International Journal on Software Tools for Technology Transfer (2022) 24:441-472

https://doi.org/10.1007/s10009-022-00658-y

GENERAL

Special Issue: FMICS 2019/2020

®

Check for
updates

Formal verification of OIL component specifications using mCRL2

Olav Bunte' - Louis C.M. van Gool? - Tim A.C. Willemse'

Accepted: 8 March 2022 / Published online: 21 April 2022
© The Author(s) 2022

Abstract

To aid in making software bug-free, several high-tech companies are moving from coding to modelling. In some cases model
checking techniques are explored or have already been adopted to get more value from these models. This also holds for
Canon Production Printing, where the language OIL was developed for modelling control-software components. In this
paper, we present OIL and give its semantics. We define a translation from OIL to mCRL2 to enable the use of model
checking techniques. Moreover, we discuss validity requirements on OIL component specifications and show how these can
be formalised and verified using model checking. To test the feasibility of these techniques, we apply them to two models of

systems used in production.

Keywords Domain specific languages - Model checking - Model transformation - Verification

1 Introduction

To better understand a software system, developers can create
abstract models during the design phase. One such model is
a behavioural model, which describes the executions of the
system. To prove that this model meets the requirements the
software should satisfy, one can use model checking, which
enables checking of requirements for all executions of the
model. While model checking holds great promise, industry
so far seems reluctant to adopt the technique. One reason is
that most model checking tools build on academic languages,
not tailored to the needs of the average engineer.

One company that has shown an interest in using for-
mal methods in the development of their software is Canon
Production Printing. Within Canon Production Printing,
modelling is a key part of system development for many

This work was carried out as part of the VOICE-B project, which is
funded by Canon Production Printing.

B Olav Bunte
o.bunte@tue.nl

Louis C.M. van Gool
louis.vangool@cpp.canon

Tim A.C. Willemse
t.a.c.willemse @tue.nl
Eindhoven University of Technology, Eindhoven, Netherlands

Canon Production Printing, Venlo, Netherlands

years already, including the development of domain specific
modelling languages [38]. The Open Interaction Language
(OIL) is an example of such a language. Its original purpose
was to model software interface communication protocols
and enable automatic analysis of event log files (trace sim-
ulation). Later it has been extended to enable the modelling
of control-software components, including the generation of
executable code. This has been used to (re)implement sev-
eral behaviourally complex software components that run on
Canon’s high-end print systems.

OIL’s trace simulation can be used to automatically test a
specification by means of a set of pass and fail traces. Thisisa
useful tool to for example reduce risk of regression when the
specification evolves. Testing does not always suffice how-
ever as several requirements are not feasible to check using
testing methods alone. This typically concerns requirements
that state the complete absence of some type of undesired
behaviour. In this paper, we use OIL as a use case to show
how the use of formal methods can help to meet such require-
ments.

While OIL was designed to have unambiguous semantics,
these semantics were previously not formally defined. As a
first contribution of this paper, we define a formal operational
semantics that corresponds to the behaviour of OIL compo-
nent specifications. Next we introduce a number of validity
requirements over these semantics, ones for which testing is
not a feasible approach.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-022-00658-y&domain=pdf

442

0.Bunteetal.

Having a formal semantics opens the door to the use of
formal methods such as model checking. As our second
contribution, we define a translation from OIL component
specifications to mCRL2 [22], using the operational seman-
tics as reference. We chose to define both an operational
semantics and a translational semantics to separate the con-
cerns of the formalisation of OIL and the translation of OIL
to mCRL2. The flexibility of mathematical notation allows
the definition of the operational semantics to stay close to the
concepts of OIL, while the translational semantics only needs
to focus on the translation from mathematical concepts to
mCRL2. The target language mCRL2 is supported by a pow-
erful toolset [13] offering model checking and equivalence
checking facilities. We have implemented the translation in
the Spoofax language workbench [44].

To formally verify the validity requirements on a trans-
lated OIL specification, we define the validity requirements
in terms of the mu-calculus. For two validity requirements
we also define algorithms to check them, as the mu-calculus
does not fit these requirements very well. To test the fea-
sibility of our methods, we apply these techniques to some
OIL specifications of software components that are used in
production at Canon Production Printing.

This paper extends [12] as follows. We previously only
described the semantics of OIL, the validity requirements
and the translation to mCRL2 informally. In this extended
version we define these formally as well. Also, we provide an
alternative way for checking two of the validity requirements.

Related work There is a large body of work report-
ing on the successful application of model checking to
industrial cases. These works typically focus on specific
business domains, such as for example railway management
[3,4,6,9,31,33], automotive [28,29,39,42] and biomedical
[26,36]. The modelling languages Statemate, UML and
SysML can be used to model systems of any business domain.
A lot of research has gone into verification of models writ-
ten in these languages, see for example [8,17,41], [16,24,
30,35,37,47] and [10,29,45] respectively and the references
therein.

Works on modelling control software that are close to ours
are those on the FSM language used at CERN [25] and on
the Dezyne language developed by the company Verum [7].
The FSM language used at CERN enforces a strict architec-
ture that is tailored to the specific application domain; for
general use, this architecture is often too rigid. Using the
Dezyne language, a software engineer can model a software
system and automatically verify that such a model adheres
to the interfaces it uses or implements. Compared to Dezyne,
OIL is primarily a modelling language, focussing on ease of
use, flexibility and an unambiguous visualisation, whereas
Dezyne was designed with verification as the primary
focus.

@ Springer

Outline In Sect. 2 we first introduce OIL informally. Then
in Sect. 3 we fix some definitions which we then use to define
the formal semantics of an OIL specification in Sect. 4. In
Sect. 5 we define what it means for an OIL specification to be
valid. We give a translation from OIL to mCRL2 specifica-
tions in Sect. 6 and show how validity of an OIL specification
can be verified in Sect. 7. In Sect. 8 we show the results of
some experiments on OIL models of systems used in produc-
tion. Lastly, we discuss our techniques and results in Sect. 9
and conclude in Sect. 10.

2 An introduction to OIL

OIL (Open Interaction Language) was created by Van Gool
as a language to specify, analyse and visualise the (com-
munication) behaviour of control-software systems, partly
based on [21]. Using dedicated tooling, one can visualise
and analyse OIL specifications. OIL is a textual language,
originally based on XML. However, as XML is not very
user friendly due its verbosity, a DSL has been designed
by Denkers and syntactic sugar was added to OIL [18].
Both the syntax definitions of the XML (OILXML) and the
DSL (OILDSL) variants of OIL and the desugaring steps
have been implemented in the Spoofax language workbench
[44].

While printing is the primary business domain of Canon
Production Printing, OIL contains no logic or language con-
structs specifically tailored to this domain and can therefore
also be used in other business domains. Moreover, OIL fol-
lows a philosophy of separation of concerns, which helps
the engineer to cope with complex behaviour by enabling
one to model separate aspects of the system separately in
a concise way. This philosophy also allows for a read-
able and unambiguous visual representation, which is often
deemed an indispensable tool in discussions among engi-
neers.

With OIL one can create both component and proto-
col specifications. A component specification models the
behaviour of a software component, whereas a protocol
specification models the desired communication behaviour
between components. Although the semantics of both types
of specifications is similar, we only focus on component spec-
ifications in this paper.

See Fig. 1 for the visualisation of an example OIL spec-
ification that models a printer with overheating issues. See
A.1 for the corresponding desugared textual OILDSL speci-
fication. In the rest of this section we give an informal view
of OIL and intuitively explain its main concepts using this
specification as running example.

Each OIL component specification consists of a
number of instance variables, areas and transitions.

Formal verification of OIL component specifications using mCRL2

443

“"this.job

add_job(nrsheets) #1:3J0B

\ this.sheets := nrsheets

[nrsheets > 0 and nrsheets <= 3 1.

X-shééf;printed(sheetnr=this.sheets) #1:3J0B
[this.sheets > 0]
\ this.sheets

.\ job_printed() #1 [silent]
[this.sheets ==]

:JOB

:= this.sheets - 1

turn_on() #2:HEAT
\ this.tmp := this.tmp + 5

this.tmp

cool_down() #1:HEAT
45 [this.tmp > 20]
\ this.tmp := 20

Fig.1 The visualisation of an example OIL specification that models a simple printer with overheating issues

2.1 Instance variables

Instance variables store the state information of an OIL com-
ponent specification. We call an instance of such state infor-
mation an instance state, which associates every instance
variable with a value. Each instance variable has an initial
value, resulting in an initial instance state. In OIL compo-
nent specifications, instance variables are prepended with the
keyword ‘this’ to indicate that these belong to the scope of
the modelled component instance.

Example 1 The running example defines four instance vari-
ables, namely power, job, tmp and sheets. They can
be found in the visualisation prepended with the keyword
this, whichindicates that this variable is part of the instance

state. Instance variable power stores whether the component
is on using enum values ‘of f’ and 'on’. Instance variable
job stores whether the component is busy with a print job
using enum values 'idle’ and 'busy’. Instance variable tmp
stores the temperature of the component as an integer value.
Instance variable sheets stores how many sheets are left
to print as an integer value. The initial instance state maps
power to ‘off’, job to 'idle’, tmp to 20 and sheets to
0. For brevity of notation, we denote such an instance state
by (off’,’idlé, 20, 0).

2.2 Areas

OIL has three types of areas: regions, states and scopes. A
region corresponds to an instance variable and is used to

@ Springer

444

0.Bunteetal.

model behaviour for this variable. Each region contains a
number of states which represent values that this variable
can have. In the context of the state we refer to this variable
as the variable for this state. A scope contains a boolean
expression that serves as an invariant and is typically used to
restrict possible behaviour. Areas are organised as multiple
(directed) trees, so an area is either a root area or has a parent.
An area may also have so-called super areas, which introduce
more parent-child like relations. Super areas relax the strict
tree structure to a directed acyclic graph and are typically
used for the creation of areas that represent a collection of
other areas.

Example 2 The running example has eight areas: two regions,
each containing two states, and two scopes. Regions are
drawn as dotted boxes, states as ovals and scopes as solid
boxes. Areas are directly contained in their parent area. No
area in this example has super areas. The two regions refer
to the instance variables power and job and contain states
for each value in the domain of these variables. The scope in
the middle models that the component may only handle jobs
when it is switched on. An alternative way of modelling this
restriction would be to make the region that refers to job
a child of state ‘on’ in the tree structure. The scope on the
bottom models that the temperature should stay below 45.

In the visualisation, a state is filled with a colour if the
current instance state maps the variable for this state to the
value of this state. The visualisation shows the initial instance
state and therefore the states with values 'of f’ and'idle’ are
filled.

Every area is associated with a condition (the area condi-
tion) and an update (the area update). The area condition of
an area is a boolean formula. It is true for a given instance
state iff it is a root area or the area condition of its parent area
is true, in conjunction with the area conditions of its super
areas and

— Incase the area is a state: the variable for this state equals
the value of this state.
— In case the area is a scope: its invariant.

We say that an area is active given an instance state iff its
area condition is true for this instance state. The area update
of an area is a set of assignments to instance variables. It is
empty if it is a root area or equal to the area update of its
parent, in union with the area updates of its super areas and
in case the area is a state, the value of this state is assigned
to the variable for this state.

Example 3 In the running example there are three active areas

in the initial instance state, coloured green. The region refer-
ring to power is active since it is a root area. The state with

@ Springer

value 'of f' is active since its parent area is active and the ini-
tial instance state maps power to ‘of f'. The bottom scope
is active since it is a root area and its invariant is true for
the initial instance state. An example of an area update is the
one for state ‘of f’, which consists of only one assignment,
namely this.power :="off".

2.3 Events and transitions

An event represents the visible behaviour of the system and
typically corresponds to a method call. In the context of
an OIL component, there are two types of events: reactive
events, which are received from the environment, and proac-
tive events, which are produced by the component itself,
either sent to the environment or kept internally (the latter
are called silent events). Proactive events are also known as
locally controlled events in the world of 10 automata [32].
Like typical methods, events can have parameters which can
be used to exchange data between components.

Example 4 The running example has six distinct events:
turn_off, turn_on, add_job, \sheet_printed,
\job_printed and cool_down. Only events
\sheet_printed and \job_printed are proactive,
indicated by the backslash that precedes the event name.
Event \job_printed is also silent, indicated by
[silent] in the visualisation. Events add_job and
\sheet_printed have integer parameters nrsheets
and sheetnr, respectively.

Transitions have a source and target area and an event.
Although it is possible, regions are typically not used as
source or target since it does not have any added value to
do so. Optionally, a transition can have a guard, a collection
of assignments and an assert. If the event of the transition has
parameters, the transition may also have arguments, which
specify fixed values for these parameters.

Example 5 The running example has seven transitions, each
drawn as an arrow from its source area to its target area.
The event of a transition is the first element in the transi-
tion label. This event is followed by a number preceded by
a hash symbol, which is used to be able to identify transi-
tions by their event and this number alone. This number is
not part of the OIL specification, but generated. The arc of
the arrow is dotted if the event of the transition is silent, oth-
erwise it is solid. Below the event, guards are shown between
square brackets and assignments are shown following a back-
slash. The assignments in this example are used to update the
instance variables tmp and sheets. There are no transitions
with asserts in this example. Only the transition with event
\sheet_printed has an argument, which specifies that
sheetnr must be equal to this. sheets.

Formal verification of OIL component specifications using mCRL2

445

With every transition we associate a transition precondi-
tion, a transition update and a transition postcondition. The
transition precondition determines whether the transition can
fire and is true iff its source area is active, its guard is true
and the values for the event parameters are consistent with
the transition’s arguments. The transition update defines how
the instance state changes whenever this transition fires and
consists of the area update of its target area and its assign-
ments. The transition postcondition determines whether the
firing of the transition was successful and is true iff its target
area is active and its assert is true. If the transition postcon-
dition is false after the transition has fired, we say that the
transition has failed.

Example 6 For the transition in the running example with
event \sheet_printed, the transition precondition is
this.power = ‘on’ A this.job = 'busy A
this.sheets > 0 A sheetnr = this.sheets, the
transitionupdateis {this.job :='busy’, this.sheets
‘= this.sheets — 1} and the transition postcondition is
this.power ='on’ A this.job ='busy’.

2.4 Updating the instance state

An update of an instance state is triggered by the occurrence
of an event. Whenever an event occurs, all transitions with
this event that can fire, do fire. All updates of transitions that
fire are applied simultaneously, resulting in a new instance
state. Afterwards, the postconditions of the transitions that
fired are checked in this new instance state. If any postcon-
dition is not met (a transition failed), we say that the event
fails, resulting in an inconsistent instance state (typically a
crash of the component). An event also fails if the transition
updates of firing transitions are incompatible, that is if two
assignments in these updates assign different values to the
same variable.

Note that having two OIL transitions with the same source
state and event does not indicate a non-deterministic choice:
if both can fire and the event occurs, they fire simultaneously.

Example 7 Suppose that in the initial instance state of the
running example the event turn_on occurs. This event cor-
responds to two transitions, identified as turn_on #1 and
turn_on #2. Both transitions fire since both transitions’
preconditions are true. This causes turn_on #1 to update
power to’on’ and turn_on #2 toupdate tmp to tmp+5,
resulting in instance state ('on’, 'idle’, 25, 0). In this instance
state both transitions’ postconditions are true and therefore
the event succeeds.

It is possible for an event to fail in the running example.
When turn_on occursininstance state (of f','idle’,40, 0),
both transitions fire which results in instance state
('on’,’idle’, 45, 0). Since in this resulting instance state it
does not hold that tmp < 45, transition turn_on #2 (and

therefore the event turn_on) fails. This failure models a
crash of the component due to overheating. To make this
restriction more explicit to the user of the component, a guard
[this.temp < 40] can be added to turn_on #2.

There are no events with incompatible transition updates
in the running example.

2.5 Concerns

As mentioned in the introduction, OIL follows the separa-
tion of concerns philosophy. This philosophy enables one to
model different aspects of a system separately, which helps
keeping OIL specifications of complex systems compact. The
running example shows this philosophy. There are three dif-
ferent parts visible in the visualisation of the specification
that each model a different aspect of the component: the
top part models the power aspect, the middle part models
the job aspect and the bottom part models the temperature
aspect. The separation of concerns philosophy also allows
one to easily change the specification if an aspect of the sys-
tem changes. For instance, if more detailed job handling is
required for the running example, the middle part that mod-
els the handling of jobs can be easily replaced with a more
refined one.

Such separate parts of an OIL specification can interact
with each other by means of references to instance variables.
For instance, instance variable power is referred to by both
the region in the top part and the scope in the middle part.
Parts can also interact with each other by synchronising on
the same event. Synchronisation can occur whenever sep-
arate parts of an OIL specification contain transitions with
the same event. When these transitions can fire and the cor-
responding event occurs, the transitions fire simultaneously,
causing these separate parts to proceed simultaneously.

We can force such synchronisation, that is make sure that
separate parts only proceed with an event if all involved parts
can proceed, by restricting the possible combinations of tran-
sitions for an event that can fire simultaneously. In OIL this
is done by giving transitions one or more concerns. Typi-
cally, every separate part of an OIL model is associated with
a unique concern. We say that an event is part of a concern
if one of its transitions has that concern. Then an event may
only occur if for each concern this event is part of, at least
one of its transitions with that concern can fire. We refer to
this as the concern condition.

Example 8 In the running example there are three concerns
defined, namely POWER, JOB and HEAT, shown after the
event in the transition label. The two transitions of event
turn_on have different concerns, namely POWER and
HEAT, which makes event turn_on only allowed if both
transitions can fire. This synchronisation enforces that the
temperature increases every time the component is turned

@ Springer

446

0.Bunteetal.

Fig.2 The three layers of an OIL component. Layer L is the possible
behaviour of the component as described by the corresponding OIL
specification, layer L is the behaviour of a run-to-completion scheduler
that executes L and layer L3 is the externally visible behaviour of the
component

on. If we would not have had these concerns, both transitions
could have fired independently of each other. A turn_on
event could then occur while the component is already on
and only increase the temperature of the component.

2.6 Scheduling and communication of events

The execution of an OIL specification is done by a scheduler,
which prioritises proactive events over reactive events. Only
when there are no proactive events to execute, the scheduler
considers reactive events received from the environment. We
call this run-to-completion semantics. To check which proac-
tive events can be produced by the component, the scheduler
checks the concern conditions of all proactive events. If this
results in more than one possible proactive event, the sched-
uler chooses arbitrarily.

Example 9 Since only events \sheet_printed and
\job_printed are proactive, no other event is con-
sidered while any of these two are possible when the
running example is executed with a run-to-completion
scheduler. This causes the printer to not listen to the envi-
ronment whenever it is busy printing a job. If we would not
have a run-to-completion scheduler, it would for instance be
possible to turn the printer off while it is busy printing. Note
that if we would put scopes around the top region and bottom
scope with the invariant job = ’idle’, the behaviour with or
without run-to-completion scheduler would be the same.

Communication between components is done asynchro-
nously. To realise this, each component has an input FIFO
queue in which reactive events are stored that the component
receives from the environment. Whenever the scheduler is
ready to receive a reactive event, it picks the next one from
this queue.

We can view a component as having three layers; see Fig. 2
for a visualisation. The first layer L; defines the behaviour
that the component is capable of as described by the OIL
specification. The second layer L, defines the behaviour of
the run-to-completion scheduler that receives and executes

@ Springer

events consistent with the behaviour defined in layer L.
Note that L, actually has less behaviour than L; as run-
to-completion only puts restrictions on the behaviour of Lj.
The third layer L3 defines the behaviour of the component as
seen from the outside, which includes an input queue to store
reactive events and supply them to layer L,. As we primarily
focus on OIL components in isolation, we will only consider
layers L1 and L, for the remainder of this paper.

3 Formal preliminaries

Before we introduce the semantics of OIL formally, we need
to introduce some definitions concerning updates and tran-
sition systems, which we only mentioned informally in the
preceding section.

3.1 Valuations and updates

We define V as the set of all values. Given a set X of variables,
a valuation over X is a function X — V that associates each
variable in X with a value. We denote VX as the set of all
valuations over X.

Definition 1 Let v € VX and w € VY be valuations over
some disjoint sets of variables X and Y. Then the union of v
and w is a valuation v U w € VXYY defined as:

wUw)x) =vx)ifxe X
wUw)x)=wkx)ifx ey

Definition2 Let X and X’ be sets of variables such that
X’ C X and let v € VX be a valuation. Then, we define
the restriction v|y: € VX' as:

vy (x) =v(x) forx € X’

In an OIL specification one can create expressions from
constants, variables and operators to define for instance
invariants or guards.

Definition 3 Let X be a set of variables. Then, we define an
expression f with the following grammar:

fii=clxlop(f,...., f)

where c is a constant, x € X a variable and op an n-ary oper-
ator for n > 0. We define E X Py as the set of all expressions
over variables X.

Given a valuation over the variables in an expression and
the interpretation of constants and operators (in boldface),
the expression can be evaluated to a single value.

Formal verification of OIL component specifications using mCRL2

447

Definition 4 Let X be a set of variables. Then, the evalua-
tion of an expression f € EXPyx given valuation v € VX,
denoted by [f]v, is defined as follows:

[c]v =c¢
[x]v =v(x)

lop(fi..... f)lv=0p([fi]v. ..., [fu]v)

where ¢ is some constant, ¢ € V is the interpretation of c,
x € X is some variable, op is some n-ary operator forn > 0
and op : V' — V is the interpretation of op.

An expression is ground if it does not contain variables.
When we evaluate a ground expression, we can leave the
valuation out of the notation. For instance, the evaluation of
a constant ¢ can be written as [c].

A valuation can be changed with an update, which is a set
of assignments to variables. We assume type correctness of
all expressions and assignments in this paper.

Definition 5 Let X be a set of variables. Then, an update U
over variables X is a set of assignments of the form x := f
forx € X and f € EXPy.

There is no restriction on how many assignments an update
can have for the same variable. However, the application of an
update on a valuation can only resultin a single value for each
variable in the domain of the valuation. If two assignments
to the same variable would result in different values, we say
that the update is incompatible with the valuation.

Definition 6 Let X be a set of variables, v € VX a valuation
and U an update. Update U is compatible with v, denoted by
CP (v, U),iff forevery twoassignmentsx := f,x ;=g e U
for x € X, it holds that [f]v = [g]v.

For example, the update {x := 1, x := 2} is incompatible
with any valuation. The update {x := x + 2, x := x % 2} is
incompatible with v(x) = 0 since 0 + 2 # 0 * 2, but it is
compatible with v(x) = 2 since 2 +2 = 2 % 2.

When an update is compatible with a valuation we can
apply it to obtain a new valuation.

Definition 7 Let X be a set of variables, v € VX a valuation
and U an update compatible with v. Then applying update
U on v by means of simultaneous assignment, denoted by
v[U], results in a new valuation w € VX such that for all
x e X:

— for all assignments x := f € U: w(x) = [f]v,
— in case there exists no assignment x := f € U for vari-
able x: w(x) = v(x).

To be able to define asserts on transitions in OIL specifi-
cations that can reason over both the state before and after

the occurrence of an event, we extend expressions with ‘old’
variables. In such expressions, variables x refer to the state
after the event occurred and variables x°/@ refer to the state
before the event occurred.

Definition 8 Let X be a set of variables, f € E X Py be some
expression and v, w € VX two valuations. Then []V, is the
evaluation of f using valuation w and the ‘old’ valuation v,
defined as:

[c]i, =¢
[x] =w(x)
[[x”ld]m =v(x)

lop(fi..... fly =op([Al - [fu]l)

where ¢ is some constant, ¢ € V is the interpretation of c,
x € X is some variable, op is some n-ary operator forn > 0
and op : V" — V is the interpretation of op.

For example, to check whether an integer variable x has
increased after applying an update U on a valuation v one

can check whether [x > x°/“]Y , results in true. We define

EX P}”(ld D E X Py as the set of all expressions over variables
X that may include ‘old’ variables.

3.2 Transition systems

A transition system is a model with states and transitions that
models the behaviour of a system.

Definition 9 A labelled transition system (LTS) is a tuple
(S, 5o, L, —) where S is the set of states, sg € S is the initial
state, L is the set of actions and — C S x L x S is the set
of transitions.

For simplicity of notation, we denote (s, a,s’) € — as
s < s'. We write s — iff there exists an s’ € S such that

s 2 s and we write s i; for some L’ C L iff there exists
ana € L' such that s —>.

We define L* as the set of sequences of actions in L.
We write € for the empty sequence and concatenate two
sequences with +.

Definition 10 Let (S, sg, L, —) be an LTS. We define —*
C § x L* x § as the transition relation over sequences such
that for states s, s € S, action a € L and sequence w € L*:

€
s —*s

atw 4

. a w
s —=* s iffJes s >t At =>F S

Often the only states of an LTS that are of interest are

states that can be reached via transitions starting from the
initial state.

@ Springer

448

0.Bunteetal.

Definition 11 Let (S, 5o, L, —) be an LTS, s € § a state and
L’ C L asetof action labels. Then, a state t € S is reachable
from s along L' iff ey : s —* ¢. We define S;’L/ C Sas
the set of all reachable states from s along L'. In case s = sg
and L’ = L we abbreviate to Sg.

When one considers a system to be communicating with
an environment, it is useful to distinguish between actions
that are sent to the system and actions that the system sends
itself. To model this distinction, we introduce the notion of an
IOLTS. Any definitions on LTSs so far also hold for IOLTSs.

Definition 12 An input-output labelled transition system
(IOLTS) (S, so, I, O, H, —)isanLTS (S, s, [UOUH, —)
where [is a set of input actions, O is a set of output actions
and H is a set of internal actions such that /, O and H are
disjoint.

To indicate whether a system is stable and thus waiting
for an input, there is the notion of quiescence.

Definition 13 Let (S, 5o, I, O, H, —) be an IOLTS. A state
. . . oy . . .
s is quiescent iff s ﬁ&, that is only input actions are

enabled in this state. We define S5 C S as the set of all
quiescent states.

A single threaded system can only do one thing at a time:
either wait for input or create outputs. Such a system is known
as an internal choice system [46].

Definition 14 An internal choice input-output labelled tran-
sition system (IOLTS™) is an IOLTS where V,eg : s EN =

s € Ss, that is input actions are only enabled in quiescent
states.

We say that two (IO)LTSs with initial states so and s, are
behaviourally equivalent iff their initial states are bisimilar,
denoted as 5o 2 5.

Definition 15 Let (S, so, L, >)bean LTSand R C S x §
a relation. We say that R is a strong bisimulation relation iff
it is symmetric and for every s, ¢t € S such that s R¢ and for

. a , .
everya € L,ifs — s’ for some s’ € S, then there must exist
ar' € Ssuchthatr = ¢ and s'Rr’. We use £ to denote the
largest strong bisimulation relation.

4 Formal OIL semantics

In this section, we formally define the semantics of an OIL
(component) specification. In Sect. 4.1 we first lay out the for-
mal definition of an OIL specification after which we define
its acceptor semantics in the form of an IOLTS that corre-
sponds with layer L in Fig. 2. Lastly in Sect. 4.2 we define

@ Springer

the execution semantics of an OIL specification that corre-
sponds with layer L, in Fig. 2, in which a run-to-completion
scheduler handles the events. We again use the example OIL
specification of Fig. 1 as running example.

4.1 Semantics of an OIL component specification

We first formally define the OIL specification itself. This def-
inition is independent of the syntactical representation used
for OIL specifications. We typically use italic capital letters
to denote sets and calligraphic capital letters to denote func-
tions.

Definition 16 An OIL specification is defined as a tuple
(X, A, T) where

— X = (X, Z) concerns the variables of the OIL specifica-
tion, where

— X is a set of variables. We partition X into a set of
instance variables X; and a set of parameters X p.

— T e VXI associates each instance variable with its
initial value.

- A = (A, C,RE, EXP) concerns the areas of the OIL
specification, where

— Aisasetof areas. We partition A into a set of regions
ARe, a set of states Ag; and a set of scopes Ag,.

— [is a partial order over A such that a C a’ iff @’ is
the parent area of a or a’ is a super area of a.

- RE : As; — Apg. associates each state with the
region it belongs to.

- EXP: A — EXPyx, associates each area a with an
expression, which is a variable in X7 incasea € Age,,
a constant in EXP in case a € Ag; and a boolean
expression in EXPy, incase a € Ag,.

- T =(E,PAR, T, CO,CO) concerns the transitions of
the OIL specification, where

— E is a set of events. We partition E into a set of
reactive events Ep and a set of proactive events Ep.
Additionally, we define Ey € Ep as the set of silent
events.

— PAR : E — P(Xp) associates each event with a set
of parameters.

- TCAXEXPx xEx(Xp-» EXPx,) xP(X; x
EXPyx) x A x EXP;I“! is the set of transitions,
where — indicates a partial function. For a transition
(so, gu, e, ARG, AG, ta,ar) € T, so is its source
area, gu is its boolean guard, e is its event, ARG
defines its arguments for parameters in PAR (¢), AG
is its collection of assignments (an update), ta is its
target area and ar is its boolean assert.

— CO is a set of concerns.

Formal verification of OIL component specifications using mCRL2

449

- CO : T — P(CO) \ {#} associates each transition
with a non-empty set of concerns. We define CO also
on sets of transitions: let 7" € T, then CO(T') =

U CO®).

teT’

We define C°* as the reflexive transitive closure of C. The
function RE follows from the tree structure of the areas in the
OIL specification. A state belongs to a region if this region
is the closest ancestor region of the state. We assume that the
tree structure of areas in the OIL specification is such that
for each state such a region exists.

Example 10 Let a,fr and a,, be the states in the running
example with values ‘off’ and ‘on’ respectively and let
apower be the region around them. Since this region is the
parent of the states, we have that a,r C dpower and aon C
Apower- Also, since both states belong to this region, we have
that RE(aoff) = apower and RE (aon) = apower- Let apear be
the bottom scope in the running example. The function EXP
associates aoff, Gon, dpower aNd dpeq; With the expressions
‘of f','on’, this.power and this.tmp < 45, respec-
tively.

The two transitions identified as turn_on #1 and
turn_on#2 aredefined as {(a,fr, true, turn_on, ¥, ¥, aon,
true) and (apeqr, true, turn_on, @, {this.tmp :=
this.tmp + 5}, anear, true) respectively. The concerns
associated with both transitions by CO are {POWER} and
{HEAT}, respectively.

See Appendix A.2.1 for the full formal definition of the
running example.

Let (X, A, T) be an OIL specification. For every areaa €
A we define its area condition AC (a) and area update AU (a).
The area condition determines whether an area is active.

Definition 17 The area condition AC(a) of anareaa € Aisa
boolean expression definedas AC(a) = NA{EXP(RE()) =
EXP@) | d € As; na TF d'} A NEXPW) | d €
Ag. Na C* a'}.

The area update defines changes to the instance state that
are necessary for the area to become active. Note that these
changes may not be enough as they do not consider invariants
of scopes.

Definition 18 The area update Ald(a) of an area a € A
is an update defined as AU(a) = {EXP(REW)) =
EXP(a)|ad € Agy na 5* a'}.

Example 11 The area conditions of areas a,f, don and apear
are defined as this.power = ‘off’, this.power =
‘on’ and this.tmp < 45 respectively. A more interesting
area condition is that of the state with value 'idle’ which is
defined as this.power = ‘on’ A this.job = 'idle’.

The area updates of areas a, s, don and ajeq; are defined as
{this.power :="off’}, {this.power :='on’} and 0,
respectively.

For every transition ¢t € T we define its transition pre-
condition PRC(t), transition update U/(t) and transition
postcondition POC(z). The transition precondition deter-
mines whether a transition can fire, which depends on the
source area condition AC (so), guard gu and arguments ARG
of the transition.

Definition 19 Let t = (so, gu, e, ARG, AG,ta,ar) € T
be a transition. Then its transition precondition PRC(t) is
a boolean expression defined as PRC(t) = AC(so) A gu A
\p = ARG(p) | p € dom(ARG)}.

The transition update indicates how the instance state
changes when this transition fires, which depends on the
target area update AU (ta) and assignments AG of the tran-
sition.

Definition 20 Let 1 = (so, gu, e, ARG, AG,ta,ar) € T
be a transition. Then its transition update U(t) is an update
defined as U(t) = AU(ta) U AG. For T" C T a set of
transitions, we define U(T") = |J U(®1).

teT’

The transition postcondition must be true after a transition
has fired, otherwise the transition has failed and we have
arrived in an inconsistent state. It depends on the target area
condition AC(ta) and assert ar of the transition.

Definition 21 Letr = (so, gu, e, ARG, AG, ta,ar) € T be
a transition. Then its fransition postcondition
POC(t) is a boolean expression defined as POC(t) =
AC(ta) A ar. For T" C T a set of transitions, we define
POC(Ty = N\ POCx).

teT’

Example 12 The transition preconditions for transi-
tions turn_on #1 and turn_on #2 are defined as
this.power = ’off’ and this.tmp < 45 respec-
tively. A more interesting transition precondition is that of
the transition with event \job_printed, which equals
this.power = 'on’ A this.job = 'busy A
this.sheets = 0. The transition updates for tran-
sitions turn_on #1 and turn_on #2 are defined as
{this.power :='on'}and{this.tmp := this.tmp+
5} respectively. The transition postconditions for transi-
tions turn_on #1 and turn_on #2 are defined as
this.power ='on’ and this.tmp < 45, respectively.

The states of the transition system are the instance states of
the OIL specification, which are valuations over X;. A transi-
tion in the transition system corresponds to the occurrence of
an event. Each event e corresponds to a set of OIL transitions

@ Springer

450

0.Bunteetal.

T,, defined as T, = {{so, gu, ¢', ARG, AG, ta,ar, CO) €
T | ¢’ = e}. For e to be allowed, a transition must be able to
fire for each concern that the event is part of. This restriction
is enforced by the concern condition.

Definition 22 Let ¢ € E be an event. Let 7, . € T, be the
set of transitions of event e that have concern ¢, defined as
T.. = {t € T, | ¢ € CO(t)}. Then, the concern condition
CC(e) is a boolean expression defined as:

CC(e) =

ANV PrCw

ceCO(T,) teT, ¢

Example 13 Let ¢ = turn_on. Then T, is the set with
the two transitions identified as turn_on #1 and
turn_on #2. As mentioned previously in Example 8 and
Example 10, these two transitions have different concerns.
For this event the concern condition is then defined as
CC(e) = this.power = ‘off’' A this.tmp < 45. As
the concern condition must be true for an event to be allowed
to occur, turn_on may only occur if both transitions can
fire.

To associate parameters of an event with values we use a
valuation over these parameters. Given an event e € E and
a valuation p € YPARE) | we write e(p) as the event e with
values for its parameters according to valuation p. In case
PAR(e) = @ there is only one such p (the empty valuation).

It depends on the current instance state and on values for
parameters which transitions of an event e can actually fire.
Given a valuation v € V¥, T, is the set of transitions of event
e thatcan fire,definedas 7)) = {t € T, | [PRC(¢)]v}. When-
ever event e occurs, all OIL transitions in 7,” fire and apply
their transition updates simultaneously. After the updates
have been applied, we need to check whether the event suc-
ceeded. If not, we arrive in a failure state denoted as (£). This
is described in the acceptor semantics of an OIL specification
defined below.

Definition 23 Let (X, A, T) be an OIL specification. Then
the acceptor semantics of the OIL specification is given by
the IOLTS (S, so, I, O, H, —), where

- §=VX S =SU{®}.

- 5o =1,

~I={e(p)lec Exnpe VPARG) 0 ={e(p) | e e
Ep\Ey Ap e VPAROY H = (e(p)|ec Ey Ap €
YPAREY L =TUOUH,

@ Springer

- = C Sp x LUfail x Sg such that for all s,s" € §
and e(p) € L, withv =s U p:

s SPL i [CC(e)]v A CP, UTY)) A
s" = vUT]x; A TPOCT) Lyicrey

s 22 @ iff [cC@]v A (~CP.UTY)) v
—~[POCTNyuacrryy
fail

®—0®

The failure of an event is explicitly modelled using failure
state (F) with a self loop with action fail to indicate that a
failure occurred. An event fails if the update is incompatible
(—=CP(v,U(T}))) or if the transition postconditions are not
met (ﬁ[[POC(Tev)]]g[u(Tev)]). Note that this IOLTS is deter-
ministic. This is because all transitions in OIL with the same
event that can fire are combined into one transition in the
IOLTS.

Lemma 1l Let (S,so,1,0,H,—) be the IOLTS that
describes the acceptor semantics of some OIL specification.
Then for all s,s',s” € S and a € L where s 4§ and
s 5 5" we have that s' = 5"

Also note that in case an instance variable has an infinite
domain (such as an integer variable), the state space may be
infinite. Similarly, in case a parameter without an argument
has an infinite domain (such as an integer parameter), the
transition system may be infinitely branching.

Example 14 The IOLTS that describes the acceptor semantics
of the running example has 51 states and 126 transitions. Due
to its size we will not show this IOLTS, but in the following
subsection we will show the IOLTS of the so-called execution
semantics of the running example instead.

4.2 Execution semantics

The IOLTS in Definition 23 describes the behaviour a com-
ponent is capable of, that is the behaviour of layer L in
Fig. 2. To execute this behaviour (layer L,) a scheduler is
needed. As mentioned previously in Section 2, the scheduler
used for OIL components has run-to-completion semantics,
which prioritises proactive events over reactive events. This
puts some restrictions on the possible behaviour of the com-
ponent.

Definition24 Let M = (S,s0,1,0,H,—) be an
IOLTS. Then y(M) is the behaviour of a run-to-
completion scheduler over M, defined as y(M) =

(S,s0,1,0, H, —’) where =’ C — such thatforalls, s’ €

. 0
S@andaeLU{fail}:siﬂs’ iffael =s A

Formal verification of OIL component specifications using mCRL2

451

Fig.3 The transition system that describes the execution semantics of
the OIL specification visualised in Fig. 1. The left figure shows the tran-
sition system and the right figure expands on dashed states. The left half
of a state is gray iff power = "of f’ and the right half of a state is gray
iff job = "idle’. In the left figure, the value written in the state is the
value of tmp. The value of sheets in these states equals 0. In the right

In case M is the IOLTS that describes the acceptor seman-
tics of some OIL specification according to Definition 23, we
say that y (M) describes the execution semantics of this OIL
specification.

The execution semantics is internal choice due to the run-
to-completion semantics of the scheduler. As the scheduler
prioritises proactive over reactive events, reactive events are
only enabled whenever no proactive events are enabled, that
is when quiescence can be observed, which is according to
the definition of an IOLTS™ (Definition 14).

Lemma2 Let M be some IOLTS. Then y (M) is an IOLTS".

Example 15 The IOLTS" that describes the execution seman-
tics of the running example has 31 states and 54 transitions.
See Fig. 3 for a visualisation of this IOLTS".

5 Validity of OIL specifications

To avoid undesirable behaviour of the scheduled compo-
nent, we introduce a number of requirements on an OIL
specification. If at least one of these requirements is not
met, we say that the OIL specification is invalid. Note that
since all validity requirements are about the execution of a
model, we only (need to) consider the reachable states. Let
(S, 50,1, 0, H, =) be an IOLTS" that describes the execu-
tion semantics of an OIL specification.

When the scheduler checks what proactive events it can
produce, it only checks the concern condition of these proac-
tive events (as mentioned at the end of Section 2). Checking

figure the value written in the state is the value of sheets. The value
of tmp in these states is the same as the state in the left figure that is
expanded. The red state with label F is the failure state. Action label on
refers to event turn_on, offto turn_off, add to add_job, sp to
\sheet_printed, jpto\job_printed and cool to cool_down

whether an event can fail would require to execute the event,
check the postcondition and then roll back to the original
state. As this might need to be done for many proactive events,
this may be computationally very expensive and is therefore
undesirable. Still, we would not want that a scheduler may
actively crash the system by producing a failing proactive
event. We do allow reactive events to fail, as this indicates
misuse of the component by the environment. To prevent the
scheduler from producing a failing proactive event, we have
the following requirement:

Requirement 1 (Safe lookaheadlessness) Proactive
actions cannot fail. More formally, requirement R1 is defined
as:

e(p)
_'EISESR,e(p)GOUH S @

Due to the run-to-completion semantics of the
scheduler, proactive events have priority over reactive events.
If a component would contain an infinite path of proactive
events, such as a loop, the scheduler would never consider a
reactive event any more once it enters this path. This would
result in a component that never reacts to events from the
environment. To ensure that a component can eventually
engage in communication, we have the following require-
ment:

Requirement 2 (Finite proactivity) Any sequence of proac-
tive events must be finite. More formally, requirement R2 is
defined as:

. U w
—IseSg.uc(OUH)® © S —

@ Springer

452

0.Bunteetal.

where (O U H)® is the set of infinite sequences over the set
of action labels O U H and s Lo iff there exists an infinite
path starting in state s that is consistent with sequence u.

When the scheduler has the choice between multiple
proactive events, there are multiple routes of proactive events
the scheduler can take until it reaches a quiescent state. Since
the scheduler chooses between proactive events arbitrarily,
the choice between these routes is non-deterministic. If some
of these routes would end up in different quiescent states, this
non-determinism may permeate the whole component, which
is undesired. To prevent the choice of the scheduler affecting
the instance state after having run to completion, we have the
following requirement:

Requirement 3 (Confluent proactivity) All possible sequen-
ces of proactive events from a state that end up in a quiescent
state, end up in the behaviourally same state. More formally,
requirement R3 is defined as:

w w’
VseSg.ww'e(OUH) 1ires;s -8 = tAs ="t = 1et

Lastly, it may be the case that some possible routes that
the scheduler can take, consist of different events. This would
mean that whether an event is produced or not is determined
non-deterministically. This is especially undesired for proac-
tive events, as these may be needed for other components to
proceed. The scheduler is free to choose the order in which
the event are produced however. To prevent the choice of the
scheduler affecting what proactive events will be produced,
we have the following requirement:

Requirement 4 (Predictable proactivity) All possible sequen-
ces of proactive events from a state that end up in a quiescent
state, consist of the same multiset of events. More formally,
requirement R4 is defined as:

/
w w
VseSg,w,w' e(OUH)* 1,1/eSs * S " tAns = s wrw

where w ~ w' iff w and w’ have the same multiset of actions.

6 Translating OIL to mCRL2

To verify the above requirements on an OIL specification,
or any requirement for that matter, we can make use of
model checking techniques [14]. To avoid reimplementing
the wheel, we can largely reuse the model checking capa-
bilities of the mCRL2 tool set [13] in the context of OIL
by creating a translation from OIL specifications to mCRL?2
specifications. We first elaborate on mCRL2, after which we
describe how OIL is translated to mCRL2. Afterwards we
describe how we have implemented this translation so that it
can be applied in practice. The proofs of lemmas and theo-
rems presented in this section can be found in Appendix B.1.

@ Springer

6.1 mCRL2

The language mCRL2 [22] is a behaviour modelling lan-
guage based on process algebra. Every mCRL2 specification
consists of two parts: a data specification and a process speci-
fication. The data specification typically contains type defini-
tions and definitions of mappings by means of rewrite rules.
The process specification contains definitions of actions and
of one or more processes, which use these actions to describe
behaviour.

In the context of mMCRL2, we typically reason with vectors
of variables instead of sets of variables. We denote a vector
with a bar on top and use indexing for projection such that
X = xi, .., X, When applicable, we may use the notation x
to denote the set {xy, .., x,} of all variables in x.

Each mCRL2 specification can be (automatically) rewrit-
ten to a normal form called a Linear Process Specification
(LPS). We use the latter format as the target for our transla-
tion. Each LPS contains exactly one process in the form of a
linear process equation.

Definition 25 Let L be a set of actions. A Linear Process
Equation (LPE) is of the following form:

Pd:D)=Y > ¢ —a(fi) P(&)

iel (3_,':E,'

where P is a process name, / is some index set, d and e; are
vectors of variables, D and E; are data types, ¢; is a boolean
expression, a; € L is an action, f, is a vector of expressions
that gives values for the parameters for a; and g; is a vector
of expressions that represents the next state. Expression c;
and expressions in f; and g; can depend on variables in d
and ¢;.

From an LPS an LTS can be easily extracted.

Definition 26 Let there be an LPS with an LPE that defines
a process P (d : D) as in Definition 25. Let id be a vector of
ground expressions in £ X P that represents the initial value
of d. Then, the process expression P (id) corresponds to the
LTS (S, so, L, —) where

- S=V,

— 50 € V¥ such that so(d;) = [id;] foreach 1 < j <n,

— — is the transition relation such that foralls € S,i € 1
and p € V¥ withv = s U p:

s S0 o if [ei]o

The language mCRL2 also comes with a tool set with
which one can apply numerous model checking techniques
on mCRL2 specifications [13]. See Fig. 4 for the basic work

Formal verification of OIL component specifications using mCRL2

453

A

1ps2lts 1ts2pbes

property
true/false

\ 4 pbessolve
PBES
lps2pbes

Fig. 4 The basic work flows in the mCRL2 tool set for generating an
LTS and for checking a mu-calculus property. The edges are labelled
with tool names

mcrl22lps

flows for generating the LTS and verifying properties defined
with the mu-calculus.

6.2 OIL in mCRL2

In this subsection, we define the translation from an OIL spec-
ification to an mCRL2 specification. This translation depends
on multiple definitions from Section 4 that were also used to
define the acceptor semantics of OIL in terms of an IOLTS
(Definition 23). We again use the example OIL specification
of Fig. 1 as running example.

To be able to represent instance states, we define a struc-
tured sort ISt in the mCRL2 data specification, which
defines a constructor IS that accepts a tuple of expressions,
representing values for the instance variables. We also add
(data) type definitions of (instance) variables where neces-
sary. Along with this structured sort we define projection
functions GET, to query the value of an instance variable
x. We call an expression of type ISt an instance struct. In
mCRL2, an instance state is then represented with a ground
instance struct, that is an instance struct without variables.

Example 16 For the running example we define the instance
state type as follows:

ISt = struct IS(

GET_power :power_type,
GET_job :job_type,
GET_tmp :Int, GET_sheets :Int);

where the types power_type and job_type are defined
separately. The initial instance state (‘off’,’idle’, 20, 0)
is represented in mCRL2 as the ground instance struct
IS (power_off, job_idle, 20, 0).

To translate an expression f € EXPy to an mCRL2
expression, we define os(f) for some instance struct s,
which translates each constant and operator to its mCRL2
counterpart and each x € Xj to GET,(s). In case f €
E XP)O(ld we define o3, (f) for instance structs s and us,
which translates each constant and operator to its mCRL2
counterpart and for each x € Xy, x% (o GET,(s) and x to
GET, (us). To translate the evaluation of expressions to the

context of mCRL2 too, we need to translate an evaluation
over instance variables to a valuation over an instance struct
variable. Given a valuation s € VX! and an instance struct
variable s, we define ss as the valuation over s such that
[GET(s)]ss = s(x) forall x € X;.

As mentioned before, the global state of an OIL compo-
nent changes by the application of an update. To formalise
this in mCRL2, we first define a setter map SET, : ISt X
Bool x T — ISt with corresponding rewrite rules for each
instance variable x, where T is the data type of x. The first
parameter of type ISt is the instance struct to be updated,
the second parameter is a boolean expression that indicates
whether the change should be applied and the third parameter
of type T is the new value for x. The boolean parameter effec-
tively makes this a conditional assignment. If this boolean
parameter evaluates to true, the entry for x in the instance
structis overwritten with the new value, otherwise no changes
are made. Why this boolean parameter is useful will be shown
later on.

Definition 27 Let the variables in X; be indexed such that
X; = {x1,..,x,}. Let x; € X; be some instance vari-
able, s some instance struct and £ and gy, .., g, some
mCRL2 expressions. Then, SET,; is defined with the fol-
lowing rewrite rules:

SETy, (s, false, f) =s
SETy; (IS (g1, -+, Gi» > 9n)» true, £) = IS(gy, .., £, .., 9y)

The result of a setter is an instance struct of expressions.
Note that £ may contain variables and therefore the result-
ing instance struct too. If it does, it depends on a valuation
for these variables which instance state the instance struct
actually represents.

Example 17 To update the variable power of the running
example, we define rewrite rules of the form:

SET_power (s, false, u_power) = s;
SET_power (IS (power, job, tmp, sheets),
true, u_power) =

IS (u_power, job, tmp, sheets);

To update an instance struct s with assignment tmp :=
tmp + 5 we can use the mCRL2 expression SET_tmp (s,
true, GET_tmp(s) + 5).

Whenever an event occurs, all transitions for this event that
can fire are involved in updating the instance state. Instead
of applying the assignments of the update simultaneously, in
mCRL2 we apply them in a sequential way, which means
we need an ordering on these assignments. Which transi-
tions for this event can actually fire, and with that, which
assignments need to be considered, can only be determined
during runtime. Instead of creating updates in mCRL2 for

@ Springer

454

0.Bunteetal.

every possible combination of transitions for an event, we
use one update that consists of a conditional assignment for
each assignment, whose application depends on the transi-
tion precondition PRC(t) of the transition #, for which the
assignment is part of the transition update I (¢).

Definition 28 Lete € E be an event. Then we define U (e) as
the list containing all pairs from the set {(PRC(t),u) | u €
U(),t € T,} in some order.

We update an instance struct s in a sequential way by
nesting setter applications on the first parameter of the setters.
To properly model a simultaneous update, we need to use the
original instance struct s to retrieve the values for instance
variables in the right-hand sides of assignments. In mCRL2,
we generate this nesting as follows:

Definition 29 Let s be some instance struct, / be a list of pairs
(b, u), where b is a boolean expression and u is an assign-
ment to an instance variable. Then, the updated instance
struct US(l, s) that results from applying the conditional
assignments in / on s is an mCRL2 expression constructed
as follows:

US, s) =
s ifl =¢
SET.(US(l', s), 05(b), 05(f)) ifl = (b, x 1= f)+1

Using the above definitions, Z/{S((j (e), s) defines the
updated instance struct after the occurrence of event e in
s. The boolean parameter of the setters are used to make
sure that exactly the assignments of transitions that fire are
applied.

Example 18 As illustrated in Example 7 in Sect. 2, the transi-
tions of event turn_on define the assignments power :=
‘on’ and tmp := tmp + 5. If turn_on would occur in
an instance state s, the resulting updated instance state,
which corresponds to US (l7 (turn_on), s), is described in
mCRL?2 as follows:

SET_tmp (SET_power (s,
GET_power (s) == power_off,
GET_tmp(s) < 45, GET_tmp(s)

power_on),
+ 5)

This update results in the instance struct equal to
IS (power_on, GET _job(s), GET_tmp(s) + 5,
GET_sheets (s)). In case s would be the initial instance
struct IS (power_off, job_idle, 20, 0), the
updated instance struct can be rewritten to
IS (power_on, job_idle, 25, 0).

With the following two lemmas we can compare the defi-
nition and application of updates in mCRL?2 with the formal
OIL semantics defined in Sect. 4. Lemma 3 shows that for

@ Springer

every event e, the set of assignments 2/(7.) of transitions of
e that can fire corresponds to the list of assignments Ule).
Lemma 4 shows that the value for every variable x € X after
the applying the update /(7)) is the same as after applying
the corresponding update expression US (U (e), s).

Lemma 3 Let (X, A, T) be an OIL specification. Let e € E,
s € VX1, p e VPARO and v = s U p. Then u € U(T}) <
peexpy : (b, u) € U(e) A [b]v.

Lemma4 Let (X, A, T) be an OIL specification. Let e €
E, s e VX p e YPARE) y = sUpand vg = sg U
p- IfCP(v,Z:I(Te”)), then for all x € Xy, v[U(T))](x) =
[GET,US (U (e), s)]vs.

Note that in case more than one assignment to the same
instance variable is considered, only the last of these assign-
ments in the order has effect, as it overwrites the previous
one. In case the assignments are compatible it does not matter
for the end result in which order the assignments are applied,
since assignments to the same variable assign the same value.
In case the assignments are incompatible, different orders
may lead to different resulting instance states. This is not an
issue however, since incompatibility should result in failure
of the event. To check whether the assignments are compat-
ible, we add compatibility checks after the update has been
done. These compatibility checks check for every assign-
ment x := f whether the value of x in the updated instance
struct equals f. Since these checks need the updated instance
struct, they can be done together with the postconditions.

Definition 30 Let s € T be some transition and let s and us
be two instance structs that represent the state before, respec-
tively, after an update. Then, the transition’s compatibility
checks CP(t, s, us), the transition’s altered postcondition
POC(t, s, us) and their combination PCP (¢, s, us) under
the assumption that the transition’s precondition holds are
mCRL2 expressions constructed as follows:

CP(t,s,us)= [\ GET((us)=o0s(f)
x:=fel(t)

POC(t, s,us) = 05,(POC(1))

PCP(t, s,us) =
os(PRC(t)) = (CP(t, s,us) A POC(t, s,us))

If two assignments x := f and x := g in an update
are incompatible, it depends on the order of the assignments
which compatibility check is violated. If the assignment x :=
g is applied later, it overwrites the application of x := f,
which violates the compatibility check of x := f.

Example 19 For the assignments that correspond to event
turn_on, we add the compatibility checks GET_power (us)
== power_offandGET_ tmp (us) == GET_tmp(s)

Formal verification of OIL component specifications using mCRL2

455

+ 5, where s and us are the instance structs before, respec-
tively, after updating.

The main reason we check compatibility after the update is
due to the complexity of checking it before the update. Since
in general we need to accommodate any instance state, we
do not know beforehand which combinations of transitions
can fire. If in the worst case each transition of an event has
an assignment to the same variable, we would need to check
compatibility for this variable for every pair of transitions,
which results in a number of checks quadratic to the amount
of transitions of an event. If we check after the update as part
of the postconditions we do not need to compare between
transitions. Note that in either case the transition precondi-
tions are needed to only check the compatibility checks and
postconditions of transitions that can fire or have fired.

With the following two lemmas, and the corollary that
follows from them, we can compare checking compati-
bility and checking postconditions as done in the oper-
ational semantics (Definition 23) to checking them in
mCRL2. Lemma 5 shows that checking compatibility with
CP(v,U(T})) corresponds to checking compatibility with
CP(t, s, US(ﬁ(e), s)). Lemma 5 shows that checking post-
conditions with POC(T,’) corresponds to checking postcon-
ditions with POC(t, s, US(U (e), s)).

Corollary 1 combines the two lemmas.

Lemma5 Let (X, A, T) be an OIL specification. Let e €
E, s € VX1, p € VPAR@, v = s Upand vg =
ss U p. Then CP(v,U(T})) & [N\ os(PRC()) =

teT,

CP(t, s,US(U (e), 5))]vs.

Lemma6 Let (X, A, T) be an OIL specification. Let e €
E, s € VX, p € YPARE) oy = s Upand vg =
ss U p. If CP(v,U(T))), then [[POC(TEU)]}Z[M(TU)] &
[N\ os(PRC(t)) = POC(t, s, USU), sN]vs -

teT,

Corollary 1 Let (X, A, T) be an OIL specification. Let e €
E, s € VX p e YPARE) oy = s Upand vg =
ss U p. Then CP(,U(T})) A [[POC(Tev)M[U(TP)] &
[\ PCP(t, s,US(U(e), s)]vs.

teT,

In the process specification, the behaviour of an OIL
model is encoded using a single monolithic process P with
an instance struct parameter to record the instance state and a
boolean parameter which is false iff an event has failed. The
body of process P is a non-deterministic choice between a
number of summands, one for each event in the OIL speci-
fication. Additionally, to model the failure state, we have a
summand with a self-loop labelled with action fail. We
define p¢ as the vector of variables in PAR(e) and ¢ as the
data type of this vector for some event e.

Definition 31 Let (X, A, T) be an OIL specification and let
is be a ground instance struct that represents the initial
instance state as defined by Z. Then the acceptor seman-
tics described in mCRL2 of this OIL specification is defined
as the process expression P(is, true) where P is a process
defined with the LPE:

P(s:ISt,b:Bool) =
D) b Ao(Cle)) > e(p?) -

ecE pe.re
r P(us, /\ PCP(t, s,us)) +

teT,

—b — fail - P(s,Db)

where us = US(ﬁ(e), s).

For the purpose of testing the translation to
mCRL2, a version of the translation was created that defined
auxiliary variables in each summand, one for every transi-
tion precondition and one for the updated state. This was
done to make the generated mCRL?2 specification more read-
able. Somewhat to our surprise, experiments showed that this
version required considerably more time for model check-
ing because more rewriting effort was needed. The tool
lpssumelm from the mCRL2 toolset can eliminate these
auxiliary variables.

An adjustment that did improve the efficiency for model
checking was not adding unnecessary compatibility checks.
From experience, it is often the case that incompatibility is
not possible in the context of an event for an instance vari-
able, because there is only one assignment that assigns to it.
Adding the compatibility check for this assignment only adds
more unnecessary rewriting effort for the mCRL?2 toolset.
Therefore, we first analyse the OIL specification to check for
possible incompatibilities, that is whether there is more than
one assignment to the same instance variable in transitions
of an event, and then we only add the incompatibility checks
for such assignments in the translation.

Example 20 See Fig. 5 for part of the main process P of
the running example, showing only the summand for the
event turn_on with auxiliary variables. On line 4 we define
auxiliary variables £1, £2 and us, which represent the tran-
sition preconditions of the transitions turn_on #1 and
turn_on #2 and the updated instance state respectively.
This is done using the sum-operator to declare the variables,
followed by conditions to fix their values (lines 4-5). The vari-
ables £1 and £2 are supplied to the setters so that only the
updates of transitions that can fire are applied. The boolean
b and the concern condition are checked on line 6. On line
7 the action turn_on is done and then the process recurses
with the updated instance state and the postconditions. One
could expect a compatibility check GET_tmp (us) ==

@ Springer

456 0.Bunte et al.
1 proc
2 P(s : ISt, b : Bool) =
3 e
4 sum f1, £f2 : Bool, us : ISt.(f1 == (GET_power(s) == power_off) && f2 == (GET_tmp(s) < 45) &&
5 us == SET_tmp(SET_power(s, f1, power_on), f2, GET_tmp(s) + 5) &&
6 b & (f1 && £2)) ->
7 turn_on.P(us, (f1 => GET_power(us) == power_on) && (f2 => GET_tmp(us) < 45)) +
s .

..

Fig.5 Part of process P of the mCRL?2 specification generated from the OIL specification visualised in Fig. 1, showing only the summand for the

event turn_on with auxiliary variables

GET_tmp (s) + 5 hereduetotheupdate SET_tmp (..,
f2, GET _tmp(s) + 5), but since there is only one
assignment to tmp defined for event turn_on, this check
is not necessary so it is left out.

Given an OIL specification, its acceptor semantics
described as an IOLTS and its acceptor semantics described
in mCRL2 have the same behaviour.

Theorem 1 Let (X, A, T) be an OIL specification. Let
(S, 80, I, O, H, =) be the IOLTS that describes the accep-
tor semantics of this OIL specification (Definition 23). Let
(8', 50, L', =) be the LTS that corresponds to the LPE of P
(Definition 26) where P(is, true) describes the acceptor
semantics of this OIL specification in mCRL2 (Definition 31).
Then so £ s,

6.2.1 Execution semantics

In Definition 24 the execution semantics is acquired from
the acceptor semantics by prioritisation of proactive events.
Such prioritisation is however at the time of writing not avail-
able in the mCRL2 tool set. Therefore we choose to create a
direct translation from an OIL component specification to its
execution semantics in mCRL2. For this we define the proac-
tive priority condition, which, given an event and an instance
state, is true iff the event is proactive or there are no proactive
events possible in the given instance state. Whether proac-
tive events are possible is checked by checking the concern
conditions of each proactive event.

Definition 32 Let (X, A, T) be an OIL specification, e € E
anevent and s some instance struct. Then the mCRL2 expres-
sion encoding the proactive priority condition PPC (e, s) is
constructed as follows:

— \/ 3
e/EEp
true

e 105(CCN) e € Eg

PPC(e, s) = " .
iTeec Lp

Example 21 The two events \sheet_printed and
\job_printed are the only proactive events in the run-
ning example. Therefore, the proactive priority condition for
the running example in some instance struct s is defined in
mCRL?2 as:

@ Springer

! ((exists snr Int.GET_job(s)
== job_busy &&
GET_sheets(s) > 0 && snr
== GET_sheets(s)
|| (GET_job(s) =

)
= job_busy &&
GET_sheets(s) =

- 0))

Along with the concern condition, the proactive prior-
ity condition must also hold for an event to be allowed, as
described below.

Definition 33 Let (X, A, T) be an OIL specification and let
is be a ground instance struct that represents the initial
instance state as defined by Z. Then the execution seman-
tics described in mCRL2 of this OIL specification is defined
as the process expression P(is, true) where P is a process
defined with the LPE:

P(s:ISt,b:Bool) =
3 (b A0s(CCe) APPCle. 5)) — e(pF) -

e€E pe:ge
P(us, /\ PCP(t, s,us)) +

teT,
—b — fail-P(s,b)

where us = Z/{S(l}(e), s).

Given an OIL specification, its execution semantics
described as an IOLTS and its execution semantics described
in mCRL2 have the same behaviour.

Theorem2 Let (X, A, T) be an OIL specification. Let
(S, s0, I, O, H, —) be the IOLTS that describes the execu-
tion semantics of this OIL specification (Definition 24). Let
(8’84, L', =) be the LTS that corresponds to the LPE of P
(Definition 26) where P(is, true) describes the execution
semantics of this OIL specification in mCRL2 (Definition 33).
Then so £).

Example 22 See Appendix A.3 for the full mCRL2
specification that describes the execution semantics of the
running example.

Formal verification of OIL component specifications using mCRL2

457

desugar (14x)

OILXML

OILDSL

static analysis

+comp. checks

Fig.6 The transformation pipeline implemented in Spoofax from OIL specification to mCRL?2 specification. NORM refers to the normalised AST

and DES refers to the desugared AST

6.3 Implementation of the translation to mCRL2

The translation from OIL to mCRL2 has been implemented in
the Spoofax language workbench [44] using the model trans-
formation language Stratego [11]. It makes use of the already
available Spoofax implementations of OIL by Denkers [18]
and mCRL2 by Van Antwerpen'. A total of 20 separate
consecutive transformations are used to translate an OIL
specification to an mCRL2 specification. See Fig. 6 for a
visualisation of this pipeline. An OIL specification is first
transformed to the normalised AST, which serves as a middle
ground between OILXML and OILDSL. On this normalised
AST anumber of desugaring and explication transformations
have been defined, which are required for the transformation
to the desugared AST. This desugared AST is semantically
equivalent to the normalised AST, reduced to basic con-
structs. To annotate variables with types, static analysis is
applied on the desugared AST. Inspired by the work of
Frenken [20] on a C++ code generator for OIL in Spoofax,
an additional intermediate representation is generated before
generating mCRL2, called OILSEM. This intermediate rep-
resentation is designed to correspond closely to the formal
semantics of OIL. On this representation we add compati-
bility checks to the postconditions of transitions. Lastly, we
transform the OILSEM representation to mCRL2.

The transformations consist of about 1200 lines of code
and 400 transformation rules in total. Most
desugar transformations are fairly small with at most 40 lines
of code and 10 transformation rules. The transformation from
OILSEM to mCRL2 is the most complex one with 300 lines
of code and 130 transformation rules.

Although the formal definition of the semantics of OIL
described in mCRL2 is proven to correctly correspond to the
formal semantics of OIL, the same is not guaranteed for the
translation to mCRL?2 implemented in Spoofax. Neverthe-
less, we are confident that it is correct. Firstly, the OILSEM
representation was designed to contain the same data used
in the definition of the operational semantics (Definition 23).
For instance, each transition defines its precondition, update
and postcondition (Definition 19-21). Because Stratego is a
functional language, the definitions in Stratego correspond

1 See https://github.com/MetaBorgCube/metaborg-mecrl2

closely to the formal definitions. Additionally, all transfor-
mations up to OILSEM are quite small and straightforward
and most desugaring transformations are equipped with post-
conditions that check whether the desugaring was applied
correctly.

During the development of the more complex transfor-
mation from OILSEM to mCRL2 we have relied on the
mCRL2 toolset to check for regressions and correctness
of the translation. Whenever a new concept of OIL was
added to the translation, an OIL specification illustrating
this concept was translated to mCRL2. Then the correspond-
ing LTS was generated using the mCRL2 toolset to check
whether the implementation of the new concept resulted in
expected behaviour. Also, we used equivalence checking to
test whether a refactoring in the translation to mCRL2, such
as the one that adds auxiliary variables to summands, did not
change the behaviour of generated mCRL?2 specifications.
This was done by comparing the LTS before with the LTS
after the refactoring, for a test set of OIL specifications. In
a few occasions this has revealed subtle errors in refactor-
ings that might have been overlooked otherwise. Equivalence
checking was also applied to test whether mCRL2 speci-
fications generated from the current translation and from
one written in Python, developed in an exploratory phase
of this project, have the same behaviour. This showed that
there was a subtle mistake in the original Python translation
that resulted in faulty behaviour in some generated mCRL2
specifications. In general, the use of formal methods dur-
ing the development process has given us more confidence
regarding the correctness of the translation implemented in
Spoofax.

7 Validation of OIL specifications

To verify whether an OIL specification is valid, that is
whether all four requirements defined in Sect. 5 are met,
we can express these requirements in terms of mu-calculus
formulae and check them on the corresponding mCRL?2 spec-
ification described in Definition 31 using the mCRL2 tool set.
The proofs of lemmas presented in this section can be found
in Appendix B.2.

@ Springer

https://github.com/MetaBorgCube/metaborg-mcrl2

458

0.Bunteetal.

7.1 Mu-calculus

The mu-calculus is an algebra used to define properties over
an LTS. In this document we only consider a subset of the
mu-calculus as defined in [22].

Definition 34 Let (S, so, L, —) be an LTS. Then a mu-
calculus formula ¢ has the following grammar:

¢::=b|Z@)|pVPloNnD|d= ¢|(a)g]lalp
| 33.0-¢ | Va.p-9
|uwZ(d:D:=¢é).¢ |vZ(d:D:=é).¢

where b is a boolean expression, Z is a fixpoint variable, e is
a vector of expressions, a € L is an action, d is a vector of
data variables and D is data type. In case a fixpoint variable
or an action does not have any parameters, the parentheses
are omitted. To ensure monotonicity of fixpoint operators, we
do not allow fixpoint variables in formulae on the left-hand
side of an implication operator =.

To ease notation, we extend the modal operators over a set
of actions L C L or a set of sequences of these actions L.
We define the following short-hand notations:

(LYo = \/ (@)¢ (L1 = /\ lal¢

ael’ ael’

(L™ =nZ.(L)YZ V) [L™1¢ = vZ.(IL'1Z A §)

Given an LTS and a mu-calculus formula, one can extract
the set of states in the LTS on which this formula is true,
which is defined as follows:

Definition 35 Let ® be the set of all mu-calculus formu-
lae, 1 a valuation over fixpoint variables, v a valuation over
data variables and (S, sg, L, —) an LTS. Then, the semantics
[¢]nv € S of a mu-calculus formula ¢ is defined as:

o = { it oo = e
[Z@]nv = n(Z)([e]v)
[o1 v ¢2]nv = [¢1]nv U [¢2]nv
[o1 A d2]nv = [¢1]nv N [$2]nv
[p1 = ¢2lnv = (S\ [¢1]nv) U [¢2]nv
[@)p]nv = {s € S | Fges : s = s' A5’ € [¢]nv)
llalp]nv = {s € S| Vyes : s > 5" = 5" € [¢]nv}
[Bap-¢lnv = (J[#nvld := c]

ceD

[Va.p-®lnv = ()[g]nvld == c]

ceD
[0Z@: D :=&).p]nv = n(fy D)
[vZd: D :=é).¢]nv = V(f;:;)([[é]]v)

@ Springer

f;:; =AY e [¢]n[Z == Yv[d := c]

where D is the set of all values that correspond to data type D,
w(f) =Txlx = fEO}andv(f) = | x| x = f(x)). The
operators [| and |_| are the infimum, respectively, supremum
operators corresponding to the subset order lifted to functions
in a pointwise fashion.

A state s satisfies a mu-calculus formula ¢, denoted as
s = ¢, iff s € [¢p]nv for all valuations n and v. We say a
mu-calculus formula is closed iff every variable reference is
within the scope of its declaration. We only consider closed
mu-calculus formulae in this paper. Note that for a closed
mu-calculus formula it holds that [¢]nv = [¢]n’v’ for all
valuations 1, ’, v and v'.

When checking a mu-calculus formula on an LTS, one is
usually only interested in whether the initial state satisfies
the formula. As mentioned in [1], to check whether a mu-
calculus formula ¢ is satisfied by all states reachable from
some state s, one can check the formula [L*]¢ on s, where
L is the set of all actions in the LTS, see Lemma 7 below.

Lemma?7 Let (S,so,L,—) be an LTS, s € S some

state, L' C L some set of action labels and ¢ be
some closed mu-calculus formula. Then, s = [L'*]¢p <
VZES;L/ ot ': ¢

Whenever we say that a mu-calculus formula ¢ is true on
a transition system, we mean that so = ¢ where sg is the
initial state of the transition system.

7.2 Checking the validity requirements

In this section, we show how each validity requirement
can be checked on an OIL specification by formalis-
ing them in the mu-calculus. For Requirement 3 and
4 we also define algorithms to check them directly on
an IOLTS, since the mu-calculus isn’t well suited for
these requirements. Let (S, so, I, O, H, —) be the IOLTS"
that describes the execution semantics of an OIL specifica-
tion. We assume that § and — are finite.

Safe lookaheadlessness

Requirement 1 disallows the existence of any trace that has
a proactive event followed by the failure action fail. This
requirement can be formalised in the mu-calculus with the
formula ¢pp; = [L*][O U H][fail]false.

Lemma8 Let M = (S, 50,1, O, H, —) be the IOLTS" that
describes the execution semantics of an OIL specification.
Then R1 is met on M iff so = ¢Rr1-

Formal verification of OIL component specifications using mCRL2

459

Finite proactivity

Requirement 2 requires that no sequence of proactive events
is infinite. Using the construct ©Z.[L']Z which is true iff
all L™ sequences are finite for some set of actions L’ (as
shown in [14]), this requirement can be formalised in the
mu-calculus with the formula ¢y = [L*]uZ.[O U H]Z.

Lemma9 Let M = (S, sg, 1, O, H,—) be the IOLTS" that
describes the execution semantics of an OIL specification.
Then R2 is met on M iff so = ¢ro.

Confluent proactivity

For Requirement 3 we need to know whether sequences end
up in the behaviourally same (quiescent) state, which is some-
thing that cannot be expressed with the mu-calculus directly.
We can work around this by first reducing the resulting tran-
sition system modulo strong bisimulation and then marking
every quiescent state with a unique action a from some action
set O by means of a self-loop. Then Requirement 3 can be
formalised in the mu-calculus with the formula:

¢rs = [L*] \/ [(O U H)*I(10 U Hlfalse = (a)true)
acQ

This formula checks for every reachable state ([L*]) if there

exists a quiescent state, identified by an actiona in Q ('\/),
acQ
such that after every sequence of proactive events ([(O U

H)*]) that ends up in a quiescent state ([O U H]false), this
quiescent state is the one marked with a ((a)true).

Lemma 10 Let M = (S,s9,1, O, H,—) be the IOLTS"
that describes the execution semantics of an OIL specifica-
tion. Then R is met on M if so = ¢g3.

Predictable proactivity

For Requirement 4 we need to know what sequences of proac-
tive events are possible, which can be collected by adding data
to fixpoint variables. This requirement can be formalised in
the mu-calculus with the formula:

®ra = [L*13w:Bag(oum) : vX (W' : Bag(O U H) :=¥).

/\ [alX(w' + {a}) A ([0 U H]false = w = w')
acOUH

The structure of this mu-calculus formula is similar to that
of the mu-calculus formula of confluent proactivity. Instead
of checking for the existence of a particular quiescent state
(action in Q), in this formula we check for the existence
of a particular multiset w, also known as a “bag” in mCRL2
(FweBag(oun)). To collect all possible sequences of proactive

events, we start with the empty multiset (X (w’ : Bag(O U
H) := ()) and then add (unique representations of) events
one by one while following the sequences ([a]X (w’ + {a})).
When we reach a quiescent state ([O U H]false), we require
that the constructed multiset w’ equals w (w = w’).

Lemmall Let M = (S,s0,1,0,H,—) be the
IOLTS" that describes the execution semantics of an OIL
specification. Then R4 is met on M iff so = ¢ra.

Note that checking this mu-calculus formula does not ter-
minate due to the existential quantification over an infinite
domain. This can be solved by adding information (in the
form of a self loop) to each non-quiescent state in the IOLTS
that provides a multiset of actions corresponding to a possible
proactive sequence. This information can then be used in the
mu-calculus formula by adding a diamond operator to give
the existential quantifier a value to pick. It is also possible to
check this requirement without the need to adapt the IOLTS,
namely by checking multiset equality for every pair of proac-
tive sequences. First, using a fixpoint operator and a universal
quantifier over proactive actions, we can recursively compute
all possible proactive sequences. Then, for each proactive
sequence w found, we can go through all possible proactive
sequences again and compare them to w, similarly to ¢r4.
However, this is very inefficient since a quadratic number
of comparisons are done. This can be improved by defining
an ordering on actions, which induces a topological order-
ing on sequences. Then, we can compute the “largest” (or
“smallest”) possible proactive sequence initially to compare
to all other sequences. Note that finite proactivity is required
to make sure that computing possible proactive sequences
terminates.

Alternative methods of checking confluent and predictable
proactivity

To be able to effectively check Requirement 3 and 4 using
the mu-calculus, the IOLTS needs to be adapted or a com-
plex mu-calculus formula is needed, which indicates that
the mu-calculus is not a great fit for these requirements.
Therefore we propose an alternate way of checking these
requirements, namely by means of an algorithm that works
directly on the IOLTS. See Algorithm 1 for the algorithm to
check Requirement 3 and Algorithm 2 for the algorithm to
check Requirement 4.

Both algorithms are very similar in structure. They both
have an initialisation phase followed by a recursive depth
first search function that returns false if a violation of the
requirement has been found. For confluent proactivity we
first reduce the IOLTS modulo strong bisimulation (line 2) to
make sure that two states are bisimilar iff they are equal. Then
we declare a map to store values for states. In Algorithm 1
we declare a map R to store reachable quiescent states (line

@ Springer

460

0.Bunteetal.

Algorithm 1 Checking confluent proactivity

1: function ISCONF(M = (S, 50, [, O, H, —))
2: Reduce M modulo strong bisimilation
Declare R as an empty map from S to Ss
R[s] = s forevery s € S5
P =S;s
for s € Si do

if —ISCONFDFS(s) then

return false

9: return true

A

11: function ISCONEDFS(s)
12: if s ¢ P then

13: for (s,a,s’) € — do

14: if =ISCONFDFS(s’) then
15: return false

16: if s ¢ R then

17: R[s] := R[s']

18: else if R[s] # R[s’] then
19: return false

20: P := P U({s}

21: return frue

Algorithm 2 Checking predictable proactivity

1: function ISPRED(M = (S, 50, I, O, H, —))
2: Declare B as an empty map from §
to multisets over O U H
B[s] = ¥ for every s € Ss
P =S5
for s € Sp do
if —~ISPREDDFS(s) then
return false

9: return frue

A A

11: function ISPREDDFS(s)
12: if s ¢ P then

13: for (s,a,s’) € — do

14: if —ISPREDDFS(s’) then

15: return false

16: if s ¢ B then

17: Bls] :=B[s'] +a

18: else if B[s] # B[s'] + a then
19: return false

20: P :=PU/{s}

21: return frue

3) and in Algorithm 2 we declare a map B to store multisets
that represents possible proactive sequences (lines 2-3). Both
maps are initialised for quiescent states (line 4). We also
initialise a set P, which stores all states that have already
been processed. Then for every reachable state (line 6) we
call the recursive function (line 7). If some recursive call has
found a violation of the requirement we return false (line 8),
otherwise we return true (line 9).

In the recursive functions (line 11), we first check if state s
was not already processed (line 12). Then for every transition
from s to some state s’ with some action a (line 13), we call
the recursive function on s’ (line 14). If the recursive call
returns false because a violation was found, we propagate

@ Springer

this back up immediately (line 15). Otherwise, if we do not
have a value for s (line 16), namely in the first iteration, we
create and store a value based on the value for s’, that was
just computed by the recursive call (line 17). In Algorithm 1
the new value for s is the quiescent state that s’ can reach and
in Algorithm 2 the new value for s is the multiset computed
for s' with an increment for action a that was needed to
reach s’ from s. If there was a value stored for s already,
we compare this to the new value (line 18) and return false
in case they are not equal (line 19), since this is a violation
of the requirement. After all outgoing transition have been
considered and no violation was found, we add s to the set P
of processed states (line 20) and return ¢rue to indicate that
no violation was found (line 21).

Correctness of Algorithm 1 can be shown by adding post-
conditions to ISCONFDFS(s) depending on what it returns.
In case ISCONFDFS(s) returns true, we have the following
postcondition:

w
5 € P AViepwe(0UHY*ues; 't > u=Rt]=u

At the end of the algorithm, if no violations have been found,
we know that ISCONFDFS(s) was called and returned true
for every s € Sg. From the postcondition it then follows
that P O Sg and that Requirement 3 is fulfilled. In case a
violation is found and ISCONFDFS (s) returns false, we have
the following postcondition:

’
w w
Jw,w' e(OUHY*uu'eSs - 8 > uns = u Nu#u

which says that state s violates the requirement. The cor-
rectness for Algorithm 2 can be shown similarly with the
postcondition

w
§ € P AViep we(OUH) uess :t =" u = w | B[t]

if ISPREDDFS(s) returns true, where w & B[t] iff w as a
multiset of actions equals B[¢], and the postcondition

’
. W% W ok s l
EIw,w’e(OUH)*,u,u’eSg S = UANS > U AW % w

if ISPREDDFS (s) returns false, where w % w’ iff w and w’
do not have the same multiset of actions.

Finite proactivity (Requirement 2) is required for these
algorithms to terminate. We show termination for Algo-
rithm 1; the same arguments can be made for Algorithm 2.
The function ISCONFDFS(s) terminates if s € S; since
Ss € P duetoline5.Incases ¢ S5, ISCONFDFS(s) may call
ISCONFDFS(s”) for successor states s’ on line 14. Given that
finite proactivity holds, we know that there are no infinite
sequences of proactive actions and therefore the recursion
always eventually ends in a quiescent state ¢ € Ss, for which

Formal verification of OIL component specifications using mCRL2

461

ISCONFDFS(¢) is known to terminate. From this it follows
that line 14 always terminates. Since we assume that S and
— are finite, we know that the for loops on lines 6 and 13
always terminate, from which we can conclude that Algo-
rithm 1 always terminates.

Apart from the reduction modulo strong bisimulation,
which can be done in O (] — |log|S]|) [43], both algorithms
run in O(|S| 4+ | = |). We will show this for Algorithm 1;
the arguments are the same for Algorithm 2. The initialisa-
tion on line 4 runs in O(|S]) in the worst case. The function
ISCONFDFS(s) runs in constant time if s € P, which is
always the case for s € S5 due the initialisation on line 4. If
s ¢ P, we call ISCONFDFS(s”) for every outgoing transition
s 2 §'. After such a call returns, in the worst case, a value
is assigned to R[s] right after. Since finite proactivity holds,
we know that a call of ISCONFDFS(s) cannot eventually lead
to another call of ISCONFDFS(s) and must eventually lead
to a call ISCONFDFS(¢) for some ¢ € S5. Therefore, for each
s € S, ISCONFDFS(s) runs linear to the number of its outgo-
ing transitions at most once. Since each transition can only
have one source state, it follows that each transition in — is
only considered once, in all calls of ISCONFDFS combined.
This implies that the loop on lines 5-7 runs in O(] — |), so
the total algorithm (excluding the reduction modulo strong
bisimulation) runs in O(|S| + | — |).

8 Experiments

To test the feasibility of our techniques, we have applied them
on two OIL models representing systems used in production
at Canon Production Printing. We refer to these two models
as EPC and AGA. In the rest of this section we will give some
results and experiences regarding experiments done on these
models.

To obtain the size of the instance state space, we generate
the LTS from the generated mCRL2 specification. This LTS is
then reduced modulo bisimulation to remove any superfluous
behaviour. See Fig. 4 for the tools used to generate an LTS
and to check a property expressed in the mu-calculus. Since
the generated mCRL2 specification is already an LPS, we can
skip the use of mcr1221ps (and use txt21lps instead).

The experiments are done on a laptop with Windows 10,
an Intel Core 17-56500U 2.50 GHz processor and 16 GB of
RAM. Although the mCRL2 toolset tends to run slower on
Windows machines, it is the main operating system used
within Canon Production Printing. This way we can test
whether we can achieve acceptable performance within the
default engineering environment. With regard to time needed
for translation, we split the transformation pipeline in two:
the transformation from OIL specification to analysed desug-
ared AST and from analysed desugared AST to mCRL2. This

Table 1 The time in seconds needed to check each requirement on the
reduced LTS for both the EPC and the AGA case. For R1 and R2 we
used the mu-calculus formulae ¢z respectively ¢ g2 and for R3 and R4
we used Algorithm 1 respectively Algorithm 2

R1 R2 R3 R4
EPC 0.4 0.4 0.4 0.4
AGA 13 12 21 22

is done because the analysed desugared AST can easily be
reused for translations. For all timings mentioned we have
taken the average of at least five runs.

The EPC case

The EPC model is an OIL specification with a total of 10
instance variables, 5 regions, 1 scope, 26 states, 29 transi-
tions and 27 events. It starts with an initialisation phase, then
enters a loop and from this loop it can return to the initial state
via a termination phase. It models a system used in produc-
tion, but the code generated from the model itself is not used
in production. The analysed desugared AST of the EPC OIL
specification is generated in about 7 seconds. From this anal-
ysed model the mCRL2 specification is generated in about 2.7
seconds. The LTS can be generated from the mCRL2 spec-
ification in about 4.5 seconds. This LTS has 6466 states, 94
actions and 11491 transitions. After reduction modulo strong
bisimulation, the LTS has 1178 states and 3207 transitions.

All four validity requirements are met on this model. See
Table 1 for the time needed to check each validity requirement
on the reduced LTS.

The AGA case

The AGA model is an OIL specification with a total of 55
instance variables, 18 regions, 2 scopes, 179 states, 220 tran-
sitions and 185 events. It starts with an initialisation phase
and then enters a loop. It models a system used in produc-
tion and, unlike the EPC model, it is used to generate the
actual code for this system. The analysed desugared AST of
the AGA OIL specification is generated in about 26 seconds.
From this analysed model the mCRL?2 specification is gener-
ated in about 90 seconds. To be able to generate the LTS for
this model within a reasonable amount of time, some changes
needed to be made to the OIL specification:

— We gave event parameters of reactive events with an infi-
nite domain a fixed value. These parameters represent
values received from the environment. In case such a
parameter has an infinite domain, there would be an infi-
nite number of transitions possible in the LTS, which
causes the generation of the LTS to not terminate. Since

@ Springer

462

0.Bunteetal.

the values of these parameters were only used to be passed
on to other components, this change does not affect the
control flow behaviour of the model.

— We removed the assignments to instance variables that
are at most only used to pass information on to other
components. This keeps these variables at their initial
values, which avoids creating multiple branches in the
LTS for each value. Note that this effectively abstracts
away some event parameters in proactive events, used to
pass this information back to the environment. This is
not an issue, since these branches are behaviourally the
same except for the value for the instance variable and
such event parameters and since we are (for now) only
concerned with the behaviour of a single component.

— We added assignments to reset instance variables to their
initial value after their value becomes irrelevant. This
makes the branches in the LTS that represent different
values for this variable converge earlier.

After these changes, the LTS can be generated in about
14.6 minutes®. The resulting LTS has 113844 states and
177156 transitions. After reduction modulo strong
bisimulation, the LTS has 23372 states and 40820 transitions.
Some of this reduction is due to non-optimal placement of the
resets. However, investigation shows that this is not the only
reason for the observed reduction. For instance, we found
that the value of a certain instance variable has no effect on
the behaviour if another instance variable was set to false.

All validity requirements are met on this model. See
Table 1 for the times needed to check each requirement on
the reduced LTS.

These validity requirements are of course not the only
properties we can check on these models. For instance, we
can check deadlock freedom with the u-calculus formula
[L*]{L)true, which we can verify to be true on the AGA
model. A more interesting property is whether it is always
possible to go to the start of the loop in the AGA model.
This requirement can be encoded with the p-calculus formula
[L*]{L*.start)true, where start represents the event at
the beginning of the loop. Checking this formula on the AGA
model results in false, which is due to events in the loop that
are deliberately put in the model to model a failure in the
system. Removing these events from L and checking the

2 As mentioned earlier, the mCRL2 toolset tends to run slower on Win-
dows machines. This is mostly because the compiling rewriter (passing
option -rjittycto lps21ts,the state space generation tool), which
is typically much faster than the default rewriter, is not available on
Windows machines. To experiment what improvement the compiling
rewriter could bring we used a virtual machine running Ubuntu 20.04
and using half the laptop’s memory. On this virtual machine the LTS
can be generated in about 185 seconds from the mCRL?2 specification
using the option -rjittyc for 1ps21lts.

@ Springer

formula again results in true. These formulae can be checked
on the reduced LTS within a few seconds.

9 Discussion of results

Our translation from OIL to mCRL2 and the subsequent ver-
ification of two OIL specifications show that it is possible to
model check OIL specifications. The current implementation
of this translation comprises a large number of smaller trans-
formations to bridge the large semantical gap between OIL
and mCRL2. While this is beneficial for the maintainabil-
ity and reusability of (parts of) the translation, a monolithic
translation would be more efficient. However, the experi-
ments show that for increasingly large models the current
translation time is rather insignificant compared to the time
needed for model checking.

At the same time, it is clear that improvements are nec-
essary before model checking can be made available to
the average engineer. These improvements concern both
automating some of the preprocessing of OIL models needed
to scale the analysis and enhancements to the back-end ver-
ification methodology we currently use.

9.1 Process structure

We have described the semantics of OIL in mCRL2 by using
a single monolithic process. A drawback of having a mono-
lithic approach over a compositional approach would be the
inability to reuse processes whenever only a part of an OIL
specification changes. In the monolithic approach, the whole
process specification needs be generated anew. Also, the sep-
arate composable processes could be reduced before being
combined which could speed up the state space generation of
the whole model. Another typical benefit of a compositional
approach is maintainability. OIL seems to be quite suitable
for a compositional approach due to the separation of con-
cerns. However, we think that a compositional approach for
describing the semantics of OIL in mCRL2 would be more
complex than the current monolithic approach, mainly for
two reasons.

Firstly, processes defined in mCRL2 lack a notion of
shared variables and can only exchange information via com-
munication of actions. Since from every part in an OIL
specification any instance variable can be read or assigned
to, the instance state would need to be synchronised between
all processes frequently. A possible alternative would be to
model the instance state as a separate process, but such solu-
tions typically scale poorly due to the overhead induced by
the extra communications needed by the main process with
this additional parallel process.

Secondly, it is complex to model the atomicity of simulta-
neously firing OIL transitions in mCRL2 in a compositional

Formal verification of OIL component specifications using mCRL2

463

manner. Communications of actions in mCRL2 seem suit-
able to describe synchronisation on an event by means of
concerns by creating a process for each concern. However,
this synchronisation also requires updating the instance state,
if these updates are found to be compatible, and checking
whether the event fails. To share results and prevent race
conditions between processes when checking compatibility,
updating the instance state and checking the postconditions,
additional communication would be needed.

9.2 Automating Preprocessing

As the AGA case clearly shows, the state space of an OIL
specification has the potential to explode if it has many
instance variables. To help the state space generator, we man-
ually analysed the usage of these variables and adapted the
OIL specification. This is both tedious and error-prone, and
therefore a candidate for automation. We note that there is a
wealth of literature on such static analysis; see for instance
research in the fields of program slicing [40] and live vari-
able analysis [19]. A more interesting challenge, however,
is to investigate whether it is possible to implement such
static analysis techniques at the meta-level in a language
workbench such as Spoofax, so that such techniques become
available to all languages defined in such a workbench.

We remark that the mCRL2 toolset already contains some
tools that help reduce the state space by removing variables
that have no effect on behaviour, such as 1psparelm and
lpsstategraph [34]. However, experiments have shown
that these tools are not very effective on mCRL2 specifica-
tions generated from OIL specifications. This is due to our
monolithic representation of the instance state. To make these
tools more effective, the structure of the generated mCRL2
will have to be redesigned or the tools have to be improved.

9.3 Enhanced Back-end

Asshownin Sect. 7, the mu-calculus is a good fit for encoding
Requirement 1 and 2, but not for Requirement 3 and 4. We do
remark that this is the first time that we have come across a
functional property that cannot be expressed in the first-order
modal mu-calculus without adding non-trivial information
to the model. It may be necessary to resort to an even more
expressive logic, such as a higher-order fixed point logic [2]
or some hybrid logic [27], to encode such properties in a logic
without modifying the model. The downside of using such
logics is that, as far as we are aware of, no toolset supports
such logics. Alternatively, it may be possible to check these
requirements more efficiently by encoding them directly in
a Parameterised Boolean Equation System [23] (see PBES
in Fig. 4), thereby sidestepping the limitations of the mu-
calculus.

Another aspect that could be exploited is that specifica-
tions such as the AGA model have a number of instance
variables set during the initialisation phase. These basically
create configurations for the behaviour that is defined in the
loop after the initialisation phase. This could be exploited
by modelling them as features instead and apply techniques
in the context of software product lines [15]. Some research
has already been done regarding model checking software
product lines in the context of mCRL2 [5].

9.4 Using model checking for OIL in practice

OIL still is in an early stage of development, so the number of
cases where it has been applied for systems used in produc-
tion within Canon Production Printing is limited. Currently,
only two of these cases have been used for model check-
ing experiments, namely the EPC and AGA case described
in Sect. 8. We do feel that these two cases are sufficiently
representative: the EPC case uses separation of concerns to
its fullest extent, while the AGA case models one of the
behaviourally most complex components available.

We envision that when OIL is used on a larger scale, we
need to hide the complexities of the use of mCRL2 from the
engineer. Checking the validity requirements would be done
by the click of a button or automatically, and preferably return
a counter example when violated. An engineer should also
be able to specify custom requirements in a language that
is simpler than the mu-calculus, and check these on an OIL
specification in a similar fashion. Other uses of the gener-
ated mCRL2 would be conformance checking or regression
checking, but this is future work.

10 Conclusion

We have presented the Open Interaction Language
(OIL), a language for modelling the behaviour of software
systems. By means of an example OIL component specifi-
cation we have explained the semantics of OIL informally.
We have also defined the operational semantics of OIL com-
ponent specifications formally. This considers two layers:
the first layer that defines the behaviour that a component is
capable of and the second layer that defines the behaviour of
a run-to-completion scheduler that executes the component.
Both are defined in the form of an input-output labelled transi-
tion system. On the execution semantics we have introduced
four validity requirements, which aim to prevent undesirable
behaviour.

We have defined a translation from OIL to mCRL2,
based on the formal operational semantics, to enable the use
of model checking techniques on OIL specifications. The
mCRL2 specifications generated with this translation have
been shown to correspond to the operational semantics of

@ Springer

464

0.Bunteetal.

OIL. Thanks to the definition of the operational semantics,
the definition of the translation is rather straightforward; the
main difficulties are how to apply the updates and how to rep-
resent the instance variables. Another benefit of having this
separation is that we can easily experiment with alternate
definitions for the translation to mCRL?2. The translation has
been implemented using the model transformation language
Stratego in the language workbench Spoofax.

We have defined the four validity requirements in terms
of the mu-calculus so that they can be verified using the
mCRL2-toolset. For the last two validity requirements we
have also proposed an algorithmic approach, which we find
more suitable. We have checked these validity requirements
on two OIL specifications of systems used in production at
Canon Production Printing and with this showed that the
application of model checking techniques on OIL specifica-
tions is feasible.

Acknowledgements We thank the reviewers for their helpful feedback.

Availability of data, material and code The implementation of the
translation from OIL to mCRL2 cannot be made available currently
due to confidentiality, but progress is being made to make it publicly
available. The code for Algorithm 1 and 2 used for the experiments
can be made available upon request. The industrial models used in the
experiments cannot be made available due to confidentiality.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Running example
A.1 OILDSL

See below for the OILDSL specification of the OIL specifi-
cation visualised in Fig. 1.

component heat2

enum power {off, on}

@ Springer

enum job {idle, busy}
var power:
var job: job = ‘idle’
var tmp: integer = 20
var sheets: integer = 0

power = ’‘off’

region power (this.power)
{

state off('off")

state on(’'on’)

scope power_on|[this.power == ‘on’]
{
region job(this.job)
{
state idle(’idle’)

state busy(’busy’)

scope heat[this.tmp < 45]

in off on turn_on()

concern POWER end

in on on turn_off() go off
concern POWER end

go on

in idle if nrsheets > 0 and nrsheets <= 3
on add_job() assign this.sheets

:= nrsheets
go busy concern JOB end
in busy if this.sheets == 0

do[silent] job_printed() go idle
concern JOB end
in busy if this.sheets > 0
do sheet_printed(sheetnr = this.sheets)
assign this.sheets := this.sheets - 1
go busy concern JOB end
in heat on turn_on() assign this.tmp
:= this.tmp + 5
go heat concern HEAT end
in heat if this.tmp > 20 on cool_down ()
assign this.tmp := 20 go heat
concern HEAT end

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Formal verification of OIL component specifications using mCRL2

465

A.2 Formal semantics
A.2.1 Formal definition of the OIL specification

The OIL specification given in appendix A.1, visualised in
Fig. 1, is formally defined as the tuple ((X,Z), (A, C, RE,
EXP),(E,PAR, T, CO,CQO) where

— X=X;UXp where X; ={power, job, tmp, sheets}
and Xp = {nrsheets, sheetnr},

— I(power) = 'off’, Z(Fob) = 'idle’, Z(tmp) = 20
and Z(sheets) =0,

- A = Age U Agr U Age where Ag, = {apuwers ajob}v
Ast = {auff’ Qon Aidle abusy} and Ag. = {apower_am
Aheat)

— Qjob T Apower_on> Qoff L Apower> Gon T Apowers Aidle T

ajop and apysy T @job,

7zg(“off) = dpower> RE(apn) = Apower s Ré&(aiare) =

ajop, and RE (apusy) = ajob,

— E = EgR U Ep where Ep = {turn_on, turn_off,
add_job, cool_down}, Ep = {\sheet_printed}
UEpand Eyg = {\job_printed},

— PAR(add_job)={nrsheets},
PAR(\sheet_printed) =
PAR(e) = ¥ for all other events e,

- T ={t1 = (aopy, true, turn_on, @, ¥, aon, true),
1) = (Gon, true, turn_off, ¥, ¥, a,ff, true),

{sheetnr} and

t3 = (ajqie, nrsheets > 0 A nrsheets < 3,
add_job, ¥, {this.sheets := nrsheets},
Qpusy, true), t4 = (apusy, this.sheets = 0,

\job_printed, ¥, @, a;4ie, true),
t5 = {(apusy, this.sheets > 0, \sheet_printed,
{(sheetnr, this.sheets)}, {this.sheets
:=this.sheets — 1}, apusy, true),
te = (Qheat,true, turn_on,?, {this.tmp :=
this.tmp + 5}, apear, true),
t7 = (Gpear, this.tmp > 20, cool_down,?,
{this.tmp := 20}, anear, true)},

— CO = {POWER, JOB, HEAT} and

— CO(t)) = {POWER}, CO(t;) = {POWER}, CO(t3) =
{JOB}, CO(t4) = {JOB}, CO(t5) = {TJOB}, CO(ts) =
{HEAT}, CO(t7) = {HEAT).

A.3 mCRL2

See below for the mCRL?2 specification generated from the
OIL specification visualised in Fig. 1.

sort
ISt = struct

IS (GET_power power_type, GET_job
job_type,
GET_tmp Int, GET_sheets Int) ;

power_type = struct power_off |
power_on;
job_type = struct job_no | job_ok;

map
SET_power ISt # Bool # power_type
-> ISt;
SET_job ISt # Bool # job_type -> ISt;
SET_tmp ISt # Bool # Int -> ISt;
SET_ sheets ISt # Bool # Int -> ISt;
var
s : ISt, b Bool, pow power_type,
job job_type, tmp Int, she Int,
U_pow power_type, u_job job_type,
u_tmp Int, u_she Int;
eagn
SET_power (s, false, u_pow) = s;
SET_power (IS (pow, job, tmp, she),
true, u_pow) =
IS(u_pow, job, tmp, she);
SET_job (s, false, u_job) = s;
SET_job (IS (pow, job, tmp, she),
true, u_job) =
IS(pow, u_job, tmp, she);
SET_tmp (s, false, u_tmp) = s;
SET_tmp (IS (pow, job, tmp, she),
true, u_tmp) =
IS(pow, job, u_tmp, she);
SET_sheets (s, false, u_she) = s;
SET_sheets (IS(pow, job, tmp, she),
true, u_she) =
IS (pow, job, tmp, u_she);
map
PPC ISt -> Bool;
var
S ISt;
eqgn
PPC(s) = !((exists f1 Bool, us Ist.
fl == (GET_power (s) == power_on
&&
GET_job(s) == job_ok &&
GET_sheets(s) == 0)
&& £1) ||
exists f1 Bool, us ISt, sheetnr:
Int.
fl == (GET_power (s) == power_on &&
GET_job(s) == job_ok &&
GET_sheets(s) > 0 &&
sheetnr == GET_sheets(s))
&& f£1);

act

@ Springer

466 0. Bunte et al.
fail ; fl, GET_sheets(s)
turn_off ; - 1) &&
add_job: Int; b && £f1) ->
job_printed ; sheet_printed(sheetnr) .P(us,
sheet_printed: Int; fl => GET_power (us) == power_on &&
turn_on ; GET_job(us) == job_ok) +
cool_down ;

sum f1, £f2 Bool, us ISt.
proc (f1 == (GET_power (s) == power_off)
P(s Ist, b Bool) = &&
'b -> fail P(s, b) + f2 == (GET_tmp(s) < 45) &&
us == SET_tmp (SET_power (s, f1,
sum f1 Bool, us ISt. power_on) ,
(f1l == (GET_power (s) == power_on) && f2, GET_tmp(s) + 5) &&
us == SET power (s, fl, power_off) && b && (fl1 && f2) && PPC(s)) ->
b && fl1 && PPC(s)) -> turn_on.P(us,
turn_off.P(us, (f1 => GET_power (us) == power_on)
fl => GET_power (us) &&
== power_off) + (f2 => GET_tmp(us) < 45)) +
sum f1 Bool, us ISt, nrsheets: sum f1 Bool, us
Int. ISt.
(fl == (GET_power (s) == power_on && (f1l == (GET_tmp(s) < 45 &&
GET_job(s) == job_no && GET_tmp(s) > 20) &&
nrsheets > 0 && nrsheets us == SET tmp(s, f1, 20) &&
<= 3) && b && f1 && PPC(s)) ->
us == SET_sheets (SET_job cool_down.P(us, fl1 => GET_tmp(us)
(s, f1, job_ok), < 45);
f1, nrsheets) &&

b && fl1 && PPC(s)
add_job (nrsheets) .P(us, fl =>
GET_power (us) == power_on &&

) >

GET_job(us) == job_ok) +

sum f1 Bool, us Ist.

(f1 == (GET_power (s) == power_on &&
GET_job(s) == job_ok &&
GET_sheets(s) == 0) &&

us == SET_job(s, fl, job_no) &&

b && f1) ->
job_printed.P (us,
fl => GET_power (us) == power_on &&
GET_job(us) == job_no) +

sum f1 Bool, us ISt, sheetnr
Int.

(f1 == (GET_power (s) == power_on &&
GET_job(s) == job_ok &&
GET_sheets(s) > 0 &&
sheetnr == GET_sheets(s)) &&

us == SET_sheets (SET_job(s, f1,

job_ok),

@ Springer

init P(IS(power_off, job_no, 20, 0),

true) ;

B Proofs
B.1 Proofs for Section 6

Lemma 3 Let (X, A, T) be an OIL specification. Let e € E,
s € VX1 p e VPARE® and v = s U p. Then u € Ui &
Jpeexpy 1 (b, u) € U(e) A [b]v.

Proof We prove the two implications separately:

=: Let u € U(T)) be some assignment. By Definition 20,
thereis at € T, such that u € U(¢). By the definition of
T}, we know that t € T,. Using this and Definition 28,
it follows that (PRC(1), u) € U(e). By the definition of
T} we also know that [PRC(¢)]v, from which we can
conclude that (b, u) € U(e) A [D]v.

«<: Let (b,u) € U (e) be some pair. By Definition 28, there
isat € T, such that u € U(t) and b = PRC(t). Since
[b]v, we know that [PRC(¢)]Jv and therefore that t € T,

Formal verification of OIL component specifications using mCRL2 467
using the definition of 7,”. Using Definition 20 we can [[/\ 0s(PRC(t)) = CP(t, s,US(U (e), s)]vs
conclude that u € U(T,"). teT,

= Alos(PRCt)]vs = [CP(t. 5. USU(e). s))]ve

Lemma 4 Let (X, A, T) be an OIL specification. Let teT,

e € E,s € VXI, p € VPAR(L'), v = sUp and — /\[[C’P(LS,US([}(E),S))]]US

vs = s U p. If CP(v,U(T))), then v[U(T/)](x) = reTV

[GET, US(U(e), s))]vs forall x € X;.

Proof Pick some x € X and assume CP (v, U(T,’)) holds.
The definitions of US (Definition 29) and SET, (Defini-
tion 27) show that setters for different instance variables do
not influence each other, so only setters for x can influence
the value of x after the update has been applied. Therefore,
we only need to consider assignments to x. We distinguish
two cases.

— Case: There exists no assignment x = f e U(T)).
By Definition 5, this means that v[U/(7))](x) = v(x).
Using Lemma 3, we know that there is no (b, x :=
f) € Uf(e) such that [pJv = true. Knowing this,
US does not change the value for x and therefore
[GET, US(U(e), s))]vs = [GET, (s)]vs. Since v(x) =
[[GETX(S)]]USA, we can conclude that v[U/(T))](x) =
[GET: US (U (e), s)]vs.

— Case: There exists an x = f € U(T,) for some f €

EXPx. Since CP(v,U(T})), we only need to consider
one assignment x := f, as all assignments to x in U (7))
result in the same value. By Definition 5, this means that
UTHI) = [f]v.
Using Lemma 3, we know that there is a (b, x := f) €
U (e) such that [b]v = true for each x := f € U(T)).
In the construction of /S (0 (e), s) (Definition 29), each
right-hand side of an assignment x := f is trans-
lated to an mCRL2 expression o (f) and then used to
overwrite the entry in the instance struct for x. Since
CP(v,U(T})) and [f]v = [os(f)]vs, we know that in
the mCRL2 context we too only need to consider one
assignment x := f, as all assignments will result in the
same value. With only this assignment in mind, it fol-
lows that [GET, US(U (e), s))]vs = [os(f)]vs. Since
[fTv = [os (Af)]]vS we can conclude that v[U/(T})](x) =
[GET US (U (e), s)]vs.

Lemma 5 Let (X, A, T) be an OIL specification. Let e €
E, s € VX1, p € VPAR(E), v = sUpand vg =
ss U p. Then CP(v,U(T})) & [N\ os(PRC()) =

teT,

CP(t,s,US(U(e), s))]vs.

Proof First we rewrite the right-hand side using that [f]v =
[os(f)]vs forany f € EXPx, T} = {t € T, | [PRC(1)]v}
and using Definition 30 and 20 (in that order):

= A\ [CEL.USWU(e). s)]vs = [os(H)]vs

teTy x:=fel(t)

= N [CEL.USU(e), s)]vs = [os(f)]ve
xi=fel(TY)

What is left to prove is that CP(v,U(T))) <
A [GET,USU(e), s)]vs = [os(f)]vs. Weprove

x:=fel(T})

the two implications separately:

=: Since CP(v,U(T))) we know for every two assign-
ments x = f,x := g € UTY) that [f]v = [g]v.
By Definition 5, this implies that the updated valuation
v[U(T,)] exists such that for every x := f € U(T))
we have that v[U/(T})](x) = [f]Jv. Using Lemma 4 and
using that [f]v = [os(f)]vs, we can rewrite this to
[[GETx(US(ﬁ(e), s)]vs = [os(f)]vs which is what
we needed to show.
<: We prove the contrapositive. Since —=CP (v, U(T,)),
there must exist two assignments x := f,x =
g € U(T)) such that [fJv # [g]v. Because x :=
f,x = g € U(T)), the conjunction A
x:=fel(TY)
[GET, US(U(e), s)]vs = [os(f)]vs contains the
two terms [GET,USU(e), s)]vs = [os(f)]vs
and [[GETx(Z/{S(ff(e),s))}]vS = [os(g)]vs. From
[os(Dlvs = [f]v, [os(@]vs = [[(g]]v and [fJv #
[¢lv it follows that [GETyUS(U(e),s)]vs #
[GET, (US(lj(e), s))]vs, which is not possible. There-

fore, it cannot be that A
x:=fel(T})
[os(f)]vs holds, which is what we needed to show.

We have shown that CP(v,U(T})) < A
x:=fel(TP)

[GET. USU (e), s)]vs = [os(f)]vs, from which we

can conclude that CP(v,U(T))) < [\ os(PRC(t)) =

teT,

CP(t, s, USU(e), s))]vs.

Lemma 6 Let (X, A, T) be an OIL specification. Let ¢ €
E, s e VX, p € VPAR@, v = sUpand vg =
ss U p. If CP(v,U(T})), then [[POC(T;’)]]Z[U(TU)] &

[\ 0s(PRC(1)) = POC(t, s, US(U (e), s))]vs.

teT,

@ Springer

[GET US (U (e),)]vs =

468

0.Bunteetal.

Proof Using Definition 21 and using the definition of T}/ (in
that order), we can derive:

[POCTN oy = N\ [POCOLuscrny

teTy

/\[PRC®]v= [POCO] 1410,

teT,

We can rewrite the right-hand side of the lemma to a similar
form:

[/\ 0s(PRC(1)) = POC(t, s,US(U (e), 5))]vs

teT,
= Alos(PRCt)]vs = [POC(t, s, US(U e), 5))]vs
tel,

= Alos(PRCt)]vs = [oF

uS(U(e),s)(POC(I))HvS
teT,

Since [PRC(H)]v = [[O'S(PRC(I))HUS, we only need to
prove that [[POC(I)]]U[U(TL)] & [of s,)(POC(I))]]US.

We prove this by proving that [[POC(I)]]Z[L{(T;)]

s . .
[[au 8(0(6)’5)(77(’% (t))]vs by induction on the structure of

POC(t). In case the expression is a constant ¢, we can
derive that [c]},) = = [c] = (¢)]vs. In case

US(U().S)
the expression is a variable x € PAR(e), we can derive
that X[sy = v = [x]vs = log g4, o Dvs.

In case the expression is a variable x € X;, we can
derive using Lemma 4 that ﬂx]]” ZJ(T;)] = v[UT)]x) =
[GETyUS(U(e), s)]vs = [of TS0, S)()c)]]vs. In case
the expression is a variable x°/¢ for some x € X, we
can derive that [x°/ Z[Z/I(Te”)] = v(x) = [GET,(s)]vs =
(x)Jvs. As for the inductive step, in case

S
GL{S(U(e),s)

the expression is an operator op(f1, .., f»), assuming that

v — [5S , ;

Hfl]]v[Lt(Tev)] = HUMS(O(E),S)(ﬁ)HvS foralll < i < n,
1 v — S

we can derive that Jop(fi, .., f")ﬂv[u(rev)] = [[OLIS(U(e),s)

(op(f1,-r fud)]vs

Since we have shown that [POCO]} vy €

uS(U(e)s)(POC(t))HUS’ we can

[POCTN iy < [N 0s(PRC(1)) = POCG, s,
¢ teT,

conclude that

USU (e), s))]vs.

Theorem 1 Let (X, A, T) be an OIL specification. Let
(S, s0, 1, O, H, —) be the IOLTS that describes the accep-
tor semantics of this OIL specification (Definition 23). Let
(8', 54, L', —=") be the LTS that corresponds to the LPE of P
(Definition 26) where P(is, true) describes the acceptor
semantics of this OIL specification in mCRL2 (Defini-
tion 31). Then 59 £ s,,.

@ Springer

Proof For the sake of notation, we denote states in S, which
are valuations over the process parameters s and b, as (sg, b)
for any s € VX7 and b € B, where s is the evaluation for
s such that s(x) = [GET,(s)]ss and b is the value for b.
Let R = {(s, (ss, true)) | s € VXIY U {((ss, true),s) | s €
VXU((®. (ss. false)) | s € VXIYU{((ss, false), ®) | s €
VX7}. Note that R is symmetric and that s Rs(,. We show that
R is a strong bisimulation relation (see Definition 15). We
distinguish three cases.

— Case sR(ss, true) for some s € VXI_ If there is some
a € L and s’ € Sg such that s 4 ', then accord-
ing to Definition 23 there must be some ¢ € E and
p € VPAR) guch that a = e(p) and [CC(e)]v where
v = s U p. Since [CC(e)Jv = [os(CC(e))]vs for
Vs = Sg U p, using Definition 26 and 31, there must also

, e([pe]vs) ,

be a (ug, b) € S’ such that (sg, true) ——' (ug, b)
for some u € VX7 and b € B. Since p¢ is a vector of
all parameters in PAR(e), it follows that [p¢]vs corre-
sponds to p and therefore e([p¢]vs) = a. To show that
this case satisfies the strong bisimulation condition, all is
left to show is that s’ R(ug, b). We distinguish between
two cases.

— Case CP(v,U(T})) A [[POC(TeU)]]Z[M(T;)]' From
Definition 23 it then follows that s" = v[U(T})]|x, .
Using Definition 26 and 31 we can see that u g corre-
sponds to the evaluated instance struct [US (U (e), s)]
(ss U p) = [US(U (e), s)]vs. Then using Lemma 4
we canderive thatu = s'. Also, since CP (v, U(T,”)) A
[POC(T))] 5[L1(TJ’)] , uAsing Corollary 1, it follows that
[N\ PCP(t,s,US(U(e), s))]vs. Then using Def-
teT,
inition 26 and 31 it follows that b = true. Since

(s, (s, true)) € {(s, (ss, true)) | s € VX1}, we can
conclude that s’ R(ug, b).

— Case =CP (v, U(T}))V—-[[POC(T“)]]U[M(TL)] From
Definition 23 it then follows that s’ = @. Using
Corollary 1 we have that—] A\ PCP(t, s, USU (e),

teT,
s))]vs. Then using Definition 26 and 31 it fol-

lows that b = false. Since (®, (ug, false)) €
{(®, (sg, false)) | s € VX1}, we can conclude that
s'R(ug, b).

— Case (sg, true)Rs for some s € VXI_ If there is some
a € L and (s,,b) € S such that (sg,rrue) -’
(sé, b), according to Definition 26 and 31 there must
be some e € E and p € YPAR@) guch that a =
e([p¢]vs) and [o5(CC(e))]vs where vs = 55U p. Since
[os(CC(e)]vs = [CC(e)]vforv = sUp, using Defini-

tion 23, there must alsobe au € S such that S ﬂ> u for

someu € VX7 and p’ € YPAR(@) Since p¢ is a vector of

Formal verification of OIL component specifications using mCRL2

469

all parameters in PAR (e), it follows that p’ corresponds
to [p¢Jvs (and p = p’) and therefore e(p’) = a. To
show that this case satisfies the strong bisimulation con-
dition, all is left to show is that (s}, b) Ru. We distinguish
between two cases.

— Case b = true. Using Definition 26 and 31 it
follows that [A\ PCP(t, s, US(U(e), s))]vs and

teT,
that s” corresponds to the evaluated instance struct

[US(U (e), $)](ss U p) = [US(U(e), s)]vs. Then
using Lemma 4 we can derive that s’ = v[U/(T,))]]x, .
Also, using Corollary 1 we know that CP (v, U(T,}))A
[POC (TEU)M[L{(T;)]' From Definition 23 it then fol-
lows that u = [UT))]|lx, = . Since
((sL,true), s’y € {((ss, true),s) | s € VX1}, we can
conclude that (s, b) Ru.

— Case b = false. From Definition 26 and 31 it fol-
lows that =] /\ PCP(t, s, US e), s))]vs. Using

tel,
Corollary 1 we then know that =CP (v, U(T,})) V

—.[[POC(TEU)M[M(T:)]. From Definition 23 it then
follows that u = @@. Since ((sé,false),@) €
{((sg, false), ®) | s € VX7}, we can conclude that
(s, b)Ru.

— Case ®R(sg, false) or (s, false)RE for some s €
VX7, According to Definition 23 the only transition pos-
sible from () is (F) ol ®. According to Definition 26

and 31 the only transition possible from (sg, false) is

(s, false) fail, (sg, false). Since both transitions
have the same action and since the target states of these
transitions are related again (because they are the same
as the source), we can conclude that R is a strong bisim-
ulation relation in this case.

Since we have shown that every element satisfies the strong
bisimulation condition, we know that R is a strong bisimu-
lation relation. Since soRs,, we can conclude that s £ ;).

Theorem 2 Let (X, A, T) be an OIL specification. Let
(S,s0,1,0, H,—) be the IOLTS that describes the exe-
cution semantics of this OIL specification (Definition 24).
Let (§',s5, L', —') be the LTS that corresponds to the
LPE of P (Definition 26) where P(is, true) describes the
execution semantics of this OIL specification in mCRL2
(Definition 33). Then so 2 .

Proof The only difference from Theorem 1, is that transitions
in the IOLTS are additionally restricted by y (Definition 24)
and that transitions from the mCRL2 process are additionally
restricted by PPC(e). Therefore, it suffices to prove that
y and PPC(e) put the same restrictions on the underlying
LTSs. The rest of the proof can be reused from Theorem 1.

Lets € VX, lete € E and let a = e(p) for some p €

YPAR(E) Then we need to prove that (@ € I = s %
) & [PPC(e)]ss. In the case that e € Ep, it can trivially
be shown that this is true, since both sides are then equal to
true. In case that ¢ € Ep, we know that ¢ € I and we can
rewrite the left-hand side:

oy, a
s ‘# = —Jdyeoun : 5 —>

. ep
= _‘EleeEP’peVPAR(e) R

From Definition 23 one can derive that s ﬂ iff [CC(e)](sU
p) and thus we can rewrite further
Aockp, pevrare @ [CC()](s U p).

We can rewrite the right-hand side of the bi-implication
as follows:

to -

[[PPC(@)]]SS = [[_‘ \/ Elp_"/:r"/ ZO’S(CC(C‘/))HSS

e/GEP

= _‘He/eEP’plevp_AR(g’) : [[CC(e/)H(S U p/)

Since we have been able to rewrite both sides of the bi-
implication to the same formula, we can conclude that (a €

I =5 %) & [PPC(e)]ss, which was all we needed to
prove the theorem.

B.2 Proofs for Section 7

Lemma 7 Let (S, 5o, L, —) be an LTS, s € S some state,

L' € L some set of action labels and ¢ be some closed

mu-calculus formula. Then s = [L"*]¢ < VteS’Y’L, it E .
R

Proof See [1], Theorem 6.2.

Lemma 8 Let (S,s9,1, 0, H,—) be the IOLTS" that
describes the execution semantics of an OIL specification.
Then R1 & so = ¢r1-

Proof Using lemma 7 and the definition of the modal box
operator we can rewrite:

50 = Pr1 = Vsesi 1 s E[OUH][fail]false

a fail
=V 1 ueSg,acOUH : S = t —— u=u = false

. a fail
= _'Els,l,ueSR,aEOUH s>t > U

Since fail can only be enabled in the failure state (€), we

can rewrite further to —=Jses5, acoun © 8 4 (®, which is the
definition of R1.

Lemma 9 Let (S,s0,1, 0, H,—) be the IOLTS" that
describes the execution semantics of an OIL specification.
Then R2 & 59 = ¢ro-

@ Springer

470

0.Bunteetal.

Proof Using lemma 7 we can rewrite:

50 = ¢r2 = Vsesg 1S = nZ.[OUU]Z

Now we only need to prove for any state s € Sg that:
—Tye(ouw 15 =@ & s =uZ[0UU)Z

For the rest of the proof we refer to [14], Section 6.1, Lemma
9 through 12, which prove the dual.

Lemma 10 Let (S, s, I, O, H, —) be the IOLTS" that
describes the execution semantics of an OIL specification.
Then R3 < 5o = ¢gr3.

Proof Let 1 be some fixpoint valuation and v some data val-
uation. Using Lemma 7, it is left to show for any s € Sg
that:

Vo c(OUHY 1aesy - S = tAs ¥t =1 e
& s € [[\/ [(OUH)*I([0 U H]false = (a)true)]nv
acQ

The right-hand side can be rewritten as follows:

s € [[\/ [(O U H)*I([0 U H]false = (a))true)|nv
aeQ
& Jueg s € [[(O U H)*I([O U Hlfalse = (a)true)]nv

Before the mu-calculus formula is checked, the LTS is first
reduced modulo strong bisimulation. Afterwards, each qui-
escent state is marked with a unique action a by adding a
self-loop with this action. Using this information and using
that bisimulation is an equivalence, we can rewrite:

w w’
Yuw e(QUHY tress -8 = tAs ="t = 1et

w
& Jies, Yueounyres; s =T >t et
w a
< uco Vue(OUuHy ress 1S =t =1 —>

What is left to prove is that for any s € Sg and for some
a € Q that:

Vuwe(OUH)Y* teSs S N
& s € [[(0U H)*I([0 U Hfalse = (a)true)[nv

Using the definition of reachability we can rewrite the left-
hand side to:
Wy a
Vwe(OUH)* teSs : S —> =1 —
& Vue(OUH)* 1eS © S L= (teSs=t i>)

a
s, 008 1€ S5 =1 —

< VteSR

@ Springer

Using lemma 7, we only need to prove for any s € Sg for
somea € Q foranyt e S}’OUH that:

(teSs=t i>) &t € [[O VU H]false = (a)true]nv

We can rewrite the right-hand side to ¢ =[O0 U H]false =
t &= (a)true. By definition of quiescence, we know that
t € Ss & t =[O0 U H]false. Then it is only left to prove

that t > < ¢ = (a)true. This follows from the definition
of the diamond operator and we can therefore conclude that
R3 < s0 = ¢r3.

Lemma 11. Let (S, so, I, O, H, —) be the IOLTS™ that
describes the execution semantics of an OIL specification.
Then R4 < 5o = ¢ra.

Proof Using Lemma 7, it is left to show for any s € Sy that:

Y/ c(OUHY* 1.17eSs S LriAs S s wAaw
4 5 = Jw:Bag(OUH) : vX(w': Bag(O U H) :=0).
A\ lalX(w' + {a}) A ([0 U Hlfalse = w = w')

acOUH

Using that & is an equivalence, we can rewrite the left-hand
side:

w
Juec(oUH)Y* : Ywe(OUH)Y* e85 0§ =t = u~ w

. o Yok
€ JueBag(OUH) : YweBag(OUH)1eSs -8 — = u=w

where s —* 1 for w € Bag(O U H) iff there is a sequence
’
w’ € (OUH)* such thats —* ¢ and w’ consists of the same

actions as in w. What is left to prove is that for any s € Sg
and for some u € Bag(O U H):

. W x
YweBag(OUH)1eSs - S — = u=w

& sevXw': Bag(OUH) :=#). [\ [aXw +{a}) A
acOUH
([0 U H]false = w = w)[nv[w = u]

We can rewrite the left-hand side further:
w
YweBag(OUH)ies 18 =t = (1 € Ss = u =w)

Note that the right-hand side has a very similar structure
to that of [(O U H)*]¢, except that the fixpoint operator
and variable now have data. With a similar proof as that for
Lemma 7 we can show for any mu-calculus formula ¢ and
for some fixpoint valuation 1 and data valuation v that:

s € [vX(w': Bag(O U H) :=).
/\ [alX@W' +{a}) A ¢]nv
acOUH

u/
< Vu’eBag(OUH),teS s —>F =t e [[qﬂ]nv[w/ = u/]

Formal verification of OIL component specifications using mCRL2

471

The update of v with w’ := u’ is due to the repeated appli-
cation of w’ + {a} by the fixpoint variable X, starting with
the empty multiset J, while traversing a path consistent with
u’. Using this all left to prove is for any s € Sg for some
u € Bag(OVUH) forallu’ € Bag(O U H) and t € S such

that s —* ¢ that:

teSs=u=u)
&t e [[[0UH]false = w = w']npv[w :=u, w = u]

The right-hand side can be rewrittento t = [OU Hfalse =
t € [w = wnvlw = u, w := u']. Using the definition of
quiescence we know thatt € S5 < ¢ =[O U H]false. Then
it is only left to prove thatu = u’ <t € [w = w'][pv[w =
u, w := u'], which is true since we can rewrite the right-
hand side to u = u’, and we can therefore conclude that
R4 & 50 = Pra-

References

1. Aceto, L., Ing6lfsdéttir, A., Larsen, K.G., Srba, J.: Reactive
systems: modelling, specification and verification. Cambridge uni-
versity press (2007)

2. Axelsson, R., Lange, M., Somla, R.: The complexity of model
checking higher-order fixpoint logic. Logical Methods in Comput
Sci 3(2) (2007)

3. Basile, D., ter Beek, M.H., Ferrari, A., Legay, A.: Modelling
and analysing ERTMS L3 moving block railway signalling with
simulink and uppaal SMC. In: FMICS, Lecture Notes in Computer
Science, vol. 11687, pp. 1-21. Springer (2019)

4. ter Beek, M.H., Borilv, A., Fantechi, A., Ferrari, A., Gnesi, S.,
Lofving, C., Mazzanti, F.: Adopting formal methods in an industrial
setting: The railways case. In: FM, Lecture Notes in Computer
Science, vol. 11800, pp. 762-772. Springer (2019)

5. ter Beek, M.H., de Vink, E.P,, Willemse, T.A.C.: Family-based
model checking with mCRL2. In: FASE, Lecture Notes in Com-
puter Science, vol. 10202, pp. 387-405. Springer (2017)

6. Berger, U.,James, P., Lawrence, A., Roggenbach, M., Seisenberger,
M.: Verification of the european rail traffic management system in
real-time maude. Sci. Comput. Program. 154, 61-88 (2018)

7. van Beusekom, R., Groote, J.F., Hoogendijk, P.F., Howe, R.,
Wesselink, W., Wieringa, R., Willemse, T.A.C.: Formalising the
Dezyne modelling language in mCRL2. In: FMICS-AVoCS, Lec-
ture Notes in Computer Science, vol. 10471, pp. 217-233. Springer
(2017)

8. Bienmiiller, T., Damm, W., Wittke, H.: The STATEMATE veri-
fication environment - making it real. In: CAV, Lecture Notes in
Computer Science, vol. 1855, pp. 561-567. Springer (2000)

9. Bouwman, M., Janssen, B., Luttik, B.: Formal modelling and verifi-
cation of an interlocking using mCRL2. In: FMICS, Lecture Notes
in Computer Science, vol. 11687, pp. 22-39. Springer (2019)

10. Bouwman, M., Luttik, B., van der Wal, D.: A formalisation of sysml
state machines in mcrl2. In: FORTE, Lecture Notes in Computer
Science, vol. 12719, pp. 42-59. Springer (2021)

11. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Strat-
ego/xt 0.17. A language and toolset for program transformation.
Sci. Comput. Program. 72(1-2), 52-70 (2008)

12. Bunte, O., van Gool, L.C.M., Willemse, T.A.C.: Formal verification
of OIL component specifications using mcrl2. In: FMICS, Lecture

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Notes in Computer Science, vol. 12327, pp. 231-251. Springer
(2020)

Bunte, O., Groote, J.F., Keiren, J.J.A., Laveaux, M., Neele, T.,
de Vink, E.P., Wesselink, W., Wijs, A., Willemse, T.A.C.: The
mCRL2 toolset for analysing concurrent systems - improvements
inexpressivity and usability. In: TACAS (2), Lecture Notes in Com-
puter Science, vol. 11428, pp. 21-39. Springer (2019)

Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT
Press (2001)

Cordy, M., Devroey, X., Legay, A., Perrouin, G., Classen, A., Hey-
mans, P., Schobbens, P., Raskin, J.: A decade of featured transition
systems. In: From Software Engineering to Formal Methods and
Tools, and Back, Lecture Notes in Computer Science, vol. 11865,
pp. 285-312. Springer (2019)

Csertan, G., Huszerl, G., Majzik, 1., Pap, Z., Pataricza, A., Varrd,
D.: VIATRA - visual automated transformations for formal verifi-
cation and validation of UML models. In: ASE, pp. 267-270. IEEE
Computer Society (2002)

Damm, W., Klose, J.: Verification of a radio-based signaling system
using the STATEMATE verification environment. Formal Methods
Syst. Des. 19(2), 121-141 (2001)

Denkers, J., van Gool, L., Visser, E.: Migrating custom DSL imple-
mentations to a language workbench (tool demo). In: SLE, pp.
205-209. ACM (2018)

Fernandez, J., Bozga, M., Ghirvu, L.: State space reduction based
on live variables analysis. Sci. Comput. Program. 47(2-3), 203—
220 (2003)

Frenken, M.: Code generation and model-based testing in context
of oil. Master’s thesis, Eindhoven University of Technology (2019)
van Gool, L.: Formalising interface specifications. Ph.D. thesis,
Eindhoven University of Technology (2006)

Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Commu-
nicating Systems. MIT Press (2014)

Groote, J.F.,, Willemse, T.A.C.: Parameterised boolean equation
systems. Theor. Comput. Sci. 343(3), 332-369 (2005)

Hansen, H.H., Ketema, J., Luttik, B., Mousavi, M.R., van de Pol,
J.: Towards model checking executable UML specifications in
mCRL2. ISSE 6(1-2), 83-90 (2010)

Hwong, Y., Keiren, J.J.A., Kusters, V.J.J., Leemans, S.J.J.,
Willemse, T.A.C.: Formalising and analysing the control software
of the compact muon solenoid experiment at the Large Hadron
Collider. Sci. Comput. Program. 78(12), 2435-2452 (2013)
Islam, M.A., Cleaveland, R., Fenton, F.H., Grosu, R., Jones, P.L.,
Smolka, S.A.: Probabilistic reachability for multi-parameter bifur-
cation analysis of cardiac alternans. Theor. Comput. Sci. 765,
158-169 (2019)

Kernberger, D., Lange, M.: Model checking for hybrid branching-
time logics. J. Log. Algebraic Methods Program. 110 (2020)
Kim, J.H., Larsen, K.G., Nielsen, B., Mikucionis, M., Olsen, P.:
Formal analysis and testing of real-time automotive systems using
UPPAAL tools. In: FMICS, Lecture Notes in Computer Science,
vol. 9128, pp. 47-61. Springer (2015)

Kolbl, M., Leue, S.: Automated functional safety analysis of auto-
mated driving systems. In: FMICS, Lecture Notes in Computer
Science, vol. 11119, pp. 35-51. Springer (2018)

Latella, D., Majzik, 1., Massink, M.: Automatic verification of a
behavioural subset of UML statechart diagrams using the SPIN
model-checker. Formal Asp. Comput. 11(6), 637-664 (1999)
Limbrée, C., Cappart, Q., Pecheur, C., Tonetta, S.: Verification
of railway interlocking - compositional approach with OCRA. In:
RSSRail, Lecture Notes in Computer Science, vol. 9707, pp. 134—
149. Springer (2016)

Lynch, N.A., Tuttle, M.R.: An introduction to input/output
automata. Laboratory for Computer Science, Massachusetts Insti-
tute of Technology (1988)

@ Springer

472

0.Bunteetal.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Mitsch, S., Gario, M., Budnik, C.J., Golm, M., Platzer, A.: Formal
verification of train control with air pressure brakes. In: RSSRail,
Lecture Notes in Computer Science, vol. 10598, pp. 173-191.
Springer (2017)

van de Pol, J., Timmer, M.: State space reduction of linear pro-
cesses using control flow reconstruction. In: ATVA, Lecture Notes
in Computer Science, vol. 5799, pp. 54-68. Springer (2009)
Remenska, D., Templon, J., Willemse, T.A.C., Homburg, P., Ver-
stoep, K., Ramo, A.C., Bal, H.E.: From UML to process algebra and
back: An automated approach to model-checking software design
artifacts of concurrent systems. In: NASA Formal Methods, Lec-
ture Notes in Computer Science, vol. 7871, pp. 244-260. Springer
(2013)

Sankaranarayanan, S., Kumar, S.A., Cameron, F., Bequette, B.W.,
Fainekos, G.E., Maahs, D.M.: Model-based falsification of an arti-
ficial pancreas control system. SIGBED Rev. 14(2), 24-33 (2017)
Schifer, T., Knapp, A., Merz, S.: Model checking UML state
machines and collaborations. Electron. Notes Theor. Comput. Sci.
55(3), 357-369 (2001)

Schindler, E., Moneva, H., van Pinxten, J., van Gool, L., van der
Meulen, B., Stotz, N., Theelen, B.: Jetbrains mps as core dsl tech-
nology for developing professional digital printers. In: Domain-
Specific Languages in Practice, pp. 53-91. Springer (2021)
Schrammel, P., Kroening, D., Brain, M., Martins, R., Teige, T,
Bienmiiller, T.: Successful use of incremental BMC in the automo-
tive industry. In: FMICS, Lecture Notes in Computer Science, vol.
9128, pp. 62-77. Springer (2015)

Silva, J.: A vocabulary of program slicing-based techniques. ACM
Comput. Surv. 44(3), 12:1-12:41 (2012)

Thévenod-Fosse, P., Waeselynck, H.: STATEMATE applied to sta-
tistical software testing. In: ISSTA, pp. 99-109. ACM (1993)

@ Springer

42.

43.

44.

45.

46.

47.

Toennemann, J., Rausch, A., Howar, F., Cool, B.: Checking consis-
tency of real-time requirements on distributed automotive control
software early in the development process using UPPAAL. In:
FMICS, Lecture Notes in Computer Science, vol. 11119, pp. 67—
82. Springer (2018)

Valmari, A.: Bisimilarity minimization in O(m logn) time. In: Petri
Nets, Lecture Notes in Computer Science, vol. 5606, pp. 123-142.
Springer (2009)

Visser, E., Wachsmuth, G., Tolmach, A.P., Neron, P., Vergu, V.A.,
Passalaqua, A., Konat, G.: A language designer’s workbench: a
one-stop-shop for implementation and verification of language
designs. In: Onward!, pp. 95-111. ACM (2014)

Wang, H., Zhong, D., Zhao, T., Ren, F.: Integrating model checking
with sysml in complex system safety analysis. IEEE Access 7,
16561-16571 (2019)

Weiglhofer, M., Wotawa, F.: Asynchronous input-output confor-
mance testing. In: COMPSAC (1), pp. 154-159. IEEE Computer
Society (2009)

Zhang, S.J., Liu, Y.: An automatic approach to model checking
UML state machines. In: SSIRI (Companion), pp. 1-6. IEEE Com-
puter Society (2010)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

	Formal verification of OIL component specifications using mCRL2
	Abstract
	1 Introduction
	2 An introduction to OIL
	2.1 Instance variables
	2.2 Areas
	2.3 Events and transitions
	2.4 Updating the instance state
	2.5 Concerns
	2.6 Scheduling and communication of events
	3 Formal preliminaries
	3.1 Valuations and updates
	3.2 Transition systems

	4 Formal OIL semantics
	4.1 Semantics of an OIL component specification
	4.2 Execution semantics

	5 Validity of OIL specifications
	6 Translating OIL to mCRL2
	6.1 mCRL2
	6.2 OIL in mCRL2
	6.2.1 Execution semantics

	6.3 Implementation of the translation to mCRL2

	7 Validation of OIL specifications
	7.1 Mu-calculus
	7.2 Checking the validity requirements
	Safe lookaheadlessness
	Finite proactivity
	Confluent proactivity
	Predictable proactivity
	Alternative methods of checking confluent and predictable proactivity

	8 Experiments
	The EPC case
	The AGA case

	9 Discussion of results
	9.1 Process structure
	9.2 Automating Preprocessing
	9.3 Enhanced Back-end
	9.4 Using model checking for OIL in practice

	10 Conclusion
	Acknowledgements
	A Running example
	A.1 OILDSL
	A.2 Formal semantics
	A.2.1 Formal definition of the OIL specification

	A.3 mCRL2

	B Proofs
	B.1 Proofs for Section 6
	B.2 Proofs for Section 7
	References

