
Int J Softw Tools Technol Transfer (2003) 4: 421–436 / Digital Object Identifier (DOI) 10.1007/s100090100068

The development of theHiPE system:
design and experience report

Erik Johansson1, Mikael Pettersson1, Konstantinos Sagonas1, Thomas Lindgren2

1Computing Science Department, Uppsala University, Sweden; E-mail: {happi,mikpe,kostis}@csd.uu.se
2Bluetail, Sweden; E-mail: thomasl@bluetail.com

Published online: 19 November 2002 –  Springer-Verlag 2002

Abstract. The concurrent functional programming lan-
guage Erlang has been designed to ease the development
of large-scale distributed soft real-time control appli-
cations. So far, it has been used quite successfully in
industry, both within Ericsson Telecom, where it was
designed and developed, and by other companies. This
“declarative language success-story” has taken place de-
spite the fact that Erlang implementations are slow
compared with implementations of other functional lan-
guages. Wanting to improve the performance aspects
of publicly available Erlang implementations, which are
based on emulators, we embarked on a project called
HiPE (High-Performance Erlang) whose aim has been
to develop an efficient just-in-time native code compiler
for Erlang (called the HiPE system). Since its start in
1996, the system has gone through various (re-)design
phases, partly due to implementation choices that did
not turn out to be as promising as they appeared on
paper, but mainly due to changes in Ericsson’s Er-
lang system upon which the HiPE system is built. In
this article, we describe how the HiPE system was de-
veloped, what it currently looks like, and its current
performance. We critically examine design decisions that
we took, and the main lessons learnt from implement-
ing them. Finally, we also report on our experiences
from trying to keep up with the concurrent develop-
ment of Ericsson’s base Erlang system. As such, this
article both documents the HiPE system and can serve
as possible guidance to anyone wishing to attempt a simi-
lar feat.

Keywords: Programming language implementation –
Concurrent programming – Functional programming –
Erlang – Virtual machines and compilation methods –
Hacking

Correspondence to: Erik Johansson

1 Introduction

Erlang is a strict, dynamically typed, functional pro-
gramming language with support for concurrency, com-
munication, distribution, fault-tolerance, on-the-fly code
reloading, automatic memory management, and multi-
ple platforms [2]. It has been designed with the aim of
easing the programming of large soft real-time control
systems which are commonly developed by the telecom-
munications industry. Judging from commercial applica-
tions written in Erlang, often consisting of upwards of half
a million lines of code, the language currently seems to
be quite successful in its domain. This success story has
taken place despite the fact that implementations of Er-
lang are based on virtual machine emulators and are thus
relatively slow, even compared with implementations of
other functional languages. In this respect, Erlang bears
a striking resemblance to another modern phenomenon,
Java, which also achieved its initial success without high-
performance implementations with faster compilers com-
ing along later.
In spite of Erlang’s success so far, the need for speed
is sometimes pressing in the competitive telecommuni-
cations market. Availability of fast implementations, al-
though by no means a necessary condition for a pro-
gramming language’s success, helps in maintaining inter-
est in the language, sustains its continued development,
and aids in the language’s adoption by new projects in
this industrial setting. Furthermore, developing a high-
performance compiler for an industrially relevant lan-
guage provides an excellent opportunity to transfer tech-
nology between academia and industry and evaluate the
effect of new optimization techniques on real-world appli-
cations rather than on toy programs.
Prompted by these reasons, we have embarked on an

ASTEC (Advanced Software Technology) project, partly
fundedbyEricssonDevelopment, the goal ofwhich is tode-



422 E. Johansson et al.: The development of the HiPE system: design and experience report

velop a high-performance implementation of Erlang. Our
approach to the efficient execution of Erlang programs
has been to develop a just-in-time native code compiler
that can be used as an add-on component to an otherwise
mostly unchanged Open Source Erlang implementation.
The resulting system, calledHiPE (High-PerformanceEr-
lang), allows its user to selectively compile single functions
orwholemodules into native code, thus combining the per-
formance characteristics of a native code compilerwith the
benefits of an emulator implementation.
The purpose of this article is to fully describe HiPE:

its design and development process since the beginning of
theproject (Sect. 3), its currentarchitecture andaspects of
its implementation thatmight be relevant or applicable to
other similar systems (Sect. 4), and its performance com-
pared with current implementations of Erlang and other
functional languages (Sect. 6). In addition to documenting
our approach, we use this opportunity to critically exam-
ine the design choiceswemade (Sect. 5).We hope that our
experience and the issues discussed are of interest to other
programming language implementors or of use to those
that want to engage themselves in similar projects.We be-
ginwith a brief review of Erlang’s characteristics.

2 Erlang: the language and its applications

As mentioned, Erlang1 is a dynamically typed, strict,
concurrent functional language. Erlang does have func-
tion closures, but typical Erlang programs are mostly
first-order. Erlang’s basic data types are atoms, numbers
(floats and arbitrary precision integers), process identi-
fiers, and references; compound data types are lists and
tuples. There is no destructive assignment of variables or
data, and the first occurrence of a variable is its bind-
ing instance. Function rule selection is done with pattern
matching. Erlang inherits some ideas from concurrent
constraint logic programming languages, such as the use
of flat guards in function clauses.
Processes in Erlang are extremely light-weight, their

number in typical applications is quite large, and their
memory requirements vary dynamically. Erlang’s concur-
rency primitives – spawn, “!” (send), and receive –
allow a process to spawn new processes and communi-
cate with other processes through asynchronous message
passing. Any data value can be sent as a message and
processes may be located on any machine. Each process
has a mailbox , essentially a message queue, where each
message sent to the process will arrive. Message selec-
tion from the mailbox occurs through pattern matching.
There is no shared memory between processes and dis-
tribution is almost invisible in Erlang. To support robust
systems, a process can register to receive a message if
another one terminates. Erlang provides mechanisms for
allowing a process to timeout while waiting for messages

1 Named after the Danish mathematician Agner Krarup Erlang
(1878–1929).

and a catch/throw-style exception mechanism for error
handling.
For programming in-the-large, Erlang comes with

a module system. An Erlang module defines a number
of functions. Only explicitly exported functions may be
called from other modules. Calls to functions in differ-
ent modules, called remote calls, are done by supplying
the name of the module of the called function. Tail call
optimization is a required feature of Erlang. As in other
functional languages, memory management in Erlang
is automatic through garbage collection. The real-time
concerns of the language call for bounded-time garbage
collection techniques; see [18, 30]. In practice, garbage
collection times are usually small as most processes are
short-lived or small in size.
Erlang is used in “five nines” high-availability (i.e.,

99.999% of the time available) systems, where downtime
is required to be less than 5 min per year. Such systems
cannot be taken down, upgraded, and restarted when
software patches and upgrades arrive, since that would
quickly exceed allowable downtime.
To perform system upgrading while allowing contin-

uous operation, an Erlang system needs to cater for the
ability to change the code of a module while the system
is running, so called hot-code loading. Processes that ex-
ecute old code can continue to run, but are expected to
eventually switch to the new version of the module by is-
suing a remote call (which will always invoke the most
recent version of that module). Once the old code is no
longer in use, the old module is unloaded.
The Erlang language was purposely designed to be

small, but it comes with libraries containing a large set of
built-in functions (known as BIFs). With the Open Tele-
com Platform (OTP) middleware [29], Erlang is further
extended with a library of standard solutions to common
requirements in telecommunication applications (real-
time databases, servers, state machines, process moni-
tors, load balancing), standard interfaces (CORBA), and
standard communication protocols (e.g., HTTP, FTP).
Erlang is currently used industrially both by Erics-

son Telecom and by other companies for the development
of high-availability servers and networking equipment.
Some example products built using Erlang/OTP are:
AXD/301, a scalable ATM switching system [4], ANx, an
ADSL delivery system [22], a switching hardware control
system, a next-generation call center, and a suite of scal-
able internet servers from Bluetail. Since 1994, the annual
Erlang User Conference is the principal forum for report-
ing work done in Erlang and provides a record of Erlang’s
evolving industrial use; additional information about Er-
lang applications can be obtained through the relevant
pages at www.erlang.org.

3 An account of HiPE’s development

In this section we will describe the history of HiPE, while
briefly addressing some implementation details and the



E. Johansson et al.: The development of the HiPE system: design and experience report 423

rationale behind some design decisions we took. We di-
vide the description into four parts, corresponding to the
four major revisions of the HiPE system:

1. A first attempt, written in C, gave some insight on
how to address the problem of efficiently implement-
ing Erlang and showed that considerable speedup
could be achieved using relatively simple methods.

2. A flexible and more easily extendible compiler de-
sign, mostly written in Erlang, made it possible to ex-
periment with different optimization techniques and
measure their impact on some “real-world” applica-
tions of Erlang.

3. An Open Source Erlang distribution from Ericsson
made it possible for HiPE to be publicly released, get
some users and input from the outside world.

4. A strong coupling of the HiPE compiler with Eric-
sson’s Erlang/OTP system is underway. The goal is to
have HiPE as a standard component in future releases
of Open Source Erlang.

3.1 JERICO: the first prototype

The starting point of the HiPE system was a Master’s
thesis project in the summer of 1996 [15]. The goal was
to develop an optimizing compiler, called JERICO, that
would substantially improve the performance of Erlang
programs.
One approach that was briefly considered was to use

the Java Virtual Machine (JVM [20]) as a back-end – this
was at the time when Java was just starting to become
a popular language. It was soon realized that the architec-
ture of the JVM is not well-suited for a dynamically typed
language such as Erlang. The JVM provides no support
for tagged data items, so for example integers have to be
wrapped, and it is awkward to get proper tail-recursion
which is crucial for Erlang programs. In addition, com-
piling to JVM implies losing control over the efficiency
of light-weight threads; a feature critical for the perform-
ance of typical Erlang applications; see also [12] which
compares the performance of Erlang processes and Java
threads. Consequently, the idea to compile to JVM was
quickly abandoned and instead we decided to aim for
a direct compilation to native code. The chosen architec-
ture was SPARC V8; according to Ericsson this was the
most common general purpose platform for Erlang appli-
cations at the time.
Since we wanted to develop a compiler that worked for

the whole Erlang language and not just a toy compiler for
a subset of Erlang, we decided to base our compiler on
the stable and working Erlang runtime system made by
Ericsson.
At this time there were two Erlang systems concur-

rently being developed at Ericsson:

JAM The older system with a stack-based abstract ma-
chine.

BEAM A relatively new system based on a register ab-
stract machine, influenced by the Warren Abstract
Machine (WAM) [31] used in many Prolog implemen-
tations. At that time, the BEAM system had an op-
tion to compile Erlang programs to native code via
C [13]; this option was not very robust and was later
removed.

Both systems used the same runtime system and used
similar data representations [11]. The BEAM system then
was quite complex and not really stable. In addition,
at that time, BEAM had not proven itself substantially
faster than JAM. The JAM system on the other hand was
quite stable and significantly simpler; it was byte-code in-
terpreted and had less than 256 instructions. We decided
that this would be a good starting point for our compiler:
we could translate the generated JAM byte-code into an
internal intermediate representation and then optimize it
before generating native code.
The source code for JAM version 4.3 (written in C)

was provided to us by Ericsson after we signed a non-
disclosure agreement. In order to get tight integration
between our compiler and the runtime system we chose to
implement our compiler entirely in C.

3.1.1 JERICO: implementation issues

Compiler. In the Ericsson implementations of Erlang,
the smallest unit of compilation is a module, but we de-
cided early on that the user of our system should be able
to choose to selectively compile a single – presumably
time-critical – function at a time to native code. This way,
users could combine the compact representation of em-
ulated byte-code with the efficiency of (usually larger)
native code. This feature in HiPE is potentially very im-
portant for large telecom applications, where typically
only a small portion of the code is time-critical while the
remaining code deals with error correction and mainte-
nance.
In order to help users decide which functions to com-

pile to native code, the HiPE system provides some sim-
ple profiling tools. One of these measures the number of
times an emulated function is called. Since recursion is
the only way to implement a loop in Erlang, this means
that simply counting the number of calls to functions will
quickly identify program hot-spots (i.e., program points
where most of the execution time is spent) which can then
be compiled to native code.
Based on this feature, it is easy to build a (just-in-

time) hot-spot compiler for Erlang. Indeed, in JERICO
one could set a trigger level on the number of calls to
emulated functions before these would automatically be
compiled to native code. Since the compiler was imple-
mented in C and integrated in the runtime environment,
this meant that execution of Erlang code would be tem-
porarily interrupted while compilation took place. We did
no thorough measurements on the performance impact of



424 E. Johansson et al.: The development of the HiPE system: design and experience report

this feature, but we often enabled it while using the inter-
active Erlang shell, and we did not notice any degradation
in system responsiveness.
The translation from JAM code to the compiler’s in-

termediate three-address code was done in a straightfor-
ward way and left some opportunities for optimization.
For example, since JAM was a stack machine there would
be a push each time a variable was referenced. This push
would be translated to a register copy which would of-
ten be unnecessary. In order to improve code quality,
the JERICO compiler performed constant propagation,
constant folding, unreachable code elimination, and dead
code removal [1, 21]. The JERICO compiler also imple-
mented a simple delay slot filler which only looked in the
basic block preceding the branch for suitable instructions.
Register allocation was based on a simple graph coloring
algorithm; spilling was not implemented. If the register
interference graph could not be colored, or a function’s
control flow graph was large and data flow analysis would
take too long, the function would remain emulated.

Calling conventions and stack frames. The JAM instruc-
tion set is simple and the instructions have no knowledge
of the current frame size. Several pointers are instead
used to keep track of local variables, arguments, and the
stack top. These pointers are kept in the VARS, ARGS,
and STOP JAM registers. When executing a function
call, only ARGS and VARS need to be saved since ARGS
always points to the same place as the caller’s STOP.
In order to provide descriptive error messages, the

JAM emulator also maintains a current-call register, CC,
which always points to the start of the current function’s
byte-codes. CC is set at entry to a function, and saved be-
fore recursive function calls. This leads to a JAM stack
frame with four words in addition to any local variables
and arguments; see Fig. 1. In these four words, the return
address points to the byte-code instruction to return to,
CC belongs to the caller, and VARS′ and ARGS′ are point-
ers to the caller’s local variables and arguments.
All the values on the stack are tagged, including the

return address. In JAM version 4.3.1, the tags were in
the four most significant bits of the word and the tag
for “FRAME” was four zeroes. As long as the system
allocated all code below the 228 boundary, each return ad-
dress would automatically be tagged as a FRAME.
In native code, the JERICO compiler passed the first

five arguments in real machine registers. Apart from local
variables, only the return address was saved on the stack.
Since the compiler knew the format of the stack frame,
the ARGS and VARS registers were not needed. Further-
more, the CC register was not needed either since the cur-
rent function could be identified via the program counter.
The format of a native stack frame is shown in Fig. 2.
The JERICO runtime system used the same memory

area for the native and the JAM stacks, stacking na-
tive frames and JAM frames (see Fig. 2 and 1) on top
of each other. Small “dummy” frames were placed be-

ARGS→
Argument 1

...
Argument N
return address

CC
VARS′ ↓
ARGS′

VARS→ Variable 1
...

STOP→ Variable N

Fig. 1. A JAM stack frame

Argument 6
...

Argument N
return address ↓
Caller Save 1

...
STOP→ Caller Save N

Fig. 2. A native stack frame

tween frames of different types to indicate a transition
between emulated and native code. Most bugs we encoun-
tered originated from the emulated/native-code integra-
tion and the rather hairy stack we ended up with. This
scheme was later abandoned; see also Sect. 3.2.

Backpatching. In order to facilitate hot-code loading and
recompilation in an interactive system we implemented
a scheme where call sites were patched when the target
of the call was updated. For each function, we kept a list
of all its callers, and another list of all call sites in the
function and their destinations. When a function was re-
compiled, all callers were updated (backpatched) to call
the new function, and references to the old function were
removed from all functions it called.

3.1.2 Performance of the JERICO compiler

The JERICO compiler performed quite well on small
benchmark programs. It was frequently attaining a fac-
tor of 10 speedup over JAM [15] and was slightly faster
than BEAM even when BEAM was generating native
code using gcc. On the other hand, JERICO had prob-
lems with scaling up to compile large systems (e.g., tens of
thousands of lines of code) and it was difficult to develop
and rapidly debug new optimizations in it.
By examining the emitted code, we also noticed the

importance of low-cost procedure calls and optimized



E. Johansson et al.: The development of the HiPE system: design and experience report 425

those by shrinking the stack frame size from four extra
words to one.
Another point confirmed by our measurements was

that, even in concurrent applications, most time is spent
running sequential code (“in between process communi-
cations”). The same measurements also indicated that
process communication would start being a bottleneck
for those applications, only when the system became 2–3
times faster. We therefore decided to concentrate on se-
quential optimizations.

3.2 The HiPE system before Open Source Erlang (OSE)

With the Master’s thesis finished and the JERICO com-
piler’s performance evaluated on small programs, the nat-
ural next step was to make the system more robust, add
more code optimizations to the compiler, and evaluate its
performance on industrial applications instead of small
benchmarks. It was soon realized that – especially in the
context of an academic project with limited manpower –
the optimizations we wanted to add would be much eas-
ier to develop in Erlang than in C. To get a more flexible
system that would allow us to easily add new optimiza-
tions we decided to rewrite the compiler from scratch in
Erlang. At the same time, HiPE was coined as the name
of the project (and the system).

3.2.1 HiPE: implementation issues

Since we were starting from scratch, we acquired the
then-latest Erlang system from Ericsson, version 4.5.3.
(This was still before Erlang became open source.) That
Erlang system could be configured either as a JAM- or
a BEAM-based system at installation time. The BEAM
implementation had matured at this point, with a bet-
ter compiler than JAM2, but it was a moving target and
had still not proven itself much faster than JAM. Further-
more, we had shown that our straightforward compilation
to native code was faster than BEAM. Since basing our
compiler on JAM byte-codes was easier (fewer instruc-
tions to handle), we chose to stay with the JAM.

Runtime system. In order to minimize the number of
bugs in this first version of the HiPE system we decided
to put some effort into making the interface between em-
ulated and native code as simple and clean as possible.
Our performance measurements had shown that reduc-
ing the mandatory words of stack frames from four to
one (cf., Fig. 1 and 2) gave a performance improvement at
least as big as the impact of dataflow optimizations in the
JERICO compiler [19] so maintaining the different types
of frames was justified, but on the other hand dealing with
them in the same memory area was error-prone. In order

2 Although technically compilers, they still generate virtual ma-
chine code for each system’s emulator.

to avoid these problems, we decided to separate the na-
tive code stack from the emulated code stack.3 This way
we could have different stack frame formats for emulated
and native code, but on either stack we would only have to
deal with one type of stack frames. With separate stacks,
special effort had to be put into maintaining tail-call opti-
mization as required by Erlang; see Sect. 4.4. In JERICO,
the garbage collector had to keep a state variable indi-
cating the mode (emulated or native) of the stack frame
being scanned, and for each frame it had to check if the
frame marked a switch to the other mode. With separate
stacks, the garbage collector can scan each stack quickly
and easily, knowing it will find only one type of frame on
each stack. One problem with this scheme is that the ex-
ception handling mechanism was implemented by a set of
catch frames linked together on the stack; this meant that
there are links (pointers) between the two stacks. This
causes a slight complication when a stack needs to be re-
located (in order to expand or shrink it), since all catch
frame links on the other stack must be updated. (We will
discuss the integration of emulated and native code fur-
ther when we describe the current system in Sect. 4.)

Compiler. Rewriting the HiPE compiler in Erlang was
not the only step in making it extendible. Instead of the
single intermediate format that the JERICO compiler
used, several intermediate representation levels were in-
troduced; these are described in detail in Sect. 4.1. In add-
ition to the optimizations mentioned in Sect. 3.1.1, the
HiPE compiler optimized constant data structures into
data references and implemented spilling. Using Erlang
and several intermediate formats allowed us to experi-
ment relatively easily and incorporate many compiler op-
timizations.
On the other hand, while implementing optimization

algorithms in Erlang, we experienced performance prob-
lems in the HiPE compiler itself. The compiler frequently
updated its internal data structures; however, since it was
written in Erlang, these “updates” were implemented by
creating new versions of the data structures. This spurred
us to implement fast declarative arrays and hash tables.
These data structures behaved as ordinary immutable
Erlang values, but used destructive updates internally,
which gave considerable performance benefits.

3.2.2 Instrumentation of HiPE

HiPE’s runtime system is enhanced with performance in-
strumentation features that can be selectively included or
excluded at the system’s installation. These instrumenta-
tion features come in two forms:

1. Software counters : These counters keep track of how
often various operations of interest are performed. For
example, counters keep track of the number of times

3 Erlang code does not run on the runtime system’s C stack,
except when calling primitive BIFs.



426 E. Johansson et al.: The development of the HiPE system: design and experience report

each Erlang function is called, either locally, remotely,
or through a meta-call (apply). They can also count
calls to built-in functions, how many times each JAM
instruction is executed, and howmany times control is
passed between emulated and native code.

2. Performance instrumentation counters (PICs): These
are based on the Sun UltraSPARC’s performance in-
strumentation facilities [28]. PICs are made accessible
to the user through a built-in function, and they are
typically used to measure how much time is spent in
a region of code, and to give hardware-specific infor-
mation, for example the amount of time lost due to
stalls and cache misses. The reason for a stall can
also be determined: data cache miss, instruction cache
miss, external cache miss, or a branch misprediction.
Currently, HiPE uses PICs to measure time spent in
garbage collection, each built-in-function, native code,
and each time-slice. The instrumentation counts both
elapsed cycles and issued instructions, making it pos-
sible to determine the CPI (cycles per instruction)
ratio.

For more details on the instrumentation, the reader is re-
ferred to [16].

3.2.3 Benchmarking and performance

By 1998, HiPE was slowly becoming a stable system and
it was time to measure its performance and the effect
of various compiler optimizations on large industrial Er-
lang applications. We initially attempted to obtain the
code for Mobility Server, an Ericsson product for track-
ing users moving through an enterprise and routing calls
to the appropriate point. This did not enjoy much success
probably due to lack of direct contact between the HiPE
and the Mobility Server development teams.
Luckily, two other Ericsson projects were using Er-

lang: AXD/301 [4], a scalable ATM switch, and ANx [22],
an Asymmetric Digital Subscriber Line (ADSL) system.
Both were medium-to-large projects with 100–200 peo-
ple involved, and their software base consisted of large
amounts of Erlang code (i.e., several hundreds of thou-
sands of lines). Furthermore, the developers of AXD/301
were benchmarking conscious – mainly due to the com-
petitiveness of the ATM switch market – and willing to
provide “real” data to use as benchmarks for HiPE’s per-
formance evaluation and spend some time explaining how
to run these programs. One of the main problems with
benchmarking industrial Erlang applications is that they
are often connected to a specific hardware and software
platform, which is frequently proprietary – most prob-
ably the situation is similar for most embedded control
software. In practice, this means that benchmarking has
to be conducted on-site, with all the problems that this
entails. The AXD/301 benchmark, SCCT, could however
be run on a stand-alone workstation. SCCT was a mere
50,000 lines of code, a fifth of the AXD/301 software at

that time, but did contain its time-critical portion. Due to
our limited resources, we shelved our plans to work with
ANx, and began to analyze the AXD/301 code.
Around three months of debugging and extending

HiPEwere required to make SCCT run successfully – even
making SCCT run was in fact non-trivial, despite it being
platform independent; for example, the AXD/301 project
used an internal version of Erlang not compatible with
ours. Our performance measurements are summarized
in [16, 17]. Basically, we found that the AXD/301 system
runs a huge inner loop, spanning hundreds of procedures,
none of which stands out in the profile. Because of this,
rewriting SCCT in some lower-level language (e.g., in C)
is not an attractive option for improving AXD’s perform-
ance. On the other hand, due to the size of the program,
we found that there is little reuse in the I-cache, and that
the system frequently stalls waiting for instructions. Our
second finding was that SCCT spends much time inside
built in operations manipulating byte arrays and the in-
ternal database. Finally, considerable time is spent in the
OS kernel. For these reasons, the performance speedup
from compiling SCCT to native rather than to emulated
code, although noticeable, is considerably lower than that
obtained for small benchmark programs; see also Table 2
in Sect. 6.2. Still this speedup probably justifies the in-
creased code size and compilation time.

3.3 Open source HiPE

In December 1998, Ericsson released their current Er-
lang/OTP system as Open Source Erlang (OSE), which
opened the possibility of also distributing the HiPE sys-
tem as Open Source.
Unfortunately, contacts between the two Erlang de-

velopment groups (HiPE’s and Ericsson’s) had been in-
frequent and often indirect, which meant that HiPE and
Ericsson’s Erlang system had evolved independently for
about 2 years (since Erlang 4.5.3). In short, HiPE was
based on an old and obsolete system and had to be ported
to OSE before we could release it.
The task of porting HiPE to OSE turned out to be

significantly harder than we anticipated (or hoped!). For
example, Ericsson’s Erlang system had switched to a dif-
ferent tagging scheme, using the low bits of the word
rather than the high ones. The syntactic changes to the
Erlang source code since 4.5.3 were massive; our only op-
tion was to settle for a mostly manual, and thus extremely
slow and painful, “diff & merge” process.
When porting HiPE to the second OSE release, JAM

47.4.1, we were confronted with more surprises! The Er-
icsson system now featured a generational garbage col-
lector [18] which, besides needing modifications for the
native code stack, was incompatible with our compil-
er’s use of imperative data structures (see Sect. 3.2.1).
Generational collectors place objects in separate mem-
ory areas depending on their age, and they concentrate



E. Johansson et al.: The development of the HiPE system: design and experience report 427

their efforts to reclaiming memory among the younger
objects since they tend to be short-lived. Updates can
cause old objects to contain references to young ob-
jects. These references need special treatment in most
generational collectors: additional data structures are
needed to record them, and code must be generated to
maintain the data structures [18](Ch. 7.5). Our prob-
lem was that this support did not exist in the run-
time system, since the base Erlang system did not
need it. At the time we did not have time to imple-
ment this support ourselves, so we reverted to using
purely functional implementations of the compiler’s data
structures, which slowed down the compilation times
considerably.
The HiPE compiler optimises constant data struc-

tures into references to statically-allocated literals. This
too was incompatible with the new generational garbage
collector, and we had to change it to explicitly not move
objects residing in the constant data area. The problem is
that an Erlang process’ youngest generation is scattered
over several distinct memory areas, while its older gener-
ation is a single memory area. (It is usually the other way
around.) This means that the collector cannot easily test
if a pointer refers to the young generation. Instead, it tests
if the pointer refers to the older generation, and if not, it
assumes that it must point into the young generation.
The BIF calling conventions had changed subtly, and

extensions to HiPE’s low-level SPARC assembly support
code were needed to deal with this.
We also had to track down occasional (and mostly

irreproducible) memory corruption bugs in 47.4.1. The
tag scheme limits the address range of Erlang values to
[0, 228−1]; consequently, the runtime system has to check
that memory blocks allocated for Erlang values actually
reside in this “safe” address range. Unfortunately, one al-
location site in the runtime system failed to perform this
check. When memory usage was high, an unsafe (above
228) address could be returned. Converting this address
to a tagged pointer would lose significant bits, causing
later accesses to malfunction as the pointer untagging op-
eration would produce a different address.
On the positive side, the porting effort gave us the op-

portunity to review and revise some design decisions that
in retrospect were not entirely satisfactory. In particular,
we re-implemented the mode-switch interface to use new
JAM instructions instead of explicit tests (cf., Sect. 4.2),
and tidied up the mode-switch stack frame management
(cf., Sect. 4.4). In addition, we rewrote HiPE’s code server
and dynamic linker in C. In March 2000, HiPE ver-
sion 0.92 was finally released as Open Source based on
OSE version 47.4.1. 4 The released system consisted of
about 30,000 lines of Erlang code and 3,000 lines of C and
assembly code, added to an otherwise mostly unchanged
JAM system. Its architecture is described in detail in
Sect. 4.

4 HiPE can be obtained at www.csd.uu.se/projects/hipe.

3.4 Current and future work: HiPE in OSE

HiPE 0.92 has significantly better performance than Eric-
sson’s Open Source Erlang 47.4.1 upon which it is based;
Sect. 6.2 presents detailed performance data that sup-
port this claim. One drawback, however, of HiPE 0.92 is
that it is based on the JAM emulator. Meanwhile, the
BEAM-based system has been improved, and is now re-
liable and delivers superior performance compared to the
JAM. Consequently, Ericsson discontinued the JAM in
November 1999. Once again, HiPE became a separate
branch in Erlang’s development.
Acknowledging this problem, the development teams of
HiPE and Erlang/OTP (at Uppsala University and Er-
icsson, respectively) have since begun tighter cooper-
ation through common system design meetings and fre-
quent exchange of code snapshots. As a first concrete
result of this cooperation, some technology transfer from
academia to industry has taken place: a data representa-
tion that removes the address space limitation in OSE has
been incorporated in Ericsson’s standard Erlang/OTP
system [23]. However, the more ambitious common goal
is to include HiPE as a standard component in future re-
leases of Open Source Erlang. To this end, the HiPE com-
piler’s front-end (see Sect. 4.1) has been replaced with
one starting from BEAM bytecodes (another front-end
based on Core Erlang [7]5 is underway). The Erlang/OTP
compiler and object-file loader have also been modified
to allow users to easily generate and load native code via
the standard compiler and loader interfaces. At the time
of making the final touches to this article, May 2001, the
integration of the two systems is almost complete and
the release of the common system is scheduled for Octo-
ber 2001. We are currently concentrating our efforts on a
HiPE back-end for the x86 architecture.

4 HiPE architecture

The HiPE system consists of a compiler from virtual ma-
chine (either JAM or BEAM) code to UltraSPARC ma-
chine code, and a runtime system which has been aug-
mented to also support native machine code. This section
describes the design and implementation of these compo-
nents. The architecture of the HiPE system is shown in
Fig. 3.

4.1 The HiPE compiler

The HiPE compiler is implemented as a set of Erlang
modules. To compile a function, the HiPE compiler is
called from Erlang with the function’s descriptor.6 The

5 See also http://www.csd.uu.se/projects/hipe/corerl/.
6 In Erlang, a function is described by a triple {module name,
function name, function arity}. Erlang allows different functions to
have the same module and function names, as long as their arities
differ.



428 E. Johansson et al.: The development of the HiPE system: design and experience report

Fig. 3. Intermediate representations in HiPE

compiler retrieves the function’s bytecodes either from
a bytecode file or from memory, translates, and opti-
mises the code via a series of intermediate representa-
tions, and finally produces machine code. The machine
code is passed on to the HiPE linker, which stores the ma-
chine code in memory and integrates it into the running
system. Future calls to the compiled function will now in-
voke the machine-code version. Entire modules can also
be compiled, and generatedmachine codemay be saved in
files for faster loading in future sessions. The HiPE com-
piler is further described in [17, 19].

4.1.1 Intermediate representations

All of the compiler’s intermediate representations (IRs)
are based on control flow graphs (CFGs), where nodes
are basic blocks and arcs represent transfers of control.
In contrast to ordinary CFGs, the HiPE CFGs can have
multiple entry points. This is used to handle exceptions:
a procedure has one failure entry point per catch in add-
ition to the normal call entry point. If a callee throws
an exception caught by the current function, control will
enter the function by one of the failure entry points.
The intermediate representations used by the HiPE com-
piler are:

Icode The Icode IR assumes an infinite number of regis-
ters and an implicit stack. There are few primitive op-
erators: operations such as arithmetic or constructing
data are performed by function calls. Function calls
may take any number of parameters, and registers are
preserved around calls. Bookkeeping operations, such
as heap overflow tests, time-slice tests, and context
switching are implicit.
The simplicity and small size of Icode means it is suit-
able for initial simplifications, type analysis and type
optimisation, and inline expansion.

RTL The register transfer language RTL is a machine-
independent IR similar to three-address code [1] in-

tended to capture conventional compiler optimisa-
tions. RTL instructions are similar to the MIPS in-
struction set.
There are tagged and untagged registers. A tagged
register holds a proper Erlang value, while an un-
tagged register may hold an address, a raw integer, or
some other value. Untagged registers may not be live
across function calls (including calls to the garbage
collector), since that would add complexity and ineffi-
ciency to the GC. The compiler enforces these rules.

SPARC The final IR is an abstract SPARC assembly lan-
guage. It adds some symbolic operations (e.g., load-
ing an atom or an address) which are resolved by the
linker.

4.1.2 Translation steps

Virtual Machine Code to Icode Each Erlang function is
disassembled from bytecode into symbolic virtual ma-
chine code and then translated to Icode. In the case of
the JAM, which is a pure stack virtual machine while
Icode is register-oriented, the translation uses a vir-
tual stack to assign registers to stack slots. Common
operations, such as fetching an element from a tuple
or pattern-matching, are inline-expanded into fetches
and tests. Some obviously poor sequences of virtual
machine code are peephole-optimised into more effi-
cient Icode sequences than the concatenation of their
individual translations. Message receive operations
are translated into loops in Icode.

Icode to RTL In the translation from Icode to RTL,
a large number of operations (e.g., arithmetic, data
construction, tests) are inline-expanded. Data struc-
ture operations are turned into loads and stores. Data
tagging and untagging operations [11] are made ex-
plicit, to enable optimisations such as constant propa-
gation and folding to be applied to them. Exception
handlers are expanded into real code.
After optimisation, the RTL IR is rewritten to include
stack handling explicitly in the code. At a function
call, live variables (tagged registers) are pushed onto
the stack; after the call, only variables used before the
next call are popped from the stack.

RTL to SPARC Translating RTL to the SPARC IR is
straightforward. Some expansion does occur. For in-
stance, the RTL compare-and-jump instruction is im-
plemented by two SPARC instructions (a compare fol-
lowed by a conditional branch).
A standard graph-coloring register allocator [5] is ap-
plied to map RTL registers onto the available SPARC
registers. If spilling occurs, a static data area is al-
located to the code block for holding spilled tempo-
raries. Register allocation is applied separately to each
extended basic block (EBB, a maximal tree in the
CFG ending with a control-flow join, return, or func-
tion call). Since the runtime system simulates concur-



E. Johansson et al.: The development of the HiPE system: design and experience report 429

rency by scheduling processes at (some) EBB bound-
aries, and since a function call site ends the EBB,
no EBB can have multiple simultaneous activations.
Therefore, spilling to a static data area is safe.

The final code is then either stored in a file, or assem-
bled to binary machine code and linked into the run-
time system.

4.1.3 Optimisations

HiPE performs a number of common compiler optimisa-
tions. The following are applied to the Icode and RTL
IRs:

– Unreachable code elimination. Basic blocks which
cannot be reached are removed.
– Constant propagation and folding. Constants are
propagated, and operators with constant operands are
evaluated where it is safe to do so.
– Copy propagation. Eliminate copies x := y by substi-
tuting y for x when possible. If x becomes unused as
a result, the copy operation is deleted.

Most of the optimisations work on extended basic blocks
rather than by fixpoint iteration, in order to save com-
pilation time (an EBB can be analysed and optimised in
a single pass).
At the Icode to RTL translation step, heap overflow tests
are expanded. Initially, each data allocation site performs
its own heap overflow test. To reduce the number of tests
needed at runtime, the tests are propagated backwards in
the CFG, and adjacent tests are merged (e.g., instead of
two separate tests for i and j bytes respectively, test once
for i+ j bytes).
After translation to SPARC and register allocation,
the compiler performs instruction scheduling in order
to move useful work into the delay slots of branch
instructions.

4.2 The HiPE linker

As described before, Erlang requires the ability to up-
grade code at runtime, without affecting processes cur-
rently executing the old version of that code.
The underlying Erlang runtime system maintains

a global table of all loaded modules. Each module de-
scriptor contains a name, a list of exported functions,
and the locations of its current and previous code seg-
ments. The exported functions always refer to the current
code segment. At a remote function call, of the form
module:function(parameters. . .), the JAM emulator
first performs a lookup based on the module and function
name (in the BEAM emulator, this lookup is optimized).
If the function is found, the emulator starts executing its
bytecodes; otherwise, an error handler is invoked.
In native code, each function call is implemented as

a machine-level call to an absolute address. When the

caller’s code is being linked, the linker initialises the call
to directly invoke the callee. If the callee has not yet been
loaded, the linker will instead direct the call to a stub
which performs the appropriate error handling. If the
callee exists, but only as emulated bytecode, the linker
directs the call to a stub which in turn will invoke the em-
ulator.
In order to handle hot-code loading and dynamic com-

pilation at runtime, the linker also maintains information
about all call sites in native code. This information is used
for dynamic code patching, as follows:

– When a module is updated with a new version of the
emulated code, all remote function calls from native
code to that module are located. These call sites are
then patched to call the new emulated code, via new
native-to-emulated code stubs.
– When an emulated function is compiled to native
code, each native code call site which refers to this
function is patched to call the new native code. The
first instruction in the bytecode is also replaced by
a new instruction which will cause the native code
version to be invoked. Finally, the native-to-emulated
stub used to invoke it from native code is deallocated.
– When a module is unloaded and its memory is freed,
all native code call sites referring to this module are
patched to instead invoke an error handling stub. All
native code call sites within this now non-existent
module are also removed from the linker’s data struc-
tures, to prevent future attempts to update them.

Figure 4 illustrates the actions of the HiPE linker. Ini-
tially, the function f exists only as emulated code, and the
native code function g calls it via a trap-to-emulated stub;
see Fig. 4(a). After compiling f to native code, the call
site in g is backpatched to invoke f’s native code, and the
first instruction in f’s original emulated code is replaced
with a trap-to-native emulator instruction; see Fig. 4(b).
Fortunately, even the smallest possible JAM or BEAM
bytecode function is larger than the trap-to-native emula-
tor instruction.
Both the standard Erlang system and HiPE support

load-on-demand of modules. When invoked, the error
handler for undefined function calls will attempt to load
the bytecodes for that module from the file system. If this
is successful, the call continues as normal. As a side-effect
of loading the module, the HiPE linker will patch native
code call sites as described above.

4.3 Native code calling conventions

In the HiPE runtime system, an Erlang process can exe-
cute both emulated code and native SPARC code. Obvi-
ously, native and emulated code use the same data rep-
resentation. However, the emulator’s calling conventions
are inappropriate for native code. For instance, JAM
passes all parameters on the stack and uses large call
frames containing redundant information, as discussed



430 E. Johansson et al.: The development of the HiPE system: design and experience report

(a) Before compiling f to native code (b) After compiling f to native code

Fig. 4. Code backpatching done by HiPE linker

in Sect. 3.1.1. Instead, native code passes the return ad-
dress and the first five parameters in registers, remaining
parameters (if any) on the stack, and shrinks the fixed
portion of stack frames to a single word for preserving the
previous return address, as shown in Fig. 2.
HiPE uses two stacks for each process, one for em-

ulated code (the estack) and one for native code (the
nstack). As described in Sect. 3.2, this is done mainly to
simplify the garbage collector, since each stack will only
contain frames of a single type. For instance, JAM frames
must be scanned in a particular order since some fields are
untagged.
Currently, HiPE does not use the SPARC’s regis-

ter windows; registers are instead saved and restored as
needed around function calls. One reason for this is that
the windows have fixed size: each adds exactly 16 new reg-
isters (24 are visible but 8 are shared with an adjacent
window). Many functions do not need all these registers,
which means that a number of registers in the register file
would contain unpredictable bit-patterns. This, in turn,
would make exact garbage collection impossible since our
compiler does not yet emit stack-frame layout tables.

4.4 Mode-switching

In HiPE, amode-switch occurs whenever there is a trans-
fer of control from native code to emulated code, or vice-
versa. We made the design decision that the mere pres-
ence of multiple execution modes should not impose any
runtime overheads, as long as no mode-switches occur.
This design requirement calls for great care when imple-
menting mode-switches, not only for performance, but
also for correctness.

4.4.1 Where do switches occur?

The first question which must be answered is: where do
mode-switches occur? Since HiPE compiles individual

functions to native code, a mode-switch must occur when-
ever there is a flow of control from one function to an-
other, and the two functions are in different modes. Thus,
mode-switches occur at call and return sites. Erlang’s
exception mechanism also introduces mode-switches,
viz., when an exception is thrown from code executing
in one mode, and the most recent handler is in a differ-
ent mode. We will refer to these cases as call, return, and
throw events, respectively.

4.4.2 When do switches occur?

The second question which must be answered is: how does
the system discover that a particular instance of a call,
return, or throw event must perform a mode-switch?

Call events. HiPE uses a pseudo-static approach in
which calls always use the mode of the caller. As de-
scribed in Sect. 4.2, if a native-code caller refers to an
emulated-mode callee, then the linker redirects the call
instruction to instead invoke a native-code stub, which in
turn causes a switch to emulated mode. If an emulated
function is compiled to native code, then the start of the
original bytecodes is overwritten with a special emulator
instruction which causes a switch to native mode. (The
asymmetry between these cases is due to the fact that the
HiPE linker only has knowledge about call sites in native
code.)

Return events. Whenever a recursive function call causes
a mode-switch, the return sequence must be augmented
to perform the inverse mode-switch.
HiPE uses a same-mode convention for returns. When

a call causes a mode switch, a new continuation (stack
frame) is created in the mode of the callee. The return
address in this continuation points to code which causes
a switch back to the caller’s mode. For returns from native
to emulated code, the return address points to machine
code in the runtime system. For returns from emulated to



E. Johansson et al.: The development of the HiPE system: design and experience report 431

native code, the return address points to a special emula-
tor instruction. We made this choice in HiPE because it
causes no overhead except during mode-switches, and it
minimised the amount of changes we had to make to the
existing emulators.

Throw events. HiPE deals with exception throws in the
same way as it deals with function returns: a same-
mode convention augmented with mode-switching stack
frames. When a call causes a mode-switch, a new excep-
tion catch frame is created in the mode of the callee.
The handler address in this catch frame points to code
which causes switches back to the caller’s mode, and then
re-throws the exception. Thus, when a call causes a mode-
switch, two frames are pushed: first a catch frame, then
a return frame. The code at the return address in the re-
turn frame knows that it also has to remove the catch
frame beneath it before switching mode.
In addition to the call, return, and throw events de-

scribed above, HiPE may also need to perform mode-
switches when a process is suspended or resumed.
The scheduler in the Erlang runtime system has no

knowledge about the current mode of a process. It as-
sumes, implicitly, that each process is executed by the
emulator. Therefore, when a process is created or re-
sumed, the scheduler simply passes the process’ control
block (PCB) to the emulator for execution.
When a process which executes in native code is sus-

pended in HiPE, we set the resume address in the PCB
to point to a special emulator instruction. When the
scheduler resumes the process, the emulator executes this
instruction, which in turn resumes the suspended na-
tive code.
Figure 5 illustrates the use of mode-switch frames and

return addresses. There are three functions: f and h are
in emulated JAM code, g is in native code. First f calls
g, via the trap-to-native instruction planted in g’s original
emulated code by the linker. At the call, f pushes an
emulated-mode return frame (2) on top of its own frame
(1). The mode-switch transfers control to g, and sets the
native-code return address register to point to the native-
to-emulated mode-switch routine. Then g calls h, via h’s
trap-to-emulated native-code stub. At the call, g saves its
live registers, including its return address, in frame (3).
The mode-switch pushes a mode-switch return frame (4)
on the estack and invokes h, which then creates a frame
for its local variables (5). Not shown in the figure are the
mode-switch catch frames also created.

4.4.3 Maintaining tail-recursion

The same-mode calling convention with mode-switching
stack frames is efficient and easy to implement. For many
programming languages, this would be enough.
However, like most other functional programming lan-

guages, Erlang relies on tail-recursive function calls for
expressing iteration. Consider the following sequence of

Fig. 5. Mode-switch frames created in call f → g→ h

tail calls, where each fei is an emulated function, and each
fnj is a native code function:

fe1
tail
→ fn2

tail
→ fe3

tail
→ fn4

tail
→ · · ·

A correct implementation is expected to execute such
a sequence in constant stack space, regardless of its
length.
Unfortunately, at each call, a new mode-switch stack

frame is pushed, to make the return perform the inverse
mode-switch. Thus, stack space usage will grow linearly
with the length of the sequence of tail calls, and tail-
recursion optimisation is lost.
HiPE solves this problem as follows. The return ad-

dress in a mode-switch stack frame will always have
a known value: either the address of the return mode-
switch routine (in native mode), or the address of the re-
turn mode-switch instruction (in emulated mode). Thus,
a simple runtime test is able to distinguish mode-switch
stack frames from normal stack frames. Now, consider the
following call sequence:

fe→ gn
tail
→ he

When fe calls gn, it pushes two mode-switch frames on
the native-code stack: first a catch frame, then a return
frame. When gn tailcalls he, the system would normally
push two new mode-switch frames, on the emulated-
code stack. Instead, HiPE implements a mode-switch call
event as follows:

1. If the current return frame is a mode-switch frame,
then:

(a)pop the mode-switch return frame from the caller’s
stack;

(b)pop the mode-switch catch frame from the caller’s
stack;

(c) invoke the callee.

Otherwise:
2. push a mode-switch catch frame on the callee’s stack;
3. push a mode-switch return frame on the callee’s stack;
4. invoke the callee.

The initial test prevents adjacent mode-switches from be-
ing created, and thus restores proper tail-recursive be-



432 E. Johansson et al.: The development of the HiPE system: design and experience report

haviour. The test itself is not expensive, and it is only ex-
ecuted when there is a mode-switch call. Similar methods
for maintaining proper tail-recursion in the context of
a mixed mode execution have been used in some Prolog
implementations (e.g., ProLog_by_BIM, SICStus Pro-
log [24]) and perhaps elsewhere.

4.5 Modifications to the emulators

As described in Sects. 4.2–4.4, we have modified the JAM
and BEAM emulators to support mixing native and emu-
lated code. In short, these modifications are:

– The JAM loader registers the location of each func-
tion’s bytecodes with the HiPE linker.
– A native-code stack has been added to the process
control block, together with a few native-code vari-
ables (stack pointer, return address).
– The garbage collector has been extended to scan the
native-code stack, and to repair catch frame links
when either stack is relocated.
– A small number of instructions have been added to the
emulators, to support mode-switching between emu-
lated and native code.

5 A critical examination of some design decisions

5.1 The HiPE compiler’s intermediate representations

The split into three intermediate representations (IRs)
conceptually provides nice abstraction levels: Icode is
a simple translation target, RTL can in principle express
machine-independent optimizations quite well and is eas-
ily retargetable, and the SPARC format is simple and to
the point. This separation of concerns has simplified the
compiler’s development and experimentation with opti-
mizations. On the other hand, in the current implementa-
tion, a number of optimizations such as constant propaga-
tion and folding, and dead code elimination are repeated
in all IRs; this slows down the compilation process [19].
As described in Sect. 4.1.1, the compiler’s IRs are

CFGs with multiple entry points. For a given function, its
CFG will have one normal call entry point, and one entry
point for each exception handler in its body. In retrospect,
this decisionmakes a number of compiler algorithmsmore
complex. For example, dominators are no longer straight-
forward to compute, which is an obstacle for SSA-based
compiler optimisations [8].
The compiler’s RTL IR was intended to be machine-

independent, but it is not. Data representation and tag-
ging operations are made explicit in the translation from
Icode to RTL. Although a given version of the base Er-
lang system tends to use the same data representation for
all machines, this only applies to proper Erlang values.
Native code also needs to manipulate native code return
addresses on the native code stack. Since the garbage

collector must be able to scan the native stack, native
return addresses must be tagged. However, these spe-
cial tag operations are machine-dependent, e.g., SPARC
return addresses are word-aligned while x86 return ad-
dresses are not.
An alternative would be to allow the garbage collector

to identify which words on the stack are tagged and which
words are untagged. This requires support from the com-
piler and the linker. In particular, it requires generation
of meta-data that describe the stack contents. Unfortu-
nately, the current system is not able to do this. This is
not a problem for RISC processors, but it needs to be
changed before HiPE can support native x86 code.

5.2 Caller-save register management

Register and stack management is performed at two in-
dependent places in the HiPE compiler. In the RTL IR,
all live registers are saved to the process’ native stack
around function calls, and in the register allocator, reg-
isters are spilled to a static data area. Both the pro-
cess’ native stack and the register spill area are ordinary
malloc() blocks pointed to by general-purpose registers
– neither is related in any way to the processor’s stack or
stack register
This arrangement is adequate for RISC machines, but

is clearly suboptimal for machines like the x86 which only
provide a handful of general-purpose registers. By mov-
ing all register management into the register allocator, we
could more easily make use of CPU-specific solutions.
For instance, using the processor’s stack and stack

register for native code on the x86 would permit more
efficient code by making one more general-purpose regis-
ter available to the register allocator or the runtime sys-
tem. It would also allow the use of the processor’s own
call and return instructions. On RISCs, these instructions
tend to only use registers, which is safe in HiPE. On the
x86 and similar machines, they instead operate on the
processor’s stack. Modern x86 implementations use the
processor’s call and return instructions as hints to the
branch-prediction hardware. If application code uses or-
dinary jumps to implement function calls and returns,
branch-prediction accuracy will be reduced.
We could also more easily generate register and stack

descriptors which describe to the garbage collector which
registers are live, where registers have been saved, and
which ones contain references to Erlang values. This, in
turn, would permit the use of untagged return addresses
and callee-save registers.

5.3 Spilling to a static area

We decided to use a static area for spilling since the trans-
lation from RTL did not preserve sufficient stack informa-
tion to easily spill to the stack. Rather than fixing this
problem, we circumvented it using a “simple hack” that



E. Johansson et al.: The development of the HiPE system: design and experience report 433

has somehow remained, warts and all. It is likely that sub-
sequent releases of HiPE will remove this hack.
Until then, spilling to a static area depends on the fol-

lowing system properties:

1. When RTL has been rewritten into SPARC, no regis-
ter containing an Erlang value survives a function call.
In particular, spilled values are not reused across func-
tion calls. This means the spill area is empty at a call,
and can be reused by recursive activations of the same
function.

2. The static area is not scanned by the garbage collec-
tor, which is invoked explicitly by the compiled code.
Since the spill area is empty at the time of a call, there
is nothing to scan and the garbage collector need not
know about procedure-specific spill areas.

3. Finally, process scheduling is triggered by a special
emulator instruction. This instruction is implemented
using a test and a procedure call, which is handled like
any other call (viz., by emptying the spill area). Thus,
there is no danger due to concurrent activations of the
same procedure.7

5.4 Compiler optimisations

As mentioned in Sect. 4.1.3, the main compiler optimisa-
tions are not implemented by fixpoint iterations, which
is traditional, but by single passes over extended basic
blocks (EBBs). This was done in an attempt to speed up
the compiler. This was probably a too conservative deci-
sion in retrospect: although loops are uncommon in Er-
lang code, pattern matching generates joins in the CFGs,
which cut off EBBs. This limits the effectiveness of these
optimisations, especially in code with complex pattern
matching, which is common in larger applications. Our
experience in adding a partial redundancy eliminator [21]
to the HiPE compiler confirms this. Due to the above
reason, the effectiveness of this optimization was signifi-
cantly lower than we had come to expect from reports on
other languages’ optimizing compilers.

5.5 Separate native stack

As described in Sect. 3.1, an earlier version of HiPE used
only one stack for both emulated and native code, but
that scheme was eventually abandoned as it was found
to be quite complex and difficult to implement correctly.
The dual-stack approach has disadvantages and advan-
tages too:

− For example, the JAM emulator implements exception
handling by creating a linked list of catch frames on
the stack. Native code uses the same strategy, which
means that each stack may contain pointers to the

7 A preemptive multithreaded system would break this property
and hence could not use a static spill area.

other. If the runtime system relocates either stack (to
increase its size), then the other stackmust also be tra-
versed so that the catch frame links can be updated.

+ By separating the stacks the stack-scanning code in
the garbage collector is kept simple. With a single-
stack approach, the scanning code would have to know
when to switch “mode”, in order to correctly deal with
the different stack frame layouts. This is certainly
doable, but would require more effort to implement
correctly.

5.6 New emulator instructions

At described in Sect. 4.5, HiPE adds a small number
of new instructions to the JAM and BEAM emulator,
to support mode-switching between emulated and native
code.
Prior to the port to Open-Source Erlang 47.4.1, HiPE

used dynamic tests in the emulator instead. At each call,
a check was made if the target also had a native-code
version, and at each return, throw, and resume, a check
was made if the return address was zero, which was inter-
preted as a signal to switch mode. That design required
changes to many different locations in the emulator, com-
plicated the mode-switch stack frame management, im-
posed runtime overheads on emulated code, and was gen-
erally ugly and difficult to maintain.
In contrast, our current design requires only a small lo-

calised extension of the emulator, and imposes no runtime
overheads except during mode-switches.

5.7 Mode-switching

As described in Sect. 4.4, HiPE uses a static same-mode
approach to mode-switching: each call, return, and excep-
tion throw passes control to code executing on the same
mode. The linker and the runtime system insert “software
trap” code sequences to triggermode-switches. HiPE uses
this approach due to its performance and simplicity – the
initial inspiration is alleged to have come from the imple-
mentation of SICStus Prolog.
Other alternatives include dynamic tests and fixed-

mode conventions [10]. With dynamic tests, a test is per-
formed at each function call site to determine the mode
of the callee. The appropriate code sequence is then se-
lected to perform the call. To implement returns either
dynamic testing or mode-switch return frames can be
used. With dynamic testing, the return address is tagged
to communicate the caller’s type to the callee; at return,
the callee inspects the tag (often just a single bit) and
chooses the correct return code.With mode-switch return
frames, the callee returns in its own mode without any
tests: the caller is responsible for pushing an additional
mode-switch frame if a mode-switch is necessary (just as
in HiPE).



434 E. Johansson et al.: The development of the HiPE system: design and experience report

Another common choice is to use a fixed mode for
calls, usually native code. Emulated functions are repre-
sented as small native code wrappers which invoke the
emulator when called. The advantage of this approach is
that no dynamic type test is ever needed at a call site. The
disadvantage is that calls between emulated-mode func-
tions are penalised since they have to make conversions
to and from the native-code calling conventions, which in-
cludes maintaining both emulated and native-code return
addresses.

6 A taste of HiPE’s performance

The performance characteristics of HiPE have been ana-
lyzed in detail before and reported in [16, 17].Here, wefirst
put the performance of Erlang implementations in per-
spective by comparing it against the performance of other
functional languages (Sect. 6.1), and then in Sect. 6.2 we
briefly report on the performance of the current HiPE sys-
tem against other implementations of Erlang.

6.1 Erlang vs. other functional languages

Functional programming languages differ significantly in
design philosophy (lazy vs. strict, statically vs. dynam-
ically typed), in features they provide (e.g., being con-
current or not), as well as in performance characteristics.
For these reasons, comparisons between them cannot be
very conclusive. The intention here is to just get a feel-
ing about the performance of Erlang implementations
by comparing HiPE (version 0.92) and the JAM system
upon which this HiPE version is based (version 47.4.1)
against high-performance implementations of other func-
tional languages. Systems used in this comparison are:
The Bigloo version 2.1c Scheme compiler [26] (compiling
to native code via gcc -O3; the Bigloo optimization op-
tion -fstack was also used), SML/NJ release 110 with
the CML extensions [25], and CLEAN version 1.3.2 [6].
Like Erlang, Scheme is a strict, dynamically typed lan-
guage. CML is concurrent, statically typed, and strict.
CLEAN is statically typed and lazy.
This experiment was conducted on a two-processor

248 MHz Sun Ultra-Enterprise 3,000 with 1.2 GB of pri-
mary memory running Solaris 2.7 using the following four
benchmark programs:

qsort Ordinary quicksort. Sorts a short list 50,000 times.
fib A recursive Fibonacci function. Calculates fib(30)
50 times.

huff A version of a Huffman encoder. Encodes and de-
codes a file with 32,026 characters five times. The time
taken to read the file is not included.

ring This concurrent benchmark creates a ring of ten pro-
cesses and sends 100,000 messages. The benchmark is
executed five times; in Tables 1 and 2, the number of
iterations is shown in parentheses. As this benchmark

Table 1. Performance of Erlang vs. other functional languages

qsort fib huff ring(5)

JAM 33.2 144.0 119.2 61.2
HiPE 2.6 16.5 14.8 47.9
Bigloo 6.4 11.7 13.0 –
CML 1.4 17.8 4.4 36.4
CLEAN 0.8 8.8 1.0 –

tests the concurrency features of a language, it is run
only on implementations that support concurrency.

Performance results (in seconds) are shown in Table 1.
As seen, the JAM implementation of Erlang is quite slow
compared to implementations of other functional lan-
guages; HiPE brings the gap down significantly.

6.2 Comparison of different Erlang implementations

Besides HiPE, four other Erlang systems were used in this
comparison: JAM, BEAM, JERICO, and ETOS.
The JAM and BEAM systems used in our measure-

ments are from Ericsson’s Open Source Erlang system
upon which HiPE is based. Compared with JAM, the
translation of Erlang code to BEAM abstract machine in-
structions is more advanced. For example, the treatment
of pattern matching is considerably better in the BEAM
system, even though a full pattern matching compiler
is not implemented. Also, BEAM uses a direct-threaded
emulator [3] using gcc’s labels as first-class objects exten-
sion [27]: instructions in the abstract machine code are
addresses of the part of the emulator that implement the
instruction. The JERICO system has been described in
Sect. 3.1.
ETOS [9] is a system from the University of Mon-

treal based on the Gambit-C Scheme compiler. It trans-
lates Erlang functions to Scheme functions which are then
compiled to native code via C. The translation from Er-
lang to Scheme is fairly direct. Thus, taking advantages
of the similarities of the two languages, many optimiza-
tions in Gambit-C are effective when compiling Erlang
code. Among these optimizations are inlining of function
calls (currently only within a single module) and unbox-
ing of floating-point temporaries. ETOS also performs
some optimizations in its Erlang to Scheme translation;
e.g., simplification of pattern-matching. The ETOS com-
piler is work under progress, and it is not yet a full Erlang
implementation. We have therefore been able to run only
relatively small benchmarks on ETOS. The version of
ETOS used is 2.3.
Most of this performance comparison of Erlang imple-

mentations is taken from [17]. It was conducted on a 143
MHz single-processor Sun UltraSPARC 1/140 with 128
MB of primary memory running Solaris 2.6. In addition
to fib, qsort, and ring, the following small sequential and
concurrent benchmarks were used:



E. Johansson et al.: The development of the HiPE system: design and experience report 435

huff_erl A slightly different version of a Huffman encoder
compressing and uncompressing a short string 5,000
times. The difference from huff lies mainly in how the
input is provided (for the sake of ETOS which does
not currently handle file I/O), but the program is also
a bit more Erlang-specific; e.g., it uses polymorphic
lists.

nrev Naive reverse of a 100 element list 20,000 times.
smith The Smith-Waterman DNA sequencematching al-
gorithm. Matches one sequence against 100 others; all
of length 32. This is done 30 times.

decode Part of a telecommunications protocol. Decodes
an incoming binary message 500,000 times. This is
a medium-sized benchmark (≈ 400 lines).

life A concurrent benchmark executing 1,000 generations
in Conway’s game of life on a 10 by 10 board where
each square is implemented as a process.

Besides benchmarks, we also report on the performance
of OSE-based systems on two industrial applications of
Erlang:

Eddie An HTTP parser handling 30 complex HTTP-get
requests. Excluding the OTP libraries used, it consists
of six modules for a total of 1,882 lines of Erlang code.
The benchmark is executed 1,000 times.

AXD/SCCT This is the time-critical software part of the
AXD 301 ATM switch mentioned in Sect. 3.2.3. It sets
up and tears down a number of connections 100 times;
501 functions are used in the benchmark.

Tables 2 and 3 contain the results of the comparison.
In all sequential benchmarks, HiPE and ETOS are the
fastest systems: in small programs they are between seven
to 20 times faster than JAM and three to eight times
faster than the BEAM implementation. The performance
difference between HiPE and ETOS on small programs is

Table 2. Times (in seconds) for benchmarks in different Erlang implementations

Sequential benchmarks Concurrent OSE Applications

fib huff_erl nrev qsort smith decode ring(100) life Eddie AXD/SCCT

JAM 281.4 234.7 241.3 208.1 114.6 67.8 101.6 13.4 93.6 109.9
BEAM 120.6 69.2 56.9 97.6 53.9 49.0 72.5 8.7 40.0 84.5
JERICO 41.0 14.8 20.5 15.0 25.7 22.5 59.5 7.6 – –
HiPE 33.8 11.9 18.5 12.3 11.4 22.8 37.1 5.6 18.8 68.0
ETOS 31.8 12.1 24.4 11.0 11.6 52.4 76.0 20.1 – –

Table 3. Speedup of different Erlang implementations compared to JAM

Sequential benchmarks Concurrent OSE Applications

fib huff_erl nrev qsort smith decode ring(100) life Eddie AXD/SCCT

BEAM 2.33 3.39 4.24 2.13 2.13 1.38 1.40 1.54 2.34 1.30
JERICO 6.86 15.86 11.77 13.87 4.46 3.01 1.71 1.76 – –
HiPE 8.33 19.72 13.05 16.92 10.05 2.97 2.74 2.39 4.98 1.62
ETOS 8.85 19.40 9.89 18.92 9.88 1.29 1.34 0.67 – –

not significant. In decode, where it is probably more diffi-
cult for ETOS to optimize operations and pattern match-
ing on binary objects (i.e., on immutable sequences of
binary data), HiPE is more than two times faster than
ETOS. HiPE is faster than JAM and BEAM, but not to
the same extent as for the other benchmarks.
ETOS 2.3 does not seem to be significantly faster than

JAM and is slower than BEAM when processes enter the
picture. We suspect that ETOS’ implementation of con-
currency via call/cc [14] is not very efficient.
As we move from benchmarks to real-world applica-

tions of Erlang, programs tend to spend more and more
of their execution time in built-ins from the standard li-
brary. For example, as mentioned, the AXD/SCCT pro-
gram extensively uses the built-ins to access the shared
database on top of the Erlang term storage. As the imple-
mentation of these built-ins is currently shared by JAM,
BEAM, and HiPE, the percentage of execution spent in
these builtins becomes a bottleneck and HiPE’s speedup
is less than before. Still, HiPE version 0.92 is 24% faster
than BEAM on SCCT, and considerably faster than the
JAM implementation on which it is based.

7 Concluding remarks

This article described how the HiPE system has been
developed, its current architecture, the implementation
decisions we had to make, and our experience from our in-
volvement in this several man-year project. Besides doc-
umenting our implementation in detail, we believe that
the technical issues discussed here are of interest to pro-
gramming language implementors and hope that our ex-
perience proves useful to others interested in Erlang or
working in similar projects.



436 E. Johansson et al.: The development of the HiPE system: design and experience report

Developing an industrial-strength system in an aca-
demic environment is hard in itself. Doing so when parts
of the system are evolving independently in industry adds
an extra level of complication that ideally should be min-
imized through interaction. Besides realizing this as a ne-
cessity, our experience with working with industrial soft-
ware development teams in Ericsson has shown that: (1)
the research group must have direct and frequent contact
with the group in industry to build trust and interest, or
the transfer of technology and ideas in either direction
will be impaired or impossible; (2) despite the difficulties,
such collaborations are useful in driving research and in
achieving impact in the “real-world”.

Acknowledgements. Bjarne Däcker, H̊akan Millroth, and Johan
Bevemyr were crucial to the initial phase of this project; Bjarne’s
continued support is appreciated. Christer Jonsson worked on
JERICO and the first version of the HiPE compiler; Richard Carls-
son is currently working on a Core Erlang front-end. Thomas
Lindquist, Ulf Wiger, Kurt Johansson, Mats Cronqvist, and Pe-
ter Lundell were extremely helpful with AXD/301. In the Open
Source Erlang era, Björn Gustavsson and Kenneth Lundin have
been our helpful main contacts. Björn’s help in the incorporation
of HiPE into OSE is greatly acknowledged. This research has been
supported in part by ASTEC (Advanced Software Technology)
competence center.

References

1. Aho A.V., Sethi R., Ullman J.D.: Compilers: principles, tech-
niques and tools. Addison-Wesley, Reading, Mass., 1986

2. Armstrong J., Virding R., Wikström C., Williams M.: Concur-
rent programming in Erlang. Prentice-Hall, Englewood Cliffs,
N.J., 2nd edition, 1996

3. Bell J.R.: Threaded code. Comm ACM 16(8): 370–373, 1973
4. Blau S., Rooth J.: AXD 301 – a new generation ATM switch-
ing system. Ericsson Rev 75(1): 10–17, 1998

5. Briggs P., Cooper K.D, Torczon L.: Improvements to graph
coloring register allocation. ACM Trans Prog Lang Syst 16(3):
428–455, 1994

6. Brus T., van Eekelen M.C.J.D., van Leer M., Plasmeijer M.J.,
Barendregt H.P.: CLEAN – a language for functional graph
rewriting. In: Kahn G., (ed.): Proc. Conference on Functional
Programming Languages and Computer Architecture (FP-
CA’87). LNCS 274. Berlin, Heidelberg, New York: Springer-
Verlag, 1987, pp. 364–384

7. Carlsson R., Gustavsson B., Johansson E., Lindgren T.,
Nyström S.-O., Pettersson M., Virding R.: Core Erlang 1.0
language specification. Technical Report 030, Information
Technology Department, Uppsala University, Nov. 2000

8. Cytron R., Ferrante J., Rosen B.K., Wegman M.N., Zadeck
F.K.: Efficiently computing static single assignment form and
the control dependence graph. ACM Trans Prog Lang Syst
13(4): 451–490, 1991

9. Feeley M., Larose M.: Compiling Erlang to Scheme. In:
Palamidessi C., Glaser H., Meinke K., (eds) Principles of
declarative programming. LNCS 1490. Berlin, Heidelberg,
New York: Springer-Verlag, 1998, pp. 300–317

10. Gordon A.D.: How to breed hybrid compilers/interpreters.
Technical Report ECS-LFCS-88-50, Department of Computer
Science, University of Edinburgh, Edinburgh, UK, 1988

11. Gudeman D.: Representing type information in dynamically
typed languages. Technical Report TR 93-27, University of
Arizona, Department of Computer Science, Oct. 1993

12. Halén J., Karlsson R., Nilsson M.: Performance measurements
of threads in Java and processes in Erlang. Technical Report
ETX/DN/SU-98:024, Ericsson, Nov. 1998

13. Hausman B.: Turbo Erlang: approaching the speed of C. In:
Tick E., Succi G., (eds.): Implementations of logic program-
ming systems, pp. 119–135. Kluwer Academic, Boston, Mass.,
1994

14. Hieb R., Dybvig R.K., Bruggeman C.: Representing control
in the presence of first-class continuations. In: Proc. ACM
SIGPLAN Conference on Programming Language Design and
Implementation, pp. 66–77, June 1990

15. Johansson E., Jonsson C.: Native code compilation for Erlang.
Uppsala master thesis in computer science 100, Uppsala Uni-
versity, Oct. 1996

16. Johansson E., Nyström S.-O., Lindgren T., Jonsson C.: Eval-
uation of HiPE, an Erlang native code compiler. Technical
Report 99/03, ASTEC, Uppsala University, 1999

17. Johansson E., Pettersson M., Sagonas K.: HiPE: a High Per-
formance Erlang system. In: Proc. ACM SIGPLAN Interna-
tional Conference on Principles and Practice of Declarative
Programming, pp. 32–43. ACM, New York, Sept. 2000

18. Jones R.E., Lins R.: Garbage collection: algorithms for auto-
matic memory management. Wiley, New York, 1996

19. Lindgren T., Jonsson C.: The design and implementation of
a high-performance Erlang compiler. Technical Report 99/04,
ASTEC, Uppsala University, Nov. 1999

20. Lindholm T., Yellin F.: The JavaTM virtual machine spe-
cification. The Java Series. Addison-Wesley, Reading, Mass.,
1996

21. Muchnick S.S.: Advanced compiler design & implementation.
Morgan Kaufman, San Fransisco, Calif., 1997

22. Nilsson P., Persson M.: ANx – high-speed internet access. Er-
icsson Rev 75(1b): 24–31, 1998

23. Pettersson M.: A staged tag scheme for Erlang. Technical Re-
port 029, Information Technology Department, Uppsala Uni-
versity, Nov. 2000

24. Programming Systems Group.: SICStus Prolog User’s Man-
ual. Technical report, Swedish Institute of Computer Science,
1995

25. Reppy J.H.: CML: a higher-order concurrent language. In:
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pp. 293–305. ACM, New York, 1991

26. Serrano M., Weis P.: Bigloo: a portable and optimizing com-
piler for strict functional languages. In: Mycroft A., (ed.):
Proc. 2nd Static Analysis Symposium. LNCS 983. Berlin, Hei-
delberg, New York: Springer-Verlag, 1995, pp. 366–381

27. Stallman R.M.: Using and porting gcc. Technical report, The
Free Software Foundation, 1993

28. Sun Microsystems.: UltraSPARCTM User’s Manual. Technical
report, Sun Microelectronics, Palo Alto, Calif., 1997

29. Torstendahl S.: Open telecom platform. Ericsson Rev 75(1):
14–17, 1997. See also: http://www.erlang.se

30. Virding R.: A garbage collector for the concurrent real-time
language Erlang. In: Baker H.G., (ed.): Proc. IWMM’95: In-
ternational Workshop on Memory Management. LNCS 986.
Berlin, Heidelberg, New York: Springer-Verlag, 1995, pp. 343–
354

31. Warren D.H.D.: An abstract Prolog instruction set. Technical
Report 309, SRI International, Menlo Park, USA, Oct. 1983


