/10.1016/j.ifacol.2015.06.141
https://doi.org/10.1016/j.ifacol.2015.06.141

684 S.Bliudze et al.

33. Sifakis, J. Rigorous system design. Foundations and Trends® in Publisher’s Note Springer Nature remains neutral with regard to juris-
Electronic Design Automation 6(4), 293-362 (2012) . https://doi. dictional claims in published maps and institutional affiliations.
org/10.1561/1000000034

34. Stachtiari, E., Mavridou, A., Katsaros, P., Bliudze, S., Sifakis,

J.: Early validation of system requirements and design through
correctness-by-construction. J. Syst. Software 145, 52-78 (2018).
https://doi.org/10.1016/].jss.2018.07.053

@ Springer

https://doi.org/10.1561/1000000034
https://doi.org/10.1561/1000000034
https://doi.org/10.1016/j.jss.2018.07.053

	On methods and tools for rigorous system design
	Abstract
	Rigorous System Design
	This issue
	References

