
I Software Tools for Technology Transfer manuscript No.(will be inserted by the editor)

Model Checking Java Programs
Using Java PathFinder

Klaus Havelund, Thomas Pressburger

NASA Ames Research Center,

Recom Technologies,

Moffett Field, California, USA.

e-mail: {havelund, ttp}©ptolemy, arc. nasa. gov
url: http ://ase. arc. nasa. gov/{havelund, ttp}

March 12, 1999

Abstract. This paper describes a translator called JAVA

PATHFINDER from JAVA to PROMELA, the "program-

ming language" of the SPIN model checker. The purpose

is to establish a framework for verification and debug-

ging of JAVA programs based on model checking. This

work should be seen in a broader attempt to make formal

methods applicable "in the loop" of programming within

NASA's areas such as space, aviation, and robotics. Our

main goal is to create automated formal methods such

that programmers themselves can apply these in their

daily work (in the loop) without the need for specialists

to manually reformulate a program into a different no-

tation in order to analyze the program. This work is a

continuation of an effort to formally verify, using SPIN,

a multi-threaded operating system programmed in LISP

for the Deep-Space 1 space craft, and of previous work

in applying existing model checkers and theorem provers

to real applications.

Key words: Program verification- JAVA model check-

ing - SPIN - concurrent programming - assertions -

deadlocks:

1 Introduction

In this paper we describe JAVA PATttFINDER (JPF), a

translator from JAVA to PROMELA, the programming

language of the SPIN model checker. The purpose is

to establish a framework for verification and debugging

of JAVA programs based on model checking. The work

should be seen in a broader attempt to make formal

methods applicabIe "in the loop" of programming within
NASA's areas such as space, aviation, and robotics. Our

main long term goal is to create an automated formal
methods workbench for JAVA programming such that

programmers themselves can apply them in their daily

work (in the loop) without the need for specialists to

manually reformulate a program in a different notation

in order to analyze it.

The tool we are developing is named after the rover
operating on Mars in 1997 called the "Mars PathFinder".

Although this mission was generally regarded as a big

success, the rover did in fact contain a number of soft-

ware bugs (causing repeated rebootings and panic at

NASA headquarters) that could potentially have been
found beforehand using proper verification tools. The

JAVA PATttFINDER name is a play on words: it finds the

paths of a JAVA program that lead to errors.

JAVA [6, 1] is a general purpose object-oriented pro-

gramming language with built in mechanisms for nmlti-

threaded programming [16]. It was originally designed to
support internet programming, but goes well beyond this

domain. JAVA is a relatively simple language compared

to C++, and it is regarded as a much safer language,

amongst other things due to its automatic garbage col-

lection and lack of general pointers. In spite of its sim-

plicity it appears to be a powerful language.
SPIN [15] is a verification system that supports the

design and verification of finite state asynchronous pro-

cess systems. Programs are formulated in the PROMELA

programming language, which is quite similar to an or-
dinary programming language, except for certain non-

deterministic specification oriented constructs. Processes

communicate either via shared variables or via message

passing through buffered channels. Properties to be veri-

fied are stated as assertions in the code, or as formulae in

the linear temporal logic LTL. The SPIN model checker

can automatically determine whether a program satis-

fies a property, and, in case the property does not hold,
generate an error trace. SPIN also finds deadlocks.

In an earlier effort we formally verified, using SPIN,

a multi-threaded operating system for a spacecraft [9].
The operating system is one component of NASA's New

Millennium Remote Agent (RA) [17], an artificial in-
telligence based spacecraft control system architecture

launched October 24, 1998, as part of the Deep-Space 1

mission to an asteroid to validate the potential of arti-

ficial intelligence, ion propulsion, and other technologies

for future space crafts. The operating system is imple-
mented in a multi-threaded version of COMMON LISP.

The verification effort consisted of hand translating parts
of the LIsP code into the PROMELA language of SPIN. A

total of 5 errors were identified, a very successful result.

It is often claimed that model checkers of today can-

not handle real sized programs, and consequently can-

not handle real sized JAVA programs. This is certainly

true. However, there are two aspects that make our ef-

fort worthwhile anyway. First, by providing an abstrac-

tion workbench we will make it possible to cut down the

state space of a JAVA program. Second, one can imag-
ine model checking being applied for unit testing, where

one focuses on a single class (or a few classes) and puts

this (these) in parallel with an aggressive environment
represented by a number of threads. Finally, JAVA can

be used as a design Ianguage, just as PROMELA.

Few attempts have been made to automatically ver-

ify programs written in real programming languages.
The most recent attempt we can mention is the one re-

ported in [2], which also translates JAVA programs into

PROMELA, however not handling exceptions or polymor-

phism as we do. The work in [3] defines a translator from

a concurrent extension of a very limited subset of C++.

The drawback of this solution is that the concurrency
extensions are not broadly used by C++ programmers.

In [5] is described what is called Extended static check-

ing, a technique for detecting, at compile-time, common

programming errors. The technique uses program ver-

ification technology, but feels to a programmer like a

type checker. By using an underlying automatic theorem

prover, the technique is more semantically thorough than
decidable static analysis techniques. At the same time,

by only trying to detect certain kinds of errors, not prove

the program's correctness, the technique is more auto-

matic than program verification. Finally, [4] describes a

theory of translating JAVA to a transition model, making
use of static pointer analysis to aid virtual coarsening,
which reduces the size of the model.

A significant subset of JAVA version 1.0 is supported

by JPF: dynamic creation of objects with data and meth-

ods, class inheritance, threads and synchronization prim-

itives for modeling monitors (synchronized statements,

and the wait and notify methods), exceptions, thread

interrupts, and most of the standard programming lan-

guage constructs such as assignment statements, condi-
tional statements and loops. However, the translator is

still a prototype and misses some features, such as pack-

ages, overloading, method overriding, recursion, strings,
floating point numbers, static variables and static meth-

ods, some thread operations like suspend and resume,

and some control constructs, such as the continue state-

ment. In addition, arrays are not objects as they are in

JAVA, but are modeled using PROMELA'S own arrays to

obtain efficient verification. Finally, we do not translate

the predefined class library.

Note that many of these features can be avoided by

small modifications to tim input code. In addition, the

tool is currently being improved to cover more of JAVA.

Despitetheomissions,weexpectthecurrentversionof
JPFto beusefulona largeclass of software. A front-

end to the translator checks that the program is in the

allowed subset and prints out error messages when not.

The translator is developed in COMMON LISP, having a
JAVA parser written in MoscowML as front end. Ger-

ard Holzmann supported our efforts by changing the se-
mantics for the PROMELA unless construct in order to

simplify the translation of exceptions.

The paper is organized around an example JAVA pro-

gram that has been translated automatically by JAVA
PATHFINDER and verified automatically by SPIN. In Sec-

tion 2 we describe this program, a bounded buffer. In

Section 3 we describe what the resulting PROMELA code

looks like. In Section 4 we present an experiment where

we seeded 21 errors into the example program, and ran

the SPIN model checker on the code generated by JPF.
Section 5 ends with conclusions and suggestions for fu-
ture work.

2 The Bounded Buffer Program

The translation scheme will be illustrated by translation

of a complete, small, but non-trivial JAvA.program that
covers many of the features of JAVA that we can trans-
late. After translation by JPF, SPIN can be applied to

prove or disprove that the program satisfies given prop-

erties stated as assertions in the program, and that it is
deadlock free.

2.1 The Buffer Class

The JAVA program that we are interested in verifying
properties about is a bounded buffer, represented by a

single class. An object of this class can store objects of

any kind (objects of subclasses of the general top level

class Object). Figure 1 shows the declared interface of

this class. It contains a put method, a get method and
a halt method. Typically there will be one or more pro-

ducer threads that call the put method, and one or more

consumer threads that call the get method. The halt

method can be invoked by a producer to inform con-

sumers that it will no longer produce values to the buffer.

Consumers are allowed to empty the buffer safely after

a halt, but if a consumer calls the get method after the

halt method has been called, and the buffer is empty, an

exception object of class HaltException will be thrown.
A class is an exception class if it is a subclass of the class

Throwable. In particular, class Exception is a subclass
of Throwable.

Figure 2 contains the Buffer class annotated with

line numbers for later reference. A JAVA class is gener-

ally speaking described by a name, a set of data vari-

ables, zero or more constructor methods (with different

argument types if more than one) with the same name

class HaltException extends Exception{}

interface BufferInterface {

public void put(0bject x);
public Dbject get() throws HaltException;
public void halt();

}

Fig. 1. The JAVABuffer interfaze

as the class, and a collection of methods. One of the con-

structors is executed when an object is created with the
new construct. Note that the Buffer class has no such

user-defined constructors. The class declares an array of

length 3 to hold the objects in the buffer. A cleaner way

of writing this program would be to declare a constant
"final int SIZE = 3" and then refer to SIZE rather

than to 3 throughout the program. The translator, how-

ever, currently requires an integer literal as the dimen-

sion of an array. In addition to the array, a couple of
pointers are declared, one pointing to the next fi'ee loca-

tion, and one pointing to the next object to be returned

by the get method. The variable usedSlots keeps track

of the current number of elements in the buffer. Finally,
the variable halted will become true when the halt

method is called.

The three methods of the class are all synchronized

(note the synchronized keyword). Hence, each of these

methods will have exclusive access to the object when

executed. That is, when one of these methods is called

on the buffer object by a thread, the buffer gets locked
to serve that thread, and it is unlocked again at the end

of the method call. The put method takes as parameter

the object to be stored in the buffer and has no return

value (void). It enters a loop testing whether the buffer

is full (i.e. having 3 elements) in which case it calls the
built in wait method. Calling the wait method within

a synchronized method suspends the current thread and

allows other threads to execute synchronized methods on

the object. Such another thread can then call the notify

method which will wake up an arbitrarily chosen waiting

thread to continue past its wait () call. The notifyAll

method wakes up all such waiting threads.

The call of wait is put inside a try construct, which
is JAVA's exception handling construct. A general try
construct has the form:

try T
catch{El el) C1

catch(E2 en) Cn

finally F

where each T,C1 Cn, F is a block (a statement or a

sequence of statements enclosed by {...}) and each Ei is

an exception type (class). The body T of the try state-

ment is executed until either an exception is thrown or it

finishes successfully. If an exception is thrown, the catch

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38. }

1. class Buffer implements BufferInterface {

2. protected Object[] array = new Object[3];

protected int putPtr = O;

protected int getPtr = O;

protected int usedSlots = O;

protected boolean halted;

public synchronized void put(0bject x) {

while (usedSlots == 3)

try {wait();}

catch(InterruptedException ex) {};

array[putPtr] = x;

putPtr = (putPtr + I) _ 3;

if (usedSlots == O) notifyAllO;

usedSlots++;

public synchronized Object get()

throws HaltException{

while (usedSlots == 0 & !halted)

try {wait();}

catch(InterruptedException ex) {};

if (usedSlots == O) {

throw(new HaltException());

};

Object x = array[getPtr];

array[getPtr] = null;

getPtr = (getPtr + 1) Z 3;

if (usedSlots == 3) notifyAll();

usedSlots--;

return x;

public synchronized void halt(){

halted = true;

notifyAll();

}

Fig. 2. The JAVA Buffer class

clauses are examined from top to bottom in order to find

one where the thrown exception is of the corresponding
class Ei or of a subclass thereof. If such a catch is found,

the corresponding block Ci is executed. If no appropri-
ate catch is found, the exception "flows out" of the try

statement into an outer try that might handle it. There

can be any number of catch clauses in a try including
none. If no catch clause in the method catches the ex-

ception, the exception is thrown to the code that invoked

this method. If a finally clause is present in a try, its

code is executed after all other processing in the try is

complete. This happens no matter how the completion

was achieved, whether normally, through an exception,

or through a control flow statement like return.

Normally an exception is thrown explicitly within a

thread using the throw(e) statement, where e is an ex-

ception object (a normal object of an exception class

which may include data and methods). However, one

thread S may throw an exception in another thread T by

class Main {

public static void main(String[] args) {

Buffer b = new Buffer();

Producer p = new Producer(b);

consumer c = new Consumer(b);

}

Fig. 3. The JAVA main program

executing T. interrupt (), which throws an

InterruptedException, or T.stop(), which throws a

ThreadDeath exception. The try construct around the
wait call is supposed to catch exactly such interrupts

from other threads. As we see, nothing is done in this

case (lines 11 and 22), but the try statement is neces-

sary in order for the JAVA type checker to accept the

program. We shall later see a real use of exceptions. One
of the main results in this paper is that we can in fact

prove properties of programs that throw exceptions.

When finally the put method gets past the while

loop, it is known that the buffer has free space, and the

insertion of the new object can be completed. In case

the buffer was in fact empty, all waiting consumers are
notified.

The get method is a little bit more complicated be-
cause it also takes into account whether the buffer has

been halted. Basically, it will wait uutil there is some-

thing in the buffer, and return this element, unless the
buffer is empty and at the same time ha_ been halted.

In this case, a HaltException is thrown. Otherwise, the

next buffer element is returned, and producers are noti-

fied if the buffer beforehand was full, in which case they

may be waiting.

2.2 Setting up an Environment

In order to verify properties about this class, without

looking at a complete application within which it oc-

curs, we can create a small application using the buffer.

We say that we set up an environment consisting of a

number of threads accessing the buffer, and then we

prove properties about this small system. This can be
regarded as unit testing the buffer. Concretely, we shall
define two thread classes: a Producer and a Consumer

class, and then start the whole system as shown in the

main method in Figure 3.

First, in order to illustrate the translator's capabili-

ties to translate inheritance, we define the objects that

are to be stored in the buffer, see Figure 4. A class

Attribute is defined, which contains one integer vari-
able. The constructor method with the same name as

the class takes a parameter and stores it in this variable.

The class httrData extends this class with another field,

and defines a constructor, which takes two parameters,

and then calls the super class constructor with the first

parameter.

class Attribute{

public int attr;

public Attribute(int attr){

this.attr = attr;

}

}

class AttrData extends Attribute{

public int data;

public AttrData(int attr,int data){

super(attr);

this.data = data;

}

}

Fig. 4. The JAVA Attribute and AttrData classes

class Producer extends Thread {

private Buffer buffer;

public Producer(Buffer b) {

buffer = b;

this.start();

}

public void run() {

for (int i = O; i < 6; i++) {

AttrData ad = new AttrData(i,i*i);

buffer.put(ad);

yield();

};

buffer.halt();

The producer and consumer threads that are actu-

ally going to use the buffer are defined in Figure 5. The
Producer class extends the Thread class, which means

that it must have a run method, which is then executed

when an object of this class is started with the start

method. As can be seen, the constructor of the class in

fact calls this start method in addition to storing locally

the buffer for which elements will be produced. The run

method adds 6 AttrData objects to the buffer, with at-
tributes 0... 5 (in that order) and squares as data, and
then calls the halt method on the buffer.

The Consumer class also extends the Thread class.

The run method stores all received objects in the

received array (or at most 10 of them). Note how the

receiving loop is written inside a try construct, which
catches and prevents a HaltException from going fur-
ther.

2.3 Property Specifications

JPF allows a programmer to annotate his JAVA program

with assertions and verify them using the SPIN model
checker. In addition, deadlocks can be identified. An as-

sert statement is expressed as a call to the static method

assert in the Verify class shown in Figure 6. The fact
that it is static means that we can call this method di-

rectly using the class name Verify as prefix, without

making an object instance first. The body of this method

is of no real importance for the verification since only

the call of this method (and not its definition) will be

translated into a corresponding PROMELA assert state-

ment. A meaningful body, like print!ng an error message
as in this example, can be useful during normal testing

though, but it will not be translated into PROMELA.

The first assertion in Figure 5 states that the con-

sumer receives exactly 6 elements from the buffer. The
second assertion within the for loop states that the re-

ceived elements are the correct ones (at least wrt. the

attr value).

class Consumer extends Thread {

private Buffer buffer;

public Consumer(Buffer b) {

buffer = b;

this.start();

}

public void run() {

int count = O;

AttrData[] received = new AttrData[lO];

try{

while (count < 10){

received[count] = (AttrData)buffer.getO;

count++;

}

}

catch(HaltException e){};

Verify.assert(count == 6);

for (int i = O; i < count; i++){

Verify.assert(received[i].attr == i);}

Fig. 5. The JAVA Producer and Consumer classes

class Verify{

public static void assert(boolean b){

if (!b)

System.out.println("assertion broken");

}

Fig. 6. The JAVA Verify class

One can consider other kinds of Verify methods, in

general methods corresponding to the operators in LTL,

the linear temporal logic of SPIN. Since these methods
can be called wherever statements can occur, this kind of

logic represents what could be called an embedded tempo-
ral logic. As an example, one could consider a statement

of the form: Verify.eventually(count == 6) inserted

#define Index byte

#define MAX_OBJECT 7

typedef Attribute_Class{

int attr;

};

Attribute_Class Attribute_Obj[MAX_OBJECT];

Index Attribute_Next = O;

typedef AttrData_Class{

int attr;

int data;

};

AttrData_Class AttrData_Obj[MAX_OBJECT];

Index AttrData_Next = O;

Fig. 7. Object arrays _rthe Attribute and AttrData classes

as the second statement of the consumer run method.

The major advantage of this approach is that we do

not need to change the JAVA language, or parse spe-

cial "specification comments". JAVA itself is used as the

specification language. Note, however, that at this point,

only the assert method is supported.

3 Translation

3.1 Classes, Inheritance and Object Creation

The general principle behind the translation is the fol-

lowing. A JAVA class basically consists of data variables

and methods. For each new creation of an object, a new

set of data variables, a data area, is allocated, and the

methods of that object will then work on this newly allo-
cated area. Hence, at any point in time a set of data areas

will have been allocated, one for each object not garbage
collected. We shall model tile set of data areas of a class

by an array of records (typedef's in SPIN terminology),
one record for each data area. An index variable will

point to the next free record in the array, initially having

the value 0 (first record in the array). Method definitions
are mapped into macro definitions, and method calls are

mapped into applications of macros. Note that the trans-

lated code shown is tile unedited PROMELA code gener-

ated by tile translator (except for a couple of omissions).

For illustration, we start with the translation of the

simplest classes, namely Attribute and httrData, which

have no methods, but which show inheritance. Figure 7
shows the data areas for the two classes. For each class

C an array named C_0bj is defined of size MAX_0BJECT

and of type C_Class. In addition, a pointer C_Index to

the next fi'ee data area (object) is declared. Because the

AttrData class inherits from the Attribute class, it in-
cludes the attr variable in addition to the data variable.

Note that this translation puts a limit (MAX_0BJECT)

on the number of objects that can be created of a class.

#define Attribute 6

#define AttrData 7

#define create object(c,i)
(c*100 + i)

#define get_class(x)

(x/100)

#define get_index(x)
(x - ((x/100)*t00))

Fig. 8. GenerM object re_rence operations

A particular object is now referenced by an object ref-

erence containing information about which class it con-

cerns (and thereby which array) and which instance (in-

dex in the array) it concerns. Because PROMELA'S record

concept (typedefs) is not flexible enough for our needs

(e.g., field access cannot be applied to a conditional ex-

pression) we have decided to represent an object ref-

erence (c,i) as the integer c * 100 + i. The operations
(macros) for dealing with these calculatious are shown

in Figure 8. Each class is given a unique identification

which is a number, for example class Attribute is given
number 6.

In order to access the variables in these arrays, macros

are defined as shown in Figure 9. These macros are pre-
fixed with tlle name of the class that defines the vari-

able, which is statically decidable in JAVA at the point

where the variable is accessed (in contrast to method

calls). However, because JAVA supports polymorphism
where an object may belong to a subclass of the stati-

cally declared class (for example if it is a parameter to a

method) we need to define these variable accessors such

that they access the right array. For example, the macro

httribute_get_attr for reading the attr variable de-
fined in the Attribute class is defined as a conditional

expression over the subclasses.

Both classes have constructors which will be executed

when creating new objects. For example, the JAVA ex-

pression "new httrData(2,4)" will cause a call of the
constructor, which in turn will call the constructor of

the super class: "Attribute (2)". Constructors are mod-

eled as macros as shown in Figure 10 (slightly simpli-

fied for presentation purposes; the real translation also
takes into account variable initializations occurring to-

gether with variable declarations). The parameter obj

will be an object reference denoting the object being

constructed.

The construction of a new object such as for ex-

ample the JAVA statement "x = new httrData(2,4)"

is mapped into the sequence of PROMELA statements

shown in Figure 11 (slightly simplified here with respect

to the treatment of the variable x): one can see how

the x is bound to a reference, the next-pointer is incre-

#define undefined 0

#define Attribute_get_attr(obj)

(get_class(ob]) == AttrData ->

AttrData_Dbj[get_index(obj)].attr :

(get_class(obj) == Attribute ->

Attribute_Obj[get_index(obj)].attr :

undefined))

#define Attribute,set_attr(obj,value)

if

:: get_class(obj) == AttrData ->

AttrData_Dbj[get_index(obj)].attr = value

:: get_class(obj) == Attribute ->

Attribute_Obj[get_index(obj)].attr = value

fi

#define AttrData_get_data(obj)

AttrData_Obj[get_index(obj)].data

#define AttrData_set_data(obj,value)

AttrData_Obj[get_index(obj)].data = value

Fig. 9. Variable accessors _rthe Attribute and AttrData classes

typedef Buffer_Class{

int LOCK;

byte WAITING;

chan WAIT = [0] of {bit};

ObjRef array[3];

int putPtr;

int getPtr;

int usedSlots;

bit halted;

};

Fig. 12. Object type _r the Buffer class

#define Buffer_any_WAITING(obj)

Buffer_Obj[get_index(obj)].WAITING > 0

#define Buffer_incr_WAITING(obj)

Buffer_Obj[get_index(obj)].WAITING++

#define Buffer_decr_WAITING(obj)

Buffer_Obj[get_index(obj)].WAITING--

Fig. 13. Operations on WAITING

#define Attribute_constr(obj,attr)

Attribute_set_attr(obj,attr);

#define AttrData_constr(oBj,attr,data)

Attribute_constr(obj,attr);

AttrData_set_data(obj,data);

Fig. 10. Constructors _rthe Attribute and AttrData classes

atomic{

x = create_object(AttrData,AttrData_Next);

AttrData_Next++

};

AttrData_constr(x,2,4);

Fig. 11. W rans|ation ofx = new AttrData(2,4)

mented, and the constructor is applied to the reference
now stored in x.

3.2 Synchronization on Objects

The Buffer class is more complicated because it con-

tains methods, and because these in addition are syn-

chronized, which means that they must have exclusive

access to the object when executing. That is, only one

thread at a time may execute any synchronized method
on the same object. Therefore, the translation must pro-

vide a locking mechanism with which one can lock an

object to serve a particular thread that calls a synchro-

nized method on the object. For that purpose some extra

variables are inserted into the data area of each object,

as shown in Figure 12. In addition to the variables de-

clared in the class (note that JAVA arrays are modeled

directly as PROMELA arrays), it contains the three vari-

ables LOCK, WAITING and WAIT used for managing ob-

ject locking and release. The LOCK variable will at any

time either be null (a negative integer) or it will be the

thread id of the thread that currently is executing a syn-

chronized method on the object (actually a non-negative
PROMELA process id). Hence, once this field is set to a

proper thread id by a thread that calls a synchronized

method, only the thread with this thread id is allowed to

operate on the object. When the call of the synchronized

method terminates, the lock is released by setting it to

null again. Note that a synchronized method must be
allowed to call other synchronized methods on the same

object without causing blocking.

The variables WAITING and WAIT are used to man-

age threads that call the wait, notify, and notifyAll

methods on the object. A thread that calls wait() will
first unlock the object, and then try to read a value on

the zero place channel WAIT. A zero place channel in

PROMELA is used to model rendezvous communication,
hence some other thread must send a value on this chan-

nel in order for the calling thread to be released. At any

time, all threads that are waiting to get access to the

object are waiting on this channel. Each time a thread

calls the wait () method on the object, the WAITING vari-

able is additionally incremented, and conversely decre-
mented when released. Hence, the value of this variable

will always be the number of threads waiting on the ob-

ject. The variable is used when notifyAll is called by a

thread, and all waiting threads have to be released: we

need to know how many times the WAIT channel must

be signaled. The operations on the WAITING variable are

shown in Figure 13.

Locking and unlocking an object is implemented by

the operations shown in Figure 14. Locking an object

#define this _pid

#define Buffer_lock(obj)

atomic{

Buffer_get_LOCK(obj) == null ->

Buffer_set_LOCK(obj,this)}

#define Buffer_unlock(obj)

Buffer_set_LOCK(obj,null)

Fig. 14. Operations _rlocking and unlocking objects

is done when a thread calls a synchronized method on

an object which the thread has not already locked. First
the thread waits until the lock becomes free (no other

thread has locked it), which is the case when the LOCK
field becomes null. Note that in PROMELA, an equality

is a statement that is executable only when the equality

holds, and hence blocks until this is the case. Then, in an

atomic move, the thread locks the object by assigning the
value of '%his" to the LOCK field, where "this" denotes

the thread id of the current thread ("this" is defined as

_pid, which in PROMELA refers to the process id of the
currently executing process). Unlocking an object just

corresponds to setting the LOCK field to null.

Finally, the macros modeling the wait, notify and

notifyAll methods are shown in Figure 15. The
Buffer_wait macro models the wait method. Ignore
for a moment tim unless constructs. When called, it

first unlocks the object, because other threads should

now have access to perhaps later call notify. Then the
WAITING field is increased, and finally the thread starts

waiting for a signal (the value 0) on the WAIT channel.
When the thread is woken up by a notify or notifyAll,

it locks the object again (first occurring call of

Buffer_lock(obj)) in order to continue with exclusive

access to the object (note that wait can only be called

within a synchronized context in JAVA).

The Buffer_notify macro signals the WAIT chan-

nel in case there are threads waiting for a signal. The

Buffer.notifyAll macro does this as long as there are

threads waiting. Note that this happens atomically so

that no new threads can join the waiting threads during
the notification.

Now we explain the unless constructs in the
Buffer_wait macro. This extra complication is caused

by the fact that another thread can either interrupt or

stop a thread that is waiting. Recall that such an inter-

rupt or stop is like an exception being thrown inside the

(perhaps waiting) thread being interrupted or stopped.
We shall later explain exceptions in more detail, but here

it suffices to say that in case such an exception is thrown,

the waiting thread must be released immediately; this
occurs because the conditions of the two unless con-

structs become true.

Suppose that the waiting thread is blocked in the

"Buffer_get_WAIT (obj)?continue" statement, and that

#define continue 0

#define Buffer_wait(obj)

atomic{

{

Buffer_unlock(obj);

Buffer_incr_WAITING(obj);

Buffer_get_WAIT(obj)?continue

}

unless{

d_step{

get_this_EXN > 0 ->

Buffer_decr_WAITING(obj)

}

};

Buffer_lock(obj)

}

unless {a_finally(Buffer_lock(obj))}

#define Buffer_notify(obj)

atomic{

if

:: Buffer_any_WAITING(obj) ->

Buffer_get_WAIT(obj)!continue;

Buffer_decr_WAITING(obj)

:: else -> skip

fi}

#define Buffer_notifyAll(obj)

atomic{

do

:: Buffer_any_WAITING(obj) ->

Buffer_get_WAIT(obj)!continue;

Buffer_decr_WAITING(obj)

:: else -> break

od}

Fig. 15. The oper_ions wait, notify and notifyAll

such an interrupt occurs. Then (due to the new seman-
tics of the PROMELA unless construct, see Section 3.5)

the inner unless construct will be triggered since, as we

shall see, this implies that get_this_EXN becomes bigger
than zero. This causes the WAITING variable to be decre-

mented, which is necessary because the Buffer_notify

and Buffer_notifyAll macros normally do this (and
now have not had the chance to do it). Next, because

the waiting thread may have code in finally constructs
that must be executed before termination (not shown

here), it is necessary to lock the object again before stop-

ping such that this finalize code can be executed with
exclusive access to the object. This is done by the out-

ermost unless construct. It was necessary to introduce

two unless constructs since the interrupt may also ar-

rive after the thread has been woken up, but while it is

waiting for the lock to be released; that is, it is waiting

in the first occurring Buffer_lock(obj) statement.

#define Buffer_halt(obj)

if

:: Buffer_get_LOCK(obj) == this ->

Buffer_halt_code(obj)

:: else ->

Buffer_lock(obj);

try(Buffer_halt_code(obj))

unless {d_finally(Buffer_unlock(obj))}

fi

#define Buffer_halt_code(obj)

Buffer_set_halted(obj,true);

Buffer_notifyAll(obj)

Fig. 16. Trans]ation ofthe halt method

3.3 Methods

In order to illustrate how methods are modeled, we illus-

trate the simplest one, namely the halt method. A syn-
chronized method Min a class ¢ is defined in two parts:

a ¢_M macro dealing with object locking, and a C_M_code

macro containing the actual code of the method. For

non-synchronized methods there is no such distinction.
This is shown for the synchronized halt method in Fig-

ure 16. In general, a method call is translated into a call

of the ¢_M macro with parameters corresponding to the

method parameters. In the case of halt, the method is

parameterless, hence only tile object reference of the ob-

ject upon which the method is called is given as parame-
ter. The macro tests whether the object is already locked

by the calling thread, in which case the actual code,

C_M_code, is executed. This models the situation where

this method is called by another synchronized method,

hence the object is already locked. In case the object
is not locked by the calling thread, an attempt is made

to lock it (Buffer_lock (obj)), and after successful lock-

ing, the code is executed. The try macro models tile try
construct of JAVA and models the fact that the object

must always be unlocked (Buffer_unlock(obj)) when

leaving the method, also in the case where an exception

is raised during execution of the code.

3.4 Threads

It remains to explain how things are put together by

translating the main method and the threads that it
starts. First, we describe how the thread classes Producer
and Consumer are translated. We focus on the Producer.

Thread classes are translated in a similar manner to

other classes, with the addition that the run method

is translated into a PROMELA process type (proctype),

that can then be started using the PROMELA run state-

ment, whenever a corresponding JAVA thread is started

with the JAVA start method. Figure 17 shows the trans-

lation of the run method of the Producer class of Figure

5.

proctype Producer_Thread(ObjRef obj){

{

int Producer_run_i;

ObjRef Producer_run_ad;

ObjRef Buffer_put_ex;

Producer_run_i = O;

do

:: (Producer_run_i < 6) ->

atomic{

Producer_run_ad =

create_object(AttrData,AttrData_Next);

AttrData_Next++};

AttrData_constr(Producer_run_ad,

Producer_run_i,

(Producer_run_i * Producer_run_i));

Buffer_put(Producer_get_buffer(obj),

Producer_run_ad);

Producer_run_i = (Producer_run_i + i);

:: else -> break

od;

Buffer_halt(Producer_get_buffer(obj));

}

unless {get_this_EXN > O}

Fig. 1T. The Producer run method

The process takes as parameter its own object ref-

erence. Notice how local variables in called methods are

declared as global variables in the process. For example,

the variable ex in the put method that binds the caught

exception in the try statement (Figure 2) is declared
at this point. This is necessary because PROMELA does

not support local variables (nor does it in the new inline

procedures that PROMELA got recently). This solution

of course prevents the translation of recursive methods,
but it is efficient with respect to verification time since

we don't need to maintain a call stack (and represents

what one normally would do in a hand translation). An-

other possibility is to translate methods into proctypes,

as suggested in [15], but experiences during earlier work

suggested that this would be inefficient, see [9]. The while

loop is translated into PROMELA'S do ... od construct

in a very straight forward way.

Note in Figure 17 how the object reference to the
buffer in the buffer variable declared inside the Producer

class is accessed and passed as argument to the put and
halt methods. This models the dot-notation in JAVA for

accessing methods in an object. Surrounding the pro-
ducer thread code is an unless construct, which is sup-

posed to catch any exceptions thrown and not caught

by the user program. This will be explained in the next

section. Finally, Figure 18 shows the translation of the

Producer object constructor. It shows how the buffer
variable is initialized with the argument, and how the

process is started, corresponding to the "this. start ()"
call.

#define Producer_constr(obj,b)

Producer_set_buffer(obj,b);

run Producer_Thread(obj);

Fig.18.The Producerconstructor

typedef Consumer_Class{

ObjRef EXN;

ObjRef buffer;
};

Fig.19.The Consumerobjecttype

3.5 Exceptions

JAVA exceptions are complicated when considering all

the situations that may arise, such as method returns

in the middle of try constructs, the finally construct,

interrupts (which are exceptions thrown from one thread

to another) of threads that have called the wait method,

and the fact that objects have to be unlocked when an

exception is thrown out of a synchronized method. We

shall try to illustrate our solution.
PROMELA'S unless construct seems very closely re-

lated to an exception construct, except for the fact that
it works "outside in" instead of "inside out", the latter

being the case for exceptions. As an example consider

the JAVA statement (assuming some variable x):

try{

try{throw(new Exception());}

catch(Exception e){x = i;}

}

catch(Exception e){x = 2;}

The result of executing this statement should be that
x is assigned to 1, hence (only) the inner catch is invoked

when the exception is thrown. In contrast, consider a re- '

lated PROMELA statement, where now an EXN variable

(initially 0) has been introduced. When this variat)le be-

comes positive it is regarded as if an exception has been
thrown:

{

{EXN = i}

unless {EXN > 0 -> x = I}

}

unless {EXN > 0 -> x = 2}

The effect of this statement will be that x is as-

signed to 2. Hence, the outermost unless construct is

invoked when EXN becomes positive. Gerard Holzmann

has been very helpful to us by implementing a -J option

(J for JAVA) in the verifier that changes the semantics

of PROMELA in such a way that unless constructs are

interpreted "inside out". This still leaves a second issue:
that as soon as the inner unless is chosen (executing

the inner EXN > 0), then the outer is invoked (since EXN

> 0 is still true) and x gets the value 2 anyway. Hence,

we have to prevent that kind of behavior. Note that the
above PROMELA code needs some modifications to ac-

tually "work" because if it is the last statement in "P"
within the statement "P unless Q" that makes "Q" ex-

ecutable, then "0" will actually not get executed.

Recall that a JAVA exception is an object of one of

the exception classes, either one of the built in or a user

#define exn_Exception

(get_class(get_this_EXN)== Exception

lexn_InterruptedException
[exn_HaltException)

Fig.20. The exn_xception predicate

#define dotted_throw(obj,exn)

set_EXN(obj,exn)

#define throw(exn)

dotted_throw(obj,exn)

#define stop(obj)
dotted_throw(obj,THREAD_DEATH)

Fig.21. Operations_rthrowingexceptions

defined exception class. Hence, an exception may con-
tain data and methods. The throw(e) statement takes

an exception object reference e as argument, and in our

model we translate that into a store of that object ref-

erence in a special variable, EXN, in tlie data area of

the thread (potentially the main program) where it has
been thrown. All the unless constructs in the thread will

test on this variable to see if it becomes different from

null. The data area for the Consumer class is shown

in Figure 19. There are corresponding macros for ac-
cessing this variable. There are macros get_EXN(obj)

and set_EXN(obj ,value) for accessing this variable of
a thread identified by obj. In addition, the macros

get_this_EXN and set_this_EXN willaccessthe EXN vari-
able of this thread.

For each exception class E, there is a predicate exn_E
which evaluates to true if the EXN variable contains an

exception object of that class or a subclass thereof. For

example, Figure 20 shows this predicate for the built in

Except ion class. Recall that the ttaltExcept ion was de-
fined as a subclass thereof, as is InterruptedException.

Exception throwing is mainly modeled by the macros

shown in Figure 21. The dotted_throw macro throws

an exception at a particular object given as parame-
ter. This allows one thread to throw an exception at

another thread, causing that other thread's EXN variable
to be set. The throw macro throws an exception to the

object identified by the free variable obj which is this
current thread object. Finally, calling "T. stop()" in a

JAVA program corresponds to throwing the predefined

THREAD_DEATH exception object to the T object.

We shall now explain how exceptions are caught.

Consider a try statement of the form:

{ try(Buffer_wait(obj))

unless {

if

:: catch(exn_InterruptedException,

Buffer_get_ex,skip)

fi};

}

unless {finally(skip)};

Fig. 22. Trans|ation ofthe try statementin the get method

try T

catch(El el) Cl

catch(E2 e2) C2

catch(En en) Cn

finally F

A JAVA statement of this form is translated into a

PROMELA statement of the following form using macros

defined in Figure 23, and where a prime (') after a block

indicates its translated version:

{ try(T')

unless {

if

::

::

catch(exn_El,el,Cl')

catch(exn_E2 & !exn_El,e2,C2')

catch(exn_En & !exn_El & !exn_E2 &

... _ !exn_En-l,en,Cn')

fi}

}

unless {finally(F')}

For example, the try construct in the get method

in Figure 2 is translated into the PROMELA code in Fig-

ure 22. The general idea behind this translation is that

the inner unless construct catches any exceptions which

match any one of the exception predicates exn v.1 ...

exn_En, and that the outer unless construct models the

finally construct in JAVA: the block F must be exe-

cuted no matter what as the last thing. For example,

in the case where for example C l' itself throws a new

exception, the F still has to be executed before that ex-

ception can be thrown further up. Now, let us explain

the macros in Figure 23.

The try(s) macro executes s and then throws the

predefined EXIT object (exit_to_final). The EXIT ex-

ception is then caught by the finally macro (always in-

serted at the end) as we shall see. The catch (exn_E, x, s)
macro tests whether the current value of the EXN variable

satisfies the exn_E predicate (catch_cond (exn_E, x)), in
which case that branch is executed.

The catch_cond (exn_E, e) macro in an atomic move

tests the predicate exn_E (hence is only executable when

it is true, see Figure 20 for one such predicate), and then
stores the value of the exception in the local variable e to

#define try(s)

{s;exit_to_final;skip}

#define exit_to_final

throw(EXIT)

#define catch(exn_E,x,s)

catch_cond(exn_E,x) -> s;exit_to_final

#define catch_cond(exn_E,e)

d_step{

(exn_E)

->

e = get_this_EXN;

set_this_EXN(NO_EXN)

}

#define finally(s)

final_cond -> s;exit_final;skip

#define final_cond

d_step{

get_this_EXN > 0 ->

if

:: get_this_EXN == EXIT ->

set_this_EXN(N0_EXN)

:: else ->

set_this_EXN(- get_this_EXN)

fi}

#define exit_final

set_this_EXN(- get_this_EXN)

Fig. 23. Operations _rcatching exceptions

be accessible within the block to be executed. Note also

how the EXN variable is zeroed to the predefined NO_EXN
value in order to avoid outer unless constructs being

triggered, as already discussed earlier on page 10.

The finally (s) macro defines when the outer unless
construct should be triggered, namely when f inal_cond
becomes executable. The f inal_cond macro is executable

whenever there is some exception object reference in the

EXN variable (it is bigger than 0). Note that we reset this

to 0 (N0_EXN) whenever an exception is caught at an in-
ner level so that this outer final construct will not get

activated. If there is an exception, and this is just a nor-

real EXIT from one of the blocks T,C1 Cn in the try

statement, this is then forgotten (set_this_EXN (N0_EXN)).

If on the other hand (else) it concerns an exception

that has not been caught, we need to remember it so

that it can be re-thrown after the code in the finally
construct has been executed. We also need to make sure

that it does not activate unless constructs higher up

during the execution of the finally code. One way to

do this is to negate it since the unless constructs in the
translation only react on positive values of EXN. When

we then leave the finally construct, we negate it back

to its positive value such that it can be "thrown" fi_r-

#define Buffer_get_code(obj)
{

return_with(Buffer_get_x);

}

unless {return_cond}

Fig.24. qYanslationofthevaluereturningget method

ther up. Some of the macros contain skip statements.

These are necessary in order to make it work due to the
semantics of the unless construct.

In Figures 15 and 16 the macros a_finally(s) and

d_finally(s) are called. These are defined as respec-
tively atomic{finally(s) } and d_step{finally(s) }.

The d_finally(Buffermnlock(obj)) call in Fig-

ure 16 unlocks the object in case an exception has been

thrown out of a synchronized method. The d_step en-
sures that the exception is not thrown further up during

the unlocking (which is more economic than negating the
exception) and the unlocking can be made completely

atomic since there-are no blocking statements.

The a_finally(Buffer_lock(obj)) call in Figure

15 locks an object after a call of wait has been inter-
rupted. This locking must be as atomic as possible, but

with the possibility of blocking since another thread may
own the lock. Therefore a d_step cannot be used (it does

not allow blocking).

3.6 Value Returning Methods

A JAVA return statement can have one of two forms.

Either it has the form "return" in case the method is

not value returning, or the form "return exp" if the
method is value returning. In either case, such a return

statement has the same effect as throwing an exception

that is caught by a "return exception handler" surround-

ing the body of the value returning method, and by any
finally constructs on the "way up" to that. Figure 24

shows how the get method of the Buffer cla_s translates

with respect to value return.
We see that the body of the method is surrounded

by an unless construct triggered by the return_cond
predicate. This predicate, defined in Figure 25, becomes
executable when the EXN variable in the executing thread

(the one that executes the value returning method) gets
tlle value RETURN which is a predefined fixed object refer-

ence. This happens for example when the return_with

macro is called with an argument denoting the value re-
turned. The return_without models the return from a

method that does not return a value.

The assignment "RES [TOP] = e" in the return_with
macro needs some explanation. The problem we are faced

with is that JAVA allows value denoting expressions to

contain calls of value returning methods that may have

side effects. In PROMELA expressions are of a syntacti-

cally different class than statements, and cannot have

#define return_with(e)

RES[TOP] = e;

throw(RETURN)

#define return_without
throw(RETURN)

#define return_cond

d_step{

get_this_EXN == RETURN ->
set_this_EXN(NO_EXN)

}

Fig.25.Oper_ions_rreturnexceptions

#define MAX_RESULT 5

proctype Consumer_Thread(ObjRef obj){

int RES[MAX_RESULT];

byte TOP;

Buffer get(Consumer get buffer(obj));
Consumer_run_received[Consumer_run_count]=

RES [TOP];

}

Fig.26.The Consumerthread

side effects. Consider for example the following state-
ment in the Consumer class's run method:

received[count] = (AttrData)buffer.get() ;

Ignoring the casting "(AttrData)...", the right hand

side of this assignment has side effects, whereas the right
hand side of a PROMELA assignment does not allow this.
Our solution is to execute the method before the assign-

ment, and then store the result value in a result array
that is introduced for this purpose. Note that it has to

be an array in order to model assignment statements of
the form "x = o.m(x) + p.n(y)" where several value

returning method calls occur in an expression. Part of
the translation of the Consumer class's run method is

shown in Figure 26. The Buffer_get macro will execute

and finally store the return value in RES[TOP], where
RES is the result array. This value is then "picked up" in

the assignment statement. Note that if there are several
value returning method calls in a single expression, the

TOP variable is incremented for each during their eval-

uation, and then reset to its previous value before the
values are accessed.

3.7 The main Method

The main method of the Main class is translated into

the PROMELA init section as can be seen in Figure 27.

We have already explained the translation of object cre-

ation, which is the only activity of this particular main

init{

{0bjRef Main_main_b;

0bjRef Main_main_p;

0bjRef Main_main_c;
atomic{

0bjRef obj = create_object(Main,Main_Next);

Main_Next++};

atomic{

Main_main_b =

create_object(Buffer,Buffer_Next);

Buffer_Next++};

Buffer_constr(Main_main_b);

atomic{

Main_main_p =

create object(Producer,Producer_Next);

Producer_Next++);

Producer_constr(Main_main_p,Main_main_b);

atomic{

Main_main_c =

create_object(Consumer,Consumer_Next);

Consumer_Next++};

Consumer_constr(Main_main_c,Main_main_b);

} unless {get_this_EXN > 0}

}

Fig. 27. The main method

method. Recall that the constructors of the Producer

and Consumer classes in this present example start the

processes.

4 Analyzing the Program

The presented program is correct in the sense that no

errors are found by SPIN when applied to the PROMELA

code generated by JPF. In order to illustrate the effec-

tiveness of JPF (and SPIN of course) we have seeded 21

errors in the program shown in Figure 2, and for each er-

ror analyzed the now incorrect program using JPF. This

experiment is described in the following.

4.1 The Result

The results of this experiment are shown in Table 1.

For each error we give the line numbers changed, refer-

ring to Figure 2, and the new contents of these lines.

As an example, error 1 is obtained by changing line 3

to "protected int putPtr = 1;" (initializing to 1 in-

stead of to 0).

The results of applying JPF are sho_na in the fourth

column. That is, the result of applying the SPIN model

checker to the PROMELA code generated by Jpr. The

possible outcomes are deadlock (D) and any of the two

assertions being violated (A1 referring to the first oc-

curring "count == 6" and A2 referring to the second

"received[i] .attr == ±"). The point here is that all

the errors are caught.

The last two columns show the result of running the

modified JAVA program on two versions of the JAVA Vir-

tual Machine (JvM) in order to see whether plainly ex-

ecuting the program would highlight the errors seeded.

JVM version 1.1.3 is an older version being very deter-

ministic. This means that executing a multi-threaded

program several times typically yields the same result

every time. JvM 1.1.6 is the newer version with na-

tive threads, where JAVA threads are mapped to Solaris

threads. This version is therefore non-deterministic, po-

tentially yielding different results for different runs of a

multi-threaded program.

Every program has been run several times (from 30

to 100), and the numbers indicate the percentage of runs

that have highlighted the error, either via a deadlock, an

assertion violation, or a thrown NullPointerException.

All runs, model ctiecking as well as JvM runs, have

been executed on a Sun Ultra Spare 60 with 512 Mb

of main memory, and with the Solaris operating system

version 5.5.1.

Running the SPIN model checker Oil the PROMELA

code generated by JPF typically used less than half a

second to find an error and explored between 40 and 400

states and a similar number of transitions. In a few cases

(error S and 10) approximately 10000 states and 18000

transitions were explored in less than 2 seconds. The

memory consumption was around 17 Mb. This amount

of memory must probably be explained by the modeling

of the JAVA Virtual Machine within PROMELA.

"Errors" 11 and 20 are special (marked with a *)

in the sense that they are not really errors when us-

ing the environment described in Section 2.2. This en-

vironment only creates one consumer, and to make the

errors manifest themselves, we needed to create two con-

sumers. In addition, with two consumers the assertions

make no sense and were deleted. Hence, we were now

just looking for deadlocks. The table rows for these er-
rors show the result of verifying and executing in this

changed multi consumer environment. The verification
of error 11 needed as much as 8 minutes and 77 Mb,

exploring 2.4 million states and 6 million transitions be-
fore the deadlock was found. We verified a down scaled

version of this error, with a buffer size of 2 (instead of 3)
and the producer only producing 3 values (instead of 6).
Also here the deadlock was found by the model checker,

but now using 1 minute, 28 Mb, and exploring 423096

states and 1 million transitions.

SPIN used 5.2 seconds to verify that the original pro-

gram contained no errors. This involved the exploration
of 336S3 states and 61944 transitions, and a memory

consumption of 18.8 Mb.

_.2 Comments on the Result

The example is small since its main purpose has been

to illustrate the translation done by JPF. However, the

exercise does show that around half (11) of the errors

Table1.Verificationresults

Nr. Line Modification(changedto) JPF JVM1.1.6 JVM1.1.3

1 3 protectedint putPtr= 1; A2 100 100

2 5 protectedint usedSlots= 1; A1,A2 100 100

3 9 while (usedSlots!= 3) D 100 100

4 9 while (usedSlots == 2) D 65 0

5 12 putPtr = (putPtr + 1) Y, 3; A2 100 100

13 array[putPrt] = x;

6 13 putPtr -- putPtr Y. 3; A2 100 100

7 13 putPtr = (putPtr + 1) Y. 2; A2 56 0

28 getPtr = (getPtr + 1) Y. 2;

8 14 if (usedSlots == 3) notifyAll(); D 33 100

9 14 remove: D 55 100

if (usedSlots == 0) notifyAUO;

10 14 usedSlots++ ; D 35 100

15 if (usedSlots == 0) notifyAll();

I]" 14 if (usedSlots == 0) notify(); D 2 100

29 if (usedSlots == 3) notify();

12 20 while (usedSlots == 0) D 100 100

13 23 if (usedSlots [= 0) { AI, D i00 I00

14 23 if (halted) { A1 3 0

15 29 if (usedSlots == 0) notifyAll(); D 50 0

16 29 remove: D 44 0

(if usedSlots == 3} notifyAllO;

17 29 usedSlots-- ; D 66 0

30 if (usedSlots == 3) notifyAll();

18 30 usedSlots++ A1, A2 100 100

19 35 remove: D 100 100

halted = true;

20" 36 notify() ; D 2 100

21 36 remove: D 100 100

notifyAll();

Cou_ Nad-: 2

2--7

l

g f

Fig. 28. Trace for error 14

are not guaranteed to be caught when plainly execut-

ing the program on the newest version of JVM, while in
contrast JPF finds the errors each time if present in the

setup (errors 11 and 20 were not present with only one

consumer). The difference is most obvious for errors 11,
14 and 20. Errors 3 and 11 were suggested by a reviewer.

The chance of catching errors by executing the program:

gets even smaller when the program size increases.•

. 'code, be it a deadlock or an assertion violation, it rbturns"
r with an error trace showing the sequence of executed

PROMELA statements leading from the initial state to
the state where the error occurs. Our tool does not cur-

" rently map such PROMELA error traces back to corre-

sponding JAVA traces. As an alternative, we have ex-
i

tended tile Verify class with special print methods

which can be called (by the programmer) in selected

places in the JAVA code. These calls will then be trans-
lated into PROMELA print statements set up to print

on a graphical two dimensional message sequence chart.

Figure 28 shows such a chart illustrating the trace for
error number 14.

To obtain this chart, to be explained below, we have

added print statements 5 places in the code. For exam-
ple, in lines 12 and 26 (pushing current lines downwards)
we have added the statements:

12 Yerify.print("put",putPtr) ;

26 Verify.print("get",getPtr) ;

Hence, what will be printed out is a text string ("put"

or "get"), and the position in the buffer where a value

is stored (put), respectively retrieved from (get). Other

print statements record other events, such as the pro-

: ducer setting the halted flag, and the consumer getting

- the corresponding exception. Figure 28 illustrates a situ-

- ation where the producer (center vertical line) first pro-
- duces two values, stored in positions 0 and 1. Then the

consumer gets tile value in position 0, etc. The consumer

only gets the first three values. The producer then fin-
ishes and sets the halted flag, where after the consumer

now gets an exception when trying to get the fourth

value (in position 0). Therefore the consumer will miss
three values, and the first assertion (count == 6) will
be broken. Note that the second assertion is not broken.

Adding these print statements requires thought and

work, but the idea may in fact be useful to cut down the
enormous amount of information contained in the error

traces created by SPIN.

5 Conclusion and Future Work

In this paper we have described the initial prototype of
a translator from a non-trivial subset of the general pur-

pose programming language JAVA to the model checking

language PROMELA. We have also applied the transla-

tor to 21 bugged variations of a small example program,

observing that tile model checker catches all tile bugs,
while executing the programs only catch the bugs safely
in half of the cases.

" _,Ve are currently applying the translator to a collec-

tion of reM programs developed within NASA, and the
outcome of these experiments will be published at a later

.3 Error- Traces - time. As an example, a collaboration with NASA's God-
• _ dard Space Center involves the verification of a satellite

When SPIN identifies an error in the translated PRO_,_ELA file down-link protocol written in JAVA. The translator
has in addition been applied to analyze a Chinese Chess

game server application written in JAVA. This lead to
the confirmation of a suspected deadlock and the iden-

tification of a smaller scenario leading to that deadlock.

This work is documented in [13].

Although the translator covers a non-trivial subset
of JAVA some important features are not covered. These

are: packages, overloading, method overriding, recursion,

strings, floating point numbers, static variables and meth-
ods, some thread operations like suspend and resume,

some control constructs, such as the continue state-

ment, and garbage collection. In addition, arrays are

not objects as they are in JAVA. We model arrays us-

ing PROMELA'S own arrays to obtain efficient verifica-
tion. The current implementation thus does not allow

arrays to be first class values and they cannot be nmlti-

dimensional. Finally, we do not translate the predefined

class library. Some of these features are hard to trans-

late, such as recursion, strings, floating point numbers,

and garbage collection. The rest are relatively straight

forward, although an efficient translation of dynamic ar-

rays as objects is not evident. We continue to extend the
translator to cover more of JAVA.

An essential question is whether the translation is

optimal. We still need to evaluate this question. There

may be other ways to translate into PROMELA and one

may consider making a by-pass, avoiding PROMELA, and

translating directly into the C interface to the SPIN model

checker. A major point of discussion has been how to

model object creation. One obvious solution would be

to use PROMELA'S proctypes to model classes, and then

spawn a process for each object creation. This would in-

deed help at the level of memory allocation and result in

a simpler translation than into arrays. However, it con-

flicts with the fact that several threads can access the

same object concurrently: a PROMELA process only has

one thread of control.

Recently JPF has been modified to translate object

synchronizations and exceptions more efficiently by in-

troducing two new special purpose arrays holding lock- 1.

ing and exception variables, thus keeping these variables

separate from user defined variables. This gave a 50% 2.

reduction in the amount of C-code generated by SPIN.

We have presented the simpler solution for readability

reasons. 3.
We see the current translator as a phase 1 proto-

type experiment (involving 9 man months until now)

that provides us with useful input to a phase 2, where

these questions will be raised. What is equally impor- 4.

tant is our planned efforts to build an abstraction work-

bench around JAVA, where programs can be reduced in

size before model checking is applied. Techniques such

as program slicing, abstract interpretation, and partial 5.

evaluation will have a great influence.

We believe that the kind of technology presented in

this paper, already as is, can be very useful for unit test-

ing where one focuses on a single or a few classes, just 6.

as has demonstrated with the example. This requires 7.

setting up an aggressive environment consisting of a col-

lection of threads which will "bombard" the unit with

accesses. The technology is probably ready for this al-

ready now, since there will typically not be a big need to

cut down the state space. Finally, we believe that per- 8.

haps the technology can be useful for students learning

to program in JAVA.

Concerning the specification language, our main ap-

proach has been not to extend the JAVA language but to
9.

express temporal properties as calls to methods defined

in a special temporal logic class (the Verify class), all of

whose methods are static (hence one does not need to in- 10.

stantiate the class to objects before calling the methods).

In addition to the assert method one can for example

imagine an always method, an eventually method, and

basically include all of SPIN's linear temporal logic op- 11.

erators as methods, having boolean return types in ad-

dition to boolean argument types, such that they can be

composed. Calls of such methods will then generate LTL

formulae to be verified, referring to the position where

they are called in the code.

Penix and Willem Visser for proof reading the manuscript.

We also thank the reviewers. We have used a Java parser

ported by Peter Sestoft (the Royal Veterinary and Agricul-

tural University in Denmark) to Moscow ML from a Standard

ML version written by Olivier Brunet and Gordon Wood-

hull in Alex Aiken's group (University of California, Berkeley,

USA).

Acknowledgements. We thank Gerard Holzmann for chang-

ing SPIN to support the translation of exceptions. We thank

the members of the Automated Software Engineering team

at NASA Ames Research Center for their comments; and in

particular Mike Lowry for supporting the project, and John

References

12.

13.

K. Arnold and J. Gosling. The Java Programming Lan-

guage. Addison Wesley, 1996.

R. Iosif C. Demartini and R. Sisto. Modeling and Vali-

dation of Java Multithreading Applications using SPIN.

In Proceedings of the 4th SPIN workshop, Paris, France,

November 1998.

T. Cattel. Modeling and Verification of sC++ Applica-

tions. In Proceedings of the Tools and Algorithms ,for the

Construction and Analysis o/Systems, Lisbon, Portugal,

LNCS 1384., April 1998.

J. C. Corbett. Constructing Compact Models of Concur-

rent Java Programs. In Proceedings o/ the ACM Sigsoft

Symposium on So/tware Testing and Analysis, Clearnva-

ter Beach, Florida., March 1998.

D. L. Delefs, K. R. M. Leino, G. Nelson, and J. B.

Saxe. Extended Static Checking. Technical Report 159,

Compaq Systems Research Center, Palo Alto, California,

USA, 1998.

J. Gosling, B. Joy, and G. Steele. The Java Language

Specification. Addison Wesley, 1996.

K. Havelund. Mechanical Verification of a Garbage Col-

lector. In Fourth International Workshop on Formal

Methods for Parallel Programming : Theory and Appli-

cations (FMPPTA '99), Lecture Notes in Computer Sci-

ence, April 1999. To appear.

K. Havelund, K. G. Larsen, and A. Skou. Formal Ver-

ification of an Audio/Video Power Controller using the
Real-Time Model Checker UPPAAL. In 5th Int. AMAST

Workshop on Real-Time and Probabilistic Systems, Lec-

ture Notes in Computer Science, May 1999. To appear.

K. Havelund, M. Lowry, and J. Penix. Formal Analysis

of a Space Craft Controller using SPIN. In Proceedings o/

the 4th SPIN workshop, Paris, France, November 1998.

K. Havelund and T. Pressburger. Translating Java to

SPIN, a step towards the JavaProver. Technical report,

NASA Ames Research center, Moffett Field, California,

USA, May 1997.

K. Havelund and N. Shankar. Experiments in Theorem

Proving and Model Checking for Protocol Verification.

In M-C. Gaudel and J. Woodcock, editors, FME'96: In-

dustrial Benefit and Advances in Formal Methods, vol-

ume 1051 of Lecture Notes in Computer Science, pages

662 681, 1996.

K. Havelund and N. Shankar. A Mechanized Refinement

Proof for a Garbage Collector. Submitted to the journal:

Formal Aspects of Computing, 1998.

K. Havelund and J. Skakkeb_ek. Practical Application

of Model Checking in Software Verification. Describes

an application of JPF to a game server. Submitted for

publication., February 1999.

14.K.Havelund,A.Skou,K.G.Larsen,andK.Lund.For-
malModelingandAnalysisofanAudio/VideoProtocol:
AnIndustrialCaseStudyUsingUPPAAL.In Proc. of

the 18th IEEE Real-Time Systems Symposium, pages 2-

13, Dec 1997. San Francisco, California, USA.

15. G. Holzmann. The Design and Validation of Computer

Protocols. Prentice Hall, 1991.

16. D. Lea. Concurrent Programming in Java. Addison Wes-

ley, 1997.

17. B. PelI, E. Gat, R. Keesing, N. Muscettola, and B. Smith.

Plan Execution for Autonomous Spacecrafts. In Pro-

ceedings of the 1997 International Joint Conference on

Artificial Intelligence, 1997.

