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Abstract
Non-functional properties of collective adaptive systems (CAS) are of paramount relevance practically in any application.
This paper compares two recently proposed approaches to quantitative modelling that exploit different system abstractions:
the first is based on generalised stochastic Petri nets, and the second is based on queueing networks. Through a case study
involving autonomous robots, we analyse and discuss the relative merits of the approaches. This is done by considering three
scenarios which differ on the architecture used to coordinate the distributed components. Our experimental results assess a
high accuracy when comparing model-based performance analysis results derived from two different quantitative abstractions
for CAS.

Keywords Behavioural specifications · Model-based performance predictions · Queueing Networks · Generalised
Stochastic Petri Nets

1 Introduction

The past few years have witnessed the emergence of col-
lective adaptive systems (CAS). These systems crop up in
many application domains, spanning critical systems, smart
cities, systems assisting humans during their working or daily
live activities, etc. CAS consist of distributed computational
agents acting in a cyber-physical context. Typically, these
agents are replicated (namely, they exhibit the same be-
haviour). However, there are distinguished features telling
CAS apart from traditional distributed systems: on the one
hand, agents must be autonomous and adaptive, while, on the
other hand, they collectively contribute to reach the overall
goal of the system (a.k.a. emergent behaviour). Remark-
ably, reconciling autonomous and adaptive behaviour with
the overall goal of CAS is challenging. In fact, the emergent
behaviour of CAS is the resultant of the contributions of each

agent in the system. However, agents are autonomous and try
to react to changes in their cyber-physical context which may
not be uniform. A paradigmatic example is the use of arti-
ficial, autonomous agents in rescue contexts that may put
operators lives at stake [4]. An agent should autonomously
and quickly adapt its behaviour to changes triggering danger
situations in a nearby area. This behaviour should be driven
by the changes occurring in the components operational en-
vironments as well as the changes in the local computational
state of each component, collectively taken. Also, the global
behaviour of CAS should emerge from the local behaviour
of its components.

Let us elucidate the points above considering the coor-
dination of a number of robots patrolling some premises to
make sure that aid is promptly given to human operators in
case of accidents. A plausible local behaviour of each robot
can be:

(1) to identify accidents,
(2) to assess the level of gravity of the situation (i.e. to

choose an appropriate course of action),
(3) to alert the rescue centre and nearby robots (e.g. divert

traffic to let rescue vehicles reach the location of the
accident more quickly), and

(4) to ascertain how to respond to alerts from other robots
(e.g. if already involved in one accident or on a low
battery, a robot may simply forward the alert to other
nearby robots).
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Note that robots’ behaviour depends on the physical environ-
ment (tasks (1) to (3)) as well as their local computational
state (task (4)).

A possible expected global behaviour is that robots try to
maximise the patrolled area while trying to avoid remain-
ing isolated and to minimise the battery consumption. It is
worth remarking that the global behaviour of CAS is not typ-
ically formalised explicitly. As in the robots scenario above,
the global behaviour is informally stated and it is expected
to emerge from the runtime behaviour of components. For
instance, when designing the algorithm for the roaming of
robots, one could assume that a robot will not move towards
an area where there are already a certain number of robots.

This paper applies behavioural specifications to the quan-
titative analysis of CAS. In fact, it is often the case that the
specification of the global behaviour of CAS involves non-
functional properties. In the example above, for instance,
one would like to guarantee that there is always a minimum
number of robots patrolling certain areas. Using a simple,
yet representative, robot scenario, we apply two different
approaches to the performance analysis of CAS. Besides
showing how to use behavioural specifications to analyse
non-functional properties of CAS (emergent) behaviour, this
exercise is instrumental for our contribution, which is a study
of the relation between two complementary approaches to the
performance analysis of CAS recently proposed respectively
in [31] and in [18]. The quantitative analysis in [31] is based
on generalised stochastic Petri nets, while the one in [18] re-
lies on queuing networks. These approaches differ also on the
methodologies for the quantitative modelling they support.
The approach in [31] requires that the designer must directly
come up with a performance model (rendered as generalised
stochastic Petri nets). Instead, in the latter approach [18],
the designer does not have to directly develop the queueing
network for the quantitative analysis, because it is indeed
‘compiled’ from the behavioural specification of the CAS.
In this sense, the former approach is a model-based method-
ology, while the latter is a language-based methodology.

Through the paper we will highlight the main differences
between the two methodologies, compare them and discuss
their relative merits. More precisely, the paper uses a robot
scenario to address the following two research questions:

RQ1 To what extent the approaches in [18] and in [31] sup-
port performance-aware design of CAS?

RQ2 How do the features of the approaches in [18] and
in [31] compare?

Methodologically, we identify three scenarios which dif-
fer among each other in the way components of the system
are coordinated to achieve their goals. Each scenario corre-
sponds to a different architecture and it is designed to capture
some realistic case study. Then, the quantitative analysis of
each scenario is performed using the two approaches. Finally,

we analyse the results and draw our conclusions. As we will
see, our analysis suggests a hybrid combination hinging on
both approaches.

Outline Sect. 2 describes the scenario used in the rest of
the paper. We will consider three different architectures (i.e.
independent, collaborative and centralised) for this scenario.
Section 3 provides the models based on the specification
language in [18] for the three architectures. Section 4 shows
the performance analysis based on the proposed models of
Sect. 3. The comparison between the approach in [31] and
the one illustrated in Sect. 3 is discussed in Sect. 5. Final
comments, related and future work are in Sect. 6.

This paper is a revised version of [28]. The main difference
with respect to [28] is that here we extend our analysis with
a new scenario, dubbed centralised. Also, we significantly
revised Sect. 1 to better motivate our work, and Sect. 2 to
improve the presentation of our case study as well as to
describe the new centralised scenario. Besides some minor
changes to its original, Sect. 3 contains a completely new part
(Sect. 3.2). A new format of the messages is introduced to
simplify the definition of the predicate ρd : the position of the
sender is now part of the sent message, while in [28] it was
obtained through function pos. The presentation of Sect. 4
has been improved; also, this section has been extended with
a new part on the analysis of the centralised architecture
(cf. Sect. 4.3). Sections 5 and 6 have also been revised. We
extended the former to take into account the analysis of the
centralised architecture and the latter to compare our work
with other approaches that we could not include in [28].

2 A robot scenario

Through the paper, we will rely on a scenario where robots
have to transport some equipment necessary in an emergency
from an initial zone to a target location. There are a few paths
that robots can take to accomplish their mission. We consider
the following options:

• Robots can take a straightforward path.
• Robots can attempt a shorter path.

The first option is always viable, but it is slower than the
other. The second option requires robots to go through a
sequence of doors that can randomly switch between that
states ‘open’ and ‘closed’; for simplicity, we will consider
cases with two doors to be open/closed. In all the considered
architectures, we design robots so that they take the longer
route as soon as they find a door closed. When this happens
on the second door, it will take more time for robots to reach
the destination than if the alternative route had been taken
at the start of the journey. After the delivery, robots return
to the initial zone trying to follow the reverse path and the
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Fig. 1 The analysed scenario. Two doors separate robots from their
destination

same constraints apply. A high-level view of the considered
scenario is depicted in Fig. 1, which is borrowed from [31].

A clear requirement in this scenario is that the equipment
is delivered as soon as possible to tackle the emergency.
Designing an optimal, or at least acceptable, strategy for the
robots to satisfy such requirement is however not trivial, even
in our simple scenario. A bad strategy may lead most robots
on the slowest path, but a good strategy is hard to find due
to the fact that it depends on how robots react to environ-
mental changes. Indeed, it is commonly accepted that the
performance of a cyber-physical system varies with changes
in the physical environment. Moreover, as experimentally
measured in [31], dynamic changes in the cyber-physical
space and architectural patterns impact on the performance
of cyber-physical systems. This type of analysis suggests
that in this domain it is useful to factor performance at de-
sign time. Following [31], we consider three architectural
scenarios:

Independent Robots do not cooperate with each other. In
this architecture, robots simply detect the state of doors and
behave as described above.

Collaborative Robots behave exactly as above on open
doors; instead, on closed doors, they send a message to
nearby robots before taking the alternative route. This way,
every robot that receives such message can directly follow
the alternative route.

Centralised Robots receive from the central coordinator the
state of the door they are approaching. If the coordinator
(periodically updated by robots that sampled the door state)
says that the door is closed, robots immediately follow the
alternative route. Otherwise, robots head to the door. If
the door is indeed open, robots go through and carry on
their mission. Instead, if the door is closed, robots retrace
their steps, take the alternative route and update the central
coordinator with their findings.

The approach proposed in [31] hinges on Generalised
Stochastic Petri Nets (GSPNs) [5] as suitable models of

cyber-physical systems. In this paper, we apply such ap-
proach by adopting (i) a different modelling language, hing-
ing on behavioural specifications and (ii) relying on queueing
networks [20] for performance analysis. The modelling lan-
guage used here has been advocated in [18] for specifying
global behaviour of CAS. As shown in [18], this modelling
language has a natural connection with queueing networks,
therefore enabling performance analysis of CAS. A key fea-
ture of our modelling language is that it abstracts away from
the number of agents’ instances, i.e.

• an arbitrary number of agents can embody the same role;
in our case study, for instance, an unspecified number of
devices impersonate the robot role;

• communicating partners address each other through
attribute-based communication instead of explicit channels
(as in channel-based communication) or their identities (as
in the actor model).

Therefore our model allows us to specify complex multiparty
scenarios regardless the number of agents’ instances.

3 A behavioural specification model

The behavioural specifications in [18] are inspired by AbC,
a calculus of attribute-based communication [1]. Basically,
attribute-based communication is an abstract mechanism for
addressing partners of communications. Unlike communi-
cation mechanisms based on channels or direct addressing
of senders and receivers, attribute-based communication al-
lows one to specify many-to-many communication among
dynamically formed groups of senders and receivers. Infor-
mally, components expose domain-specific attributes used to
address communication partners according to predicate on
such attributes. For instance, the robots and the doors in the
scenarios in Sects. 1 and 2, may expose an attribute recording
their physical position. This attribute can be used to specify
communications among “nearby” robots through a suitable
predicate so to determine the communication group as the
set of robots satisfying such predicate.

The attribute-based communication mechanism of AbC
mechanism is rendered in [18] through interactions, which
in their most general form are defined as

A |ρ
e e′

−−−−−→ B |ρ′, (1)

where A and B are role names, ρ and ρ′ are logical formulae,
e is a tuple of expressions, and e′ is a tuple of patterns,
that is expressions possibly including variables. The intuitive
meaning of the interaction in (1) is

“any agent, say A, satisfying ρ generates an expression
e for any agents satisfying ρ′

r ,d
, dubbed B, provided

that expression e′ matches e.” [18]
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Fig. 2 A model for the
independent architecture

The conditions ρ and ρ′
r ,d

predicate over components’ at-
tributes. The payload of an output is a tuple of values e to be
matched by receivers with the (tuple of) patterns e′; when e
and e′match, the effect of the communication is that the vari-
ables in e′ are instantiated with the corresponding values in e.

A send operation targets components satisfying a given
predicate on such attributes. Let us illustrate this again using
our scenarios. If pos is the position attribute exposed by
robots, we can define a predicate ρ as

abs(self.pos − pos) < 5mt,

for receiving robots. Hence, ρ is satisfied by a receiving
robot less than five meters away from a sending robot (i.e.
the difference between the position self.pos of the receiver
and the one pos of the sender is less than five metres). A
robot disregards a message if its position is such that it does
not satisfy ρ.

Role names A and B in (1) are pleonastic: they are used
just for succinctness and may be omitted for instance writing
ρ

e e′

−−−−−→ B |ρ′ or ρ e e′

−−−−−→ ρ′. Also, we abbreviate A |ρ with
A when ρ is a tautology.

Interactions are the basic elements of an algebra of pro-
tocols [37] featuring iteration as well as non-deterministic
and parallel composition. For the sake of this paper, it is
sufficient to think of a protocol as a regular expression in
the alphabet of interactions of shape (1). Actually, we will
avoid technicalities using the intuitive graphical presentation
of this algebra given in [37]. We use gates to identify control
points1 of protocols:

1 We do not consider forking and joining points of parallel composi-
tion (represented by -gates), since this feature is not used in our case
study.

• entry and exit points of loops are represented by -gates,
• branching and merging points of a non-deterministic

choice are represented by -gates.

This notation will be further described in the rest of this
section which provides information on the architectures of
our scenario in terms of the graphical notation sketched
above.

3.1 Independent architecture

Figure 2 gives a possible model capturing the independent
architecture described in Sect. 2 in the graphical notation of
our specification language. The protocol behaviour is ren-
dered by a loop whose body is delimited by the -gates.
The model2 of the body consists of the sequential compo-
sition of the behaviour for the forward and the backward
journey3 of robots. Robots try to avoid the longest route. On
their forward journey, robots attempt to use the path going
through the first door and then the second; likewise, on their
backwards journey, they try to use the path going through
the second and then the first door.

Interactions among doors and robots do not involve value
passing; for instance, robots detect the status of the first door
when they pattern match on the tuples �D1,o� and �D1,c�
for open and closed doors respectively (and likewise for the
second door). Robots detect the status of a door according to
the format of the messages they intercept. For instance, on
its forward journey, a robot either pattern matches the tuple

2 The model in Fig. 2 is rather simplistic and we will refine it soon;
we use it to introduce our graphical notation.

3 Highl-ighted by a light green and yellow background, respectively.
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Fig. 3 A model for the
collaborative architecture

�D1,o� or the tuple �D1,c� from the first door. This choice
is represented in Fig. 2 by -gate immediately below the
topmost -gate. If the robot receives a �D1,c� tuple from
the first door, it continues its journey on the alternative route
after which it starts the backward journey. Otherwise, the
robot approaches the second door and again goes through
if �D2,o� is received, otherwise the robot takes the alterna-
tive route. The behaviour on the return journey is similar,
depending on the order in which robots approach doors.

Let us now refine this model so to take into account the
distance of robots from doors. Indeed, for simplicity, Fig. 2
uses role names D1, D2, and R however, this is not very
precise. Here we are interested to express that robots detect
the status of a door only when they are “close enough” to
it. Attribute-based communication can address this issue. To
capture the behaviour described above let us assume that
robots and doors expose the attribute ID yielding their iden-
tity. Then, we can define the conditions

ρd(x) ≡ abs(self.pos − x) < d,

where d is a parameter of our model setting the maximal
distance at which doors and robots communicate. Then we
can replace in Fig. 2 the interactions D1

�D1,o� �D1,o�
−−−−−−−−−−−→ R with

ID = d1
�self.id,self.pos,o� �y,x,o�
−−−−−−−−−−−−−−−−−−−−→ ρd(x) (2)

and similarly for the interactions D1
�D1,c� �D1,c�
−−−−−−−−−−−→ R and

those involving D2. Interaction (2) and the one for the closed
status state that the door4 with ID set to d1 emits a tuple with

4 The fact that identifiers are unique is not built-in in our model; in
principle, there could be more doors with the same identifier.

their identity and the status. These tuples are intercepted
by components whose state satisfy ρd(x), where x is the
variable instantiated with the position of the sender. Other
components would simply disregard those messages. Note
that y, substituted with the value d1, is dummy here; it will
be used later.

3.2 Collaborative architecture

The collaborative architecture can be obtained by simply
extending the independent one with the interactions among
robots. A possible solution is given in Fig. 3 where the binary
predicate ρ′

r ,d
is defined as

ρ′r ,d(z, z
′) ≡ ρr (z) ∧ ¬ρd(z′)

and is satisfied by any component within a radius r from
component z and to a distance more than d from component
z′. Note that r is another parameter of our model setting
the radius at which robots communicate with each other. For
readability, Fig. 3 shows only the body of the loop and there
o1 and c1 shorten �D1,p,o� �D1,p,c�, respectively, where p
is the position of D1 (and likewise for o2 and c2).

As in the independent architecture in Sect. 3.1, there is a
forward and a backward phase. Remarkably, the modification
of the model in Sect. 3.1 is pretty simple. The only difference
is that, before continuing their journey on the alternative
route, robots communicate to nearby robots the status of the
door when they find it closed.

The fact that the adaptation is quite straightforward is due
to the features offered by our modelling language. The at-
tributes of components are indeed allowing us to just reuse
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Fig. 4 A model for the
centralised architecture. The
diagram corresponding to the
backward journey is similar and
omitted for the sake of space

the condition ρd also for coordinating inter-robots interac-
tions. There is the following crucial remark to be made.

The behaviour of robots is to wait for three possible mes-
sages: the two sent by the door and one possibly coming from
a robot which detected that the door was closed. As a conse-
quence, there might be robots satisfying condition ρ′

r ,d
(y, x)

in Fig. 3, that is they are not close enough to the door, but have
a nearby robot, say r , aware that the door is closed. These
robots should therefore be ready to receive the communica-
tion from robot r . Our model accounts for this type of robots,
but the graphical notion ‘hides’ this since it makes explicit
only two branches on -gates. As we will see in Sect. 4,
this is a key observation for our performance analysis.

3.3 Centralised architecture

In this architecture, a coordinator C maintains information
about the status of doors D1 and D2. The status is commu-
nicated to robots approaching a door. Moreover, the coordi-
nator updates its records of a door status when a robot finds
the door closed.

The protocol is modelled by the diagram in Fig. 4 where,
for the sake of space, we report only the body of the for-
ward journey. When a robot is closer to a door less than a
distance d, it receives from C the status of that door (mes-
sages �D1,p1,o� and �D1,p1,c�). For instance, the topmost
interactions in Fig. 4 describe the communication between
the coordinator C and the robots R approaching door D1. If
D1 is closed, C sends �D1,p1,o� that robots R pattern match
with �y, x,c� when they are within a distance d from D1.
This makes robots R to get in variables y and x respectively
the identity of the door and its position. If the door is closed,
R continues on the longest route; otherwise, R continues
towards the door.

When R is away from the door a distance d ′ < d, it can re-
ceive the actual status of the door, communicated by the door
itself. As before, R decides which route to take depending
on such status; however, when approaching a closed door, R
updates C informing it that the door was found closed.

4 Quantitative analysis

In [18], we relate our modelling language to Queueing Net-
works (QNs) [20], a widely used mathematical model to
study waiting lines of systems represented as a network of
queues [12, 13, 16]. Customers and service centres are two
main elements of QN. Customers represent jobs, requests,
or transactions that need to be handled by the system. Ser-
vice centres are resources that process the customers of the
systems. If a service centre is busy (i.e. it is processing a
customer), other jobs need to wait in a queue for their turn
to be served. Other QN elements are routers and delay sta-
tions, which allow forwarding customers to a specific centre
and modelling processing lags that do not require system re-
sources, respectively. In our previous work [18], we provide
rules for the automatic generation of QN models from be-
havioural specifications. The main idea is to transform (i) an
interaction into a service centre and (ii) a non-deterministic
choice into a router. In the following, we apply this construc-
tion to our robot scenario and its architectures.

The QN performance models derived from the be-
havioural specifications are compared for assessing their
validity to GSPN models developed in our recent experi-
ence [31]. A GSPN consists of places (represented as cir-
cles), tokens (represented as dots), transitions (represented
as rectangles), and arcs that connect places to transitions and
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vice-versa. A transition is enabled (to fire) when all its in-
put places (a.k.a. preset) contain enough tokens, i.e. at least
as many tokens as specified by the weight of arcs. When a
transition fires, the number of tokens specified by the arc
weight is removed from input places and new tokens are
generated into output places (if any, a.k.a. postset). After be-
ing enabled, a transition may fire immediately (immediate
transitions, represented by a thin black rectangle) or after a
stochastically distributed time (timed transitions, depicted as
a thick white rectangle). In this paper, all timed transitions
follow an exponential distribution.

In [31], we use GSPNs to show that the performance of
cyber-physical systems is affected by architectural patterns
and dynamic space changes. Here, we aim (i) to investigate
the performance of CAS using QNs and (ii) to compare these
results with those obtained by studying the same system with
GSPNs. This analysis is carried out using JSIMgraph, i.e. the
simulator of Java Modelling Tools (JMT) [8]. The JSIMgraph
simulator discards the transient system behaviour, namely,
behaviour for which the response of a system (i.e. its output
metrics) changes over time. When all performance indices
under analysis are within the desired confidence interval5
JSIMgraph stops the simulation. We set to 99% the confi-
dence interval for our experiments.

4.1 Independent architecture

We answer RQ1 by using the approaches in [18, 31] to study
the performance of CAS. In this section, we consider the
robot scenario with independent architecture.

We obtain the QN in Fig. 5 by applying rules defined
in [18] to the forward and backward boxes of the behavioural
specification in Fig. 2. For example,

• the first and second non-deterministic choices in the for-
ward box of Fig. 2 become respectively the D1 status
and D2 status router in the FORWARD box of Fig. 5;

• interactions on the left branch of each choice in the forward
box of Fig. 2 become the D1 open and D2 open service
centres in the FORWARD box of Fig. 5;

• similarly, interactions on the right branch of each choice in
the forward box of Fig. 2 become the D1 closed and D2
closed service centres in the FORWARD box of Fig. 5.

The GSPN depicted in Fig. 6 is obtained by adapting the
performance model proposed in [31] for independent robots
to the scenario considered in Sect. 2. A delay centre (i.e.
Robots in Fig. 5) represents the number of robots in the
system as well as the time that each robot waits on aver-
age for a new task to be assigned. Our experimental setting
considers a fixed number of robots (N = 100 in Table 1).

5 A confidence interval is a range of values that is likely to contain
performance parameter with a certain probability.

Fig. 5 QN of the independent architecture

Initially, all robots are waiting to receive a task. After an
exponentially distributed time, the transition wait fires. A
task is assigned to one of the waiting robots, a token is re-
moved from the input place of the wait transition, and a
new token is generated in its output place. Such output place
represents robots moving towards the first doors. Every time
the transition D1 reach fires, a robot reaches the door. If the
door is closed, the immediate transition D1 fail fires and
the robot takes the alternative long route with the timed tran-
sition D1 alt., otherwise, the robot goes through the first
door with the immediate transition D1 succ. and continues
its journey towards the second one with the timed transition
D1 straight. Places and transitions govern the door status
(i.e. open or closed). For example, places of the first door
are D1 open and D1 closed, whereas its transitions are D1
opening and D1 closing. A door is closed or open un-
til the related transition (i.e. for the first door D1 opening
and D1 closing, respectively) fires and changes the door
status.

The two performance models are parameterised with nu-
merical values from the literature [40] as shown in Table 1.

Using the QN and GSPN models developed for the sce-
nario under analysis, we can answer RQ2. Specifically, we
compare the response time estimated by both models when
the probability that each door is open varies. We define the
response time as the time taken by each robot to complete
the assigned task and return to the initial room. Results of
this analysis are plotted in the left histogram of Fig. 7 with
their 99% confidence interval. In this figure, the extreme
cases of 0.01 and 0.99 probabilities are reported instead of 0
and 1 since the latter ones are not probabilistic by definition,
i.e.,such values imply doors are always closed or open. Ex-
perimental results show high agreement in the performance
predictions. The QN derived from the behavioural specifica-
tion and the GSPN predicts a comparable response time inde-
pendently of the considered probability. If the probability of
doors being open is high, robots are likely to take the fastest
route and the response time is minimum. The longest re-
sponse time is observed when 0.2 ≤ Pr(Door is Open) ≤ 0.3,
i.e. robots may find a door open and the other one closed.
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Fig. 6 GSPN of the
independent architecture

Table 1 Numerical values used for GSPN and QN models of inde-
pendent, collaborative, and centralised architectures. Direction indi-
cates Forward (F) or Backward (B). SD∗ open (QN) is obtained by

summing SD∗ reach and SD∗ str aight (GSPN). SD∗ closed (coord)

(QN) is obtained by summing SD∗ ask and SD∗ skip (GSPN). Timing
parameters are in second

GSPN QN
Parameter Direction Value Parameter Direction Value

N (num. of robots) 100 N (num. of robots) 100
Swait 10 Z 10
SD∗ closing + SD∗ opening 60 – – –
SD∗ reach F / B 5 SD∗ open F / B 10
SD∗ str aight F / B 5
SD1 alt . F 45 SD1 closed F 45
SD2 alt . F 60 SD2 closed F 60
SD1 alt . B 60 SD1 closed B 60
SD2 alt . B 45 SD2 closed B 45
SD∗ f ollow F / B 46 SD∗ msg . F / B 46
SD∗ send F / B 1 SD∗ send F / B 1
SD∗ ask F / B 1 SD∗ open (coord) F / B 1
SD∗ skip F / B 40 SD∗ closed (coord) F / B 41
SD∗ update – 60 – – –

Fig. 7 Independent architecture: System response time (left) and MAPE (right) vs. probability of door being open
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Fig. 8 QN of the collaborative architecture

Indeed, robots spend more time taking the alternative route
when they are blocked at the second door, see Table 1. The
QN predictions are further assessed in the right histogram of
Fig. 7 via mean absolute percentage error (MAPE):

MAPE[%] =
| RGSPN − RQN |

RGSPN
· 100,

where RGSPN and RQN are the response times estimated
using GSPN and QN, respectively. The MAPE is 1.18% on
average and always less than 4%. This is an excellent result
when estimating the system response time [35].

4.2 Collaborative architecture

Here, we answer RQ1 and RQ2 considering the robot sce-
nario in Sect. 2 deployed with a collaborative architecture.

Applying rules in [18] to the behavioural specification of
Fig. 3 yields the QN depicted in Fig. 8. Now, routers can
forward requests to three different branches. Indeed robots
may go through an open door, get stuck in front of a closed
door, or receive a message from a peer warning them that the
next door is closed. The latter case is represented by the D1
msg. and D2 msg. service centres for the first and second
doors, respectively. When robots get a warning message from
their peer, they can immediately take the alternative route
without spending time approaching the door and checking its
status. The warning message needs to be issued by a robot that
finds a closed door after having reached it. This is modelled
by D1 send and D2 send service centres positioned after
D1 closed and D2 closed, respectively.

Performance predictions obtained using the QN in Fig. 8
are compared to those observed modelling the scenario under
analysis with the GSPN described in [31] and depicted in
Fig. 9. These performance models are parameterised with
numerical values reported in Table 1, except for probabilities
used in the QN routers (i.e. D1 status and D2 status).
This is necessary for a fair comparison of QN and GSPN
performance predictions. Indeed, the probability of a robot
receiving a message from a peer is conditioned by other
system attributes (e.g. the door status, as well as the number,

position and velocity of robots). While the GSPN keeps track
of dependencies among input parameters via the accurate
and complex modelling of the whole environment, the QN
performance model leverages only routing probabilities and
the time taken to complete actions. Hence, we first analyse
the GSPN model of the collaborative architecture given in
Fig. 9. This analysis allows us to infer the probabilities for
robots to receive a message from a peer under certain system
circumstances so to properly parameterise the QN model.

Similarly to the independent architecture, we estimate the
response time of the collaborative scenario against the proba-
bility of doors being open, using both QN and GSPN models.
Hence, we assess the quality of QN predictions by comparing
response time to the one estimated using the GSPN model.
The response time predicted by both performance models
is plotted in Fig. 10 (i.e. left histogram). The QN param-
eterised as previously described generates predictions that
agree with those from the GSPN. The response time of col-
laborative systems is generally shorter than the one observed
with an independent architecture since robots share knowl-
edge about the environment. Note that such shared knowl-
edge might also affect negatively the performance of a CAS.
This is the case when doors are open with a high probability,
i.e. Pr(Door is Open) ≥ 0.9. Indeed, a robot that gets stuck
behind a closed door propagates its finding making other
agents take the alternative route, even if the probability that
the door will soon turn open again is high.

The maximum MAPE observed with the collaborative
architecture is smaller (i.e. less than 1%, see the right his-
togram of Fig. 10) than the one of the independent scenario.
Similarly, also the average MAPE (i.e. 0.33%) improves due
to probabilities directly derived from the GSPN and plugged
into the QN routers. The probability value for which the
maximum MAPE is observed varies across the two archi-
tectures, i.e. Pr(Door is Open) = 0.8 in the independent case
and Pr(Door is Open) = 0.2 in the collaborative one. Differ-
ent factors can cause this behaviour, e.g. the intrinsic stochas-
ticity of the system as well as the different types of considered
architectures.

4.3 Centralised architecture

Here, the approach presented in [18] is used to model and
study the performance of a CAS deployed with the centralised
architecture described in Sect. 3.3.

The application of the rules listed in [18] to the be-
havioural specification depicted in Fig. 4 yields the QN
shown in Fig. 11. In order to model the behaviour of robots,
which depends on the status of the doors communicated by
the coordinator, the QN has two extra routers, D1 coord
and D2 coord. If the coordinator communicates that the
next door is closed (i.e. D1 closed (coord)), the robot
takes the alternative and longer path that allows reaching the
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Fig. 9 GSPN of the
collaborative architecture

Fig. 10 Collaborative architecture: System response time (left) and MAPE (right) vs. Probability of door being open

Fig. 11 QN of the centralised
architecture

Fig. 12 GSPN of the
centralised architecture

destination without finding other obstacles. Otherwise, the

robot heads towards the door when the coordinator says that

the next door is open (i.e., D1 open (coord)). If the door

is actually open (i.e. determined by D1 status), the robot
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Fig. 13 Centralised architecture: System response time (left) and MAPE (right) vs. probability of door being open

passes through; otherwise, the robot takes the alternative
route and communicates its findings to the coordinator (i.e.
D1 send). The same process is repeated for every door (i.e.
D1 and D2) in both directions (i.e. Forward and Backward).

The performance results obtained by simulating the QN in
Fig. 11 are compared to those returned by the GSPN model
proposed in [31] and illustrated in Fig. 12. The GSPN and
QN models are parameterised as in Table 1. Probabilities
used in the QN routers are conditioned on other attributes
(e.g., the probability that each door is open and the number of
robots in the system) and require further attention to enable
a fair comparison between GSPN and QN. Specifically, we
parameterise the QN routers with the probabilities observed
by running the GSPN model.

The average time taken by a robot to complete its mission
and go back to the starting point (i.e. the system response
time) is estimated with the two approaches and depicted in
Fig. 13 (left). Also in this architecture, QN and GSPN agree
on the trend of the system response time, i.e., flat up to
Pr(Door is Open) = 0.9 when it starts to decrease. Figure 13
depicts the MAPE (right) as well and highlights the accuracy
of the QN model with respect to the GSPN one. The small
error (i.e. 1.88% on average and less than 3% for all con-
sidered probabilities) denotes the ability of the QN to model
the same scenarios analysed with the GSPN even when a
centralised architecture is considered.

5 Discussion

Our analysis confirms that both QNs and GSPNs are suitable
for the performance evaluation of CAS.

Our experience shows that there is a trade-off between
simplicity and expressiveness in the use of these models
(RQ1). The two modelling approaches offer different advan-
tages, which we discuss hereafter. A main advantage of QNs
is that they are conceptually simple: performance analysis
is based on the probabilities assigned to observable events
(e.g. door open). Moreover, QNs can be automatically de-
rived from our behavioural specification of the system. A

Fig. 14 System response time predicted using QNs to model the three
scenarios

key observation is that our behavioural specification mod-
els introduce a clear separation of concerns: the modelling
of the system is orthogonal to its performance analysis that
is done by using the derived QNs; hence one just needs to
fix the probabilities for the observable events. However, this
comes with a cost: it is not usually easy to determine such
probabilities.

Instead, the modelling with GSPNs does not require to
directly specify probabilities, a clear advantage over QNs.
Indeed, with GSPNs one has to simply select a suitable time
distribution: this is therefore a more reliable approach com-
pared to QNs. Besides, GSPNs allow for controlling events
with a same process; for instance, if a door is open in a direc-
tion, it must also be open in the other direction; this cannot
be modelled using probabilities only. Overall, GSPNs re-
quire more expertise on building the performance model,
but its parameterisation includes timing values only, hence
they may also be used for monitoring (see, e.g. [29]).

However, GSPNs are more “rigid” than QNs because cer-
tain characteristics of the system are hardwired in the model
itself. For instance, changing the number of doors robots
have to traverse would require a more complex performance
model. Moreover, this kind of generalisation will make the
size of the model much larger, which can severely affect the
performance of the analysis as the state space grows exponen-
tially [5]. This is not the case for QNs derived from our be-
havioural specification, because they permit to easily abstract
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away from the number of system components. On the other
hand, GSPNs allow to easily model other types of sophisti-
cate coordination policies. For instance, in the collaborative
architecture, it is easy to let the robot first noticing the closed
door wait for all nearby robots to take the alternative route
before continuing its journey. This is not simple to model
with our behavioural specification language or with QNs.

An interesting outcome of our simulations is that the two
different model-based performance predictions match, the
error is never larger than 4% denoting high agreement be-
tween the proposed performance abstractions (RQ2). Fig-
ure 14 plots the response time against the probability that
doors are open, for the three architectures considered in this
paper. These experimental results confirm some expecta-
tions for the analysed scenarios. In particular, the system
response time is minimal when the probability that doors
are open is high; this confirms the observations in [31]. Our
experiments highlight also that the independent architecture
performs worse than the others when the probability that
doors are open is below ∼70%. Instead, as this probability
increases (from∼80% onwards) the independent architecture
outperforms the others. This is due to the fact that for the col-
laborative and centralised architectures robots can follow the
alternative path more promptly avoiding the penalisation of
attempting the quicker route and then taking the alternative
paths due to a closed door. Moreover, the lack of communi-
cation prevents unlucky agents (i.e. robots that find a closed
door despite the small chances) from “propagating” their bad
luck to their peers. Considering only the response time ob-
served with the collaborative and centralised architectures,
experimental results show that the centralised architecture
allows saving time when Pr(Door is Open) ≤ 0.4. Collab-
orative and centralised architectures show similar response
time if 0.5 ≤ Pr(Door is Open) ≤ 0.6, whereas the collab-
orative architecture outperforms the centralised one when
Pr(Door is Open) ≥ 0.7. When the probability that doors
are closed is high, the centralised architecture optimize the
response time, since the controller has a global knowledge
of the environment. As already discussed, this turns into a
disadvantage if Pr(Door is Open) is large, i.e. when the con-
troller’s knowledge gets old quickly. In this case, it is conve-
nient leveraging up-to-date information provided by robots
that have just sensed the door status.

A problem common to both the QN and GSPN models
presented here is that they are not suitable in experimental
setting with very high “density” of robots deployed in the
system; namely, when the parameter N in Table 1 is much
higher than the physical dimension of the operating space. In
this case, our QN and GSPN models do not take into account
that robots can be significantly slowed down due to the con-
strained physical space. A possible way to overcome this lim-
itation is to profile the average speed of robots when the popu-
lation size changes, and parameterise the model accordingly.

6 Conclusions, related & future work

This paper investigates the performance analysis of CAS
through the lenses of three different formal notations: (i)
an adapted version of a calculus of attribute-based com-
munication (AbC), (ii) Queueing Networks (QNs), and (iii)
Generalised Stochastic Petri Nets (GSPNs). We present a
case study of autonomous robots for which three architec-
tural scenarios have been elaborated. Experimental results
demonstrate the usefulness of our modelling effort that al-
lows to derive performance characteristics of interest. We
compare QNs and GSPNs by exploiting the models of the
three architectures and observe a high level of agreement on
the obtained model-based performance predictions.

Behavioural Abstractions. Coreographic models have
been applied to Cyber-Phisical Systems [24, 25], IoT [23]
and robotics [27]. These papers focus on verification of cor-
rectness properties (e.g. deadlock freedom and session fi-
delity) and are not concerned with quantitative aspects or
performance analysis. Some works in the literature exploit
behavioural abstraction for cost analysis of message passing
systems. Cost-aware session types [11] are multiparty ses-
sion types annotated with size types and local cost, and can
estimate upper-bounds of the execution time of participants
of a protocol. Temporal session types [14] extend session
types with temporal primitives that can be exploited to reason
about quantitative properties like the response time. A paral-
lel line of research studies timed session types [7, 9, 10], that
is session types annotated with timed constraint in the style of
timed automata [3]. They have been used for verification of
timed distributed programmes by means of static type check-
ing [9, 10] and runtime monitoring [6, 29]. Despite the pres-
ence of timed constraints, which makes timed session types
appealing for performance analysis, they have never been ap-
plied in such setting. Session types have been extended with
probabilities [17] for verification of concurrent probabilistic
programmes, which is potentially useful for the CAS analy-
sis. A common limitation of these approaches is that they do
not easily permit to define the number of agents’ instances
embodying a specific role in the system specification. Our
behavioural model instead allows it, as explained in the final
remark of Sect. 2, hence it is suitable for performance analy-
sis that indeed requires such a system workload information.

Quantitative Abstractions. Rigorous engineering of col-
lective adaptive systems calls for quantitative approaches
since there is need of designing and managing the coordina-
tion activities [15]. A recent survey on verification tools for
CAS formation [19] outlines that current analysis techniques
are still immature to deal with possible changes in decision-
making. This is the reason why quantitative approaches that
keep track of behavioural alternatives and their impact on
system performance, as we do in this paper, can be of high
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relevance for CAS. There exist approaches providing quan-
titative abstractions for CAS, for instance, Vandin at al. [38]
make use of Ordinary Differential Equations (ODEs) to ex-
press large-scale systems that are analyzed through bisimula-
tions. Unlike our approach, the analysis presented in [38] has
the limitation that is not reliable when the number of agents
is rather low, since ODEs provide better accuracy with a
large population size. Probabilistic behaviour of agents is
investigated by Loreti et al. [26], who also introduce the
language CARMA along with a simulation environment to
provide quantitative information on CAS. This interesting
line of work has currently a limited scalability. Performance
properties of CAS are discussed by Viroli et al. [39] with
the goal of selecting performance-based optimal configura-
tions while preserving system functionalities. However, this
methodology requires the re-deployment of the system and
it invalidates the possibility of switching to available alter-
natives at runtime. Pianini et al. [30] recently proposed a
design pattern which partitions system devices into regions
and enables internal coordination activities. This is analo-
gous to our collaborative architecture where robots interact
with nearby peers.

There are some further approaches that can be considered
complementary to ours. For instance, Lee et al. [21] present
a language, based on Architecture Analysis & Design Lan-
guage (AADL), for drones that collaborate in packet delivery,
specifically each drone needs to adapt to the motions of the
other drones for collision avoidance. Töpfer et al. [36] rely
on modelling abstractions that incorporate machine-learning
and optimisation heuristics to deal with uncertainty in the en-
vironment of CAS. The analysed scenario consists of work-
ers going to a factory that may encounter delays and are
replaced by standby workers. Similarly, our scenarios can
benefit from specification of uncertainties (e.g. failures of
robots and other components [33]) and strategies to rescue
items, as recently investigated in [32]. Lion et al. [22] present
an operational specification of components as rewrite sys-
tems equipped with a Maude specification that is adopted
to incrementally analyze the system design. The illustrative
application includes two energy sensitive robots roaming on
a shared field, and results demonstrate that the introduced
coordination prevents livelock behaviour. Summarizing, to
the best of our knowledge, our approach differs from the
state-of-the-art in the goal of automatically deriving quan-
titative abstractions from the behavioural specification of
CAS. This way, we aim to simplify the derivation of per-
formance indicators of interest, and provide support for a
rigorous engineering of CAS.

Future work. Our research agenda includes the investiga-
tion of more complex application scenarios, thus to assess the
soundness and scalability of our model-based performance
analysis. As short-term research direction, we are interested

to explore the possibility to automatically deriving the struc-
ture of GSPN from our behavioural specifications. We think
that this could result beneficial for overcoming some of the
drawbacks of GSPN while avoiding the need to determine
probabilities. As long-term research direction, we aim to ex-
plore the presence of dependencies among input parameters
and their impact on the performance analysis of CAS. For
instance, in the analysed scenarios, we can consider syn-
chronised behaviour of doors so that they change state in a
coordinated way, or the effect of dynamic workloads on the
system performance [2, 34]. This fosters some implications
in the parameters of the scenarios, e.g. the probability for a
robot to find the second door open (after it crossed the first
one) relies on its speed and the time when the robot went
through the first door.
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