International Journal on Software Tools for Technology Transfer (2023) 25:427-429
https://doi.org/10.1007/s10009-023-00721-2

GENERAL
Special Issue: RV 2020

®

Check for
updates

Introduction to the Special Issue on Runtime Verification
Jyotirmoy Deshmukh' - Dejan Ni¢kovié?

Accepted: 10 October 2023 / Published online: 2 November 2023
© The Author(s) 2023

Abstract

Runtime verification (RV) refers to methods for formal reasoning about all aspects of the dynamic execution of systems,
including hardware, software, and cyber-physical systems. RV includes techniques to assess and enforce correctness of a
system against systemic bugs or extrinsic uncertainties. These methods are typically considered lightweight as they may not
involve exhaustive verification or proofs, but they provide a higher level of rigor and versatility compared to conventional
testing methods. This article introduces the extended versions of selected papers from the peer-reviewed proceedings of
the 20th International Conference on Runtime Verification (RV 2020). RV 2020 was supposed to be held in Los Angeles,

California, USA in July 2020, but was instead held virtually due to the global Covid-19 pandemic.

Keywords Runtime verification - Program instrumentation - Empirical abstractions - Spatial-temporal specifications

1 Introduction

Runtime verification (RV) [2] is a lightweight verification
approach that includes methods for monitoring, analyzing,
and steering the runtime behavior of software and hardware
systems. RV provides an important set of tools to reason
about system correctness, robustness, and reliability. Orig-
inating from the formal methods community, RV provides
an additional level of rigor and effectiveness compared to
traditional testing. By its focus on the individual system ex-
ecution traces, RV complements formal verification with a
more practical, pragmatic, and scalable view. RV can be dur-
ing various system design phases for testing, verification, and
debugging purposes, and after deployment for ensuring reli-
ability, safety, and security, for providing fault containment
and recovery, as well as online system repair.
The main applications of RV are:

* specification- and algorithm-based system monitoring
* enforcement of safety and security policies during the op-
eration of the system,

D<I D. Nickovié
Dejan.Nickovic @ait.ac.at

J. Deshmukh
jyotirmoy.deshmukh @usc.edu

Department of Computer Science, University of Southern
California, 941 Bloom Walk, Los Angeles, 90089, CA, USA

Center for Digital Safety and Security, Austrian Institute of
Technology, Giefinggasse 4, Vienna, 1210, Austria

* extracting quantitative and statistical information from
traces,

fault localization and explanation,

* mining specifications from traces, and

* trace visualization.

There are a plethora of technologies based on RV that
support the above activities, including:

* generation of monitors from specifications,

* system and program instrumentation and trace logging,
» combination of static and dynamic analysis, and

* runtime enforcement.

2 RV conference

RV started as a workshop in 2001 with the aim to bring
researchers and practitioners from academia and industry to-
gether to discuss the problems of monitoring and steering
system executions using rigorous analysis techniques. Orig-
inally, there were two major questions surrounding the field
of RV. The first question was whether the use of formal meth-
ods at runtime was a viable alternative or complement to the
more traditional verification approaches, such as the model
checking or the theorem proving. The second question was
whether the use of formal methods to analyze system execu-
tions adds value compared to classical monitoring techniques
used, for instance, in performance monitoring, distributed de-
bugging, or supervisory control and data acquisition. With
the development of the RV field, many other fundamental

Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-023-00721-2&domain=pdf
mailto:Dejan.Nickovic@ait.ac.at
mailto:jyotirmoy.deshmukh@usc.edu

428

J. Deshmukh, D. Nickovié¢

and practical questions arose. To reflect this growing interest
of the research and industrial communities in the analysis of
systems at their runtime, RV became a conference in 2010.

RV 2020 was organized on October 6-9, 2020. The con-
ference was originally planned to take place in Los Angeles,
USA, but due to the CoViD-19 pandemic, we settled instead
for a virtual event. The conference called for contributions
on the following non-exhaustive topics of interest:

* specification languages for monitoring,

* monitor construction techniques,

¢ program instrumentation,

* logging, recording, and replay,

* combination of static and dynamic analysis,

* specification mining and machine learning over runtime
traces,

* monitoring techniques for concurrent and distributed sys-
tems,

» runtime checking of privacy and security policies,

» metrics and statistical information gathering,

* program/system execution visualization,

* fault localization, containment, recovery, and repair, and

* dynamic type checking.

The proceedings of RV 2020 have been published in
Springer’s Lecture Notes in Computer Sceince series (cf.
Deshmukh and Nickovié [1]).

3 Selected papers

In the remainder of this article, we briefly present the contri-
butions of the four papers included in this special issue and
put them in a broader context of runtime verification research
and trends.

The paper “Program Analysis Using Empirical Abstrac-
tion” by Ho et al. [3] uses program instrumentation and
program execution analysis, two essential RV methods, and
combines them with clustering and abstract interpretation
to build a framework for program analysis using empirical
abstractions. This unconventional paper explores and dis-
covers new synergies between dynamic and static analysis.
The authors provide both the theoretical foundations for the
proposed methods and their implementation in a tool. The
originality of the approach and the quality of the results were
rewarded with the RV 2020 Best Paper Award.

The paper “Efficient and Expressive Bytecode-Level In-
strumentation for Java Programs” by Soueidi et al., [6] ad-
dresses one of the fundamental aspects of runtime verifi-
cation, the program instrumentation. More specifically, the
paper presents the tool BISM for efficient instrumentation
of Java programs at the bytecode level. The authors intro-
duce an expressive instrumentation language that is aware of

Springer

the program’s control flow and allows modular instrumenta-
tion. BISM accommodates both novice and advanced users
by enabling instrumentation with or without proficiency in
bytecode. Finally, BISM admits both static instrumentation
at build-time and dynamic instrumentation at load-time.

The paper “Concurrent Runtime Verification of Data Rich
Events” by Shafiei et al., [5] addresses the problem of actor-
based runtime verification. For that purpose, the paper intro-
duces MESA (Message-based System Analysis), an open-
source runtime verification tool for concurrent monitors that
uses the actor model. MESA can be instantiated with differ-
ent monitoring systems. In addition, it supports data slicing
for individual monitors. The paper provides an extensive em-
pirical study of MESA, in which the tool is used to monitor
flights in the U.S. airspace from live data streams. The aim is
to ensure that each flight follows its planned route. In partic-
ular, the paper demonstrates that the concurrent monitoring
using data slicing can significantly increase monitoring effi-
ciency.

Finally, the paper “MoonLight: A Lightweight Tool for
Monitoring Spatio-Temporal Properties” by Nenzi et al. [4]
addresses the problem of monitoring spatio-temporal speci-
fications. The properties of mobile and spatially distributed
interacting entities that evolve in time naturally arise in many
application domains, including biology, Internet-of-Things,
and smart cities. This paper presents MoonLight, a Java tool
for runtime verification of specifications expressed in Spatio-
Temporal Reach and Escape Logic, a formalism in which
the spatial aspects are expressed using weighted graphs that
describe topological configurations in which entities are ar-
ranged.

Funding Open access funding provided by AIT Austrian Institute of
Technology GmbH.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Deshmukh, J., Nickovic, D. (eds.): Runtime Verification — 20th
International Conference, RV 2020 Los Angeles, CA, USA, Octo-
ber 6-9, 2020, Proceedings. Lecture Notes in Computer Science,
vol. 12399. Springer, Berlin (2020)

2. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verifica-
tion. In: Engineering Dependable Software Systems, pp. 141-175
(2013)


http://creativecommons.org/licenses/by/4.0/

Introduction to the Special Issue on Runtime Verification

429

3. Ho, V.M., Alvin, C., Lawson, J.D., Mukhopadhyay, S., Peterson, B.:
Program analysis using empirical abstraction. Int. J. Softw. Tools
Technol. Transf. (2023). (In this issue.)

4. Nenzi, L., Bartocci, E., Bortolussi, L., Silvetti, S., Moonlight, M.L.:
A lightweight tool for monitoring spatio-temporal properties. Int. J.
Softw. Tools Technol. Transf. (2023). (In this issue.)

5. Shafiei, N., Havelund, K., Mehlitz, P.: Concurrent runtime verifica-
tion of data rich events. Int. J. Softw. Tools Technol. Transf. (2023).
(In this issue.)

6. Soueidi, C., Monnier, M., Falcone, Y.: Efficient and expressive
bytecode-level instrumentation for Java programs. Int. J. Softw.
Tools Technol. Transf. (2023). (In this issue.)

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

Springer



	Introduction to the Special Issue on Runtime Verification
	Abstract
	Introduction
	RV conference
	Selected papers
	References


