
International Journal on Software Tools for Technology Transfer Manuscript-Nr.
(will be inserted by hand later)

The Meaning of “Formal”:
from Weak to Strong Formal Methods

Pierre Wolper

Institut Montefiore, B28
University of Liège
B-4000 Liège Sart-Tilman, BELGIUM
Email: pw@montefiore.ulg.ac.be

November 3, 1997

Abstract. This short note reflects on what makes for-
mal methods “formal”. It concludes that there are weak
and strong ways of being formal, the latter being linked
to the formality of the method being exploitable, and
exploited, in software tools.

1 Introduction

“Formal Methods” is becoming a widespread expression
in software engineering. It refers to methods and tools
that are supposed to bring to software development the
rigor of mathematical reasoning and the certainty of cor-
rectness it implies. Formal methods are sometimes des-
cribed as the “applied mathematics of software enginee-
ring”. However, not everyone agrees on precisely what
constitutes a formal method (as opposed to an informal
one). Clearly, a formal method has to involve some ma-
thematical notation, but is this sufficient? Most likely
not, but what is then the criterion that defines a formal
method? This is precisely the question that this note at-
tempts to answer. It does so by giving a series of criteria
that methods should satisfy in order to be formal. It then
concludes that the essential requirement for a method to
be formal in a strong sense is that it be supported by
software tools that can perform a meaningful semantical
analysis.

2 Formal Methods and Syntax

In the “formal methods” approach to system develop-
ment, one views the development process as starting with
a high-level description or specification of the intended
behavior of the system. More and more detailed descrip-
tions of the system are then produced from this speci-
fication until the actual runnable program is reached.

Correspondence to: Pierre Wolper

Ideally, one would be able to check that the implemen-
tation that is finally produced satisfies all requirements
expressed by the specification.

The first question that comes up when using this ap-
proach is the choice of a notation for expressing the spe-
cification. English, for instance, is not suitable. Indeed,
it is too ambiguous to be used in a rigorous development
process, to say it otherwise it is not “formal” enough. So,
formal methods are essentially always centered around a
formal specification language. What does this mean?

A very basic requirement for a language to be “for-
mal” is that its sentences are defined in a precise way. In
other words there is no ambiguity on what is or is not
a sentence in the language. It is perfectly reasonable to
strengthen and clarify this condition by requiring that a
formal specification language have algorithmically reco-
gnizable sentences. In simple terms, the syntactic ana-
lysis of the language can be done algorithmically. The
following will thus be our first criterion for defining for-
mality.

Criterion 1 (Decidable syntax). A language has a
decidable syntax if its sentences are recognizable algorith-
mically.

It is quite a weak requirement and, indeed, all existing
formal methods use specification languages with a deci-
dable syntax.

3 Formal Methods and Semantics

The next step in formality of a notation is to require
that it has a formal semantics. In general, a semantics
for a language is given as a mapping from that language
to another, usually simpler, formalism. For instance, the
semantics of a program can be given in terms of its set
of possible execution sequences. When is such a map-
ping “formal”. One tempting answer is to say that it



2 Wolper: The Meaning of “Formal”

must be algorithmically computable in the Turing sense.
This is, however, too strong since it would lead to in-
tuitively absurd conclusions such as claiming that the
semantics of first-order arithmetic [End72] is not formal.
Looking more closely at the problem, one sees that the
semantics of formal specification languages are usually
not decidable because of some quantification on infinite
domains. So, the idea is to consider semantics to be for-
mal if they are build from a algorithmic kernel to which
quantification is added. But this is exactly the arithmeti-
cal hierarchy of undecidable classes for first-order quan-
tification and the analytical hierarchy when quantifying
over functions is allowed [HR67]. The following formal
semantics criterion is thus proposed.

Criterion 2 (Formal semantics). A language has a
formal semantics if deciding semantical questions for this
language (e.g. equivalence of sentences) is proven to fall
within the arithmetical or the analytical hierarchy.

Again, this is not a very stringent requirement and it
is satisfied by virtually all languages used in methods
that claim to be formal. Note that the requirement is
that the semantical problems are proven to fall within
the arithmetical or analytical hierarchies. This implies
that not only must the fact be true, but also that the
semantics should be defined a way that makes the proof
possible.

4 Formal Methods and Semantical Analysis

The practical purpose of having a language with a for-
mal semantics is to to make some semantical checks on
specifications possible. For instance, it is important to
have the capability of checking that a specification im-
plies a given property or of checking the coherence of
specifications at different levels of abstraction. However,
according to Criterion 2, this could be a highly undeci-
dable problem. There are several ways of working around
this obstacle. The first is to restrict the type of system
one is dealing with in order for semantics questions to
become decidable. One common way of doing this is, for
instance, to consider only finite-state systems.

However, decidability is not essential to obtain re-
sults. Indeed, a partial decision procedure, which is not
guaranteed to terminate but which produces a correct re-
sult when it does, is also extremely useful. One does not
even need a partial decision procedure in the strict sense
(that always stops on positive instances) in order to have
meaningful practical results. What really matters is that
the semantical analysis can be carried out with the help
of a software tool that requires little or no human inter-
vention (if this is not the case, it is very unlikely to be
performed). Note that a guarantee of always obtaining
a result is not necessary and is moreover often illusory.
Indeed, even when within a decidable class of system, an
analysis often does not terminate due to excessive time

and space requirements. To the user there is no difference
between an analysis that never terminates and one that
terminates in a billion years. Our last criterion is thus
the following broadly expressed one.

Criterion 3 (Semantical Computational Support).
A formal method provides Semantical computational sup-
port if it allows software tools for checking semantical
properties of specifications.

This criterion is somewhat more fuzzy than the first
two, but it is nevertheless clear that existing formal me-
thods do vary widely with respect to it.

5 Classifying Formal Methods

Since virtually all formal methods do satisfy the first two
criteria that have been given, the proposed classification
is based on compliance with the third, which in the view
of the author is essential for methods to be formal in a
practically meaningful way. The following are thus dis-
tinguished.

– Weak Formal Methods (specification only formal
methods), and

– Strong Formal Methods (formal methods with
tool supported semantical analysis).

In weak formal methods, a language with a decidable
syntax and a formal semantics is used to specify the sys-
tem being developed. Tool support is limited to checking
the syntax of the specification. The usefulness of these
methods is that they force the system designers to think
about what their system is supposed to do and to express
it more abstractly than by a program. This is often bene-
ficial, can lead to discovering errors, usefully documents
the system design, and can serve as a means of commu-
nication between people involved with the various parts
of a system. To take an analogy, it amounts to writing
the equations describing a physical system but without
attempting to analyze the solutions to these equations.

For a method to be in the “strong” category, it is re-
quired that at least some form of semantical analysis is
possible with the help of mostly automatic tools. Again
using the physical system analogy, it means that some
software package for solving the equations is provided.
It does not imply that the software package can handle
any system, just that it often enough provides useful in-
formation to the system designer.

The terms “weak” and “strong” might appear to have
a value connotation. This is intentional. Without seman-
tical analysis formal methods are of very limited value
with respect to their stated goal of ensuring the cor-
rectness of software systems : their formal syntax and
semantics are just theoretical properties, not assets that
are exploited in a substantial way. From the point of view
of the author, a strong formal method even with limited



Wolper: The Meaning of “Formal” 3

applicability is more meaningful than a weak one that is
perfectly general.

The reader might be wondering where formal me-
thods in which proofs are done by hand fit into the
weak/strong classification. The answer is in the weak
category. Indeed, for any nontrivial system, the proof
will just never be done and, if ever it is, it is unlikely
to be read, which makes it quite unreliable. Finally, a
few words about the fact that no examples or formal
methods are given in this note. The reason for this is
that the situation is evolving and methods that have long
been weak are gradually evolving towards being strong
methods. Given this trend towards strong methods, a
classification done now might seem quite unfair in just a
few years.

References

[End72] H. Enderton. A Mathematical Introduction to Logic.
Academic Press, New York, 1972.

[HR67] Jr Hartley Rogers. Theory of Recursive Functions

and Effective Computability. McGraw-Hill, 1967.


