
A Systematic Incrementalization Technique
and its Application to Hardware Design

Steven D. Johnson?, Yanhong A. Liu??, and Yuchen
Zhang

Indiana University Computer Science Department
sjohnson@cs.indiana.edu

Abstract. A transformation method based on incrementalization and
value caching, generalizes a broad family of loop refinement techniques.
This method and CACHET, an interactive tool supporting it, are pre-
sented. Though highly structured and automatable, better results are
obtained with intelligent interaction, which provides insight and proofs
involving term equality. Significant performance improvements are ob-
tained in many representative program classes, including iterative schemes
that characterize Today’s hardware specifications. Incrementalization is
illustrated by the derivation of a hardware-efficient nonrestoring square-
root algorithm.

Keywords and Phrases: Formal methods, hardware verification, de-
sign derivation, formal synthesis, transformational programming, floating
point operations.

1 Introduction

Incrementalization [3, 5, 4] is a generalization of program refinement techniques,
such as strength reduction, in which partial results are introduced to optimize
looping computations. CACHET [2, 6] is a prototype refinement tool developed
to explore incrementalization strategies. In this paper [1], we look at its ap-
plication to a representative problem in hardware specification. A nonrestoring
integer square root algorithm was previously used by O’Leary, Leeser, Hickey,
and Aagaard [7] to illustrate the use of a theorem prover in the step-wise refine-
ment of a hardware implementation. We applied CACHET to the same problem
in order to compare how the critical insights needed to justify an implemen-
tation are discovered and applied under deductive and derivational modes of
formal reasoning. In either case, the implementation proof depends on just a few
algebraic identities which must be provided by the (presumably human) external
tool user. One of the problems inherent to formalized reasoning is the often over-
whelming logical context in which relatively simple key facts must be applied,

? Supported, in part, by the National Science Foundation under grant MIP-9601358.
?? Supported, in part, by the National Science Foundation under grant CCR-9711253



which includes not only the complex formal proof and design objects, but also
the strategy being followed to achieve the verification goal. In 1993, Windley,
Leeser, and Aagard pointed out that numerous hardware verification case stud-
ies have been found to follow a common proof plan [8]. Incrementalization might
also be seen as a “super duper” derivation tactic, but it is one that is applicable
to a broad class of generally recursive specification patterns, of which hardware
is a special subclass.

2 Systematic Incrementalization

The incrementalization method is an interplay between two kinds of function
extension (Figure 1). F :W → V plays the role of the specification being trans-
formed; ⊕:Y ×W → W is some state mutator, a combination of elementary
operations applied to F ’s argument The incrementalization of F with respect to
⊕ is a function F ′ that computes F (w⊕y) given the value of F (w). The idea is
this: given a specification for F by which computing F (w⊕y) involves a recursive
call to F (w), we want to specify how F (w) is used in calculating the final result.
Caching extends a function to return auxiliary results. F :W → V is extended
to F :W → V k, so that F (w) = 〈F (w), v2, . . . , vk〉. What we are really after is

F
′
, the incrementalization of the caching extension of F , in which cached values

are exploited to optimize across recursive calls.

3 Application to sqrt [7]

Incrementalization applied to a singly tail-recursive function (i.e., while-loop) is
known as strength reduction. Take ⊕ to be the “body” of the loop, so that, unless
F terminates, incrementalizing F with respect to ⊕ is yields F ′(⊕(x), F (x)) =
F (⊕(⊕(x)). Thus, incrementalization is tantamount to loop unrolling, and caching
accumulates partial values for use across iterations.

⊕:Y ×W →W original incrementalized

original F :W → V
F ′:W × Y × V → V

F ′(w, y,F (w)) = F (w ⊕ y)

caching
F :W → V n

F (w) = v1where

〈v1, v2, . . .〉 = F (w)

F
′
:W × Y × V n → V n

F
′
(w, y,F (w)) = F (w ⊕ y)

Fig. 1. Components of incrementalization and identities relating cached, incremental-
ized, and cached-incrementalized variants of F .



We applied CACHET to the specification of sqrt used by O’Leary, et. al, to
obtain the same implementation. The source and target expression are shown
in statement form in Figure 2, left and right respectively. The sqrt algorithm is
expressed in the form F (n,m, i) = ⊕〈n,m, i〉 = 〈n,M(n,m, i), i− 1〉, where M
is the state mutator incrementalized in Figure 3. At five points in this CACHET
derivation, judgment was exercised that we would regard as requiring insight.
These judgments were of two forms, the application of an algebraic identity

(‘
!?
= ’) or the invocation of an invariant assertion (‘

!?
⇐⇒ ’). Facts (d) and

(e) are used in after incrementalization as the result is incorporated and the
surrounding algorithm is simplified.

(a) n− (m± u)2 !?
= n−m2 ∓ 2mu− u2

(b) w′ = (u′)2 =
(

1
2u
)2 !?

= 1
4w

(c) 2m′n′ = 2(m+ u)(1
2u)

!?
= 2

2mu+ 2
2u

2 = 1
2v + w

(d) i′ ≥ 0 ⇐⇒ i ≥ 1
!?
⇐⇒ u ≥ 2 ⇐⇒ u2 ≥ 4 ⇐⇒ w ≥ 4

(e) i′ = −1 ⇐⇒ i = 1
!?
⇐⇒ u = 1

n, i,m := input, (l− 2), 2l−1;
while i ≥ 0 do
p := n−m2;
if p > 0 then
m := m+ 2i

else if p < 0 then
m := m− 2i;

i := i− 1;
output := m

p, v,w := input, 0, 22(l−1);
while (w ≥ 1) do

if p > 0 then
p, v, w := p− v − w; v

2 + w, w4
else if p < 0 then
p, v, w := p+ v − w, v

2
− w, w

4

else
v,w := v

2 ,
w
4 ;

output := v

Fig. 2. Specification and implementation of nonrestoring sqrt

References

1. Steven D. Johnson, Yanhong A. Liu, and Yuchen Zhang. A systematic incremen-
talization technique and its application to hardware design. Computer Science
Department Technical Report 524, Indiana University, June 1999.

2. Yanhong A. Liu. CACHET: An interactive, incremental-attribution-based program
transformation system for deriving incremental programs. In Proceedings of the
10th Knowledge-Based Software Engineering Conference, pages 19–26, Boston, Mas-
sachusetts, November 1995. IEEE CS Press, Los Alamitos, Calif.

3. Yanhong A. Liu. Principled strength reduction. In Richard Bird and Lambert
Meertens, editors, Algorithmic Languages and Calculi, pages 357–381. Chapman &
Hall, London, U.K., 1997.



4. Yanhong A. Liu, Scott D. Stoller, and Tim Teitelbaum. Static caching for incre-
mental computation. ACM Trans. Program. Lang. and Syst., 20(2):1–40, March
1998.

5. Yanhong A. Liu and Tim Teitelbaum. Systematic derivation of incremental pro-
grams. Sci. Comput. Program., 24(1):1–39, February 1995.

6. Yanhong Annie Liu. Incremental Computation: A Semantics-Based Systematic
Transformational Approach. PhD thesis, Department of Computer Science, Cor-
nell University, Ithaca, New York, January 1996.

7. John O’Leary, Miriam Leeser, Jason Hickey, and Mark Aagaard. Non-restoring in-
teger square root: A case study in design by principled optimization. In Ramayya
Kumar and Thomas Kropf, editors, Proceedings of the 2nd International Conference
on Theorem Provers in Circuit Design: Theory, Practice, and Experience, volume
901 of Lecture Notes in Computer Science, pages 52–71, Bad Herrenalb (Black For-
est), Germany, September 1994. Springer-Verlag, Berlin.

8. Phillip Windley, Mark Aagard, and Miriam Leeser. Towards a super duper hardware
tactic. In Jeffery J. Joyce and Carl Seger, editors, Higher-Order Logic Theorem
Proving and its Applications, volume 780 of Lecture Notes in Computer Science.
Springer-Verlag, August 1993.

⊕

M(n,m, i)
�
=

let p = n−m2 in
if p > 0 then m+ 2i

else if p < 0 then m− 2i

else m

M(n,m, i)
�
=

let p = n−m2 in
if p > 0 then

let u = 2i in 〈m+ u, p, u, 2mu, u2〉
else if p < 0 then

let u = 2i in 〈m− u, p, u, 2mu, u2〉
else 〈m, 0, -, -, -〉

M
′
(m, p, u, v, w)

�
=

if p > 0 then
let p = p− v − w in
if p > 0 then
〈m+ u

2
, p, u

2
, v

2
+ w, w

4
〉

else if p < 0 then
〈m− u

2 , p,
u
2 ,

v
2 + w, w4 〉

else 〈m, 0, u
2
, v

2
+ w, w

4
〉

else if p < 0 then
let p = p+ v − w in
if p > 0 then
〈m+ u

2 , p, u,
v
2 + w, w4 〉

else if p < 0 then
〈m− u

2
, p, u, v

2
+ w, w

4
〉

else 〈m, 0, u2 ,
v
2 + w, w4 〉

else 〈m, 0, u
2 ,

v
2 + w, w4 〉

Fig. 3. Incrementalization of sqrt [7]


