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Abstract

Full a posteriori verification of the correctness of modern software systems is practically infeasible due to the sheer complexity
resulting from their intrinsic concurrent nature. An alternative approach consists of ensuring correctness by construction. We
discuss the Rigorous System Design (RSD) approach, which relies on a sequence of semantics-preserving transformations
to obtain an implementation of the system from a high-level model while preserving all the properties established along the
way. In particular, we highlight some of the key requirements for the feasibility of such an approach, namely availability of
(1) methods and tools for the design of correct-by-construction high-level models and (2) definition and proof of the validity
of suitable domain-specific abstractions. We summarise the results of the extended versions of seven papers selected among
those presented at the 1st and the 2nd International Workshops on Methods and Tools for Rigorous System Design (MeTRiD

2018-2019), indicating how they contribute to the advancement of the RSD approach.
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Rigorous System Design

Modern software systems are inherently concurrent. They
consist of components running simultaneously and sharing
access to resources provided by the execution platform. For
instance, embedded control software in various domains,
ranging from household robotics through operation of smart
power-grids to on-board satellite software, commonly com-
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prises, in addition to components responsible for taking the
control decisions, a set of components driving the operation
of sensing and actuation devices. These components inter-
act through buses, shared memories and message buffers,
leading to resource contention and potential deadlocks com-
promising mission- and safety-critical operations. Similar
problems are observed in various kinds of software, includ-
ing system, work-flow management, integration software,
web services, etc. Essentially, any software entity that goes
beyond simply computing a certain function necessarily has
to interact and share resources with other such entities.

The intrinsic concurrent nature of such interactions is the
root cause of the sheer complexity of the resulting software.
Indeed, in order to analyse the behaviour of such a soft-
ware system, one has to consider all possible interleavings of
the operations executed by its components. Thus, the com-
plexity of software systems is exponential in the number of
their components, making a posteriori verification of their
correctness practically infeasible. An alternative approach
consists of ensuring correctness by construction, through the
application of well-defined design principles [4,20], impos-
ing behavioural contracts on individual components [7] or
by applying automatic transformations to obtain executable
code from formally defined high-level models [33].
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Fig.1 A simplified example of the RSD flow instantiation (the blue items are the result of the previous stage; the black ones are provided as new

input at the current stage)

The Rigorous System Design (RSD) [33] approach
enforces multiple levels of separation of concerns. It relies
on a sequence of semantics-preserving transformations to
obtain an implementation of the system from a high-level
model while preserving all the properties established along
the way.

Figure 1 illustrates a simplified instantiation of the RSD
flow. One starts by designing the application model. The
application model is verified to prove the elementary proper-
ties that are not assured by construction, such as absence of
local deadlock, and satisfaction of basic requirements. These
elementary properties, serve as a basis for the proof of global
properties, obtained by construction.

The application model is then extended with additional
components modelling the target platform to obtain the
system model, which is used to perform platform specific
analyses and the optimisation of performance through the
exploration of the design space (memories, buses, mapping
of software components to hardware elements, etc.).

Finally, the model is enriched with platform specific infor-
mation (e.g.communication primitives) and, after removing
components modelling hardware elements, executable code
is automatically generated.

Proving that the assumptions made at the modelling level
to justify the separation of concerns hold, indeed, at the
platform level, guarantees that all the properties established
throughout the design process also hold for the generated
code.

Thus, the RSD approach applies—on the higher abstrac-
tion level of the system design process—the same principles
as those provided by standard compilers for the generation
of machine-executable code from programs written in lan-
guages such as Java or C++. It consists in decomposing the
argument justifying the correctness of the entire process into
several independent arguments justifying the correctness of
individual transformations. Furthermore, it provides flexibil-
ity w.r.t.the target platforms by postponing design choices
as far as possible and allowing for different transforma-
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tions of the same model to be applied at every design stage.
However, in drawing this parallel, it is appropriate to dif-
ferentiate between commonly used compilers such as gcc,
where the public trust originates mainly from the extensive
usage experience, and verified compilers such as CompCert
[29], where preservation of semantics at the various stages is
formally verified. Although the second scenario is currently
preferable for RSD tool sets due to lack of usage history
comparable to that of compilers such as gcc, both can be
relevant in practice.

Applications. Although the RSD approach as formulated by
Sifakis [33] originates from the development of the BIP
framework for the Embedded Software design (see, for exam-
ple, [5,6]), it is applicable in a much broader variety of
domains, whereof we will mention below just a few.

Key issues of applying the RSD approach to the Cyber-
Physical Systems (CPSs), which comprise components with
both discrete and continuous underlying dynamics, are dis-
cussed in [11]. The authors argue that the objective of
cyber-physical system modelling is twofold: providing the
means for (1) the validation of the system design through sim-
ulation of such models and (2) the generation of executable
code for the discrete control sub-system. The key point here
is that the two design artefacts, i.e.the simulator and the code
of the control sub-system are obtained through two branches
of the design flow sharing a substantial prefix. Thus, the gen-
erated control sub-system is equivalent to—i.e.satisfies the
same properties as—the corresponding components of the
simulator by construction.

Expanding on the above idea, it is clear that the RSD
approach can be of great benefit for system design and oper-
ation involving the so-called Digital Twins where simulation
becomes “a core functionality of systems by means of seam-
less assistance along the entire life cycle” [32].

Autonomous and (self-)adaptive systems constitute another
significant domain for the application of the RSD approach.
These include, for example, autonomous vehicles, Cloud
and IoT applications. Indeed, such systems must react to
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changing environmental constraints and user requirements.
Therefore, they are characterised by high dynamicity both of
their behaviour and their structure. In particular, this implies
that many of the underlying verification problems are unde-
cidable [12,19] emphasising the need for by-construction
correctness provided by the RSD approach.

Key elements. The RSD approach relies on several fundamen-
tal elements, among which we highlight two. Firstly, methods
and tools for the design of correct-by-construction high-level
models are necessary to initiate the process. Although it is
difficult to imagine a unique approach that would fit all the
various application domains, it seems reasonable to expect
that these approaches will share a common core, comprising,
at the very least, some form of

(1) Requirement elicitation and formalisation and
(2) (semi-)automatic synthesis of parts of the models in order
to discharge these requirements [34].

Secondly, defining and proving the validity of suitable
domain-specific abstractions, such as architectures, proto-
cols or design patterns (e.g.[1,30,31]), is key for implement-
ing an RSD flow. Such abstractions are used to facilitate
the design of correct-by-construction high-level models.
The transformations along the RSD flow can then rely on
platform-specific implementations of these abstractions to
automatically generate refined models or executable code.
Although these platform-specific implementations would
have to be proven correct, such proofs need only be carried
out once, reducing the overall complexity of the process and
ensuring the trustworthiness of the resulting artefacts.

This issue

This special issue contains the extended versions of selected
papers presented at the 1st and the 2nd International Work-
shops on Methods and Tools for Rigorous System Design
(MeTRiD 2018-2019) held as satellite events of the cor-
responding European Joint Conferences on Theory and
Practice of Software (ETAPS 2018-2019).

The goal of the MeTRiD workshop is to promote cross-
fertilisation between research in academia and practical
applications in the industry. On the one hand, we hope that,
through the publication of research and tool papers, the work-
shop will contribute to raising awareness of the methods and
tools available among the industrial players. On the other
hand, presentation and exchange of realistic case studies
should allow academic researchers to better fit their tools
to industrial needs, thereby improving the dissemination of
results.

The first, 2018 edition was a traditional workshop with
peer-reviewed proceedings published as volume 272 of the

Electronic Proceedings in Theoretical Computer Science
(EPTCS) [10]. MeTRiD 2018 accepted three categories of
papers: regular, tool and case-study papers. MeTRiD 2019
was by invitation with presentations of, both, already pub-
lished results and ongoing work, and no proceedings.

This issue comprises 7 papers addressing the key elements
outlined above. Papers [3,18] contribute to the design of
correct-by construction high-level models by defining a high-
level modelling formalism [18] and by providing an approach
for debugging CPS models [3]. Papers [9,14,22,24,28] con-
tribute to the design and proof of domain-specific abstrac-
tions. They provide techniques for ensuring the correctness
of randomised consensus protocols [9], program block paral-
lelisation [14], usage control policies [22], and for ensuring
optimality of partition schedules [24] and energy consump-
tion [28].

Each of these papers was reviewed by at least three review-
ers and extends one of the papers presented at MeTRiD 2018
or 2019.

— The paper “Specifying and verifying usage control mod-
els and policies in TLA™” by Grompanopoulos, Goug-
lidis, and Mavridou [22] is an extension of the MeTRiD
2018 paper by the same authors [21]. It presents a case
study on specification and model checking of usage con-
trol models and policies. The focus of the paper is on
demonstrating how to express control policies in TLA™T.
By doing so the authors also introduce their own policy
model called UseCON.

— The paper “Programming dynamic reconfigurable sys-
tems” by El Ballouli, Bensalem, Bozga, and Sifakis [18]
is an extension of the ISoLA 2018 and FACS 2018
papers [16,17] by the same authors. The paper focuses
on programming dynamic reconfigurable systems. It
presents an extension of Behaviour-Interaction-Priority
(BIP) framework called Dynamic-Reconfigurable BIP
(DB-RIP), which allows dealing with reconfigurable
systems including different types of dynamism. The tech-
nical contribution of the paper consists of the formal
definition of DR-BIP, i.e. its syntax and semantics. In
addition, the paper describes a prototype implementation
of the language in Java and illustrates the application of
the approach to model 3 different examples from different
domains.

— The paper “Model-based optimization of ARINC-653

partition scheduling” by Han, Zhai, Nielsen, and Nyman [24]

is an extension of the MeTRiD 2018 paper [23], by
the same authors. This work introduces a framework
for generating optimal ARINC-653 partitioned sched-
ules, i.e.system partitions scheduled in mutual exclusion
in order ensure temporal isolation of applications in
safety-critical systems. The main challenge in synthe-
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sising optimal period and budget parameters for the
partitions is the scalability problem, since the parameter
space for larger systems rapidly grows in size and can-
not be exhaustively explored. The proposed framework
excludes, as early as possible, non-schedulable combi-
nations of parameters by applying (in order of sequence)
global schedulability tests, statistical model-checking
and model-checking in Uppaal. Finally, an evolutionary
algorithm for parameter exploration is applied that gen-
eralises the yes/no verdict of the schedulability question
into a numeric fitness evaluation.

— The paper “Correct Program Parallelisations” by Blom,
Darabi, Huisman, and Safari [14] is an extension of the
FASE 2015 and NFM 2017 [13,15] papers by the first
three authors. This paper presents a verification technique
to reason about the correctness of compiler directives
indicating which program blocks may potentially be exe-
cuted in parallel without changing the behaviour of the
program. To this end, the authors introduce an intermedi-
ate language for representing such programs, its formal
semantics and a soundness proof for deductive proof rules
that build on that semantics. The paper also discusses how
OpenMP programs can be translated into the intermedi-
ate language and how the verification methodology can
be implemented on top of the VerCors/Viper verification
tool infrastructure.

— The paper “Energy characterization of IoT systems
through design aspect monitoring” by Lekidis, and Kat-
saros [28] is an extension of the MeTRiD 2018 paper [27]
and a related presentation in MeTRiD 2019, by the same
authors. This work proposes a model-driven approach for
the energy cost estimation of Internet of Things design
aspects (availability, reliability, dynamicity and security),
by monitoring them. This paves the way to identify fea-
sible architecture solutions that satisfy energy footprint
requirements.

— The paper “CPSDebug: Automatic failure explanation in
CPS models” by Bartocci, Manjunath, Mariani, Mateis
and Nickovié¢ [3] is an extension of the SEFM 2019
paper [2] by the same authors. In particular, the authors
introduce an approach for the detection of faults and
their localisation in Stateflow/Simulink models of cyber-
physical systems. This is challenging, when there are
mixed discrete and continuous signals, while the faults
may not physically manifest immediately. The method
rests on simulation traces that satisfy or violate desired
properties expressed in Signal Temporal Logic. Those
traces that satisfy the properties are then used to mine
additional specifications, and the method produces expla-
nations from the analysis of failed traces with respect to
the properties mined.

— The paper “Verification of Randomized Consen-
sus Algorithms under Round-Rigid Adversaries” by
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Bertrand, Konnov, Lazi¢, and Widder [9] is an
extension of paper [8] by the same authors. This
work is focused on obtaining a fully automated
proof of correctness—encompassing validity, agreement
and almost-sure termination—of randomised consensus
algorithms involving arbitrarily many (faulty) processes
and rounds under round-rigid adversaries, i.e.adversaries
that are weakly fair and that select actions in a “round-
based” manner. The approach is based on the threshold
automata formalism introduced in [25,26].

We would like to thank all the authors of these papers for
their contributions and the reviewers that we have solicited
for their thorough evaluations. Furthermore, we would like
to acknowledge the help of the OCS team and, particularly,
Markus Frohme, whose help and reactivity throughout the
preparation of the issue were crucial to its successful reali-
sation.
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