
Chases and Escapes, and Optimization Problems

 Toru Ohira

 Nagoya University, Japan
 (Tel: 81-52-789-2824, Fax: 81-952-789-2829)

ohira@math.nagoya-u.ac.jp

Abstract: We propose a new approach for solving combinatorial optimization problem by utilizing the mechanism of chases
and escapes, which has a long history in mathematics. In addition to the well-used steepest descent and neighboring search, we
perform a chase and escape game on the ''landscape'' of the cost function. We have created a concrete algorithm for the
Traveling Salesman Problem. Our preliminary test indicates a possibility that this new fusion of chases and escapes problem
into combinatorial optimization search is fruitful.

Keywords: Problem of Chases and Escapes, Combinatorial Optimization, Traveling Salesman Problem

1 INTRODUCTION

 Problems of chasing and evading have attracted many
mathematical minds in history [1]. The standard problem is
to find a path of a single chaser who is trying to catch up to
a single evader. One of the earliest problems is to find the
path of the chaser who is chasing an evader moving in a
circle with a constant speed. The condition is that the chaser
also moves with a constant speed with its velocity vector
pointing to the position of the evader. Unfortunately, one
cannot solve this problem analytically. However,
asymptotic path of the chaser is proved to be also circular
(Fig.1).

Fig. 1. Chase and Escapes in Circle: The white circle is the
target moving in a circular path at constant speed, while
black square is the target. The ratio of the speed between
the two are (a,b) 1:2 (never catch up), (c,d) 1:0.95 (catch).

 Interests in these problems have grown in various
directions. One area is a combination with the game theory,
resulting in a field called ''differential game theory'' [2].
Another area is called ''discrete search games'' [3], where a
pursuer searches for an evader who is hiding behind one of
the discrete number of sites. Recently, it is also extended to
chases and escapes in groups, called ''Group Chase and
Escape'' [4].

 The main theme of this paper is to propose an idea of
applying this ''chase and escape'' problem to optimization
problems, such as combinatorial optimizations. There are
various ways by which we can seek such applications. One
way is that we consider the optimized state as an evader,
and a chaser will seek that state. A slightly different
approach, which we propose here, is that we perform a
chase and escape game on the ''landscape'' of the cost
function trying to find the optimized state with the lowest
cost.

2 DESIGN OF ALGORITHM

 Against the overall design concepts described in the
previous section, we would like to describe one of our
algorithms here. We will prepare initial two states, one is
the chaser the other is the evader. Then, we change these
two states according to the following rules. The evader
updates its state so that the cost function becomes lower.
Typically, this is done by randomly choosing a local
portion of the state and change it if the new state has the
lower cost, but do not change it otherwise. Thus, the
evader's update rule is aimed at minimizing the cost
function. The chaser, on the other hand, does not take into
account of the cost function, and updates its state so that it

becomes ''closer'' to the state of the evader in some distance
measure in the state space. So, the chaser has a possibility
to update to a state that has higher cost.

 We will add in two more rules. The first one is to the
change of roles. If during the above updating sequence, the
chaser reaches a state with lower cost. Then, the roles of
chaser and evader are exchanged. In other words, the chaser
is always designated to the state that has a lower cost
function between the two. They will keep the basic
updating rule above even after the switch.

 The second rule is the repulsive action when it catches up
to the evader. At this stage, the states of the two become
identical. We will add in this rule to separate their states.
One of them will change its state and update it to search for
the lower costs around its neighboring states. Then, we
will designate the chaser and the evader between the two
states by their associated costs.

 Thus, our algorithm can be viewed as an extension of the
steepest descent algorithm with neighboring search around
local minima. The extension is the added mechanism of
chases and escapes. It is our speculation that having a
chaser whose movement is different from that of steepest
descent may help ''breaking out'' of local minima (Fig. 2).

Fig. 2. Overall Design of the Chase and Escape mechanism
for optimization problems.

3 APPLICATION TO TRAVELING SALESM
AN PROBLEM

 We here give a concrete example of our algorithm applied
to a ''Traveling Salesman Problem'', which is a
representative combinatorial optimization problem [5].
There are N cities on a two dimensional map. The problem
requests to find the shortest path to visit all cities, each with
only once. Though seemingly simple, this problem is one of
the most difficult combinatorial optimization problems.

 If we name the cities by integers (1, 2, 3, … N), then its
permutation represents a path with associated distance
which we identify as the ''cost''. The task is to find the
optimal state out of N! permutations.

 Let us describe our algorithm. We generate two initial
states and designate the one with the shorter path as the
evader and the other as the chaser. Then, for the evader, we
randomly pick two cities and exchange them in its
permutation. If this exchange produces the state with
shorter path, we update the evader's state with the new one.
Otherwise, we keep the original. Now, for the chaser, we
randomly pick a city and update the state by exchanging
two cities so that the city picked is now placed at the same
position in the permutation as the evader.

 Then, we compare the paths of the evader and chaser. If
the chaser now has a shorter path, then the roles are
switched. By this iteration, these two are expected to move
toward a state with shorter path and approaching to each
other.
 When two states become the same, we take it as an
indication of reaching to a local minimum and add in the
next step. We randomly pick R cities and permute them.
This is likely to produce a new state neighboring to the
local minimum by the difference of R cities. We update this
state toward the one with lower path by the two-cities
exchanges. If that produces the better state, we designate it
as the evader, and the original state as the chaser. Otherwise,
the roles are switched, and the whole process is repeated.

4 SIMULATION RESULTS

 We have tested our algorithm to the 52 cities Traveling
Salesman Problem, which is available on the Web[6] with
known shortest path of length approximately 7,544 (Figure
3).

Fig. 3. Traveling Salesman Problem with 52 cities. The line
is the shortest path. This best path length is approximately
7,544.

 Out of 52! ~ 8×1067 permutations, we set our parameters
so that it samples at most (A) 8×107 and (B) 6×108
permutations. The parameter for the neighboring search is
set as R = 3. We have shown a representative example as a
result of our algorithm (Fig. 4).

Fig. 4. An example of path for the Traveling Salesman
Problem with 52 cities with our algorithm using chase and
escape. This path length is approximately 7,940.

 We repeated our trials 100 times to obtain the average
path length (Ave. Path.) and the standard deviation (SDV).
We compare the result (C and E) against the steepest
descent with neighboring search algorithm (Simple), which
takes a comparable time (sec) on the same computer. The
result is summarized in Tables 1 and 2. Though marginal,
the results indicates a possibility of improvements with a
incorporation of the chase and escape mechanism.

Table 1. Comparison (A)
 Time(sec) Ave. Path SDV

Simple 17,930 8,912 411
C and E 16,230 8,777 	 401

Table 2. Comparison (B)

 Time(sec) Ave. Path SDV
Simple 81,635 8,401 310

C and E 81,871 8,223 	 257

5 CONCLUSION

 We would like to address a couple of points based on this
preliminary work of applying chases and escapes to
optimization problems.

 First, even though the improvement on the Traveling
Salesman Problem was small, there is an indication that
chases and escapes mechanism may help. Searching for
optimization problems to have more notable effect is yet to
be done.

 Second, one can easily make this algorithm in parallel. For
example, we can change the algorithm so that there is a
single evader and multiple chasers. It is of interest to see
how such extension can show improvements over simple
parallelization without chases and escapes.

 The author would like to thank Profs. Tomoaki Nogawa
and Tadaaki Hosaka for fruitful discussions. This research
has been supported by The Kayamori Foundation of
Informational Science Advancement #K25-XVII 422.

REFERENCES

 [1] Nahin PJ (2007) Chases and Escapes: The mathe
matics of pursuit and evasion. Princeton University Pr
ess, Princeton
 [2] Isaacs R (1965) Differential Games. Wiley, New
 York
 [3] Rucle WH (1991) A Discrete Search Game. In:
Raghavan TES et al., (eds), Stochastic Games and Rel
ated Topics, Kulwer Academic pp. 29-43
 [4] Kamimura A, Ohira T (2010) Group Chase and E
scape, New Journal of Physics, 12, 053013
 [5] Cook JW (2012), In pursuit of the traveling salesman:
mathematics at the limits of computation. Princeton
University Press, Princeton
 [6] The following web site has a collection of Travelling S
alesman Problem. We have used one with 52cities, named i
n the list as berlin52.tsp and berlin52.opt.tour. http://elib.zi
b.de/pub/Packages/mp-testdata/tsp/tsplib/tsp/index.html

