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1  Introduction

Policy search methods which are widely adopted in high-
dimensional robotic problems with continuous states and 
actions learn a policy directly from a reward function as 
an alternative to value function-based reinforcement learn-
ing [1]. Classic policy gradient algorithms such as REIN-
FORCE [2] and GPOMDP [3] suffer from high variance in 
the gradient estimates because of the noise added at every 
time step for a stochastic policy.

Sehnke et  al. proposed a method so-called Policy Gra-
dients with Parameter-based Exploration (PGPE) [4] to 
solve this problem by evaluating deterministic policies with 
the parameters sampled from a prior distribution described 
by policy hyper parameters. The use of deterministic pol-
icy reduces the variance of the performance gradient with 
respect to the hyper parameters and the deterministic pol-
icy does not need to be differentiable. PGPE outperformed 
classical policy gradients algorithms, but still requires 
learning rate tuning for gradient ascent.

Peters and Schaal developed an EM-based Reinforce-
ment Learning framework [5] to maximize the lower bound 
of the objective function. Depending on the choice of the 
probability distribution of the policy, the closed form solu-
tion for the maximization can be obtained.

Here, we propose a novel policy search algorithm called 
EM-based Policy Hyper Parameter Exploration (EPHE) 
that combines PGPE and an EM-based strategy to search 
for optimal hyper parameters of deterministic policies 
without the needs of gradient computation and learning rate 
tuning.

This method is designed in our smartphone robot pro-
ject [6–8] for practical and efficient policy parameter 
learning. The project aims to develop a low-cost platform 
for multi-agent research. In the first stage, we developed a 
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two-wheeled balancer as a single agent to evaluate various 
control and learning algorithm. In the real robot system, a 
deterministic policy is preferred over a stochastic policy 
to avoid unexpected behaviors and no need for differenti-
ability allows a wider choice of control architectures with 
Parameter-based Exploration. Because learning without a 
huge number experience is also critical in hardware experi-
ments, efficient update without learning rate tuning is also a 
highly favored feature of EM-based learning. We compare 
the EPHE mothed with PGPE [4] and Finite Difference 
method [3] in benchmark tasks of pendulum swing-up with 
limited torque, cart-pole balancing, and our two-wheeled 
smartphone robot simulator. Results show that EPHE out-
performs the previous policy search methods.

2 � Learning method

2.1 � REINFORCE, PGPE and EM‑based algorithms

We assume a standard discrete-time Markov Decision 
Process (MDP) setting. At each time step t, an agent 
takes an action ut based on a state xt according to the 
policy π(ut|xt , θ) parameterized by a vector θ. The envi-
ronment makes a transition to a next state xt+1 accord-
ing to p(xt+1|xt , ut) and gives a scalar reward rt to the 
agent. We denote a state-action-reward sequence as 
h = [x1, u1, r1, . . . , xT , uT , rT , xT+1]. The goal of reinforce-
ment learning is to find the parameter θ that maximizes an 
objective function defined as the agent’s expected reward

where R(h) is the cumulative reward of the sequence h, and 
p(h|θ) is the probability to observe h. Under the Markovian 
environmental assumption, p(h|θ) is given by:

To maximize J(θ), one way is to estimate the gradient 
∇J(θ) to perform gradient ascent. REINFORCE [2] obtains 
the gradient by estimating ∇θ log p(h|θ) directly, which 
yields

Substituting (3) with (2), we have

(1)J(θ) =

∫

p(h|θ)R(h)dh

(2)p(h|θ) = p(x1)

T
∏

t=1

p(xt+1|xt , ut)π(ut|xt , θ).

(3)∇θJ(θ) =

∫

H

p(h|θ)∇θ log p(h|θ)R(h)dh.

∇θJ(θ) =

∫

H

p(h|θ)

T
∑

t=1

∇θ logπ(ut|xt , θ)R(h)dh.

Although it is not practical to integrate over the entire 
space of histories, we can use sampling to obtain the 
estimate

where N denotes the number of histories. To reduce the var-
iance of the gradient, R(h) can be replaced with R(h)− b, 
where b is a reward baseline [5].

The problems of REINFORCE are that the policy has to 
be differentiable with respect to the policy parameters and 
that evaluation of a stochastic policy can lead to a high var-
iance in the entire histories.

PGPE [4] addresses these problems by considering a 
distribution of deterministic policies with the policy param-
eters θ sampled from a prior distribution defined by the 
hyper parameters ρ, which are typically the mean and the 
variance of θ. The objective function is given by

It should be noted that the variance of p(h|θ) of PGPE 
can be kept small because a deterministic policy is adopted. 
By updating the hyper parameter vector ρ, we can obtain 
the deterministic policy π(ut|xt , θ) where θ is eventually 
computed by the expectation of the prior distribution.

Differentiating Eq. (4) with respect to ρ gives us

Again by sampling, we have the gradient estimate

For PGPE to perform gradient ascent, a learning rate 
parameter has to be tuned.

EM-based Policy Search [9] estimates a lower bound of 
the expected return from histories and iteratively updates 
the policy parameter using an analytic solution for the max-
imum of the lower bound. This way, there is no learning 
rate parameter for an EM-based method. The detail of the 
EM-based method is illustrated below in the context of our 
hyper parameter learning.

2.2 � Proposed method

Here we describe our proposed method, EM-based Policy 
Hyper Parameter Exploration (EPHE) by integrating the 

∇θJ(θ) ≈
1

N

N
∑

n=1

T
∑

t=1

∇θ logπ(u
n
t |x

n
t , θ)R(h

n)

(4)J(ρ) =

∫

Θ

∫

H

p(h|θ)p(θ |ρ)R(h)dhdθ .

∇ρJ(ρ) =

∫

Θ

∫

H

p(h|θ)p(θ |ρ)∇ρ log ρ(θ |ρ)R(h)dhdθ .

∇ρJ(ρ) ≈
1

N

N
∑

n=1

∇ρ log p(θ |ρ)R(h
n)
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features of PGPE [4] and EM-based Policy Search [9]. To 
establish the lower bound, we consider a new parameter 
distribution over hyper parameter vector ρ′. Using Jensen’s 
inequality under the assumption that R(h) is strictly posi-
tive, we have the log ratio of two objective functions

Hence, the lower bound is defined by

To maximize this lower bound, the derivative of (5) with 
respect to ρ′ should equal to zero

Since J(ρ) is constant, this equation can be simplified as

By applying sampling trick again, we have

If p(θ |ρ′) is represented by an exponential family dis-
tribution, the update rule is given by a closed form. In 
particular, we consider that p(θ |ρ′) is given by a product 
of independent Gaussian distributions N(θi|η

′
i, σ

′2
i ) for 

each parameter θi in θ. The log derivatives of p(θ |ρ′) with 
respect to η′i and σ ′

i  are computed as

Substituting Eqs. (7) and (8) into Eq. (6) yields

log
J(ρ′)

J(ρ)
= log

∫

Θ

∫

H

R(h)p(h|θ)p(θ |ρ)

J(ρ)

p(θ |ρ′)

p(θ |ρ)
dhdθ

≥

∫

Θ

∫

H

R(h)p(h|θ)p(θ |ρ)

J(ρ)
log

p(θ |ρ′)

p(θ |ρ)
dhdθ

(5)

log JL(ρ
′) = log J(ρ)

+

∫

Θ

∫

H

R(h)p(h|θ)p(θ |ρ)

J(ρ)
log

p(θ |ρ′)

p(θ |ρ)
dhdθ

.

∇ρ′ log JL(ρ
′) =

∫

Θ

∫

H

R(h)p(h|θ)p(θ |ρ)

J(ρ)
∇ρ′ log

p(θ |ρ′)

p(θ |ρ)
dhdθ = 0.

∫

Θ

∫

H

R(h)p(h|θ)p(θ |ρ)∇ρ′ logp
(

θ |ρ′
)

dhdθ = 0.

(6)
1

N

N
∑

n=1

∇ρ′ log p
(

θn|ρ′
)

R
(

hn
)

= 0.

(7)∇η′i
log p

(

θ |ρ′
)

=
θi − η′i

σ
′2
i

(8)∇σ ′
i
log p

(

θ |ρ′
)

=
(θi − η′i)

2 − σ
′2
i

σ
′3
i

η′ =

∑N
n=1[R(h

n)θni ]
∑N

n=1 R(h
n)

It should be noted that the denominator is positive 
because we assume that R(h) is strictly positive so that it 
can resemble an (improper) probability distribution to 
weight the parameters. To obtain a good sampling perfor-
mance, we only take the parameters from the best K returns 
in N trajectories for updating.

3 � Experiments

In this section, we compare our method EPHE with PGPE 
[4] and classic policy gradient method Finite Difference 
(FD) [3]. For each method we use N = 20 trajectories to 
update one set of parameters, and select K = 10 to obtain 
the elite parameters for updating in our method. The results 
are taken by the average of 20 independent runs. We plot 
the learning curves of the average and the standard error 
of cumulative returns against the iterations of parameter 
updating.

3.1 � Pendulum swing‑up with limited torque

The target of this non-linear control task is to swing up the 
pendulum to the upright position and stay as long as pos-
sible [10]. We use 16*16 radial basis functions to repre-
sent the two-dimensional state variables, the angle, and the 
angular velocity of the pendulum: x = {ϕ, ϕ̇}. The action is 
the torque applied to the pendulum u = 5 ∗ tanh

(

θTΦ(x)
)

 
with maximum torque 5 [N*m], where θ is the policy 
parameter and Φ(x) is the basis function vector. The system 

(9)σ ′ =

√

√

√

√

∑N
n=1[R(h

n)
(

θni − η′i

)2
]

∑N
n=1 R(h

n)
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starts from an initial state x0 = {ϕ0, 0}, where ϕ0 is ran-
domly selected from [−π ,π ] [rad], and terminates when 
|ϕ̇| ≥ 4π [rad/s]. The sampling rate is 0.02 [s] for each 
time step and maximum time steps is 1000 (=20 [s]) for 
one episode. The strictly positive reward for one history is 
given by

where Q and R are the quadratic penalty matrix determined 
by users. For Finite Difference, the initialization of policy 
parameters is θ0 = 0, and the steps for the policy param-
eter update are δθ ∼ U(−3.46, 3.46), a uniform distribution 
with variance 1. For PGPE and our method EPHE, the ini-
tial hyper parameters are η0 = 0, σ 0 = 1.

Figure  1 shows the performance of FD, PGPE and 
our method. We hand-tuned the learning rates for each 
method and found that separate learning rates for each 
parameter are required for PGPE. The optimal param-
eters were α = 0.1 for FD, and αη = 0.001, ασ = 0.0001 
for PGPE. We also showed the performance of PGPE 
with αη = 0.0001, ασ = 0.0001 to illustrate its param-
eter dependence. The proposed method learned faster and 
achieved better performance after 30 iterations without the 
need for tuning the learning rate.

3.2 � Cart‑pole balancing

In this task, the agent aims to maximize the length of 
time of a movable cart balancing a pole upright in the 
center of a track [11]. The state variables are the position 
and the velocity of the cart on the track, and the angle 
and the angular velocity of the pole: x =

{

x, ẋ, θ , θ̇
}

.  
The action is the force applied to the cart given by a 

(10)R(h) =

T
∑

t=1

exp(−xTQx − uTRu)

linear parameterized policy u = θTx. We add Gaussian 
white noise with standard deviation of 0.001  [rad/s] and 
0.01  [m/s] to the dynamics. The system starts within a 
random position and a random angle inside [−0.2,+0.2] 
[rad], and [−0.5,+0.5]   [m] until it reaches the target 
region of [−0.05,+0.05]   [rad] and [−0.05,+0.05]   [m], 
and terminates at |x| ≥ 2.4  [m], and |θ | ≥ 0.7  [rad]. The 
sampling rate is 0.02 [s] for each time step and maximum 
time steps is 1000 (=20 [s]) for one episode. The strictly 
positive reward is the same as (10). The initializations of 
policy parameters for FD and hyper parameters for PGPE 
and EPHE are from a reasonable prior knowledge, which 
indicates certain distance from the optima. The parameter 
update for the FD controller is δθ ∼ U(−3.9, 3.9), a uni-
form distribution with variance 5. We tested with the same 
initialization as FD of η0 with different σ 0 = 5 for PGPE, 
and σ 0 = 35 for EPHE.

Figure 2 shows the performance of FD, PGPE and our 
method. The best learning rates were, α = 0.01 for FD, 
αη = 0.001, ασ = 0.0001 for PGPE. Our method EPHE 
achieved faster learning without learning rate tuning.

3.3 � Two‑wheeled smartphone robot

The goal of the smartphone robot project is to construct 
an affordable, high-performance multi-agent platform for 
researching on robot social behaviors [6]. Even as a single 
agent, it has lots of possibilities to achieve various behav-
iors for testing and developing motor control algorithms 
under control theory and Reinforcement Learning domain. 
In our previous work [7, 8], we developed a two-wheel bal-
ancer and successfully realized standing-up and balancing 
behavior by a switching control architecture with an opti-
mal linear controller and a hand-tuned non-linear control-
ler. With our new method EPHE, the robot is expected to 

Fig. 1   Learning curves of the swing-up task Fig. 2   Learning curves of the cart-pole task
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optimize the policy parameters automatically in a more 
practical and efficient fashion. In this section, we compared 
our method with PGPE and FD in our two-wheeled smart-
phone robot simulator.

The state variables are tilting angle and angular veloc-
ity of the body, and rotating angle and angular velocity of 
the wheel where x = {ϕ, ϕ̇,ϑ , ϑ̇}. The control input u is the 
motor torque applied to the left and right wheel. We adopt 
a switching framework in which a linear feedback stabi-
lizer is selected to achieve balancing if the tilting angle of 
the robot body is within the range of [−ϕs,ϕs], otherwise 
the CPG-based destabilizer is applied. The policy param-
eters are the four-dimensional control gain vector for the 
linear stabilizer, the switching threshold, and two param-
eters of the oscillator: θ = {k1, k2, k3, k4,ϕs,ω,β}. Figure 3 
shows the architecture. We also added observation Gauss-
ian white noise with standard deviation of 0.01 to the 
system.

The agent is required to start moving from the resting 
angle 60°, bounce with the bumper to stand up and finally 
achieve balancing. The simulation runs with a sampling 
rate 0.02 [s] for each step. The agent learns one epi-
sode within the maximum of 1000 steps (=20 [s]). The 

cumulative reward is the same as (10). We initialize the 
parameters θ0 and the step size δθ for FD, and the hyper 
parameters η0 for PGPE and our method with uniform dis-
tributions, and fixed σ 0 based on the prior knowledge we 
obtained in [7].

Figure  4 shows the learning performance. The best 
learning rates are, αk = 0.0001, αϕs = 0.00001, αω = 0.01 , 
αβ = 0.01 for FD, αη = 0.001, ασ = 0.001 for PGPE. The 
success rates of each method are illustrated in Table  1. 
Our method outperformed others after 10 iterations and 
achieved a more reliable performance after 20 iterations.

We also plot the distribution of 20 final optimized 
parameters in Fig.  5. FD has the most centralized dis-
tribution of final optimized parameters because it 
represents the policy parameters while PGPE and 
EPHE represent the distribution of the policy param-
eters. We pick up one set of the optimized parameters 
η = {0.0021, 0.0982, 0.2953, 0.0651, 47o, 11.7169, 18.7890} 
based on our method and sample 10 sets of policy 
parameters based on the Gaussian prior distribution 
to illustrate the bouncing and stabilizing behaviors in 
Fig.  6. It shows that the control signals are synchro-
nized with the angular velocity and the switcher can suc-
cessfully coordinate the two controllers to achieve the 
expected behaviors.

Fig. 3   Switching control architecture of smartphone robot

Fig. 4   Learning curves of the smartphone robot simulator

Table 1   Successful rate of each method

EPHE 90 %

PGPE 60 %

Finite difference 85 %

Fig. 5   Distributions of the optimized parameters in the case of the 
smartphone robot experiment
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4 � Discussion

Our method EPHE can compete the other two methods in 
all the tasks with a faster convergence speed and a steadily 
higher return (Figs.  1, 2 and 4). In the smartphone robot 
simulator case, Finite Difference method learns better in 
the beginning because it searches in the policy parameters 
space directly under one-dimensional uniform distribution 
domain, and it is easy to be trapped in local optima. This is 
illustrated in Fig. 5.

We also found that the difference between the ini-
tialization of the variances illustrates different insights 
of PGPE and our method: PGPE optimizes the hyper 
parameters by computing gradients, in which case, 
smaller variance leads to a more precise approxima-
tion. While our method computes the average of the 
sampled points which suggests larger initial variance 
explores more. The learning behavior is much improved 
by the K-elite selection mechanism. Because parameters 
are quite far away from the optima in the beginning of 
learning, frequent failures will slow down the learning 
process. Also, it is easy to be trapped in local optima 
by updating with all the parameters (when K  =  N). 
Figures  7, 8 and 9 reveal the sensitivity of K to N in 
three tasks. Agents with smaller setting of K learn rela-
tively faster but reach no better performance in the end. 
There is no significant difference between different set-
tings of K, but agents without the selection mechanism 
achieve much worse behaviors. Another interesting find-
ing is, in the Android robot case, the threshold of switch-
ing condition seems not crucial parameters to be tuned. 
This saves the burden of making different arms for the 
robot body in real hardware.  

Fig. 6   Trajectories realized by the policy of which the parameters are 
sampled from the optimized prior distribution

Fig. 7   Sensitivity of K to N in the swing-up task

Fig. 8   Sensitivity of K to N in the cart-pole task

Fig. 9   Sensitivity of K to N in the smartphone robot task
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5 � Conclusion and future work

In this paper, we developed a new policy search algorithm, 
EM-based Policy Hyper Parameter Exploration (EPHE). 
We tested it in two benchmark tasks and our two-wheeled 
Android phone robot simulator with a non-linear, non-
differentiable controller. Our method integrated PGPE 
with the EM-based update that maximizes a lower bound 
of the expected return in each iteration of hyper param-
eter updating. Simulation results showed that our method 
outperforms other policy gradient methods such as Finite 
Difference and PGPE after fine tuning of the learning rates. 
The advantages of our method are: (1) the controller is 
deterministic, (2) it does not require the controller to be dif-
ferentiable, (3) it avoids hand-tuning of the learning rate, 
which are highly favored in practical robot systems.

For future work, we will improve our method by taking 
into account the correlation of the parameters and devel-
oping more sophisticated sampling methods. We notice 
that our algorithm with a Gaussian prior is similar to the 
CMA-ES optimization method [12], and further compari-
sons with recent policy search methods such as the path 
integral framework [13] are also required. We will test our 
method in the real robot system to realize efficient tuning-
free performance.
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