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Abstract: We propose a new approach for solving combinatorial optimization problem by utilizing the mechanism of chases 
and escapes, which has a long history in mathematics. In addition to the well-used steepest descent and neighboring search, we 
perform a chase and escape game on the ''landscape'' of the cost function. We have created a concrete algorithm for the 
Traveling Salesman Problem. Our preliminary test indicates a possibility that this new fusion of chases and escapes problem 
into combinatorial optimization search is fruitful. 
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1 INTRODUCTION 

 Problems of chasing and evading have attracted many 
mathematical minds in history [1]. The standard problem is 
to find a path of a single chaser who is trying to catch up to 
a single evader. One of the earliest problems is to find the 
path of the chaser who is chasing an evader moving in a 
circle with a constant speed. The condition is that the chaser 
also moves with a constant speed with its velocity vector 
pointing to the position of the evader. Unfortunately, one 
cannot solve this problem analytically. However, 
asymptotic path of the chaser is proved to be also circular 
(Fig.1). 
 

 
Fig. 1. Chase and Escapes in Circle: The white circle is the 
target moving in a circular path at constant speed, while 
black square is the target. The ratio of the speed between 
the two are (a,b) 1:2 (never catch up), (c,d) 1:0.95 (catch). 
 

 Interests in these problems have grown in various 
directions. One area is a combination with the game theory, 
resulting in a field called ''differential game theory'' [2]. 
Another area is called ''discrete search games'' [3], where a 
pursuer searches for an evader who is hiding behind one of 
the discrete number of sites. Recently, it is also extended to 
chases and escapes in groups, called ''Group Chase and 
Escape'' [4]. 
 
 The main theme of this paper is to propose an idea of 
applying this ''chase and escape'' problem to optimization 
problems, such as combinatorial optimizations. There are 
various ways by which we can seek such applications. One 
way is that we consider the optimized state as an evader, 
and a chaser will seek that state. A slightly different 
approach, which we propose here, is that we perform a 
chase and escape game on the ''landscape'' of the cost 
function trying to find the optimized state with the lowest 
cost. 
 

2 DESIGN OF ALGORITHM 

 Against the overall design concepts described in the 
previous section, we would like to describe one of our 
algorithms here. We will prepare initial two states, one is 
the chaser the other is the evader. Then, we change these 
two states according to the following rules. The evader 
updates its state so that the cost function becomes lower. 
Typically, this is done by randomly choosing a local 
portion of the state and change it if the new state has the 
lower cost, but do not change it otherwise. Thus, the 
evader's update rule is aimed at minimizing the cost 
function. The chaser, on the other hand, does not take into 
account of the cost function, and updates its state so that it 



becomes ''closer'' to the state of the evader in some distance 
measure in the state space. So, the chaser has a possibility 
to update to a state that has higher cost.  
  
 We will add in two more rules. The first one is to the 
change of roles. If during the above updating sequence, the 
chaser reaches a state with lower cost. Then, the roles of 
chaser and evader are exchanged. In other words, the chaser 
is always designated to the state that has a lower cost 
function between the two. They will keep the basic 
updating rule above even after the switch.   
 
 The second rule is the repulsive action when it catches up 
to the evader. At this stage, the states of the two become 
identical. We will add in this rule to separate their states. 
One of them will change its state and update it to search for 
the lower costs around its neighboring states.  Then, we 
will designate the chaser and the evader between the two 
states by their associated costs. 
 
 Thus, our algorithm can be viewed as an extension of the 
steepest descent algorithm with neighboring search around 
local minima. The extension is the added mechanism of 
chases and escapes. It is our speculation that having a 
chaser whose movement is different from that of steepest 
descent may help ''breaking out'' of local minima (Fig. 2). 
 

 
 

Fig. 2. Overall Design of the Chase and Escape mechanism 
for optimization problems. 

3 APPLICATION TO TRAVELING SALESM
AN PROBLEM 

 We here give a concrete example of our algorithm applied 
to a ''Traveling Salesman Problem'', which is a 
representative combinatorial optimization problem [5]. 
There are N cities on a two dimensional map. The problem 
requests to find the shortest path to visit all cities, each with 
only once. Though seemingly simple, this problem is one of 
the most difficult combinatorial optimization problems.  
 
 If we name the cities by integers (1, 2, 3, … N), then its 
permutation represents a path with associated distance 
which we identify as  the ''cost''. The task is to find the 
optimal state out of N! permutations. 
 
 Let us describe our algorithm. We generate two initial 
states and designate the one with the shorter path as the 
evader and the other as the chaser. Then, for the evader, we 
randomly pick two cities and exchange them in its 
permutation. If this exchange produces the state with 
shorter path, we update the evader's state with the new one. 
Otherwise, we keep the original. Now, for the chaser, we 
randomly pick a city and update the state by exchanging 
two cities so that the city picked is now placed at the same 
position in the permutation as the evader. 
 
 Then, we compare the paths of the evader and chaser. If 
the chaser now has a shorter path, then the roles are 
switched. By this iteration, these two are expected to move 
toward a state with shorter path and approaching to each 
other.  
 When two states become the same, we take it as an 
indication of reaching to a local minimum and add in the 
next step. We randomly pick R cities and permute them. 
This is likely to produce a new state neighboring to the 
local minimum by the difference of R cities. We update this 
state toward the one with lower path by the two-cities 
exchanges. If that produces the better state, we designate it 
as the evader, and the original state as the chaser. Otherwise, 
the roles are switched, and the whole process is repeated. 

 

4 SIMULATION RESULTS 

 We have tested our algorithm to the 52 cities Traveling 
Salesman Problem, which is available on the Web[6] with 
known shortest path of length approximately 7,544 (Figure 
3).   
 



 
Fig. 3. Traveling Salesman Problem with 52 cities. The line 
is the shortest path. This best path length is approximately
7,544.  
 
 Out of 52! ~ 8×1067 permutations, we set our parameters 
so that it samples at most (A) 8×107  and (B) 6×108  
permutations. The parameter for the neighboring search is 
set as R = 3. We have shown a representative example as a 
result of our algorithm (Fig. 4).  
 
 

 
Fig. 4. An example of path for the Traveling Salesman 
Problem with 52 cities with our algorithm using chase and 
escape. This path length is approximately 7,940.  
 
 
 We repeated our trials 100 times to obtain the average 
path length (Ave. Path.) and the standard deviation (SDV).  
We compare the result (C and E) against the steepest 
descent with neighboring search algorithm (Simple), which 
takes a comparable time (sec) on the same computer. The 
result is summarized in Tables 1 and 2. Though marginal, 
the results indicates a possibility of improvements with a 
incorporation of the chase and escape mechanism. 
 
 
 

Table 1. Comparison (A) 
 Time(sec)  Ave. Path SDV 

Simple 17,930 8,912    411 
C and E 16,230 8,777 	
  401 

 
Table 2. Comparison (B) 

 Time(sec)  Ave. Path SDV 
Simple 81,635 8,401    310 

C and E 81,871 8,223 	
  257 
 

5 CONCLUSION 

 We would like to address a couple of points based on this 
preliminary work of applying chases and escapes to 
optimization problems. 
 
 First, even though the improvement on the Traveling 
Salesman Problem was small, there is an indication that 
chases and escapes mechanism may help. Searching for 
optimization problems to have more notable effect is yet to 
be done. 
 
 Second, one can easily make this algorithm in parallel. For 
example, we can change the algorithm so that there is a 
single evader and multiple chasers. It is of interest to see 
how such extension can show improvements over simple 
parallelization without chases and escapes.  
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