
Int J STTT (2001) 3: 107–111 / Digital Object Identifier (DOI) 10.1007/s100090100050

The opinion corner

Verification is experimentation!

Ed Brinksma

Chair of Formal Methods and Tools, Faculty of Computer Science, University of Twente, PO Box 217, 7500AE Enschede,
Netherlands; E-mail: brinksma@cs.utwente.nl, Internet: http://wwwhome.cs.utwente.nl/~brinksma

Published online: 15 May 2001 – Springer-Verlag 2001

Abstract. The formal verification of concurrent systems
is usually seen as an example par excellence of the ap-
plication of mathematical methods to computer science.
Although the practical application of such verification
methods will always be limited by the underlying forms
of combinatorial explosion, recent years have shown re-
markable progress in computer-aided formal verification.
This makes formal verification a practical proposition for
a growing class of real-life applications, and has put for-
mal methods on the agenda of industry, in particular in
the areas where correctness is critical in one sense or an-
other. Paradoxically, the results of this progress provide
evidence that successful applications of formal verifica-
tion have significant elements that do not fit the paradigm
of pure mathematical reasoning. In this essay we argue
that verification is part of an experimental paradigm in at
least two senses.We submit that this observation has con-
sequences for the ways in which we should research and
apply formal methods.

1 A little history

The roots of formal verification lie in the observation,
which broke ground in the 1960s and 1970s, that soft-
ware programs can be seen as formal , i.e., mathematical
objects. It led to extensive studies of formal semanti-
cal models for programming languages, and the devel-
opment of (academic) programming languages for which
nice formal models could be guaranteed to exist. This
activity generated a deeper understanding of the struc-
ture of computer programs and provided the foundations
for many of the mathematical tools and models that are
known as formal methods today.

This text is an adapted version of Brinksma [2]

In addition to the development of mathematical
models that would help to give a scientific foundation to
programming, this period was also marked by a strong
methodological interpretation of these achievements that
promoted the view of programming as an essentially
mathematical activity. If programs are mathematical ob-
jects and specifications of their intended functionality are
properly formalised, then their correctness can be demon-
strated by mathematical means. Much effort was directed
towards the development of programming calculi in which
the development of programs can be seen as a form of
equation solving.
The beauty and strength of this vision were so com-

pelling that they dominated the scientific research agenda
for programming for many years. The movement as such
acquired, perhaps inescapably, some ideological traits
too, in the sense that it was less forgiving of practical
programming as practised in industry, and the program
validation methods used there, most notably testing. The
cure for the diagnosed software crisis was thought to
be found in the education of a new generation of aca-
demically trained programmers that would introduce the
mathematical methods of programming into industry.
Although the mathematical school of programming

has thoroughly influenced the study of programming,
programming languages, specification, etc., it is now gen-
erally acknowledged that the mathematical theory of pro-
gramming cannot be applied as was originally envisaged.
Many arguments have been put forward to explain why
it did not or could not work (see e.g., [10]), including cir-
cumstantial technical, economical, sociological, and ed-
ucational reasons that we will not consider here. An in-
trinsic reason for failure that was initially overlooked is
the, retrospectively, almost obvious fact that in general
a correctness proof has a complexity proportional to that
of the program involved. This causes direct problems in
scaling up the method to deal with complex software sys-

108 E. Brinksma: Verification is experimentation!

tems, which was, of course, the ultimate goal. Proofs or
derivations of such systems would be very complicated
and therefore susceptible to errors themselves, directly
undermining the essential contribution of the method.
The law of conservation of misery has made sure that

there are no easy solutions to the problem. The term
formal methods became commonplace somewhere in the
1980s to indicate the assorted formal notations, theories,
and models that had been developed to help specify, im-
plement, and analyse software systems. As by then not
only sequential, but also concurrent and reactive sys-
tems could be mathematically described and analysed in
terms of elegant mathematical models, a second wave of
methodological optimism swept through academia and
parts of industry. Having at our disposal methods for the
formal description and manipulation of algorithms, con-
current interaction, and data, it was believed that the de-
sign and the development of a proof of correctness of com-
plex systems could be a shared activity, known as correct-
ness by design. Moreover, these integral broad-spectrum
formalisms would be supported by powerful software en-
vironments to support the design and verification with
the required precision, thus solving the problem of con-
trolling the precision of complicated (or perhaps better:
lengthy) formal manipulations. The failure of this sec-
ond formalist attack on the software crisis was again due
to many, diverse causes. Again there was one import-
ant intrinsic reason: the formal objects that corresponded
to descriptions of (parts of) the systems designs were so
large that they could no longer be manipulated effec-
tively, not even by software tools. This phenomenon be-
came known as the combinatorial explosion, or in the par-
ticular case of the explicit manipulation of system states
as the state-space explosion.

2 Computer-aided verification

During the past few years, formal methods, and in par-
ticular formal verification, are again drawing the atten-
tion of the research community and (parts of) industry.
This time it is not the result of a methodological move-
ment, but the result of technological advances and re-
search in the field of computer-aided verification. For the
first time it has proved possible to formally verify parts of
nontrivial systems with practical consequences. This suc-
cess in scaling up verification methods from toy examples
to small-size real-life systems is the first hard evidence
that the use of formal methods can, under circumstances,
be made consistent with the requirements of industrial
engineering.
Broadly speaking, computer-aided verification can be

categorised in two main streams: the theorem-proving ap-
proach, which uses tools to produce completely formal
proofs of correctness, and the model-checking approach,
which is basically a brute force approach to enumerate
and check all reachable states of the system under ver-

ification. Both approaches can only work on the basis
of a model of the system under verification. In theorem-
proving the model is a logical theory characterising the
(relevant) properties of the system. In model-checking
the model must be operational so that systems states
can be systematically produced, and usually takes the
form an abstract program describing some sort of transi-
tion system.
Most of the arguments that we put forward in this

essay apply to model-checking and theorem-proving ap-
proaches alike. Still, the reader may detect a certain bias
toward model-checking techniques in their presentation,
so that the general case for computer-aided verification
is only obtained mutatis mutandis. This is due to the
personal experience of the author, and also with the, at
least currently, greater application potential of model-
checking.
Some reasons for the growing success of computer-

aided verification are:

1. The technological improvement of the necessary com-
puting equipment. Because of the ever-increasing per-
formance of systems in terms of speed and available
memory (Moore’s law), computations that were far
beyond the possible ten years ago are a matter of rou-
tine today.

2. The development of means to curb the effects of the
combinatorial explosion. Abstraction techniques are
used to strip away information in the model that is
not relevant for the verification at hand, and lead to
a simplification of verification models. Modular and
compositional algorithms apply a divide-and-conquer
strategy to handle complexity by making formal ma-
nipulation local to well-defined parts of the model that
are significantly smaller. In model-checking substan-
tial progress has also been achieved by the use of clever
data types that allow for compactification, such as
BDDs and the use of hashing techniques.

3. The availability of serious tool environments. Much of
the work on such environments has needed a consider-
able time to come to fruition, and effective tools have
started becoming available now. The development of
good tools requires sustained efforts over many years
to develop stable architectures and profit from accu-
mulating improvements.

Computer-aided verification tends to have a rather
pragmatic approach.What can be achieved depends more
on the capacities and limitations of the tools that are be-
ing used, and less on methodological considerations. Be-
cause verification problems in their entirety are too large
to handle, the process is eclectic and concentrates on the
essentials. This means that only crucial parts and prop-
erties of the system and its requirements, respectively,
are formalised and verified. In practice, this means that
computer-aided verification process is subject to a pro-
cess of trial and error to determine how much of a system
can be verified with the available resources.

E. Brinksma: Verification is experimentation! 109

As we are still in the early days of computer-aided ver-
ification, the knowledge about the effective scope of ap-
plications of the different tools and techniques is still very
limited. Moreover, it appears to be difficult to generalise
successful applications as we are sometimes confronted
by chaotic behaviour, in the sense that small changes to
a given problem may have big effects on the effectiveness
of a particular verification technique.
Because of the substantial investments that must be

made for computer-aided verification for industrial appli-
cations, typical examples concern systems whose correct
functioning is critical in a certain sense. This is not re-
stricted to the so-called safety-critical systems, but ap-
plies more generally to systems for which the abstract
or real cost of their malfunctioning is too high. Highly
replicated systems (partly) implemented in hardware are
a case in point. Embedded systems in consumer electron-
ics and the automotive industry are good examples, as
well as the verification of hardware chip designs.
It is fair to say that computer-aided verification takes

place in a context of experimentation. Different tech-
niques are experimented with to increase the performance
of the tools. Models and specifications are experimented
with to see how much of a given problem can be veri-
fied. Typical examples of verification are found outside
the world of pure software in interaction with more tradi-
tional engineering disciplines for which experimentation
and measurement is an established method of quality
control. In addition to this general experimental atmo-
sphere that surrounds practical verification, there is an-
other and more essential link between experimentation
and verification.

3 Verification needs experimentation

Verification needs as its basis a formal model of the
system that must be verified, the so-called verification
model . As it plays a crucial role in the verification process,
it can be said that a verification is as good as its un-
derlying model. Obtaining valid verification models, i.e.,
models that faithfully represent the relevant properties of
the objects they represent, therefore is a cornerstone of
the verification process.
One of the strengths of the original paradigm of pro-

grams as mathematical objects is that a program text
is (through its formal semantics) its own formal defin-
ition. The question of the validity of the formal model
with respect to the reality of the physically executed pro-
gram can be dealt with as a correctness requirement for
the compiler (or interpreter) of the programming lan-
guage. This has the advantage that the problem can be
addressed and solved in generic terms, and the cost of pro-
ducing a correct compiler can be amortised over all the
programs that will be compiled.
As already indicated earlier, the situation for actual

computer-aided verifications can be radically different. If

a complete, formal definition of the system under verifi-
cation is available then it will usually be too big to serve
as an effective verification model. This means that addi-
tional efforts are required to obtain smaller models that
are valid for the verification task at hand.
A way to approach this question is to transform the

original model into a smaller one, and demonstrate the
validity of the result by proof or by construction. Indeed,
the use of proof checkers for this purpose, in combination
with model checkers for the verification proper, has been
suggested as an elegant way to combine the strength of
these two verification methods. Although this can be use-
ful approach for specific classes of systems, it is less likely
to be a generic solution to the problem, as it begs the
question. Any generally applicable method seriously risks
bringing us right back to the combinatorial explosion that
we want to avoid.
In practice, verification models are not formally de-

rived or proved, but constructed on the basis of a com-
bination of insight, heuristics, and sometimes formally
well-defined abstractions. This principal loss of a formal
link between the formal definition of a system and its ef-
fective verification model may be lamented, but it has
a positive side to it. The availability of complete formal
specifications of systems that we want to verify may help,
but is no longer an absolute requirement. This is im-
portant as for complex systems such specifications are as
a rule not available, and the cost of producing them is
often prohibitively expensive. Smaller, more abstract spe-
cifications that suffice for the verification of some crucial
correctness properties, however, could help to increase
confidence in the correctness of a system in a more realis-
tic price-performance ratio.
In addition, it should be realised that the relation be-

tween formal specifications of complex systems and their
realisations is more problematic than that between pro-
grams and their implementations. Complex systems gen-
erally cannot be produced by just using reliable com-
piler(s), and often need elaborate engineering involving
both hardware and software, requiring solutions that are
unique to the given system. This implies that if we want
to assess not only the correctness of a formal design, but
actually want to analyse properties of the resulting sys-
tem, its formal specification may not be the only relevant
source of information.
We thus find ourselves in a situation in which the

validity of many of our verification models cannot be
demonstrated by formal means. This means that if we
want to assess their validity, and we must if we take
our job seriously, we can only use experimental methods.
Moreover, this experimental validation is not just a phase
born out of temporary necessity, but it constitutes an es-
sential methodological ingredient for the verification of
real-life systems. As in physics, it is the tool to bridge
the orders of magnitude that lie between a complete de-
scription of a system and an effective theory of its proper-
ties (cf., an extremely large set of molecules vs a volume

110 E. Brinksma: Verification is experimentation!

of gas). It is worthwhile mentioning that in physics one
can also quantify the consequences of such abstractions
and show that the errors incurred are sufficiently small .
In this respect it is interesting to note that in perform-
ance analysis often great simplifications of the evaluation
models can be obtained without significant loss of preci-
sion. Such approximative abstractions are not feasible if
evaluation is restricted to evaluation in the binary system
of classical logic. Stochastic interpretations of behaviour
can perhaps provide a way forward in this respect: they
would allow abstracting away from behaviours that are
sufficiently unlikely.1

Because the experimental paradigm is foreign to many
who are active in the field of formal methods, its role
is seldom explicitly addressed, and if acknowledged, it
is usually delegated to the engineers of “real” systems
and the testing community. But the engineering of ver-
ification models is a task that requires intimate know-
ledge of the formal methods that are used, and therefore
should concern all who are interested in the application
of verification.
What is urgently needed is agreement on what consti-

tutes good verification practice. Although there is a sub-
stantial increase of the number of papers that report on
verification experiments, there is no generally acknow-
ledged format for the presentation of the results.2 It is
essentially up to the authors and reviewers of each indi-
vidual paper to decide what constitutes a scientifically
defensible account for the case(s) at hand. It is not un-
common that far-reaching conclusions are drawn on the
basis of very limited, or badly presented empirical data.
If we take our inspiration from the established experi-

mental sciences, we should follow a protocol that includes
the following ingredients:

– Problem statement : clearly defines the problem that is
addressed. It answers questions like:

– What system or design must be verified?
– What properties must be verified?
– What assumptions are made?

– Verification set-up: describes the ingredients of the
verification, their use, and relation accurately, so that
all will be repeatable by others. Related questions are:

– What verification model is used?
– How are the properties formalised?
– What tools and computing equipment are used?
(versions, relevant system parameters)

– What procedure was followed?

– Measurements: gives all the relevant data that were
obtained. These include:

– Verification results of the properties.
(verified/falsified/no result)

1 A related plea for a more stochastic view of computer science
was recently held by David Tennenhouse [9].
2 Limited guidance can sometimes be found in handbooks on sci-

entific writing, see e.g., [11].

– Performance characteristics.
(time/memory consumption)

– Observed irregularities.

– Error discussion: evaluates systematically all poten-
tial sources of errors that could have influenced the
measurements. It is especially this section that is cru-
cial for the interpretation of the results of a verifica-
tion experiment. In spite of this, most or all of it is
missing in many reports. Among its main ingredients
are:

– Quality of the verification model.
– Accuracy and reliability of the measurement data.
– Nature of possible errors.

– Conclusion: presents the final outcome of the veri-
fication. Generally, this cannot be a simple yes/no-
answer, but must be a qualitative and/or quantitative
interpretation of the measurements, i.e., observed ver-
ification results in the light of the error discussion.

Current verification practice is often opaque, not be-
cause it does not include activities to validate the verifi-
cation model, but because it does not make them explicit
and does not relate them via an error discussion to the
results. What complicates matters is that the debugging
of a verification model is often interleaved with the veri-
fication itself, when during verification unexpected prop-
erties are encountered that are not related to errors in
the original system, but to errors in the model. Encoun-
tered errors must therefore always be interpreted through
careful analysis to separate the two distinct methodologi-
cal processes: the validation of the verificationmodel, and
the verification of system properties using that model.
This can lead to a continuous improvement of the verifi-
cation model itself, and requires precise bookkeeping of
model versions and properties verified. The quality of this
process has decisive influence on the quality of the verifi-
cation procedure as a whole.
So far, we have looked at experimentation as a way to

improve the practical applicability of formal verification.
However, yet another angle exists that links verification
to empirical methods, viz., in the scientific evaluation of
formal methods.

4 Verification and the methodology of computer
science

From time to time the question concerning the nature
of computer science among the sciences is raised. Hart-
manis addressed this question in his 1993 Turing Award
Lecture, which led to a subsequent discussion published
in the ACM Computing Surveys [3, 5]. Hartmanis’ own
conclusion is not very precise: he qualified computer sci-
ence as a new species among the known sciences for which
“a haunting question remains about analogies with the
development of physics”. Even so, he reports on the coex-
istence of science and engineering aspects, and remarks:
“Somewhat facetiously, but with a grain of truth in it, we

E. Brinksma: Verification is experimentation! 111

can say that computer science is the engineering of math-
ematics (or mathematical processes)”. The authors in [3]
take various positions, some defending the experimental
science point of view, others emphasising the engineering
aspects, and yet others argue for both. The overall im-
pression is that (at least at that time) there is no general
agreement.
Interestingly enough, already in 1986 Robin Milner

gave an account of the experimental nature of a good
part of computer science in [7]. He distinguishes between
the hard core of computing theory, consisting of recursion
and complexity theory, dealing with the characterisation
and classification of what is computable, and mathemat-
ical theories “in the service of design”, i.e., theories that
help making and analysing computational artifacts. He
proposes that such theories must be evaluated experimen-
tally, by using them in prototype methodologies that are
tried out in practice.3 This position is nicely reminiscent
of the point of view taken by Herbert Simon in his Sci-
ences of the Artificial [8]. He argues that in general the
engineering of artifacts is based on an empirical science
of implementation and realisation methods. Experimen-
tal design is used to determine the scope of effectiveness
of the different methods: under which conditions and cir-
cumstances can they be applied successfully, and how do
they influence the quality of the resulting product?
In this context (computer-aided) verification can be

seen as experiments in the sense of Milner and Simon to
determine the effectiveness of formal methods. Of course,
there are many other experiments that one can think
of, dealing with qualities other than correctness. How-
ever, verification is a useful class of experiments because
it can be tool supported and seems to lend itself better
for purposes of comparison than, for example, entire sys-
tem designs.
The role of verification as experimentation with for-

mal methods suggests that we should also develop richer
evaluation criteria for such experiments than seem to be
in current use. Computer-aided verification is strongly fo-
cussed on the performance (time, memory usage) of the
software tools that are used. This is understandable from
the existing drive towards faster and better verification
tools. Nevertheless, it is very important to know to what
extent other aspects of verification are (not) supported

3 A similar point of view was elaborated by the author in [1]

in different formal frameworks, such as the relative ease
of validating a verification model, of obtaining a veri-
fication model, of selecting and formalising correctness
criteria, etc. These observations imply that it is import-
ant to repeat and compare verifications using different
formalisms and tools. The results of such repeated experi-
ments should be publishable. This should also hold for
failed attempts, provided that interesting lessons can be
distilled from such failures.
Publications like [6] suggest that computer science

compares badly with other branches of science, in the
sense that relatively few papers are published with ex-
perimentally validated results. This state of affairs em-
phasises the need for initiatives to rectify the situation,
such as the Electronic Tool Integration (ETI) platform
of this journal [4]. Every real opportunity to validate our
methods should be exploited, and we should strive for
a culture that is comparable to that in the other sciences,
viz., that in the long run there is no place for formal
methods that have not been validated by serious experi-
mentation.

References

1. Brinksma, E.: What is the method in formal methods? In:
Formal Description Techniques, IV, IFIP Transactions C-2.
North-Holland, 1992, pp. 33–50

2. Brinksma, E.: Verification is experimentation! In: CONCUR
2000 – Concurrency Theory. LNCS 1877. Berlin, Heidelberg,
New York: Springer-Verlag, 2000, pp. 17–24

3. Computing surveys symposium on computational complex-
ity and the nature of computer science. ACM Comput. Surv.
27(1): 5–61, 1995

4. Electronic Tool Integration platform (ETI).
http://www.eti-service.org/

5. Hartmanis, J.: Turing award lecture: on computational com-
plexity and the nature of computer science. ACM Comput.
Surv. 27(1): 7–16, 1995

6. Lukowicz, P., Heinz, E.A., Prechelt, L., Tichy, W.F.: Experi-
mental evaluation in computer science: a quantitative study. J.
Syst. Software 28(1): 9–18, 1995

7. Milner, R.: Is computing an experimental science? Technical
Report ECS-LFCS-86-1, Laboratory for the Foundations of
Computer Science, University of Edinburgh, UK, 1986

8. Simon, H.A.: Sciences of the Artificial. MIT, Boston, Mass.,
1981

9. Tennenhouse, D.: Proactive computing. Commun. ACM
43(5): 43–50, 2000

10. Turski, W.: Essay on software engineering at the turn of
the century. In: Fundamental Approaches to Software Engin-
eering. LNCS 1783. Berlin, Heidelberg, New York: Springer-
Verlag, 2000, pp. 1–20

11. Zobel, J.: Writing for computer science. Berlin, Heidelberg,
New York: Springer-Verlag, 1997

