
Software Tools for Tehnology Transfer manusript No.(will be inserted by the editor)
Comparison of SPIN and VIS for Protool Veri�ationHong Peng, So��ene Tahar and Ferhat KhendekDept. of Eletrial & Computer Engineering, Conordia University1455 de Maisonneuve W., Montreal, Quebe, H3G 1M8 CanadaE-mail: fpengh,tahar,khendekg�ee.onordia.aThe date of reeipt and aeptane will be inserted by the editorKey words: SPIN, VIS, Model Cheking, Formal Ver-i�ation, ProtoolsAbstrat. In this paper, we ompare and ontrast SPINand VIS, two widely used formal veri�ation tools. Inpartiular, we devote a speial attention to the eÆienyof these tools for the veri�ation of ommuniations pro-tools that an be implemented either in software orhardware. As a basis of our omparison, we formally de-sribe and verify the Asynhronous Transfer Mode Ring(ATMR) medium aess protool using SPIN and itshardware model using VIS. We believe that this studyis of partiular interest as more and more protools, likeATM protools, are implemented in hardware to mathhigh speed requirements.

1 IntrodutionFor the last two deades, veri�ation tehniques havebeen applied suessfully in software and hardware en-gineering. Various tehniques have been proposed in theliterature [6℄. They range from pure simulation to modelheking. The widely used simulation tehniques an-not over all design errors, espeially for large systems.Like testing tehniques, they are used to detet errors,but not to prove the orretness of the design. Duringthe past deade, model heking tehniques have estab-lished themselves as signi�ant means for design vali-dation, namely a given design is validated against spe-i� and general properties. Two di�erent �elds of modelheking have arisen: formal veri�ation of software pro-tools and software systems, like SPIN [9℄, and formalveri�ation of digital hardware, like VIS [2℄.The SPIN software veri�ation tool, developed by G.J. Holzmann at Bell Labs in 1989, is based on an inter-leaving model of onurreny, in whih unlike hardware,

2 Hong Peng, So��ene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protool Veri�ationonly one omponent of the system state is allowed tohange at a time. SPIN heks if the protool spei�a-tion is logially onsistent. It reports errors in the pro-tool suh as deadlok, livelok, or unreahable ode. Italso validates properties spei�ed as linear time tempo-ral logi (LTL) [8℄ formulas.The VIS (Veri�ation Interating with Synthesis) tool,developed in 1995 by University of California at Berkeleyand University of Colorado at Boulder, is based on syn-hronous models where any number of omponents anhange state at a time. VIS integrates formal veri�ation,simulation, and synthesis of �nite-state hardware sys-tems. It uses the Verilog hardware desription language(HDL) as its input language. VIS supports branhingtime temporal logi (CTL) [8℄ symboli model hekingwith fairness onstrains [13℄.The aim of this paper is to ompare and ontrastthe SPIN (XSPIN version 3.3.3) and VIS (VIS release1.3) tools using a software and a hardware model of theATMR protool [12℄ as a ase study. We developed thesoftware and hardware models independently and for-mally veri�ed them in SPIN and VIS, respetively. Sinethe modeling language of SPIN and VIS are di�erent, weannot say expliitly that the two veri�ed models, theVIS and the SPIN one, are exatly the same with respetto their semantis. However, we did follow the modelingand oding style of eah of these tools. To expose the ad-vantages and disadvantages of these two types of tools,we report and ompare the veri�ation CPU time, mem-

Channel

Client

ClientClientClient

Access Unit

Access UnitAccess UnitAccess Unit

Channel Channel

ChannelChannel

Access Unit

Client

A B

CDE Fig. 1. ATMR struture with 5 nodesory usage, and state spae generated. Furthermore, wedesribe the modeling tehniques of asynhronous pro-tools in SPIN and VIS, and also analyze the soure ofthe omplexity in the veri�ation.The rest of the paper is strutured as follows. Webegin with an overview of the ATMR protool (Setion2). We then desribe the ATMR spei�ation and ver-i�ation in SPIN (Setion 3) and VIS (Setion 4), re-spetively. Finally, we onlude the paper with the om-parison and ontrast of SPIN and VIS (Setion 5). ThePROMELA and Verilog odes of the ATMR protool areprovided in the Appendix.2 ATM Ring ProtoolThe Asynhronous Transfer Mode Ring (ATMR) proto-ol [12℄ is an ISO standard based on a high speed sharedmedium onneting a number of aess nodes by han-nels in a ring topology. Figure 1 gives an example ringwith �ve nodes onneted via a hannel transferring ellsbetween the nodes. For ontrolling aess to this type of

Hong Peng, So��ene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protool Veri�ation 3
ACF ACF/RVCI

RESERVED

HEADER CHECK SEQUENCE

OCT

1

2

3

4

5

6

7

8

53

USER INFORMATION

RVCI

ADAPTION LAYER

Fig. 2. Format of an ATMR ell
shared medium, the ring is �rst initialized with a �xednumber of ATM ells ontinuously irulating aroundthe hannel from one node to another. Within eah a-ess node there is an aess unit whih performs both thephysial layer onvergene funtion and the aess on-trol funtion. Aess to the ring is requested by the lientand ontrolled by a ombination of a window mehanismand a reset proedure. The lient an issue a sending re-quest to the aess unit and reeive a data ell. Thewindow mehanism limits the number of ells a nodean transmit at a time, alled the \redits" of this node.The reset proedure reinitializes the window in all a-ess units to a prede�ne redit value. The format of anATMR ell is shown in Figure 2.It ontains an aess ontrol �eld (ACF), whih in-ludes a reset bit, a monitor bit and a busy address.When an aess node releases an empty ell, it will �ll

IDLE

SEND RESET

WAIT
?Data

?Empty

(reset req)

?Empty
(reset req)

?Reset

?Data/Reset

Req==1

Credit>0

?Empty

?Data

Req==1

Credit<0
?Reset

Fig. 3. FSM of an ATMR entity
its own address in the busy address �eld. The ATM ellis routed by using a ring virtual hannel ID (RVCI) inthe ell header.The state transition diagram of the ATMR is shownin Figure 3, where \?" means reeiving a message. Theprotool entity of an aess unit begins from an IDLEstate. When the aess unit has ells queued for trans-mission, it enters a SEND state and sends them in emptyslots reeived at the ring interfae with the address ofthe destination in the RVCI �eld of the ell header.The RVCI �eld in the header of all ells reeived at thering interfae of eah node is heked and, if the ellis addressed to this node, the ell ontents are opiedand passed to the appropriate onvergene sublayer. TheRVCI �eld is then set to zero, whih indiates an emptyell, and the ell is relayed to the next node in the ring. Ifa math is not found, then, this ell remains unhanged.

4 Hong Peng, So��ene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protool Veri�ationTransmissions on the ring our in yles during whiheah aess unit is alloated a �xed window size redit.This redit indiates the number of ells the aess unitan transmit in this yle before issuing or reeiving a re-set ell from the ring interfae. A window redit ounteris maintained by eah aess unit. Whenever this value isless than zero, the protool entity enters a WAIT stateto wait for a new redit. This value is initialized to thewindow size redit eah time the ring is reset, namelythe protool entity is in a RESET state and the redit isderemented by one eah time the aess unit transmitsa ell from its transmission queue. This mehanism is fol-lowed by all aess units in the ring and hene eventuallyall units beome inative and the ow of ells around thering eases.To reinitialize the transmission of the ells, an a-tive aess unit always overwrites its own address in thebusy address �eld in the head of all ells passing thering interfae. This way, if an ative aess node reeivesa ell with its own address in the busy address �eld,it onludes that other nodes are inative. Then afterompletely sending any remaining queued data from thehigher layer, it reates a reset ell by setting the re-set bit in the header of the next ell passing the ringinterfae. The reset ell irulates around the ring andauses all other aess units to reinitialize their windowredit ounters. One reinitialized, any aess unit hav-ing data queued for transmission regains the ative stateand restarts sending ells.

The ATMR protool was �rst modeled and hekedby Charpentier and Padiou [4℄ who used UNITY to on-dut a penil-and-paper veri�ation of it. Their valida-tion abstrats away from any implementations, be it insoftware or in hardware. In next setions, we desribethe modeling and veri�ation of the ATMR protool inSPIN and VIS, respetively.
3 Veri�ation Using SPINSPIN [9℄ targets the veri�ation of software systems andhas been used in the past to trae design errors in dis-tributed systems design, suh as operating systems, dataommuniations protools, swithing systems, onur-rent algorithms, railway signaling protools, et. [10,3℄.The tool heks the logial onsisteny of a protoolspei�ation and reports design errors like deadlok, live-lok, unreahable ode and so on.SPIN uses full LTL model heking, supporting allorretness requirements expressible in linear time tem-poral logi. It an also be used as an eÆient on-the-y veri�er for more basi safety and liveness properties.Many of the latter properties an be expressed, and ver-i�ed, without the use of LTL though. Corretness prop-erties an be spei�ed as system or proess invariants(using assertions), or as general linear temporal logi re-quirements (LTL), either diretly in the syntax of next-time free LTL, or indiretly as B�uhi Automata (alled

Hong Peng, So��ene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protool Veri�ation 5never laims). If a property is invalid, an error trae isprovided by the tool.SPIN uses PROMELA (Proess Meta Language) [9℄as input modeling language. PROMELA allows abstra-tions in the protool desription by negleting detailsthat are irrelevant to proess interation. The intendeduse of SPIN is to verify frations of proess behavior,whih for one reason or another are onsidered suspet.The relevant behavior is modeled in PROMELA and ver-i�ed.3.1 ATMR Spei�ationIn order to test the apability of the SPIN tool, we triedto build a model as large as possible and let the tool dothe redution work. In this way, the veri�ation engineworks on its up-limit load, so that we an test the per-formane of the engine in a real situation. As an ATMRprotool an have n nodes and p hannels [12℄, we willperform our veri�ation on the model shown in Figure 1inluding 3, 4, 5, and 6 ATMR nodes and a hannel sizeof 6, 8, 10, and 12 ells. The hannel length between twoneighboring nodes is two ells. We realized through ex-perimentation that the �ve node model is the maximummodel size that an make a omparison between SPINand VIS within the memory available in the mahine weused (Sun Spar with 2 GB memory). However, for thepurpose of omparison, we also put the experimental re-sults of the ATMR model with three, four, �ve, and sixnodes.

In the SPIN ATMR model, eah node is spei�ed asa proessprotype Atmr(byte ID; han in, out)where ID is the identi�ation of the present node; in isthe input hannel and out is the output hannel of thenode. Sine the nodes are in a ring form, the input han-nel of node B, for instane, will be the output hannelof node A (Figure 1).Sine SPIN's strength is in proving properties of in-terations in a distributed system, but not in provingthings about loal omputation or data dependeny, wean try to make the model more general, more abstrat.Namely, we will put only the behavior between the a-ess unit and the hannel into the model. Besides, weassume that the queue between the lient and the a-ess unit will be automatially re�lled one it is empty.Thus, we an have a simple model while not a�etingthe behavior of the aess unit.An additional way of reduing the omplexity is toremove everything that is not related to the property weare trying to prove, suh as redundant data. For exam-ple, due to state spae explosion, we did not sueed inverifying the whole data-path of the ATMR model. Inorder to simplify this latter, we abstrat away all the in-formation whih will not a�et the behavior of the ringaessing sheme, namely the HCS �eld, the adaptionlayer �eld and the user information �eld. The reduedell format on whih we based our veri�ation is shownin Figure 4, where only 5 bits ACF and 3 bits RVCI

6 Hong Peng, So��ene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protool Veri�ation
OCT

1

2

3

4

5

6

7

8

53

ACF (5 bit) RVCI (3 bit)

RVCI

RESERVED

HEADER CHECK SEQUENCE

ADAPTION LAYER

USER INFORMATIONFig. 4. Simpli�ed Cell Formatwill be used (non-shaded boxes in Figure 4). Beausewe kept all the aess ontrol information in the headerformat, namely the ACF and RVCI �elds, the ontrolbehavior of ATMR with simpli�ed ell format is exatlythe same as that of the original one. After the redution,the struture of the ell beomes:typedef MSDU_strut {byte Busy_Add;byte Dest_Add;};where Busy Add is the busy address and Dest Add isthe destination address. MSDU strut is the type de�-nition of the ell. The ells are lassi�ed into DataCell,whih ontains user data, EmptyCell, whih is availablefor loading, and ResetCell, whih is to reset the redit ofthe aess units in the ring.Asynhronous hannels are a signi�ant soure ofomplexity in the veri�ation sine there are lots of inter-leavings in the hannel. Generally, the exlusive read/write

option provided by SPIN is a good partial order re-dution approah [11℄, whih an redue the veri�ationCPU time.Besides, in order to redue the interleavings in themodel, one of the possible solutions is to make as manystatements as possible beome atomi. For example, inthe initialization proess, we put all the initializationstatements as atomi:init{MSDU_strut d;atomi{ d.Dest_Add=0;Credit[1℄=MaxCredit;......}We an also redue the interleavings of the modelsigni�antly by making atomi eah state transition. Forexample, instead of:: (State == state_name)->other_statementswe an use:: atomi{(State == state_name) ->other_statements}The exhaustive experiments we onduted show that thestate spae an be redued for at least one order of mag-nitude in this way. However, in this ase, the PROMELAmodel beomes synhronous whih is not our intention.In the sequel, we did not use these atomi statements.The PROMELA ATMR model is shown in AppendixA, where ID is the identi�er of this unit, and in andout are the inoming and outgoing hannels of this unit,respetively. There are four states, Idle, Send, Reset, and

Hong Peng, So��ene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protool Veri�ation 7WaitCredit. In eah state, the unit an reeive DataCell,EmptyCell, ResetCell.An advantage of SPIN is that we an easily hekdeadlok using timeout statement in the model. Sinein the deadlok status, the state transition stops, thetimeout statement in a state an be easily heked out.3.2 ATMR Veri�ationOne the ATMRmodel established, we validate it againsta set of basi onsisteny properties. For illustration pur-poses, we present here six properties inluding livenessand safety. In the following desriptions, \[℄", \<>",\==" and \!" mean \always", \eventually", \logi equal-ity" and \imply", respetively.Property 1: One an aess unit exhausts its windowsize redit, the redit will eventually be renewed.[℄((redit == 0)!<> (redit == 6))where redit stands for the number of redits whih isbeing held by an aess unit and 6 is the preset maxi-mum value.Property 2: A lient's request will be eventually a-knowledged.[℄((req == 1)!<> (ak == 1))where req is a ell sending request signal from a lient toan aess unit. If the requested ell has been sent out,the aess unit will return an ak signal to the lient.Property 3: An aess unit will eventually exit the RE-SET state and enter the SEND state.

[℄((state == RESET)!<> (state == SEND))where state stands for the urrent state of an aess unit.Property 4: An aess unit will eventually exhaust itswindow size redit.[℄((redit = 6)!<> (redit == 0))here, 6 is the preset maximum redit value. We expetthat all the redits will be onsumed during the sendingproedure.Property 5: The number of reset ells in the ring annotexeed the number of aess units.[℄(NumofRst < NumofUnit)where NumofRst is the number of reset ells in the ringand NumofUnit is the number of aess units.Property 6: In the SEND state, a given station annotsend more ells than allowed by its redits.[℄((state == SEND)! (Outmsgs <= 6))here, Outmsgs is the number of ells sent by a givenstation in the SEND state.The veri�ation of the above six properties was per-formed on a Sun Spar workstation with 2 GB of mem-ory. We used two kinds of reahability analysis methodsprovided by the SPIN tool. One is the exhaustive explo-ration, the other is the supertrae/bitstate explorationwhih is an approximate approah, whih an only pro-vide maximum overage searh. In the ATMR veri�a-tion, we �rst tried the exhaustive exploration. But thisapproah ould not �nish the ATMR veri�ation due toan out of memory error, even when we applied the modelompress tehniques (-DCOLLAPSE, -DMA).

8 Hong Peng, So��ene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protool Veri�ation3 nodes 4 nodesProperty CPU Time (s) Memory (MB) States CPU Time (s) Memory (MB) StatesP1 7.5 46.084 1335725 359.8 89.802 6.61796e6P2 19.7 45.982 340879 941 87.345 1.56626e7P3 5.2 46.084 122671 271.6 90.007 4.648e6P4 18.6 46.084 390387 828.9 73.521 1.5796e7P5 5.5 46.084 92322 236.6 89.086 4.3443e6P6 3.2 44.982 101015 167.3 45.187 5.95003e65 nodes 6 nodesProperty CPU Time (s) Memory (MB) States CPU Time (s) Memory (MB) StatesP1 1632.5 127.225 3.26899e7 3261.4 1192.077 4.36862e7P2 2273.6 264.906 3.41975e7 2883 264.19 4.98607e7P3 2218.1 962.66 3.22636e7 2842.7 258.998 3.61413e7P4 1255.3 258.25 2.9685e7 2783.9 298.487 3.69046e7P5 2187.5 1441.086 4.32634e7 - - -P6 1313.8 584.864 3.33867e7 2765 1729.955 4.53676e7Table 1. ATMR veri�ation with SPINIn ontrast, the supertrae/bitstate (bit-state hash-ing) ould �nish the veri�ation of the properties. Al-though the overage is not one hundred perent, thislatter still an give us some on�dene about the or-retness of the model. The supertrae/bitstate modelheking experimental results are reported in Table 1,inluding CPU time in seonds, memory usage in MBand the number of states stored. Graphi illustrations ofthe experimental results are plotted in Figures 5, 6, and7. From the graphi illustrations, we found that the in-rement of the state spae is beoming steady when themodel beomes larger, and so does the CPU time. Thismeans that SPIN an handle larger models, while, a�et-ing the state overage (i.e., the number of visited stated

relative to the number of atual states), however. Gen-erally, For a hash-fator between 10 and 100, SPIN givesan expeted overage of 98% on average.Bit-state hashing is an approximate approah. Onthe other hand, when ompared with lassial randomsimulation tehniques, it is always better to use bit-statehashing beause the overage is usually muh better thanthat ahieved with random simulation. During the ver-i�ation, we found that the more nodes are inluded inthe ATMR model, the less is the overage. In the 3-nodeveri�ation, the overage is greater than 99:9%, but inthe 6-node veri�ation, the overage is less than 98%.There are some variane in the memory usage, es-peially in the 6-node model for Property 3. We thinkthere may be two reasons. One is that we are using the

Hong Peng, So��ene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protool Veri�ation 9

3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

4000

 ATMR Nodes

C
P

U
 ti

m
e

Property p1
Property p2
Property p3
Property p4
Property p5
Property p6

Fig. 5. SPIN veri�ation CPU time

3 4 5 6
0

200

400

600

800

1000

1200

1400

1600

1800

 ATMR Nodes

M
em

or
y

(M
B

)

Property p1
Property p2
Property p3
Property p4
Property p5
Property p6

Fig. 6. SPIN veri�ation memory usageapproximate method. This method is atually a \ran-dom" approah. The other is that we are working in amulti-user operating system. The variane in the systemload will a�et the experimental results.4 Veri�ation Using VISVIS [2℄ is a veri�ation and synthesis tool for �nite-statehardware systems, developed at University of Californiaat Berkeley and University of Colorado at Boulder. Ituses the Verilog HDL as the input language and supports

3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

7

 ATMR Nodes

S
ta

te
s

st
or

ed

Property p1
Property p2
Property p3
Property p4
Property p5
Property p6

Fig. 7. SPIN veri�ation state spae
CTL model heking with fairness onstrains. Its funda-mental data struture is a multi-level network of lathesand ombinational gates. The variables of a network aremulti-valued, and logi funtions over these variables arerepresented by an extension of BDDs: multi-valued de-ision diagrams.VIS operates on the intermediate format BLIF-MV[5℄. It inludes a ompiler from Verilog to BLIF-MVand extrats a set of interating FSMs that preservesthe behavior of the Verilog program de�ned in terms ofsimulated results. Through the interating FSMs, VISperforms CTL model heking under B�uhi fairness on-straints, i.e., sets of states that must be visited in�nitelyoften. The language of a design is given by sequenesover the set of reahable states that do not violate thefairness onstraint. If model heking fails, VIS reportsthe failure with a ounter-example.

10 Hong Peng, So��ene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protool Veri�ation
Access Unit

Channel Module

Client

ackreq

cell cell
inout

Fig. 8. Modi�ed ATMR ring struture
Besides model heking, VIS supports equivaleneheking, yle-based simulation, and synthesis funtions,suh as state minimization and state enoding.4.1 ATMR Spei�ationSine VIS is built on synhronous models, it is impossibleto diretly desribe the original asynhronous ATMR inVIS, e.g., how to desribe the ell transmission betweentwo aess units using synhronous Verilog. We heneneed to build a pseudo-asynhronous ATMR protoolto simulate the ATMR protool in the synhronous VISenvironment. There are many methods to simulate anasynhronous system in a synhronous environment [1℄.Here, beause we only request that ell transmission beasynhronous and the module itself be synhronous, wepropose to simply add a module hannel in the Verilogspei�ation. This hannel model will play the role of aqueue between two ATMR nodes (see Figure 8).

All the ells sent or reeived by the aess unit willhene be queued in the hannel module. When the a-ess unit wants to read a ell from the hannel, it atuallyreads the ell from the head of the queue. If the destina-tion is the urrent node, the ell will be proessed in thisaess unit. Otherwise, the ell will be forwarded to thenext node via the hannel module. This way, the sendingand the reeiving proesses within the ring an remainasynhronous. The hannel is de�ned as follows.hannel (h_out, h_in, ID);where h out and h in are wired onnetions to andfrom the nodes; ID is the identi�ation of the hannel.In this ase, the aess unit beomes.ma_trl_node (req, ak, h_out, h_in, ID);where req is the ell request signal from the lient; akis the aknowledgment; h out and h in are the outputand input hannels for eah node; ID is the identi�a-tion of the node. Here, we do not put the lok signalbeause we use the impliit lok soure provided by VIS.The req/ak pair follows the same rule as we de�ned inthe SPIN modeling, namely one ak beomes true, reqwill be true in the next lok. Beause Verilog instanesare synhronized by the lok, we have to put the reqgenerator in another instane and put a wire onnetionbetween these two instanes.Exept above features, the ATMR model (Figure 9)we veri�ed in VIS is very similar to that we used inSPIN. The ell format is here again a simpli�ed one,ontaining only the ACF and RVCI �elds (Figure 4).

Hong Peng, So��ene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protool Veri�ation 11
Access Unit

Client

A

Client

Access UnitE

Client

Access UnitD

Client

Access UnitC

Client

Access UnitB

Channel
Module

Channel
Module

Channel
Module

Channel
Module

Channel
Module

Fig. 9. Modi�ed ATMR ring strutureNote that given the spei�ation nature in SPIN andVIS, all omponents in VIS are true onurrent, whilethey are interleaved in SPIN.The Verilog pseudo-asynhronous ATMR model isgiven in Appendix B, where lk is the system lok; reqand ak are the signals from/to the lients; out ell andin ell are the output/input ells of this unit; id is theidenti�er of this unit. The states and the ell types arethe same as that of SPIN model. The only di�erene isthat beause Verilog does not have han (hannel) datatype and mtype (message type) variable, we have to ex-amine the data bit in the ell format expliitly.4.2 ATMR Veri�ationWe veri�ed the same properties as in the SPIN study.The only di�erene is that, in VIS, properties will be ex-pressed in CTL and not in LTL. We present here the sixliveness and safety properties of Setion 3.2 in CTL. Inthe following desriptions, \=", \!" and \ �" mean log-

ial \ equality", \impliation" and \and", respetively.\AG" and \AF" mean \all paths in all states" and \allpaths in future states", respetively.Property 1: One an aess unit exhausts its windowsize redits, the redits will eventually be renewed.AG(((redit[2℄ = 0) � (redit[1℄ = 0) �(redit[0℄ = 0))! AF (redit[2℄ = 1)� (redit[1℄ = 1)�redit[0℄ = 0));where redit is omposed of three bits: redit[2℄, redit[1℄and redit[0℄.Property 2: A lient's request will eventually be a-knowledged.AG((req = 1)! AF (ak = 1));Property 3: An aess unit will eventually exit the RE-SET state and enter the SEND state (see Figure 4).AG((state = RESET)! AF (state = SEND));Property 4: An aess unit will eventually exhaust itswindow size redit.AG(((redit[2℄ = 1) � (redit[1℄ = 1)�(redit[0℄ = 0))! AF ((redit[2℄ = 0) � (redit[1℄ = 0)�(redit[0℄ = 0)));In this property, we expet that all the redits will beonsumed during the sending proedure.Property 5: The number of reset ells in the ring annotexeed the number of aess units.AG(NumofRst < NumofUnit);In this property, NumofUnit is set to the number of a-ess units in the veri�ation, i.e., 3, 4, 5, 6, respetively.

12 Hong Peng, So��ene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protool Veri�ationProperty 6: At SEND state, a given station annotsend more ells than allowed by its redits.AG((state == SEND)! (Outmsgs <= 6))here, Outmsgs is the number of ells whih a given sta-tion sends at the SEND state.The experimental results of the CTL model hekingobtained in VIS are reported in Table 2, inluding CPUtime in seonds, memory usage in MB and the numberof BDD nodes alloated. The graphial representationsare given in Figures 10, 11, and 12. These experimentswere onduted on the same mahine as the SPIN ver-i�ation. During the veri�ation, we used the advanedordering, window and sift [2℄ to redue the BDD/MDDsize. VIS also provides a one of inuene model redu-tion [7℄ tehnique for invariant properties. However, inthe veri�ation of liveness properties, this tehnique an-not be applied. Besides, VIS provides a limited abstra-tion mehanism, namely the user must expliitly speifywhih signal in the model an be abstrated in one spe-i� property veri�ation. This tehnique, however, anonly be used in a fairly simple situation and annot beapplied in our ase. Sine the modeling language of SPINand VIS are di�erent, we annot say expliitly that thetwo veri�ed models, the PROMELA one and the Verilogone, are exatly the same with respet to their semantis.However, what we did is trying to follow the modelingmethods and oding styles of Verilog and PROMELA,respetively. We also tried to keep these two models totheir minimum size in either tool, in order to be able to

3 4 5 6
0

1

2

3

4

5

6

7

8

9
x 10

4

 ATMR Nodes

C
P

U
 ti

m
e

(s
)

Property p1
Property p2
Property p3
Property p4
Property p5
Property p6

Fig. 10. VIS veri�ation CPU time

3 4 5 6
0

200

400

600

800

1000

1200

1400

 ATMR Nodes

M
em

or
y

(M
B

)

Property p1
Property p2
Property p3
Property p4
Property p5
Property p6

Fig. 11. VIS veri�ation memory usage
ompare the eÆieny of SPIN and VIS in the veri�a-tion of interleaving and onurrent models, respetively.The VIS veri�ation approah is not diretly salableto large designs due to state spae explosion. From theveri�ation results, we see that in the 3,4,5-node model,the veri�ation an be �nished. However, the state spaeblows up quikly with respet to the model size. In theveri�ation of the 6-node model, only Property 2 anbe �nished. The other properties fail short of memory.

Hong Peng, So��ene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protool Veri�ation 133 nodes 4 nodesProperty CPU Time (s) Memory (MB) States CPU Time (s) Memory (MB) StatesP1 57 13.59 1513196 4290 26 680963412P2 4.6 10.04 318106 10.1 11.85 732167P3 6.3 11.91 528411 1962.1 201.69 346168207P4 25.6 13.72 1166100 467.7 19.99 83736894P5 4.1 9.87 308435 8.1 11.72 550583P6 4.8 9.98 314168 9.6 11.66 5652485 nodes 6 nodesProperty CPU Time (s) Memory (MB) States CPU Time (s) Memory (MB) StatesP1 19640.7 124.49 1811363276 - - -P2 31 13.79 3920178 79324.5 844.01 3947015525P3 20146.9 118.98 1829837953 - - -P4 11372.3 105.04 1152672565 - - -P5 14734.3 289.57 1231510174 - - -P6 24.2 13.77 2492626 70920.1 752.69 2606471216Table 2. ATMR veri�ation with VIS

3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

9

 ATMR Nodes

S
ta

te
s

al
lo

ca
te

d

Property p1
Property p2
Property p3
Property p4
Property p5
Property p6

Fig. 12. VIS veri�ation state spaeThere are two reasons for the state spae explosion. Oneis the introdution of the hannel module whih is om-posed of 19 lathes. The other is the irular dependenyof the nodes in the ring. To solve this problem, we believethat the data omplexity must be dereased by more ef-�ient abstration and redution tehniques. Finally, for

small models (less than 6 node), we found out that thememory usage in VIS is more eÆient than SPIN sineVIS an �nish an exhaustive searh.5 ConlusionsIn this paper, we formally veri�ed the asynhronous ATMRprotool in both SPIN and VIS. Generally, when a pro-tool is implemented in hardware, it annot be handledonly by a software (protool) veri�ation tool, like SPIN,sine most of these tools are based on an interleavingurrent model and annot reet the true onurrenyaspets of a hardware implementation. A veri�ation inVIS leaves us, however, with the obligation of simulatingan asynhronous protool in a synhronous environment.

14 Hong Peng, So��ene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protool Veri�ationFeature SPIN VISTarget system Software HardwareBasi model Interleaving model Synhronous modelProperty language LTL CTLSpei�ation language PROMELA VerilogVerif. of asynh. protool Yes Additional hannel moduleCPU time usage Faster SlowerMain memory usage Larger SmallerDetet dead-lok, live-lok, et. Yes Indiretly via temporal formulasGraphi User Interfae Yes NoTable 3. Comparison of SPIN and VISBeause of the inherent weakness of model heking,both SPIN and VIS are not diretly salable to largedesigns due to state spae explosion. Thus, it is impor-tant to �nd tehniques that an be used in onjuntionwith model heking tools like SPIN and VIS to extendthe size of the systems that an be veri�ed. In this pa-per, we used a data abstration approah to redue themodel of the ATMR protool for both the SPIN and VISveri�ations.Unlike VIS, SPIN is based on interleaving models,and hene runs generally faster than VIS beause eahstate update is a simpler operation, being restrited toone omponent only. Comparing the two sets of veri�-ation results, we an �nd generally the veri�ation inSPIN is faster. For example, in the 3-node model veri-�ation, the veri�ations of Properties 1, 3, 4 and 6 inSPIN are faster than those in VIS. Although the ap-proximate tehnique used in the SPIN veri�ation mayontribute to this di�erene, we do not think this is themajor fator beause the SPIN overages of the 3-node

model properties are greater than 99.9 perent. Fromthis point of view, it is a disadvantage for VIS not pro-viding an easy-to-use approximate tehnique. In SPIN,one possible way to redue the interleavings is to makethe statements atomi if these statements an be syn-hronous. Experiments showed that in this way the statespae an be redued for at least one order of magnitude.SPIN uses expliit state enumeration while VIS usesimpliit state enumeration (symboli model heking).Generally, VIS an use the memory more eÆiently. Fromour experiments, we found that VIS an �nish the ex-haustive searh in the 3,4, and 5-node models. The on-the-y approah in SPIN does not show advantages be-ause the model is large and the properties are global.Sine both SPIN and VIS are not salable to large de-signs, model redution tehniques are very important forveri�ation. Both tools provide model redution options,namely partial order and one of inuene, respetively.Partial order redution an only be used in the inter-leaving model and is not feasible in a tool like VIS. The

Hong Peng, So��ene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protool Veri�ation 15model redution tehniques in VIS are limited and needa lot of human interation.Another weakness in VIS is that it annot diretly re-port deadloks, livelok and unreahable ode. We haveto express these properties with temporal formulas. Forexample, a deadlok, is expressed as: \Sender is not insend state and reeiver is not in reeiving state and thereis at least one ell in the hannel." Generally, this prop-erty is diÆult to speify in CTL. In SPIN, a deadlokan be easily found using a timeout statement.Finally, two pratial features of these tools are worthmentioning. Namely, while VIS has a Verilog front-endallowing industrial designs to be imported and veri�ed,SPIN omes with a graphi user's interfae whih greatlyeases the use of the tool ompared to VIS.A summary of the main omparison mentioned aboveand throughout the paper is given in Table 3.AknowledgmentsThis work is partially supported by a Conordia gradu-ate student sholarship and NSERC researh grants no.OGP0194302 and no. OGP0194234.Referenes1. Rajeev Alur and Thomas A. Henzinger. Reative mod-ules. Formal Methods in System Design: An Interna-tional Journal, 15(1):7{48, July 1999.2. R. K. Brayton et al. VIS: A system for veri�ation andsynthesis. In Proeedings of Computer Aided Veri�ation,volume 1102 of LNCS, pages 428{432. Springer Verlag,Rutgers University, NY, USA, July 1996.

3. E. Brinksma and A. Mader. Veri�ation and optimiza-tion of a PLC ontrol shedule. In Proeedings of the7th SPIN Workshop, pages 73{92, Stanford University,California, USA, September 2000.4. M. Charpentier and G. Padiou. Spei�ation and ver-i�ation of the ATMR protool using UNITY. In Pro-eedings of International Workshop on Formal Methodsfor Parallel Programming, pages 26{36, University ofGeneva, Switzerland, April 1997.5. S. T. Cheng, R. K. Brayton, G. York, K. A. Yelik, andA. Saldanha. Compiling verilog into timed �nite statemahines. In Proeedings of International Verilog Con-ferene, 1995.6. E. M. Clarke, O. Grumberg, and D. Long. Veri�a-tion tools for �nite-state onurrent systems. In REXShool/symposium on a Deade of Conurreny: Ree-tions and Perspetives, pages 124{175, Noordwijkerhout,The Netherlands, June 1993.7. E. M. Clarke, O. Grumberg, and D. Peled. Model Chek-ing. MIT Press, 2000.8. E. A. Emerson. Temporal and modal logi, Handbook oftheoretial omputer siene. Elsevier Sienes B.V. J.van leeuwn north Holland edition, 1990.9. G. J. Holzmann. Design and validation of omputer pro-tools. Prentie Hall, 1991.10. G. J. Holzmann. The engineering of a model heker:the Gnu i-protool ase study revisited. In Proeed-ings of Spin Workshop, pages 233{244, Toulouse, Frane,September 1999.11. G.J. Holzmann and D. Peled. An improvement in for-mal veri�ation. In Proeedings of International Confer-ene on Formal Desription Tehniques for DistributedSystems and Communiations Protools, pages 177{194,Bern, Switzerland, September 1994.12. ISO. Spei�ation of the Asynhronous Transfer ModeRing (ATMR) Protool, 2.0 edition, January 1993.13. K. L. MMillan. Symboli Model Cheking. Kluwer Aa-demi Publishers, 1993.

16 Hong Peng, So��ene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protool Veri�ationA PROMELA model of the ATMRprotype AessUnit(byte ID; han in, out){byte State=Idle;MSDU_strut data;xr in;xs out;start: do::(State==Idle)->if::(Msgs[ID℄>0)->if::(Credit[ID℄>0)->State=Send;goto start;::(Credit[ID℄<=0)->State=WaitCredit;goto start;fi::(Msgs[ID℄==0)->Msgs[ID℄=MaxMsgs;ak[ID℄=0; req[ID℄=1;if::in?DataCell(data)->if::(data.Dest_Add==ID)->data.Dest_Add=0;out!EmptyCell(data);::(data.Dest_Add!=ID)->out!DataCell(data);fi::in?ResetCell(data)->Credit[ID℄=MaxCredit;out!ResetCell(data);::in?EmptyCell(data)->if::(data.Busy_Add==ID)->Reeive_RstReq[ID℄=1;out!ResetCell(data);Send_Rst[ID℄=1;State=Reset;::(data.Busy_Add!=ID)->out!EmptyCell(data);State=Idle;fi;Msgs[ID℄=((A[ID℄*PreMsgs[ID℄+C[ID℄);ak[ID℄=0; req[ID℄=1;PreMsgs[ID℄=Msgs[ID℄;fi;fi;::(State==Send)->if::in?EmptyCell(data)->data.Dest_Add=((A[ID℄*PreDest[ID℄+C[ID℄);if::(data.Dest_Add==ID)->data.Dest_Add=(data.Dest_Add;

::(data.Dest_Add!=ID)->;fi;PreDest[ID℄=data.Dest_Add;data.Busy_Add=ID;out!DataCell(data);Msgs[ID℄--;ak[ID℄=1; req[ID℄=0;Credit[ID℄--;State=Idle;::in?DataCell(data)->data.Busy_Add=ID;if::(data.Dest_Add==ID)->data.Busy_Add=ID;data.Dest_Add=0;out!EmptyCell(data);::(data.Dest_Add!=ID)->data.Busy_Add=ID;out!DataCell(data);fi::in?ResetCell(data)->Credit[ID℄=MaxCredit;out!ResetCell(data);State=Idle;fi::(State==Reset)->if::in?DataCell(data)->if::(data.Dest_Add==ID)->data.Dest_Add=0;out!EmptyCell(data);::(data.Dest_Add!=ID)->out!DataCell(data);fi::in?ResetCell(data)->Credit[ID℄=MaxCredit;Send_Rst[ID℄=0;Reeive_RstReq[ID℄=0;data.Busy_Add=ID;out!EmptyCell(data);State=Idle;::in?EmptyCell(data)->out!EmptyCell(data);::timeout->data.Busy_Add=ID;out!ResetCell(data);NumofRst++;fi::(State==WaitCredit)->if::in?DataCell(data)->if::(data.Dest_Add==ID)->data.Dest_Add=0;out!EmptyCell(data);::(data.Dest_Add!=ID)->out!DataCell(data);fi

Hong Peng, So��ene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protool Veri�ation 17::in?EmptyCell(data)->if::(data.Busy_Add==ID)->Reeive_RstReq[ID℄=1;out!ResetCell(data);Send_Rst[ID℄=1;State=Reset;::(data.Busy_Add!=ID)->out!EmptyCell(data);fi::in?ResetCell(data)->Credit[ID℄=MaxCredit;out!ResetCell(data);State=Idle;fiod}B Verilog model of the ATMRmodule ma_trl(lk, req, ak, out_ell, in_ell, id);input lk;input [0:7℄ in_ell;input req;input [0:2℄ id;output [0:7℄ out_ell;output ak;reg [0:7℄ out_ell;ma_state reg [0:1℄ state;ma_elltype reg [0:1℄ in_elltype,out_elltype;reg [0:2℄ rdt,out_BA,out_DA;reg ak;initial beginin_elltype=Empty;out_elltype=Empty;out_DA=0;out_BA=0;ak=0;state=IDLE;rdt=6;//MaxCrdt;out_ell[1:0℄=1;out_ell[4:2℄=id;out_ell[7:5℄=0;endalways �(lk or inell) beginout_BA = in_ell[4:2℄;out_DA = in_ell[7:5℄;ase(state)IDLE:if (req == 1)if (rdt > 0)state=SEND;elsestate=WAITCRDT;elsebegin ase (in_elltype)Data: begin

if (in_ell[7:5℄ == id)beginout_DA=0;out_elltype=Empty;endendReset: beginrdt = 6;//MaxCrdt;endEmpty: beginif (in_ell[4:2℄ == id)beginout_elltype=Reset;state=RESET;endend//emptyendaseend SEND:ase (in_elltype)Empty: beginout_elltype=Data;out_BA=id;out_DA=(id+1);if (out_DA >4)beginout_DA = 0;end rdt=rdt-1;ak=1;state=IDLE;endData: beginout_BA=id;if (in_ell[7:5℄ == id)beginout_BA=id;out_DA=0;out_elltype=Empty;endendReset: beginrdt = 6;//MaxCrdt;state=IDLE;endendaseRESET:ase (in_elltype)Data: beginif (in_ell[7:5℄ == id)beginout_DA=0;out_elltype=Empty;endendReset: beginif (in_ell[4:2℄ == id)

18 Hong Peng, So��ene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protool Veri�ationbeginrdt=6;//MaxCrdt;out_BA=id;out_DA=0;out_elltype=Empty;state=IDLE;endendEmpty: ;endaseWAITCRDT:ase (in_elltype)Data: beginif (in_ell[7:5℄ == id)beginout_DA=0;out_elltype=Empty;endendReset: begin rdt=6;//MaxCrdt;state=IDLE;endEmpty: beginif (in_ell[4:2℄ == id)beginout_elltype=Reset;state=RESET;endendendaseendasease (out_elltype)Data: out_ell[1:0℄=0;Empty: out_ell[1:0℄=1;Reset: out_ell[1:0℄=2;endaseout_ell[4:2℄=out_BA;out_ell[7:5℄=out_DA;end//alwaysendmodule

