
International Journal on Software Tools for Technology Transfer (2023) 25:675–691
https://doi.org/10.1007/s10009-023-00731-0

FOUNDATIONS FOR MASTERING CHANGE

Special Section: Rigorous Engineering of Collective Adaptive Systems

Modelling flocks of birds and colonies of ants from the
bottom up

Rocco De Nicola1 · Luca Di Stefano2 · Omar Inverso3 · Serenella Valiani1

Accepted: 10 October 2023 / Published online: 2 November 2023
© The Author(s) 2023

Abstract
This paper advocates the use of compositional specifications based on formal languages as a means of modelling and
analysing sophisticated collective behaviour in natural systems. With the use of appropriate linguistic constructs, models
can be developed that are both compact and intuitive, and can be easily refined and extended in small steps. Automated
workflows can be implemented on top of this methodology to provide quick feedback, enabling rapid design iterations. To
support our argument, we present three examples from the natural world, focusing on flocks of birds and colonies of ants,
which feature well-known examples of emergent behaviour in collective adaptive systems. We use an agent-based language
to develop simple models that aim at capturing these collective phenomena, and discuss the specific language constructs that
we use in the process. Then, we adapt an existing verification tool for the language to simulate our models, and show that our
simulations do display emergent behaviour.

Keywords Agent-based models · Collective behaviour · Flocks of birds · Foraging · Ant colonies · Simulation · Formal
verification

1 Introduction

Over the years, biological and natural systems such as flocks
of birds, colonies of ants, schools of fish, and swarms of in-
sects have received considerable attention from researchers
across different disciplines. These systems exhibit complex
structures that can dynamically respond to changing condi-
tions. To understand these systems, researchers have used
various mathematical frameworks. For instance, flocking,
where a group of birds exhibits coherent patterns of collec-
tive motion, has been modelled using graph theory [36], dis-
tributed control laws [46], and statistical mechanics [6]. An-
other example can be found in colonies of ants; the way they
distribute their workforce has been studied through differen-
tial equation [48], search algorithms and strategies [35, 53],
or probabilistic communication [14].

The design of these systems has been approached in terms
of aggregate features and relies on simplifying assumptions
about the individual behaviour. However, recent studies have

shown that a bottom-up design approach could lead to a
more effective design of adaptive systems. Compositional
methodology has gained prominence in several disciplines,
including epidemiology, ecology, economics, and social sci-
ences [8, 24, 30, 47], where the focus lies on the examination
of individual components rather than the entire system.

In this paper, we argue for a bottom-up approach based
on formal specification languages. This approach defines the
system in terms of individual components and local rules,
allowing the collective behaviour of the system to emerge
naturally from the combined effect of the actions of the com-
ponents. This approach can be helpful in reproducing sophis-
ticated collective dynamics intuitively, and, when combined
with appropriate linguistic constructs, can yield compact and
intuitive specifications that are easy to refine. The adoption
of a formal language allows the implementation of automated
workflows for simulation or formal analysis that can provide
quick feedback, enabling rapid design iterations.

We present three examples to illustrate our point and write
our models using a specification language previously defined
by us [11]. In the first example we develop a model of a flock
by gradually defining the individual behaviour and features of
a bird. As we progressively refine it, we aim at keeping the be-
haviour of individual birds as decentralized as possible. We
gradually present the constructs used in the specifications, to

� S. Valiani
serenella.valiani@imtlucca.it

1 IMT School for Advanced Studies, Lucca, Italy
2 University of Gothenburg, Gothenburg, Sweden
3 Gran Sasso Science Institute (GSSI), L’Aquila, Italy

Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-023-00731-0&domain=pdf
mailto:serenella.valiani@imtlucca.it

676 R. De Nicola et al.

keep them compact and intuitive. Upon attaining a fully re-
fined model, we simulate the evolution of a flock obtained by
composing a number of birds together. Our results indicate
that the flock exhibits collective characteristics. In particular,
when faced with external aggression from a predatory bird,
the members of the flock demonstrate the ability to flee the
threat and subsequently reform into a cohesive unit once the
danger has passed. The second example introduces a model
that describes the behaviour of an ant within a colony. We
simulate the evolution of the behaviour of a colony during
food foraging. In particular, we show that the colony tends to
choose the shortest path when faced with multiple paths. The
third example, on the other hand, describes the behaviour of
a small group of ants on a finite bar. It is trivial to observe
that the ants fall off the bar. The emergent behaviour we aim
to demonstrate concerns the order of events that characterize
the model. We show the order of events using formal veri-
fication techniques. We borrowed this last example from a
paper presented at the conference to which this special issue
is dedicated [23].

In our view, the considered examples provide evidence
that the design of adaptive systems can benefit from the
exploitation of the features and principles of biological and
natural systems. By using a bottom-up approach, where the
behaviour of individual entities is governed by simple rules
and local reactions, it becomes possible to design a scalable,
adaptive, and efficient framework to address the research
questions posed in the field of adaptive systems design.

This paper is a revised version of [12], but extends it
in several ways. In our previous paper, we considered the
evolution of a single simulation of the model presented in
Sect. 2.1, while here in Sect. 3.1, we provide further simu-
lation results that show the level of cohesion that the flock
is able to achieve after an attack. Furthermore, we introduce
new examples (Sects. 2.2 and 2.3) along with their exper-
imental evaluation. In particular, in Sect. 3.2 we provide
simulation results that show how a colony of ants distributes
along two possible paths during the food foraging process.
In Sect. 3.3 we show instead how we can prove interesting
temporal properties (in this case, about the ordering of events
for every execution of the example from Sect. 2.3) by means
of mechanized verification procedures.

The paper is structured as follows. In Sect. 2, we define
the three models of the flock of birds and ant colonies using
various constructs of the language. Our experimental setup
for simulation and verification, along with our controlled
experiments, are described in Sect. 3. In Sect. 4, we provide
an overview of related work. Finally, in Sect. 5, we conclude
with some final remarks and discuss potential avenues for
future research.

Listing 1: Baseline agent modelling
1 agent Bird {
2 interface =

3 x: 0..G;
4 y: 0..G;
5 dirx: −D..D + 1;
6 diry: −D..D + 1
7

8 Behaviour = Move; Behaviour
9 Move = {

10 x← x + dirx;
11 y← y + diry
12 }

13 }

2 Specification

In this section, we present three examples that illustrate how
to use LAbS to model agents. Starting with simple initial
models, we gradually refine the specifications by leveraging
the expressiveness of the language and its constructs, with
the goal of obtaining intuitive and readable specifications of
the individual agents in the system.

2.1 Flock of birds

The model in this section mimics the dynamics of a flock
of birds when confronted by a predator. Our model is con-
structed in stages, with the introduction of language con-
structs occurring as the model is expanded, thereby preserv-
ing a concise and intuitive specification.

Description of a bird Each bird of the flock possesses
two defining attributes; specifically, its position and orienta-
tion. The former is represented by a set of coordinates in a
two-dimensional space denoted as (x,y), while the latter is
characterized by a pair of integers (dirx,diry) that represent
a heading vector. This comprehensive depiction enables the
representation of both the bird’s displacement direction, as
indicated by the angle subtended by the heading vector, and
its velocity, which is portrayed by the length of the heading
vector.

Listing 1 shows how we can model the above description.1
We start by defining and initializing the observable features,
or attributes, of the agent. These are listed within the first
section named interface, in lines 2–6. Attributes x and y
correspond to any valid coordinates on a grid that represent

1 In this paper, we present condensed, human-readable versions of
the full, machine-readable specifications. These are available at https://
github.com/labs-lang/labs-examples/tree/isola2022/isola2022.

Springer

https://github.com/labs-lang/labs-examples/tree/isola2022/isola2022
https://github.com/labs-lang/labs-examples/tree/isola2022/isola2022

Modelling flocks of birds and colonies of ants from the bottom up 677

Fig. 1 Possible heading vectors that a bird can assume for different
values of D

an arena where the flock is located. The grid is a square with
edges of length G, so the possible values range from 0 to
G− 1 inclusive (lines 3–4). Currently, we assume that agents
never reach the edge. The range of initial values for dirx and
diry spans from −D to D (lines 5–6). Here, D represents the
maximum displacement along each coordinate of the grid. It
is noteworthy that, as the value of D increases, the number
of possible heading vectors also increases, as is illustrated
in Fig. 1. Finally, the actual initial value of each attribute is
chosen non-deterministically.2

Behaviour of a bird Listing 1 also specifies a very simple
behaviour for our birds. The behaviour is defined as a Be-
havior process. Its definition is recursive, meaning that each
bird will repeatedly carry out the actions described in the
Move process (line 8). This process, in turn, updates the two
attributes (x,y) with (x + dirx,y + diry), modelling the bird’s
movement along its displacement vector (lines 10–11). We
assume that the system evolves in discrete time steps and that
at every step one bird executes one assignment.3 Each assign-
ment is performed atomically, but sequences of assignments
may be susceptible to interleaving among different agents. To
prevent this, i.e. to let the same agent execute multiple assign-
ments atomically, these must be enclosed in curly brackets,
as shown in lines 9–12.

Alignment The specification above does not yield any
form of collective behaviour, as the birds move indepen-
dently of each other without considering their flockmates.
Consequently, it becomes necessary to introduce models of
birds that are influenced by the movements of their neigh-
bours. In fact, flocking behaviour is commonly believed to
be an outcome of local interaction mechanisms [22, 42].
Specifically, we begin by examining alignment, which is the

2 Note that the specifications read−D..D+1 because ranges in LAbS
are upper-bound exclusive (i.e. the value D + 1 is not part of the range).

3 We actually assume this for every LAbS model.

Listing 2: Alignment
1 agent Bird {
2 interface = . . .
3

4 Behaviour = Move; Behaviour
5 Move = {

6 p� pick 1;
7 dirx← dirxp;
8 diry← diryp;
9 x← x + dirx;

10 y← y + diry
11 }

12 }

dynamic by which each bird modifies its heading based on
the heading of its neighbouring birds. A trivial method to
accomplish this is to allow each bird to mimic the direction
of another bird in the flock. To model this behaviour, each
bird must be able to observe the heading of other birds.

In Listing 2, lines 6–8, we present the modifications re-
quired to implement the alignment behaviour. To enhance
clarity, we omit the interface as it is identical to that of
Listing 1. It is worth noting that even though agents remain
anonymous to each other, they possess a sense of identity
provided by a unique identifier (id) assigned to each agent
within the system. This identifier serves a similar purpose to
the this or self keywords in general-purpose programming
languages.

The availability of identifiers enables us to use the pick
operator. It allows an agent to select another agent from
the system in a non-deterministic manner. Specifically, in
line 6, the instruction p � pick 1 selects the identifier of
another agent and stores it in a local variable p. Generally,
pick k returns k distinct identifiers that are guaranteed to
be different from the identifier of the agent performing the
selection. We utilize the operator � to denote assignments
to local variables, which are created implicitly upon their
first assignment. In lines 7–8, we update the components of
the heading vector by replacing them with the corresponding
components of the selected agent. Since the bird now has the
identifier of an agent stored in p, it can access the selected
agent’s heading vector using the syntax dirxp, diryp. In this
specification, the bird updates its own heading vector with
that of p (lines 7–8) and then moves by updating its own
position (lines 9–10).

Cohesion Birds in a real flock exhibit not only alignment
in their direction of movement, but also cohesion, i.e. the abil-
ity to keep close to each other. However, the model of flock-
ing seen so far does not accurately display this behaviour. In
fact, even when two birds are far apart, they tend to move

Springer

678 R. De Nicola et al.

Listing 3: Cohesion
1 agent Bird {
2 interface = . . .
3

4 Behaviour = Move; Behaviour
5 Move = {

6 p� pick 1;
7

8 a_x� xp +ω · dirxp;
9 a_y� yp +ω · diryp;

10 sgn_x� 0 if x = a_x else
11 −1 if x > a_x else 1;
12 diff_x� d((x,0),(a_x,0);
13 . . . (Same for sgn_y, diff_y)
14 a_dirx� sgn_x · (D :2 if diff_y >

diff_x else D);
15 a_diry� sgn_y · (D :2 if diff_y <

diff_x else D);
16

17 dirx← (dirx + a_dirx) : 2;
18 x← x + dirx
19 . . . (Same for diry, y)
20 }
21 }

in the same direction without getting closer to each other.
To address this limitation, we modify the current model to
incorporate both alignment and cohesion. In our modified
model, each bird selects another bird in the flock, estimates
its future position based on its current direction, and then
steers towards that position.

Listing 3 shows how cohesion can be modelled. We use
the ternary operator a if c else b to represent a conditional
expression that evaluates to a if condition c is true and b
otherwise. The syntax a : b denotes integer division with
rounding, and d((x1,y1),(x2,y2)) denotes the Manhattan dis-
tance between two points, i.e. |x1 − x2 | + |y1 − y2 |. To imple-
ment the modified behaviour, each bird selects a target bird
to approach (line 6). The agent estimates the target’s posi-
tion after ω steps (lines 8–9), and determines an approach
vector (a_dirx,a_diry) pointing towards that position. The
approach vector is computed component-wise (lines 11–15).
The instructions for the y-component are omitted for sake of
brevity. Finally, the bird’s new heading vector is computed
as the average of its current heading vector and the approach
vector (line 17), providing the bird with some inertia for more
realistic movement.

Avoiding flock dispersion and collisions Despite the
specifications provided so far, undesired outcomes such as
flock dispersion and collisions can still occur. These prob-

Listing 4: Flock dispersion and birds collision
1 agent Bird {
2 interface = . . .
3

4 Behaviour = Move; Behaviour
5 Move = {

6 p� pick 1;
7 pIsIsolated� forall Bird b,
8 (b = p) or d((xp,yp),(xb,yb)) > δ;
9 appId� id if pIsIsolated else p;

10

11 a_x� xappId +ω · dirxappId;
12 sgn_x� 0 if x = a_x else 1 if x > a_x else 1;
13 diff_x� d((x,0),(a_x,0);
14 . . . (Same for a_y, sgn_y, diff_y)
15 a_dirx� sgn_x · (D :2 if diff_y >

diff_x else D);
16 a_diry� sgn_y · (D :2 if diff_y <

diff_x else D);
17

18 dirx← (dirx + a_dirx) : 2;
19 diry← (diry + a_diry) : 2;
20 posFree� forall Bird b,
21 (xb � x + dirx) or (yb � y + diry);
22 x← x + dirx if posFree else x
23 y← y + diry if posFree else y
24 }

25 }

lems arise when birds attempt to approach isolated birds or
move to occupied locations, respectively. To avoid the for-
mer, we need to provide birds with the capability of checking
whether a bird is isolated. Similarly, to prevent collisions, it
is necessary for each bird to assess whether its target location
is free of other birds before moving.

In Listing 4, we incorporate the above refinements. First,
we check at line 7 whether a bird p is isolated, i.e. its distance
from all other birds is greater than a parameter δ. To facilitate
this check, we use quantified predicates that allow us to pred-
icate over the attributes of all agents, or some agent, of given
types. If the bird is isolated, it will continue along its current
direction (line 9), and will not be approached by other birds.
Similarly, to avoid collisions, a check at lines 20–23 is intro-
duced to ensure that the bird only moves to an unoccupied
position pointed at by its heading vector. If another bird is
already occupying that position, the bird stays in its current
location.

Fleeing from a predator Until now, we have considered
a flock that is unperturbed by external threats. We shall now
modify the model to enable birds to recognize predators and

Springer

Modelling flocks of birds and colonies of ants from the bottom up 679

Listing 5: Fleeing from a predator
1 agent Predator { ... }
2

3 agent Bird {
4 interface = . . .
5

6 Behaviour = Move; Behaviour
7 Move = {

8 p� pick 1 Bird;
9 . . .

10 a_diry� sgn_y · (D :2 if diff_y <
diff_x else D);

11

12 e� pick 1 Predator;
13 e_x� xe + ν · dirxe;
14 esgn_x� 1 if x ≥ e_x else − 1;
15 ediff_x� d((x,0),(e_x,0));
16 . . . (Same for e_y, esgn_y, ediff_y)
17 e_dirx� esgn_x · (D :2 if ediff_y>

ediff_x else D);
18 e_diry� esgn_y · (D :2 if ediff_y<

ediff_x else D);
19

20 e_dist� d((x,y),(e_x,e_y));
21 f_dirx� e_dirx if e_dist < λ else a_dirx;
22 dirx← (dirx + f_dirx) : 2;
23 . . . (Same for f_diry, diry)
24 posFree� forall Bird b,
25 (xb � x + dirx) or (yb � y + diry);
26 x← x + dirx if posFree else x
27 }

28 }

flee from them when they come too close, while preserving
the flocking dynamics that we have introduced so far.

Listing 5 presents the modified implementation of the
model. To implement this new behaviour, we make some
slight modifications to the model. In particular, we refine
the pick operator introduced earlier by making it typed. For
example, at line 8, a bird selects another member of the flock
and performs the same operations as seen in Listing 4. We
omit some of the instructions for sake of brevity. Similarly,
at line 12, the bird identifies a predator and evaluates its
distance from itself. If the distance is too small, the bird will
not approach it as usual, but instead flee from the predator.
To model this fleeing behaviour, we compute a repulsive
heading vector (e_dirx,e_diry) and let the bird follow it if
the predator is closer than a given parameter λ.

LAbS agents and global knowledge We should em-
phasize that certain operations in the specifications above

(specifically, those at lines 6, 7–8, 11, and lines 20–21 of
Listing 4) assume that a bird can access the state of other
birds in the flock.

Formally, this requires each bird to possess global knowl-
edge of the system; however, we argue that these operations
are reasonable in practice by the fact that they model ob-
servations that a bird can carry out locally. For instance, in
line 6, a bird can pick another flockmate by simply looking
at its surroundings, without necessarily being aware of ev-
ery bird in the system. Determining the direction of a bird
(line 11), or whether it is isolated (lines 7–8), may be done
by looking at that bird and the space around it. Lastly, find-
ing out whether there is a bird at location (x + dirx,y + diry)
(lines 20–21) does not require an interrogation of all birds in
the system; rather, one can simply observe the location itself.

In conclusion, we have chosen to equip LAbS with these
high-level primitives because they greatly simplify the spec-
ification process, and because they are usually realistic, i.e.
they may be carried out by agents through local observa-
tions and without actual global knowledge. LAbS allows a
rather high degree of freedom when using these primitives,
but leaves to the user the problem of determining whether
the corresponding observations are realistic or not.

2.2 Pathfinding ants

In this section, we set out to model an experiment [26] show-
ing that a colony of ants is able to select the shortest path
between two possible routes from its nest to a food source.
Initially, ants distribute more or less evenly among the short
and the long route. However, each ant releases a constant
amount of pheromone as it walks from the nest to the food
source and back. Each ant is also able to sense the con-
centration of pheromone present in the soil, and prefers the
route where this concentration is higher. Since the shortest
path gets quickly marked both by ants leaving the nest and
by those returning with food, a feedback mechanism is trig-
gered that makes all ants always select the shortest path, after
a few minutes. The model ignores the fact that pheromone
evaporates after a while, since the shortest path becomes
established in a much shorter time span than the one after
which evaporation becomes noticeable.

Description of the environment We consider a simple
scenario where the path diverges into two sub-paths starting
from the nest. The first sub-path, which is the shortest, can
be traversed by an ant in one steps, whereas the second sub-
path, which is the longest, requires each ant to take two steps.
In the experiment proposed in [26], the ratio between long
branches and short branches was indeed 2. Both sub-paths
eventually converge where the food source is located. As an
ant moves along either of the two sub-paths, it releases a
certain quantity of pheromone with each step. It is important

Springer

680 R. De Nicola et al.

Fig. 2 Structure of the paths that ants can follow

Listing 6: Description of the environment
1 system {
2 ...
3 environment = ph[5] : 0
4 }

to note that, at the beginning of the system, the level of
pheromone on both sub-paths is zero as no ants have passed
through them yet.

The diagram of the model is depicted in Fig. 2. We depict
the ants’ environment as a graph with five nodes, where the
node labelled 0 corresponds to the nest and the node labelled
4 corresponds to the food source. As mention above, each
node can hold a certain level of pheromone. We represent
this phenomenon in Listing 6, by means of a shared array
denoted as ph, initially set to zero.

Description of an ant Each ant in the colony is character-
ized by two attributes, namely its position and direction. All
the ants in the colony start in the nest, and they must travel to
the food source to obtain food. Once an ant leaves the nest,
it must complete the entire journey to reach the food source
before it can return to the nest. It cannot change direction
halfway along the route.

Listing 7 shows a model for the above description. In
particular, lines 3–4 define the interface of an ant of the
colony. Both attributes are represented using integer values.
The attribute pos (line 3) identifies the position of an ant and
corresponds to the number of graph node where it is located.
This value is initialized to 0 as initially all the ants are in
the nest. The attribute dir (line 4) indicates the direction of
an ant. If it moves from the nest towards the food source, its
value is 1, otherwise, it is −1. It is initially set to 1 as all the
ants are initially located in the nest.

Behaviour of an ant An ant located in the nest chooses,
if possible, the path with the highest level of pheromone. If
the pheromone levels of both paths are similar, the ant non-
deterministically selects one of them. Upon selecting a path,
the ant releases a specific amount of pheromone along that
path. When the ant reaches the food source, it again chooses

Listing 7: Description and behaviour of an Ant
1 agent Ant {
2 interface =

3 pos: 0;
4 dir: 1
5

6 Behavior = (Next0
7 ++

8 Next4
9 ++

10 NextOther);
11 DropPh; Behaviour
12

13 Next0 = pos = 0→
14 (ph[1] − ph[2] ≤ δ) → (pos,dir← 2,1)
15 ++

16 (ph[2] − ph[1] ≤ δ) → (pos,dir← 1,1)
17

18 Next4 = · · ·

19

20 NextOther = pos � 0 ∧ pos � 4→
21 pos← (4 if dir = 1 else 0) if pos = 1 else
22 (3 if dir = 1 else 0) if pos = 2 else
23 (4 if dir = 1 else 2) if pos = 3 else − 1
24

25 DropPh = {

26 ph[pos]⇐ ph[pos] if (pos = 0∨ pos = 4)
27 else ph[pos] + 1;
28 }

29 }

its path based on the level of pheromone present. It is worth
noting that the ant can return along a different route than the
one it used on its outward journey.

Listing 7 shows the implementation of the behaviour
above. The behaviour is defined recursively in lines 6–11.
The operator ++ denotes a nondeterministic choice between
behaviours. In our case, the agent has three options, listed in
lines 6–10 and named Next0, Next4, and NextOther. Their
definition is at lines 14–16. Each of these processes is actu-
ally guarded by the ant’s current position: for instance, Next0
can only proceed when the ant is at node 0 (i.e. the nest).
In this case, the ant updates its position based on the con-
centration of pheromone in each potential destination. If the
two concentrations are different enough (i.e. one is at least δ
units more than the other, where δ is an external parameter)
the ant will always move towards the higher concentration.
Otherwise, the ant nondeterministically selects one of the
two nodes 1 and 2. We omit the definition of Next4 for the
sake of brevity, as it is similar to that of Next0. NextOther,
on the other hand, is activated when an agent is in positions

Springer

Modelling flocks of birds and colonies of ants from the bottom up 681

Listing 8: Baseline agent modelling
1 agent Ant {
2 interface =

3 pos: 0..λ;
4 dir: [−1,1]
5

6 Behavior = Move; Behaviour
7 Move = {

8 desPos := pos + dir;
9

10 pos← desPos if 1 ≤ desPos ≤ λ else
11 −1 if desPos < 0 else λ + 2
12 }

13 }

1, 2, or 3 (i.e. along one of the paths, and not at the nest or
food source). In this case, the agent simply continues along
its direction with no possibility of reversal.

After moving to another node, the agent drops a unit of
pheromone at the new location, as shown in line 27. Finally,
the ant repeats its behaviour from the beginning.

2.3 Ants on a bar

In this section we describe the example proposed by Fettke
et al. [23], where a group of ants moves back and forth on a
one-dimensional bar.

Description of an ant Each ant of the group may be char-
acterised by two distinct attributes: its position and direction.
The former is denoted by a coordinate pos, which represents
the ant’s location along the bar. The latter is described using
an integer dir.

In Listing 8 (lines 2–4), these attributes are initialised
non-deterministically. Specifically, each ant may assume any
position on a bar with a length of λ, i.e. from 1 to λ inclusive.
Additionally, the direction attribute is initialised using a ran-
dom selection from one of two possible values: 1, indicating
that the ant will move to the right, or −1, indicating that the
ant will move to the left.

Behaviour of an ant We initially focus on a straightfor-
ward system in which an ant moves in accordance with its
direction and falls off the edge when it reaches it. Several
ants can currently move side by side.

In Listing 8, lines 7–12 describe this simple behaviour.
Please, note that it is defined again recursively as shown in
line 6. It outlines that each agent continuously executes the
actions defined in the Move process. More comprehensively,
an agent initially considers the desired position to which it

Listing 9: Collision
1 system {
2 ...
3 environment = collide[λ] : 0; bar[λ] : 0..N
4 }

5

6 agent Ant {
7 interface = . . .
8

9 Behavior = Move; Behaviour
10 Move = {

11 dir←−dir if collide[pos] = 1 else dir;
12 collide[pos] ⇐ 0;
13

14 desPos := pos + dir;
15 dirDpos := 0 if bar[desPos] = −1
16 else dirbar[desPos];
17 collide[desPos] ⇐ 0 if dirDpos = dir else 1;
18

19 bar[pos] ⇐ −1;
20 dir ← 0 if (desPos < 1∨ desPos > λ) else
21 dir if dirDpos = dir else − dir;
22 pos← 0 if desPos < 1 else
23 λ + 2 if desPos > λ else
24 desPos if bar[desPos] = −1 else pos;
25 bar[pos] ⇐ id
26 }

27 }

will move, dependent upon its current location and direc-
tion. The process for updating this position is presented in
lines 10–11. It should be noted that if an agent continues to
move along the bar, there are no issues (line 10). However, if
an agent reaches the left-hand edge, it is relocated to position
−1, which is outside the bar, while if an agent reaches the
right-hand edge, it is positioned at position λ + 2, which is
again outside the bar (line 11).

Collisions Let us now refine the description of ant be-
haviour to obtain that presented in the original example [23].
An ant, as before, can move forward or backward along the
bar. Two ants walking towards each other will eventually
collide. Upon collision, both ants reverse their direction and
continue along the bar. It is important to note that ants cannot
share the same position or overtake other ants. Finally, when
an ant reaches the edge, it falls.

Listing 9 presents the behaviour described above. It con-
tains several sections. In lines 1–4 we define a shared array
collide, initialised with zeroes, which enables the signal of a
collision to travel from one agent to another. Additionally, we
initialize a shared array called bar, which stores the ids of the

Springer

682 R. De Nicola et al.

agents based on their position on the bar. The behaviour of an
ant agent is described in lines 9–26. It is defined recursively,
with each agent repeatedly performing the Move process.
The latter can be divided into three parts. In the first part
(lines 11–12), the ant checks whether another one has previ-
ously collided with it by examining whether the collide array
is set to 1. If a collision has occurred, the ant immediately
changes its direction and then removes the occurrence from
the array of collisions by setting it back to 0. It is important
to note that the assignments to shared variables are denoted
by the symbol ⇐ to distinguish them from other kinds of
assignment seen so far. In the second part (lines 14–17), the
agent checks whether the position of the bar it wishes to
move to is already occupied. If it is, the agent examines the
direction of the agent occupying that spot (line 16). More-
over, if the position is occupied and the agent is moving in
the opposite direction, it records a collision occurrence in
the collide array. In the third and final part (lines 19–25),
the agent first removes its own position on the bar. Then, the
direction and position are updated, taking into consideration
both the case where an ant is on the edge of the bar and the
case where a collision has occurred. Finally, the new position
on the bar is updated.

3 Analysis results

In this section, we analyse the three examples described in
Sect. 2, both exhaustively and through simulation. We per-
formed all the experiments in a virtualized environment on
a dedicated machine running 64-bit GNU/Linux with ker-
nel 5.4.0 and equipped with four 2-GHz Xeon E7-4830v4
10-core processors and 512 GB of physical memory.

3.1 Flock of birds

In this subsection, we investigate whether the current speci-
fications of the flock model enable it to maintain its cohesion
when threatened by a predator. To test this, we set up an
experiment where all birds start from random positions in a
small area, and a predator bird flies through the centre of this
area, posing a threat to the flock. Our objective is to demon-
strate that the predator’s attack disrupts the cohesion of the
flock, causing it to scatter. However, we also aim to show
that the flock can effectively reorganize itself and regroup
once the predator leaves, demonstrating the effectiveness of
the model in mimicking complex emergent behaviour.

In our experiment, we consider an arena modelled as
a 1024 × 1024 square, within which all agents are placed.
However, if the birds were allowed to assume any position
within the arena, they could be widely scattered. Therefore,
we initialize the flock with the birds starting close to each

Listing 10: Constraints
1 assume {
2 GridCentre = forall Bird b,
3 xb > 490 and xb ≤ 510 and
4 yb > 490 and yb ≤ 510
5 DifferentPositions = forall Bird a,forall Bird b,
6 a = b or xa � xb or ya � yb2
7 DirectionNotNull = forall Bird b,
8 dirxb � 0 or diryb � 0
9 }

Listing 11: Predator specifications
1 agent Predator {
2 interface =

3 x: 480;
4 y: 480;
5 dirx: 3;
6 diry: 3
7

8 Behaviour = Move; Behaviour
9 Move = {

10 x← x + dirx;
11 y← y + diry
12 }

13 }

other, which is a more realistic starting position for an unper-
turbed flock. To ensure diversity, we also prevent the birds
from starting at the same position as others or from being
stationary, which means having a null heading vector. By im-
posing these constraints, we can ensure that our simulation
begins with a realistic initial configuration, which closely
approximates the behaviour of a real flock of birds.

Listing 10 shows how to model these initial constraints.
These are listed in a new section of the specifications titled
assume, where each constraint is expressed through a quan-
tified predicate, as seen in Sect. 2. Lines 2–4 establish that
birds can only be placed in a 20 × 20 sub-grid at the centre
of the arena, which guarantees that they will not be too far
apart. It is worth noting that the flock will never reach the
edges of the arena due to this initial configuration and the
limited number of steps that will be analysed. To prevent two
agents from starting at the same position, lines 5–6 state that
two agents cannot assume the same initial position. Lastly,
line 7 prescribes that every bird must have a non-null heading
vector.

The predator agent is specified in Listing 11. The predator
features the same attributes as the birds in the flock, i.e. a
position (x,y) and a heading vector (dirx,diry). To ensure

Springer

Modelling flocks of birds and colonies of ants from the bottom up 683

Fig. 3 Workflow to simulate
our specifications

Listing 12: Specifying a cohesion requirement
1 check {
2 Cohesion = after B forall Bird a, forall Bird b,
3 a = b or d((xa,ya),(xb,yb)) ≤ k
4 }

that the predator intersects the flock, it is given a very simple
behaviour such that it moves in a straight line along its initial
heading vector. The initial position and the heading vector
of the predator are given determined values in lines 3–6. The
predator is given a longer heading vector than those of flock
birds to model the fact that it moves faster. The predator’s
behaviour is shown at lines 8–12 and is exactly like the one
seen in Listing 1, modelling movement in a straight line.

Our goal here is to investigate the cohesion of a flock after
a predator attack. Specifically, we aim to examine whether
the distance between birds increases as they flee from the
predator and whether this distance returns to its previous
level after the predator departs. This property is formalized
in the check section of our specifications, as illustrated in
Listing 12. The property is described in line 3, where the
after B modality indicates that the maximum distance be-
tween any two birds should not exceed a given parameter k ,
B steps after the initial state. In LTL [39], this construct can
be expressed as a sequence of B “next” operators denoted as
XB .

In order to assess the ability of our flock to exhibit the
desired behaviour, we employed a simulation workflow (see
Fig. 3) that quickly generates random traces of our specifi-
cation. The workflow was implemented in SLiVER,4 a lan-
guage originally aimed at formal verification of collective
adaptive systems [16, 18].

Our approach involves encoding the specifications into
a sequential imperative program [18]. Tools for reachabil-
ity analysis are then used to generate one or more random
traces of a desired length. More specifically, a simulation
of length B for a given system can be obtained by encod-
ing the system as a program that keeps track of the number
of executed system steps in a specific variable steps, and
then by checking that all reachable states have steps < B.5

4 https://github.com/labs-lang/sliver/
5 Of course, here we are assuming that the system does not always

deadlock in less than B steps.

Table 1 Parameters in the model presented in Listing 5 and their values
used in the simulation process

Name Description Value

B Bound for the cohesion property 600
D Maximal absolute value of heading vector

components for birds
2

G Size of the arena 1024
δ Isolation distance 32
λ Safe distance from predator 32
ν Used to estimate the future position of the predator 2
ω Used to estimate the future position of the bird to

approach
14

k Maximal distance to satisfy the cohesion property 0–40

Number of Bird agents 29
Number of Predator agents 1

The main issue with this approach is that most reachability
tools are deterministic, so we would always obtain the same
simulation. To address this issue, we use as our back end
a SAT-based bounded model checker [10] together with a
randomized solver, so that the same reachability query may
produce different counterexamples (each corresponding to a
feasible simulation of our system). These traces are subse-
quently translated into the specification syntax and presented
to the user. Also, these traces provide valuable information
about the satisfaction of properties within the specification.

In order to enhance the efficiency of our simulation work-
flow, we use a concretization step that is performed prior to
feeding the program to the back end. This steps randomly
picks feasible concrete values for a number of symbolic vari-
ables in the emulation program (e.g. those representing the
initial state of the system or the choices made by the sched-
uler), and then preloads these values into the back end as
weak assumptions. The back end will try to honour all weak
assumptions, but it is free to drop one or more if the reacha-
bility query would be otherwise unsatisfiable. This approach
seems effective in speeding up the back end.

The parameters and values used in our models and sim-
ulations, as well as the composition of the system, are sum-
marized in Table 1. Notably, we use B both as the bound of
the cohesion property and as the desired length of our sim-
ulations. Our simulations assume round-robin scheduling,
meaning that each trace consists of a sequence of epochs in
which each agent performs exactly one action. It is important

Springer

https://github.com/labs-lang/sliver/

684 R. De Nicola et al.

Fig. 4 Percentage of traces satisfying the property in Listing 12 as k
varies

to note that in this context, an atomic block is considered a
single action. While this assumption is demanding, we find it
reasonable when modeling real-world systems. Furthermore,
it is much weaker than the implicit synchrony assumptions
made in other models, such as those found in [2, 42]. These
models require all agents to evolve in lockstep, meaning that
the future state of individual agents depends on the current
state of the entire system, and state changes happen simulta-
neously for all agents.

The experimental outcomes are depicted in Fig. 4. The x-
axis of the plot denotes the cohesion coefficient, k , which was
varied from 0 to 40, representing the maximum separation
distance between the two elements in their initial configura-
tion. The y-axis represents the percentage of traces that were
found to satisfy the cohesion property. Each data point on the
plot corresponds to 1000 simulations. In the graph, a sharp
decline in the number of traces that satisfy the property is
observed.

The visual representation of a trace generated by our sim-
ulation process is presented in Fig. 5. The birds are depicted
by triangles that point towards the direction of their heading
vector, and the predator is depicted as a larger, red triangle
with a black outline. It is important to note that in this trace,
the birds are never in the same position, and any overlap-
ping triangles are a visual artefact. As expected, the trace
demonstrates that the predator’s attack causes some disper-
sion in the flock as the birds attempt to evade the threat.
However, the birds are eventually able to regroup and re-
orient themselves coherently, thereby satisfying the property
we specified in Listing 12. It is worth mentioning that our
simulation workflow proved useful during the specification
process as it helped us realize the potential for flock disper-
sion in Listing 3, which led to the development of the more
refined Listing 4.

Independent replication The main findings about the
collective behaviour of this model have been replicated [44]

by reimplementing the model with Python and the Mesa
agent-based modelling library.6 The individual behaviour for
flocking birds and the predator have been manually translated
from LAbS to Python; then, 10 simulations have been run
featuring 600 epochs, 100 flocking birds, and 1 predator. All
simulations show that the flock is able to reattain cohesion
after being disrupted by the bird of prey.

3.2 Pathfinding ants

In this section, we investigate the path choices of an ant
colony during food search and transport.

In particular, our goal is to show that if the ants have two
paths of different lengths available that lead from the nest to
the food, they tend to choose the shortest path and gradually
abandon the longer one. More in detail, we want to show
that after a certain amount of time has passed, the ants will
be located exclusively in the nest, on the shortest path, or
at the food source. This property is formalized in the check
section of the specifications and is illustrated in Listing 13.
The property described in lines 2–3 asserts that, after B steps
from the initial state, the nodes where any ant is located are
0, the nest, 1, the shortest path, or 4, the location of the food.

The exhaustive verification of the described property
against such a system gives a negative result. A trivial coun-
terexample is given by the case in which each ant in the
system initially chooses the longest path to explore. In this
case, the amount of pheromone on the short path will remain
zero. Once the ants have to choose the path for the return,
none of them will consider the short path. However, this
counterexample appears to be unrealistic. As demonstrated
in numerous experiments [19, 21, 26], ants initially tend to
distribute themselves evenly along each branch and do not
all cluster on a single branch.

The experimental setup we present involves simulating
the system a certain number of times, extracting traces, and
checking whether each of them satisfies the given property
or not.

The simulation process resembles that presented in
Sect. 3.1 and it is shown in Fig. 3. The only notable dif-
ference is that the initial concretization step, in which each
non-deterministic assignment is replaced by a randomly se-
lected concretized value, no longer covers the choice of the
initial state, as this is now deterministic. The concretization
process is now applied to the choices made by the scheduler
and to the internal choices of each agent’s behaviour, i.e.
when it must choose one of the two paths to follow and both
can be selected.

In Table 2, we show the parameters used during the sim-
ulation phase. In Table 3 we present the results obtained.
For each combination of the parameters, we perform 1000

6 https://github.com/projectmesa/mesa/

Springer

https://github.com/projectmesa/mesa/

Modelling flocks of birds and colonies of ants from the bottom up 685

Fig. 5 A trace generated
through simulation. The
predator is the red triangle with
black outline (color figure
online)

Listing 13: Specifying the shortest path property
1 check {
2 Shortpath = after B forall Ant a,
3 posa = 0 ∨ posa = 1 ∨ posa = 4
4 }

Table 2 Parameters in the model described in Listing 7 and their values

Name Description Value

N Number of Ant agents 10, 15, 20, 25

δ Pheromone difference threshold N, N/2, N/4
γ Quantity of pheromone dropped 1

simulations. Note that the parameter γ, which we set to 1 for
each simulation, does not appear among the parameters in
Table 3. In Fig. 6, we represent the results graphically. As
expected, as the number of epochs increases, an increasingly
number of simulations satisfy the described property. Note
that, despite the increasing trend for each system and each
δ considered, the growth is faster when δ is equal to half of
the agents in the system. Since the ants distribute themselves
uniformly along each possible path and since they have to
choose between two paths, it seems reasonable that the pres-
ence of half of the colony on one of the paths is a reasonable
threshold to determine which path to follow.

In conclusion, the visualization of a trace generated by
the simulation process is shown in Fig. 7. The node on the

left represents the nest, while that on the right represents the
food source. The top path is the shortest and can be cov-
ered in a single movement, while the bottom path represents
the longer path that requires two movements to be covered.
The ratio between the lengths is therefore 2. As expected,
the trace shows that, starting from an initial state where the
level of pheromone on both paths is zero, the ants initially
distribute themselves almost uniformly on both paths. How-
ever, after a certain amount of time, the colony begins to
show a preference for the shortest path, until the choice be-
comes dominant. This behaviour is represented by the colour
gradient, which expresses the amount of pheromone present
on the path segment.

3.3 Ants on a bar

In this section, we illustrate how exhaustive verification can
be leveraged to reason about the event ordering of a con-
current system. By using the example proposed by Fettke
et al. in [23], our goal is to demonstrate how it is feasible
to construct a directed graph that describes the (partial) or-
der of ant collisions and bar falls, using the agent behaviour
specifications.

We define the initial state of the system as described
in [23]. Table 4 presents the parameters utilized during the
verification phase. Additionally, we impose the initial condi-
tions presented in Listing 14. These ensure that the ants are
positioned exactly as in the considered initial state. Specif-
ically, in lines 2–4, we enforce that the ants are directed
according to their implicitly assigned id. In lines 6–11, we

Springer

686 R. De Nicola et al.

Table 3 Simulation results for the pathfinding ants system: B is the
number of epochs; Sat is the percentage of simulations in which the
property is satisfied

(a) N = 10.

δ B Sat (%)

10 10 6.0
10 15 10.5
10 20 19.0
10 25 28.5

5 10 14.5
5 15 26.0
5 20 45.5
5 25 48.5
3 10 25.5
3 15 38.0
3 20 56.5
3 25 59.0

(b) N = 15.

δ B Sat (%)

15 10 1.5
15 15 5.0
15 20 21.5
15 25 35.5
8 10 11.0
8 15 29.5
8 20 78.5
8 25 84.0
4 10 28.0
4 15 49.0
4 20 63.0
4 25 66.5

(c) N = 20.

δ B Sat (%)

20 10 1.0
20 15 7.0
20 20 24.0
20 25 44.5
10 10 7.0
10 15 36.0
10 20 64.0
10 25 78.0

5 10 31.0
5 15 58.0
5 20 71.0
5 25 75.0

(d) N = 25.

δ B Sat (%)

25 10 0.0
25 15 12.0
25 20 36.0
25 25 52.0
12 10 12.0
12 15 40.0
12 20 64.0
12 25 77.0
6 10 30.0
6 15 67.0
6 20 62.0
6 25 70.0

assign the initial directions, which again resemble those of
the system presented in the paper. Finally, in lines 13–17,
we initialize each position of the bar with the id of the ant
located on it.

We now demonstrate how to save a collision or a fall
event of an ant from the bar. To achieve this, it is necessary
to modify the specifications of the system and the ants, which
are provided in Listing 9 in Sect. 2. It is worth noting that the
modifications we introduce do not affect the behaviour of an
ant, but are only for event logging purposes.

The updated specifications are shown in Listing 15. In
detail, we define a shared array that will contain the events
and a counter that will allow us to write to the array (line 3).
The array is initialized with the value −1. Before updating
their direction and position, each agent, if necessary, records
an event. In line 12, a fall from the bar by one of the agents
is recorded. This event is coded as a multiple of 100. For

example, the value 200 indicates that the agent with id 2 has
fallen. In line 13, a collision is recorded. The id of the agent
on the left is found in the tens place, while the id of the agent
on the right is found in the ones place. For example, the event
45 corresponds to a collision between agents 4 and 5. In all
other cases, the value of the array is not updated. Finally, the
counter is only incremented if the value has been modified.

We now focus on verifying the ordering of events in our
system. In order to do so, we first need to know the number
of steps after which all ants inevitably fall off the bar (so, no
other collision is possible after that). It is clear that such a
value should exist, but it is not known in advance. However,
we can find this value by applying formal verification. To do
so, we formalize the property “after B steps, every ant has
fallen from the bar” (Listing 16, line 2). Then, we verify this
property several times with increasing values of B, until it
is verified. Once we obtain a successful outcome for some
value B∗, we know that all events take place in the first B∗

steps of every execution.
Now, we can check if a given event E1 is inevitably pre-

ceded by another one E2 (Listing 16, line 4).7
By verifying all possible combinations of all events while

using a verification bound at least as great as B∗, it is possible
to construct a directed graph that describes the (partial) order
of collisions and falls. If it is verified that event E1 is a
consequence of event E2, then in the event graph, E1 precedes
E2. If, on the other hand, this is not verified, the order of the
two events is inverted. If the reversed order is verified E1
follows E2 in the event graph, otherwise, it means that the
two events are not comparable and do not depend on each
other. We performed 23 verification tasks, and obtained the
graph shown in Fig. 8. This graph closely replicates the
ordering of events outlined in the original presentation of the
system [23, Fig. 7], but interestingly we obtain it in a fully
automated fashion, rather than by manually reasoning on the
specifications.

4 Related work

Modelling of flocking behaviours in the literature relies
on different approaches, including equational modelling
through techniques such as differential equations [52],
discrete-time dynamics [2, 42], or statistical mechanics [6];
decentralized control laws, either defined ad-hoc [54] or
synthesized from a centralized controller [34]; or language-
based specifications, as presented in this work. The behaviour
of ant colonies has also been studied following different ap-
proaches. For trail foraging, techniques such as modelling

7 The $consequence(...) syntax means that this check is currently
implemented as an external function written in C, which compares the
array indices at which E1 and E2 appear. We plan to turn this into a
feature of our property language in an upcoming release of SLiVER.

Springer

Modelling flocks of birds and colonies of ants from the bottom up 687

Fig. 6 Percentage of
simulations that satisfied the
property in Listing 13 (color
figure online)

Fig. 7 Visualization of a
simulated trace for the
pathfinding ants system. The
circles represent the nest (on the
left) and the food source (on the
right). The upper branch
represents the shortest path, i.e.
node 1 of Fig. 2. The lower
branch is divided into two
identical sections that
respectively represent nodes 3
and 4 of Fig. 2. Colours denote
the concentration of pheromone
on each path (color figure
online)

through nonlinear differential equations [3, 48] or practical
experimentation [5, 26] have been used.

Language-based approaches offer the advantage of facili-
tating the refinement and comparison of models with mini-
mal effort. For instance, the framework proposed in [31] has

been used to model various predator tactics and versions of
flocking behaviour. Simulations have shown that flocks with
more social tendencies exhibit better survival rates, whereas
those with individualistic tendencies are more vulnerable to
predation [13]. Regarding ant colonies, the Weighted Syn-

Springer

688 R. De Nicola et al.

Table 4 Parameters in our model and their values

Name Description Value

λ Length of the bar 12

Number of Ant agents 6

Listing 14: Constraints
1 assume {
2 Position = forall Ant a, forall Ant b,
3 (ida < idb ∨ posa ≥ posb) ∧

4 (ida ≥ idb ∨ posa < posb)

5

6 Direction0 = exists Ant a, ida = 0 ∧ dira = 1
7 Direction1 = exists Ant a, ida = 1 ∧ dira = −1
8 Direction2 = exists Ant a, ida = 2 ∧ dira = 1
9 Direction3 = exists Ant a, ida = 3 ∧ dira = 1

10 Direction4 = exists Ant a, ida = 4 ∧ dira = −1
11 Direction5 = exists Ant a, ida = 5 ∧ dira = 1
12

13 Bar = forall Ant a,
(posa = bar[1] ∧ bar[1] = ida) ∨

14 (posa � bar[1] ∧ bar[1] =
−1)

15 . . .

16 (posa = bar[λ] ∧ bar[λ] =
ida) ∨

17 (posa � bar[λ] ∧ bar[λ] =
−1)

18 }

chronous Calculus of Communicating Systems (WSCCS)
has been utilized to model their activities, such as the sorting
of the brood pile [51] and task allocation [50]. It has also
been used to demonstrate how a colony responds to exter-
nal disturbances [49]. StarLogo [41] and NetLogo [55] are
further examples of language-based, bottom-up modelling
frameworks; compared to our platform, they are more ori-
ented towards analysis through massive simulations, as they
can handle hundreds of agents with ease. NetLogo simula-
tions can even become interactive by defining user interface
controls to dynamically alter model parameters as the sim-
ulation runs. However, we are not aware of any work that
applies formal verification to StarLogo or NetLogo models:
such an effort would likely be hindered by a lack of formal
semantics for either language and by their rather dynamic
nature.

Formal specification languages also enable exhaustive ex-
ploration of the state space, which may provide strong guar-
antees on the behaviour of a system or detect subtle bugs
that may be difficult to detect through simulations alone.

Listing 15: Events logs
1 system {
2 . . .

3 environment = events[100] : 0; counter : 0
4 }

5

6 agent Ant {
7 interface = . . .
8

9 Behavior = Move; Behaviour
10 Move = {. . .

11 events[counter] ⇐
12 id ·100 if desPos = 0 ∨ desPos = λ+1 else
13 (id − 1) · 10 + id if dir = −1 ∧ dirDpos =

1 else
14 id · 10 + (id + 1) if dir = 1 ∧ dirDpos =

−1 else
15 −1
16

17 counter⇐ counter if events[counter] =
−1 else

18 counter + 1
19 . . .

20 }

21 }

Listing 16: Specifying the consequences properties
1 check {
2 Fallen = after B forall Ant a,

posa < 1 ∨ posa > λ

3

4 Consequence = after B $consequence(E1,E2)

5 }

For example, the alpha algorithm [56], designed to induce a
flock of dispersed agents to aggregate in a small region of
space, was found to be incorrect [1, 29] by verifying mod-
els of the algorithm written in ISPL [33] or NuSMV [9].
Emulation programs may similarly enable formal analysis
of high-level specifications by means of structural encod-
ings towards lower-level languages, allowing for the reuse of
different existing verification technologies [17, 18].

Bottom-up and simulation-aided design is also common-
place in the engineering of robot swarms and similar classes
of robotic systems [7]. In this context, robots are typically
programmed individually using general-purpose languages
like C++ or Python or higher-level, domain-specific, for-
malisms [15, 37], with possible reliance on existing robotic
middleware like ROS [40]. The resulting programs are eval-

Springer

Modelling flocks of birds and colonies of ants from the bottom up 689

Fig. 8 The events with a single digit denote that the agent with the
corresponding id has fallen from the bar. The events with two digits are
collisions between the agents with the corresponding ids

uated by simulating the robots under one of several avail-
able simulation platforms [28, 38, 43] to empirically assess
whether the swarm exhibits adequate collective behaviour.

5 Conclusion

This work has shown how compositional models can help to
reason about the individual dynamics that lead to emergent
behaviour of collectives. We presented three models that
describe the behaviour of natural systems in a step-by-step,
yet intuitive and concise manner.

By using an automated simulation workflow, we have
shown that birds split into smaller groups to avoid the threat,
before reassembling once the danger subsided. This be-
haviour has been observed in both real-life flocks and in other
models [2]. Using the same workflow, we demonstrated how
an ant colony is capable of selecting the shortest path to
reach a food resource. Also this behaviour has been previ-
ously observed both in real-life scenarios and in other mod-
els [4, 19, 20]. Finally, through comprehensive verification,
we showed the ability to reason about the order of events in
a very simple system considered in a paper presented at the
conference to which this special issue is dedicated.

In light of the promising results presented in this pa-
per, there are several avenues for future research in the field
of compositional modeling of natural collective behaviours.
Firstly, it is important to further develop and refine the sim-
ulation workflow used in this study, as it is still in the experi-
mental phase. Indeed, although the workflow was successful
in simulating the model presented in Sect. 2, its limitations
in handling specifications that contain guarded statements
need to be addressed. These scenarios may prove difficult to
simulate, as certain concretizations may fail to satisfy certain
guards, making it impossible to generate traces of the desired
length.

To address the challenges, we plan to adapt our backend
tool to enable the modification of concretization constraints
until a valid trace is obtained.

We plan also to enhance the simulation-based approach by
incorporating exhaustive state space exploration techniques.
This complementary method may formally prove the emer-
gence of expected collective behaviours, regardless of the
initial state or the specific interactions between agents within
the system. Moreover, to achieve our goal of formal verifi-
cation of the emergence of desired collective behaviours, we
propose to adapt existing techniques based on verification
of emulation programs [18]. This adaptation may involve
extending these techniques to support expressive temporal
logics such as LTL [39]. To achieve this, a more rigorous for-
malization of the linguistic constructs introduced in Sect. 2
may also be necessary.

Given the cost of exhaustive analysis for large systems,
we also plan to extend our simulation workflow to enable
lightweight formal methods, such as statistical model check-
ing [45]. This approach will enable us to obtain statistical
evidence on the correctness of the system. The ability of our
framework to verify property satisfaction relying on sim-
ulation can be considered a rudimentary form of runtime
verification [32]. We plan to extend this capability to include
larger classes of monitorable properties [25].

Parallelization of our simulation workflow can be eas-
ily achieved by distributing the workload among multiple
machines, and we plan to investigate the possibility of im-
plementing distributed techniques in the back end to fur-
ther improve performance [27]. These efforts will allow us
to generate a large number of traces for massive systems.
Effective visualization of the textual traces is also crucial
for supporting the design process. While our current auto-
mated visualization tool works well for the flocking case
study (as demonstrated in Fig. 5), we aim to build a more
generic framework or integrate our workflow into existing
simulation platforms to provide a more flexible and versatile
visualization tool.

Funding Open access funding provided by Scuola IMT Alti Studi
Lucca within the CRUI-CARE Agreement. Work partially funded by
MIUR project PRIN 2017FTXR7S IT MATTERS (Methods and Tools
for Trustworthy Smart Systems), ERC consolidator grant no. 772459
D-SynMA (Distributed Synthesis: from Single to Multiple Agents), and
PRO3 MUR project Software Quality.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Springer

http://creativecommons.org/licenses/by/4.0/

690 R. De Nicola et al.

References

1. Antuña, L.R., Araiza-Illan, D., Campos, S., Eder, K.: Symme-
try reduction enables model checking of more complex emergent
behaviours of swarm navigation algorithms. In: 16th Annual Con-
ference Towards Autonomous Robotic Systems (TAROS). LNCS,
vol. 9287, pp. 26–37. Springer, Berlin (2015). https://doi.org/10.
1007/978-3-319-22416-9_4

2. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani,
E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini,
A., Viale, M., Zdravkovic, V.: Interaction ruling animal collective
behavior depends on topological rather than metric distance: evi-
dence from a field study. Proc. Natl. Acad. Sci. 105(4), 1232–1237
(2008). https://doi.org/10.1073/pnas.0711437105

3. Beckers, R., Deneubourg, J.L., Goss, S., Pasteels, J.M., et al.:
Collective decision making through food recruitment. Insectes Soc.
37(3), 258–267 (1990)

4. Beckers, R., Deneubourg, J.L., Goss, S.: Trail laying behaviour
during food recruitment in the ant Lasius niger (L.). Insectes Soc.
39, 59–72 (1992)

5. Bernstein, R.A.: Foraging strategies of ants in response to variable
food density. Ecology 56(1), 213–219 (1975)

6. Bialek, W., Cavagna, A., Giardina, I., Mora, T., Silvestri, E., Viale,
M., Walczak, A.M.: Statistical mechanics for natural flocks of birds.
Proc. Natl. Acad. Sci. 109(13), 4786–4791 (2012)

7. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm
robotics: a review from the swarm engineering perspective.
Swarm Intell. 7(1), 1–41 (2013). https://doi.org/10.1007/s11721-
012-0075-2

8. Cederman, L.E.: Endogenizing geopolitical boundaries with agent-
based modeling. Proc. Natl. Acad. Sci. 99(Suppl 3), 7296–7303
(2002). https://doi.org/10.1073/pnas.082081099

9. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pis-
tore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: an
opensource tool for symbolic model checking. In: 14th Interna-
tional Conference on Computer Aided Verification (CAV). LNCS,
vol. 2404, pp. 359–364. Springer, Berlin (2002). https://doi.org/10.
1007/3-540-45657-0_29

10. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C
programs. In: 10th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS).
LNCS, pp. 168–176. Springer, Berlin (2004). https://doi.org/10.
1007/978-3-540-24730-2_15

11. De Nicola, R., Di Stefano, L., Inverso, O.: Multi-agent systems
with virtual stigmergy. Sci. Comput. Program. 187, 102345 (2020).
https://doi.org/10.1016/j.scico.2019.102345

12. De Nicola, R., Di Stefano, L., Inverso, O., Valiani, S.: Modelling
flocks of birds from the bottom up. In: Margaria, T., Steffen, B.
(eds.) 11th International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation. Adaptation and
Learning (ISoLA). LNCS, vol. 13703, pp. 82–96. Springer, Berlin
(2022). https://doi.org/10.1007/978-3-031-19759-8_6

13. Demsar, J., Lebar Bajec, I.: Simulated predator attacks on flocks:
a comparison of tactics. Artif. Life 20(3), 343–359 (2014). https://
doi.org/10.1162/ARTL_a_00135

14. Deneubourg, J.L., Pasteels, J.M., Verhaeghe, J.C.: Probabilistic
behaviour in ants: a strategy of errors? J. Theor. Biol. 105(2),
259–271 (1983)

15. Desai, A., Saha, I., Yang, J., Qadeer, S., Seshia, S.A.: DRONA: a
framework for safe distributed mobile robotics In: ICCPS (2017).
https://doi.org/10.1145/3055004.3055022

16. Di Stefano, L., Lang, F.: Verifying temporal properties of stigmer-
gic collective systems using CADP. In: 10th International Sympo-
sium on Leveraging Applications of Formal Methods, Verification
and Validation (ISoLA). LNCS, vol. 13036, pp. 473–489. Springer,
Berlin (2021). https://doi.org/10.1007/978-3-030-89159-6_29

17. Di Stefano, L., Lang, F., Serwe, W.: Combining SLiVER with
CADP to analyze multi-agent systems. In: 22nd International Con-
ference on Coordination Models and Languages (COORDINA-
TION). LNCS, vol. 12134, pp. 370–385. Springer, Berlin (2020).
https://doi.org/10.1007/978-3-030-50029-0_23

18. Di Stefano, L., De Nicola, R., Inverso, O.: Verification of dis-
tributed systems via sequential emulation. ACM Trans. Softw. Eng.
Methodol. 31(3), 37 (2022). https://doi.org/10.1145/3490387

19. Dorigo, M., Bonabeau, E., Theraulaz, G.: Ant algorithms and stig-
mergy. Future Gener. Comput. Syst. 16(8), 851–871 (2000)

20. Dussutour, A., Fourcassié, V., Helbing, D., Deneubourg, J.L.: Op-
timal traffic organization in ants under crowded conditions. Nature
428(6978), 70–73 (2004)

21. Dussutour, A., Nicolis, S.C., Deneubourg, J.L., Fourcassié, V.: Col-
lective decisions in ants when foraging under crowded conditions.
Behav. Ecol. Sociobiol. 61, 17–30 (2006)

22. Emlen, J.T.: Flocking behavior in birds. The Auk 69(2), 160–170
(1952)

23. Fettke, P., Reisig, W.: Discrete models of continuous behavior of
collective adaptive systems. In: 11th International Symposium on
Leveraging Applications of Formal Methods (ISoLA), pp. 65–81.
Springer, Berlin (2022)

24. Finkelshtein, D., Kondratiev, Y., Kutoviy, O.: Individual based
model with competition in spatial ecology. SIAM J. Math. Anal.
41(1), 297–317 (2009). https://doi.org/10.1137/080719376

25. Francalanza, A., Aceto, L., Ingólfsdóttir, A.: On verifying
Hennessy-Milner logic with recursion at runtime. In: 6th Interna-
tional Conference on Runtime Verification (RV). LNCS, vol. 9333,
pp. 71–86. Springer, Berlin (2015). https://doi.org/10.1007/978-3-
319-23820-3_5

26. Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-
organized shortcuts in the Argentine ant. Naturwissenschaften
76(12), 579–581 (1989)

27. Inverso, O., Trubiani, C.: Parallel and distributed bounded
model checking of multi-threaded programs. In: 25th Sympo-
sium on Principles and Practice of Parallel Programming (PPoPP),
pp. 202–216. ACM, New York (2020). https://doi.org/10.1145/
3332466.3374529

28. Koenig, N., Howard, A.: Design and use paradigms for Gazebo,
an open-source multi-robot simulator. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), vol. 3,
pp. 2149–2154. IEEE (2004). https://doi.org/10.1109/IROS.2004.
1389727

29. Kouvaros, P., Lomuscio, A.: A counter abstraction technique for
the verification of robot swarms. In: 29th Conference on Artificial
Intelligence (AAAI), pp. 2081–2088. AAAI (2015)

30. Kuylen, E., Liesenborgs, J., Broeckhove, J., Hens, N.: Using
individual-based models to look beyond the horizon: the changing
effects of household-based clustering of susceptibility to measles
in the next 20 years. In: 20th International Conference on Compu-
tational Science (ICCS). LNCS, vol. 12137, pp. 385–398. Springer,
Berlin (2020). https://doi.org/10.1007/978-3-030-50371-0_28

31. Lebar Bajec, I., Zimic, N., Mraz, M.: Simulating flocks on the
wing: the fuzzy approach. J. Theor. Biol. 233, 199–220 (2005).
https://doi.org/10.1016/j.jtbi.2004.10.003

32. Leucker, M., Schallhart, C.: A brief account of runtime verification.
J. Log. Algebraic Program. 78(5), 293–303 (2009). https://doi.org/
10.1016/j.jlap.2008.08.004

33. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source
model checker for the verification of multi-agent systems. Softw.
Tools Technol. Transf. 19(1), 9–30 (2017). https://doi.org/10.1007/
s10009-015-0378-x

34. Mehmood, U., Roy, S., Grosu, R., Smolka, S.A., Stoller, S.D.,
Tiwari, A.: Neural flocking: MPC-based supervised learning of
flocking controllers. In: 23rd International Conference on Founda-
tions of Software Science and Computation Structures (FoSSaCS).

Springer

https://doi.org/10.1007/978-3-319-22416-9_4
https://doi.org/10.1007/978-3-319-22416-9_4
https://doi.org/10.1073/pnas.0711437105
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1073/pnas.082081099
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1016/j.scico.2019.102345
https://doi.org/10.1007/978-3-031-19759-8_6
https://doi.org/10.1162/ARTL_a_00135
https://doi.org/10.1162/ARTL_a_00135
https://doi.org/10.1145/3055004.3055022
https://doi.org/10.1007/978-3-030-89159-6_29
https://doi.org/10.1007/978-3-030-50029-0_23
https://doi.org/10.1145/3490387
https://doi.org/10.1137/080719376
https://doi.org/10.1007/978-3-319-23820-3_5
https://doi.org/10.1007/978-3-319-23820-3_5
https://doi.org/10.1145/3332466.3374529
https://doi.org/10.1145/3332466.3374529
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1007/978-3-030-50371-0_28
https://doi.org/10.1016/j.jtbi.2004.10.003
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/s10009-015-0378-x

Modelling flocks of birds and colonies of ants from the bottom up 691

LNCS, vol. 12077, pp. 1–16. Springer, Berlin (2020). https://doi.
org/10.1007/978-3-030-45231-5_1

35. Monmarché, N., Venturini, G., Slimane, M.: On how pachycondyla
apicalis ants suggest a new search algorithm. Future Gener. Com-
put. Syst. 16(8), 937–946 (2000). https://doi.org/10.1016/S0167-
739X(00)00047-9

36. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algo-
rithms and theory. IEEE Trans. Autom. Control 51(3), 401–420
(2006). https://doi.org/10.1109/TAC.2005.864190

37. Pinciroli, C., Beltrame, G.: Buzz: an extensible programming
language for heterogeneous swarm robotics. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS),
pp. 3794–3800. IEEE (2016). https://doi.org/10.1109/IROS.2016.
7759558

38. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Bram-
billa, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F.,
Birattari, M., Gambardella, L.M., Dorigo, M.: ARGoS: a modular,
parallel, multi-engine simulator for multi-robot systems. Swarm
Intell. 6(4), 271–295 (2012). https://doi.org/10.1007/S11721-012-
0072-5

39. Pnueli, A.: The temporal logic of programs. In: 18th Annual Sym-
posium on Foundations of Computer Science (FOCS), pp. 46–57.
IEEE (1977). https://doi.org/10.1109/SFCS.1977.32

40. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs,
J., Berger, E., Wheeler, R., Ng, A.Y.: ROS: an open-source robot
operating system. In: ICRA Workshop on Open Source Software
(2009)

41. Resnick, M.: Turtles, Termites, and Traffic Jams - Explorations in
Massively Parallel Microworlds. MIT Press, Cambridge (1998)

42. Reynolds, C.W.: Flocks, herds and schools: a distributed behav-
ioral model. In: Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH 1987,
Anaheim, California, USA, July 27-31, 1987, pp. 25–34. ACM
(1987). https://doi.org/10.1145/37401.37406

43. Rohmer, E., Singh, S.P.N., Freese, M.: V-REP: a versatile and scal-
able robot simulation framework. In: IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 1321–1326.
IEEE (2013). https://doi.org/10.1109/IROS.2013.6696520

44. Scheibe, V.: Introduction and replication of a bird flocking behav-
ior simulation. Zenodo (2023). https://doi.org/10.5281/ZENODO.
8228783. https://zenodo.org/record/8228784

45. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking
of black-box probabilistic systems. In: 16th International Con-

ference on Computer Aided Verification (CAV). LNCS, vol. 3114,
pp. 202–215. Springer, Berlin (2004). https://doi.org/10.1007/978-
3-540-27813-9_16

46. Shi, H., Wang, L., Chu, T.: Flocking of multi-agent systems with a
dynamic virtual leader. Int. J. Control 82(1), 43–58 (2009). https://
doi.org/10.1080/00207170801983091

47. Stiglitz, J.E., Gallegati, M.: Heterogeneous interacting agent mod-
els for understanding monetary economies. East. Econ. J. 37(1),
6–12 (2011). https://doi.org/10.1057/eej.2010.33

48. Sumpter, D.J., Beekman, M.: From nonlinearity to optimality:
pheromone trail foraging by ants. Anim. Behav. 66(2), 273–280
(2003)

49. Sumpter, D.J., Blanchard, G.B., Broomhead, D.S.: Ants and agents:
a process algebra approach to modelling ant colony behaviour. Bull.
Math. Biol. 63(5), 951–980 (2001). https://doi.org/10.1006/bulm.
2001.0252

50. Tofts, C.M.N.: Describing social insect behaviour using process
algebra. Trans. Soc. Comput. Simul. 9, 227 (1992)

51. Tofts, C., Hatcher, M., Franks, N.: The autosynchronization of
the ant Leptothorax acervorum (Fabricius): theory, testability and
experiment. J. Theor. Biol. 157(1), 71–82 (1992)

52. Toner, J., Tu, Y.: Flocks, herds, and schools: a quantitative theory
of flocking. Phys. Rev. E 58(4), 4828–4858 (1998). https://doi.org/
10.1103/PhysRevE.58.4828

53. Traniello, J.F.: Foraging strategies of ants. Annu. Rev. Entomol.
34(1), 191–210 (1989)

54. Vásárhelyi, G., Virágh, C., Somorjai, G., Tarcai, N., Szörényi, T.,
Nepusz, T., Vicsek, T.: Outdoor flocking and formation flight with
autonomous aerial robots. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 3866–3873. IEEE
(2014). https://doi.org/10.1109/IROS.2014.6943105

55. Wilensky, U.: Modeling nature’s emergent patterns with multi-
agent languages. In: EuroLogo (2001)

56. Winfield, A.F.T., Liu, W., Nembrini, J., Martinoli, A.: Modelling a
wireless connected swarm of mobile robots. Swarm Intell. 2(2–4),
241–266 (2008). https://doi.org/10.1007/s11721-008-0018-0

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

Springer

https://doi.org/10.1007/978-3-030-45231-5_1
https://doi.org/10.1007/978-3-030-45231-5_1
https://doi.org/10.1016/S0167-739X(00)00047-9
https://doi.org/10.1016/S0167-739X(00)00047-9
https://doi.org/10.1109/TAC.2005.864190
https://doi.org/10.1109/IROS.2016.7759558
https://doi.org/10.1109/IROS.2016.7759558
https://doi.org/10.1007/S11721-012-0072-5
https://doi.org/10.1007/S11721-012-0072-5
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/37401.37406
https://doi.org/10.1109/IROS.2013.6696520
https://doi.org/10.5281/ZENODO.8228783
https://doi.org/10.5281/ZENODO.8228783
https://zenodo.org/record/8228784
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1080/00207170801983091
https://doi.org/10.1080/00207170801983091
https://doi.org/10.1057/eej.2010.33
https://doi.org/10.1006/bulm.2001.0252
https://doi.org/10.1006/bulm.2001.0252
https://doi.org/10.1103/PhysRevE.58.4828
https://doi.org/10.1103/PhysRevE.58.4828
https://doi.org/10.1109/IROS.2014.6943105
https://doi.org/10.1007/s11721-008-0018-0

	Modelling flocks of birds and colonies of ants from the bottom up
	Abstract
	Introduction
	Specification
	Flock of birds
	Description of a bird
	Behaviour of a bird
	Alignment
	Cohesion
	Avoiding flock dispersion and collisions
	Fleeing from a predator
	LAbS agents and global knowledge

	Pathfinding ants
	Description of the environment
	Description of an ant
	Behaviour of an ant

	Ants on a bar
	Description of an ant
	Behaviour of an ant
	Collisions

	Analysis results
	Flock of birds
	Independent replication

	Pathfinding ants
	Ants on a bar

	Related work
	Conclusion
	References

